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Introduction
The goal of this thesis is to study multiplicative aspects of global homotopy theory. Global homotopy theory
means that we study phenomena in stable homotopy theory which are equivariant for all compact Lie groups
G in a way compatible with variations in the group. An algebraic example of such a globally equivariant
object would be the representation ring R(G) of a compact Lie group. This is defined for any G, and it has
functorial restrictions for any continuous homomorphism K → G as well as transfers for inclusions H ≤ G
of closed subgroups. Topological examples include equivariant cohomology theories which exhibit the same
structure of restrictions and transfers, for example equivariant K-theory or equivariant bordism. In the same
way as non-equivariantly, such global cohomology theories are represented by spectra. For our model of
global homotopy theory, we choose orthogonal spectra, which can be evaluated on all finite representations of
compact Lie groups (see [Sch18]).
Many of these cohomology theories are endowed with additional multiplicative structures, and the question
arises whether this can be lifted to the representing spectra. This question classically is approached by ob-
struction theory, finding conditions for an algebraic multiplication to be extended step by step to a topological
multiplication. Our goal is to establish a similar obstruction theory for global homotopy theory.
In classical obstruction theory, the obstructions to extending structure often lie in some sort of cohomology
of the corresponding objects. The first step will thus be to find an appropriate cohomology theory for the
objects we consider, which are global analogues of commutative rings.

Spectra as a model for global homotopy theory

Definition 1. An orthogonal spectrum is a collection of pointed topological spaces Xn, endowed with an
action of the orthogonal group O(n), together with structure maps σn,m : Sn ∧ Xm → Xn+m, which are
O(n)×O(m)-equivariant, unital and associative. We denote the category of orthogonal spectra by Sp.

If we have a orthogonal spectrum X, a compact Lie group G and an n-dimensional G-representation V , we
define the value of X at V as X(V ) = L(Rn, V )+ ∧O(n) Xn. Here L(Rn, V ) is the space of linear isometric
embeddings, hence is a free and transitive O(n)-space. Moreover, on X(V ) ∼= Xn, we have a natural G-action
by the G-action on V .
Using these G-equivariant evaluations, we define G-equivariant homotopy groups for any compact Lie group:
We fix a complete G-universe U . Then we define for k ≥ 0 the G-equivariant homotopy groups as

πGk (X) = colim
V⊂U

[SV⊕Rk

, X(V )]G,

where [ , ]G denotes G-equivariant homotopy classes. If k ≤ 0, we similarly define πGk (X) =
colimV⊂U [SV , X(V ⊕ R−k)]G.
Definition 2. A morphism f : X → Y of orthogonal spectra is a global equivalence if it induces an isomor-
phism πG∗ (f) for all compact Lie groups G. Inverting these weak equivalences, we obtain the so called global
homotopy category GH.

The homotopy groups of an orthogonal spectrum come equipped with structure relating the values at different
compact Lie groups. If we have a morphism α : K → G of compact Lie groups or an inclusion H ≤ G of a
closed subgroup, we have a restriction and a transfer map

α∗ : πG∗ (X)→ πK∗ (X), trGH : πH∗ (X)→ πG∗ (X),

respectively. These morphisms have to satisfy certain compatibility con-
ditions, and we collect this data in the notion of a global functor. Thus,
the collection of homotopy groups π0(X) = (πG0 (X))G is the prototypical
example of a global functor. Global functors are the analogues of abelian
groups in non-equivariant homotopy theory and of Mackey functors for
G-equivariant homotopy theory for a fixed compact Lie group G.
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The structure of a global
(power) functor [Sch18].

The category of orthogonal spectra has a symmetric monoidal structure, called the smash product ∧. We
define ultra-commutative ring spectra as commutative monoids in this category. This name is chosen since
these ring spectra encode a rich type of structure. For example, on the homotopy groups π0(R) of an
ultra-commutative ring spectrum, there are norm maps

NG
H : πH0 (R)→ πG0 (R) for H ≤ G

in addition to a multiplication. This additional structure makes π0(R) into a so called global power functor,
the global analogue of a Tambara functor. Thus, the notion of an ultra-commutative ring spectrum is stronger
than that of an E∞-ring spectrum, since these do not support those norm maps.

A cohomology theory for commutative rings

Let R be a commutative ring. We follow [Qui70] in defining André-Quillen cohomology of commutative R-
algebras. For this, we consider abelian group objects in the category Algaug

R of augmented R-algebras. This is
an augmented R-algebra S ε−→ R together with a unit map η : R→ S, an addition map α : S×RS → S and an
inversion map ι : S → S, which satisfy the usual conditions for an abelian group. The category Ab(Algaug

R ) is
an abelian category equivalent to the category of R-modules. Indeed, the square-zero extension functor

Rn ( ) : ModR → Algaug
R , R 7→ RnM = R⊕M

preserves products, and hence abelian group objects. But any R-module M is an abelian group object in
ModR by the addition map, thus we obtain a functor Rn ( ) : ModR → Ab(Algaug

R ).
This is an equivalence, and the inverse is given by the kernel functor

K : Algaug
R → ModR, (S ε−→ R) 7→ ker(ε).

That these functors are indeed inverse follows from the fact that on the kernel of an abelian group object S
in Algaug

R , all products vanish.

We can now consider the inclusion Ab(Algaug
R ) → Algaug

R . We obtain a left adjoint to this functor by look-
ing at derivations. Recall that if we have an augmented R-algebra ε : S → R, we obtain an isomorphism
ε n ( ) : DerR(S,M) ∼= Algaug

R (S,R nM). Moreover, the functor DerR(S, ) is represented by the module of
Kähler differentials Ω1

S/R together with the universal derivation d : S → Ω1
S/R. Thus, we obtain the natural

isomorphism

Algaug
R (S,RnM) ∼= DerR(S,M) ∼= ModS(Ω1

S/R,M) ∼= ModR(R⊗S Ω1
S/R,M).

This together with the equivalence of R-modules and abelian group objects in Algaug
R exhibits R⊗( ) Ω1

( )/R as
left adjoint to the inclusion of abelian group objects. It thus provides a universal way of passing from Algaug

R

into an abelian category. Note that in all the above, we can also replace the category Algaug
R by the category

AlgR /S of R-algebras over S, if we work relative to a fixed S.
Let R be a commutative ring and S be an R-algebra. We resolve S as an R-algebra by a simplicial projective
object P• → S. Then we apply the functor S ⊗( ) Ω1

( )/R to the resolution P• and obtain a complex LS/R in
ModS, called the cotangent complex. For an S-module M , we then define the André-Quillen (co-)homology
groups of S over R with coefficients in M as

AQi(S/R,M) = H i(Hom(LR/S,M)) ∼= H i(DerR(P•,M)), AQi(S/R,M) = Hi(LS/R ⊗S M).

These invariants detect properties of the commutative R-algebra S. It can be used for example to detect étale
maps of rings.

Topological André-Quillen cohomology

Building on the definition of algebraic André-Quillen cohomology, Basterra defined a topological version for
commutative ring spectra in [Bas99] as follows, following ideas of Kriz.
Let R be a commutative ring spectrum. Then we have model structures on the categories of R-modules,
(augmented) R-algebras and non-unital R-algebras. We recall that the Kähler differentials are defined as
Ω1
S/R = I/I2, where I = ker(µ : S ⊗R S → S) is the kernel of the multiplication map. Thus, we define for any

augmented R-algebra S the augmentation ideal I(S) as the fibre of the augmentation. This is a non-unital
R-algebra. Then, for any non-unital algebra J , we define the module of indecomposables Q(J) as the cofiber
of the multiplication map J ∧R J → J . These functors are right respectively left Quillen functors, and thus
descend to the homotopy categories.
Definition 3. For an commutative ring spectrum R and a commutative R-algebra S, the S-module of derived
Kähler differentials is

Ω1
S/R = LQRI(S ∧L

R S).
Moreover, for an S-module M , we define topological André-Quillen (co-)homology as

TAQi(S/R,M) = π−i(FS(Ω1
S/R,M)), TAQi(S/R,M) = πi(Ω1

S/R ∧S M),

where FS denotes the S-module function spectrum.

On Eilenberg-MacLane spectra, this recovers the algebraic definition in that

TAQ∗(HS/HR;HM) ∼= AQ∗(R/S;M).

Moreover, we also have a description of this theory by stabilization, analogous to the relation of algebraic
André-Quillen cohomology to abelianization of augmented algebras. We can form a stable model category
Sp(C) of spectra for any pointed model category C. Then, the suspension spectrum functor C → Sp(C) is in
fact a universal left Quillen functor into a stable model category. As the category of R-modules is already
stable, Sp(ModR) is Quillen equivalent to ModR itself. As in the algebraic case, the functor Ω1

( )/R now induces
a Quillen equivalence

Sp(Ω1
( )/R) : Sp(Algaug

R )→ Sp(ModR) ∼= ModR
(see [BM05]).

Finally, this cohomology theory for commutative ring spectra actually gives rise to an obstruction theory. One
prominent example is the work by Goerss and Hopkins, who developed in [GH04] an obstruction theory for
extending algebras over a homotopy ring spectrum to an actual algebra spectrum. They use this to show that
the Lubin-Tate (or Morava E-theory) spectra En, related to deformations of finite-height formal group laws,
have the structure of a commutative ring spectrum which depends functorially on the formal group law.

Towards a global theory

We now indicate how we want to modify this theory in order to give an obstruction theory for ultra-
commutative ring spectra. First, we consider the algebraic side of the problem. The homotopy groups of
an ultra-commutative ring spectrum R support multiplications and norm maps. Hence, a theory of deriva-
tions and a resulting André-Quillen cohomology theory has to incorporate these norm maps. However, the
homotopy groups of an R-module do not interact with the norm maps. Using a corresponding definition of a
module over a global power functor, we arrive at a working notion of derivations, which has the same relations
to Kähler differentials and square-zero extensions as in the non-equivariant context. Hence, this gives rise to
an André-Quillen cohomology theory. However, it is an observation by Strickland [Str] in the G-equvariant
case that this notion of modules is not equivalent to abelian group objects in augmented algebras anymore.
Hence, we need to either replace our notion of modules or the approach via abelian group objects.
On the topological side, the notion of an ultra-commutative ring spectrum is stronger than that of an E∞-ring
spectrum. It is however reasonable to expect that the equivalence ModR ∼= Sp(Algaug

R ) translates to an
equivalence for E∞-algebra spectra, not for ultra-commutative ring spectra. The reason for this is that the
stabilization does not incorporate any of the equivariant structure leading to the norm maps. Hence, we want
to investigate how one can perform a genuine equivariant stabilization of the category of augmented algebras,
which leads to an analogous identification with the category of R-modules. This is related to the first issue,
since spectra are the non-equivariant analogue to abelian groups, and we want to translate this analogy into
a global context.
After these foundational questions are addressed, we want to consider the construction of an obstruction
theory, akin to that of Goerss-Hopkins, and to apply this to examples.
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[Bas99] M. Basterra. André-Quillen cohomology of commutative S-algebras. Journal of Pure and Applied
Algebra, 144(2):111–143, 1999.

[BM05] Maria Basterra and Michael A. Mandell. Homology and cohomology of E∞ ring spectra. Mathema-
tische Zeitschrift, 249(4):903–944, 2005.

[GH04] P. G. Goerss and M. J. Hopkins. Moduli spaces of commutative ring spectra. In Structured ring
spectra, volume 315 of London Math. Soc. Lecture Note Ser., pages 151–200. Cambridge Univ. Press,
Cambridge, 2004.

[Qui70] Daniel Quillen. On the (co-) homology of commutative rings. In Applications of Categorical Algebra
(Proc. Sympos. Pure Math., Vol. XVII, New York, 1968), pages 65–87. Amer. Math. Soc., Providence,
R.I., 1970.

[Sch18] Stefan Schwede. Global homotopy theory, volume 34 of New Mathematical Monographs. Cambridge
University Press, Cambridge, 2018.

[Str] Neil Strickland. Tambara functors. arXiv:1205.2516.

2019 Mathematical Institute
stahlhau@math.uni-bonn.de

mailto:stahlhau@math.uni-bonn.de

