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Abstract
In this paper, we introduce the notion of G∞-ring spectra. These are globally equivariant

homotopy types with a structured multiplication, giving rise to power operations on their
equivariant homotopy and cohomology groups. We illustrate this structure by analysing
when a Moore spectrum can be endowed with a G∞-ring structure. Such G∞-structures
correspond to power operations on the underlying ring, indexed by the Burnside ring. We
exhibit a close relation between these globally equivariant power operations and the structure
of a β-ring, thus providing a new perspective on the theory of β-rings.
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Introduction
The aim of this article is the introduction of the new notion of G∞-ring spectra. These support
power operations on their equivariant homotopy groups and cohomology with coefficients in such
spectra. We moreover provide an algebraic description of this notion on Moore spectra, linking
G∞-ring structures on a Moore spectrum to β-ring structures on the represented ring.

Algebraic invariants are more useful the more structure they are endowed with. One example
of this slogan are power operations on cohomology. The Steenrod operations on mod-p cohomol-
ogy, the Adams operations on K-theory and power operations on complex bordism and stable
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cohomotopy all carry a lot of additional information and have seen extensive use in classical
homotopy theory. More recently, Hill, Hopkins and Ravenel used equivariant power operations
in the guise of norm maps to prove the non-existence of elements of Kervaire invariant one in [19].
This work renewed interest in both multiplicative aspects of homotopy theory and equivariant
techniques.

Classical power operations in cohomology arise from an H∞-ring structure on the representing
spectrum, as defined by Bruner, May, McClure and Steinberger in [13]. In the present work,
we generalize the notion of an H∞-ring spectrum to a globally equivariant context, in order
to represent equivariant power operations. Here, globally equivariant means that we encode
compatible actions by all compact Lie groups, using the framework provided by Schwede in
[32]. Thus, a G∞-ring spectrum encodes power operations on equivariant cohomology groups
for all compact Lie groups. Hence, the notion of a G∞-ring spectrum relates to the stricter
notion of an ultra-commutative ring spectrum as an H∞-ring structure relates to an E∞-ring
spectrum. This is visualized in the following diagram, which exhibits forgetful functors between
the corresponding homotopy categories:

Ultra-commutative ring spectra G∞-ring spectra

E∞-ring spectra H∞-ring spectra

Algebraically, power operations can be packaged in different ways. The Adams operations on
K-theory endow it with the structure of a λ-ring, and the power operations on stable cohomotopy
give it the structure of a β-ring. Among these, λ-rings are better-behaved and are widely studied
in algebraic topology and representation theory, e.g. [20, 5, 23]. On the other hand, the theory of
β-rings is still largely mysterious, with different definitions and many subtleties not present in the
study of λ-rings, see e.g. [31, 29, 45]. In this paper, we present a different approach to the notion
of β-rings, coming from a well-structured theory of global power operations, where the question
of scalar extensions of the Burnside ring global power functor naturally leads to considering
β-rings. In this way, G∞-ring structures on Moore spectra, which yield scalar extensions of
the global power operations on the sphere spectrum, are intimately tied to β-ring structures.
Moreover, we can also obtain the β-ring structure on stable cohomotopy π0(X) in this way. We
believe that this new approach to β-rings clarifies the structure of power operations indexed by
the Burnside ring, and underlines that the notion of a global power functor is more fundamental
than the notion of β-rings.

Results In the first part of this work, we introduce the notion of a G∞-ring spectrum. This
is a derived version of a structured ring spectrum. In contrast to e.g. an E∞-ring spectrum, the
definition is at the level of the homotopy category. Concretely, we take the free commutative
algebra monad P : Sp→ Sp at the level of spectra. This functor is left derivable for the positive
global model structure and thus induces a monad on the global homotopy category GH.

Definition (Definition 2.3). A G∞-ring spectrum is an algebra over the monad G = LP.

We then study properties of G∞-ring spectra. As mentioned above, the main property of a
G∞-ring spectrum is that it supports power operations on its equivariant homotopy groups:

Theorem (Proposition 2.13). Let E be a G∞-ring spectrum. The structure map GE → E
defines the structure of a global power functor on π0(E).

To prove this proposition, we construct external power operations πG
0 (E) → πΣm≀G

0 (GE),
which exist for any global spectrum E. In presence of a G∞-structure, the power operations on
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the homotopy groups are then obtained by postcomposition with the multiplication.
Any ultra-commutative ring spectrum induces a G∞-ring structure on its homotopy type. How-
ever, there are also examples of G∞-ring spectra which are not induced from any strictly com-
mutative multiplication. These are constructed by means of an adjunction

G∞-Rings H∞-Rings,
U

R

where U is the forgetful functor from G∞-rings to H∞-rings and R does not change the underlying
H∞-ring spectrum. Applying the right adjoint R to an H∞-ring spectrum E which cannot be
rigidified to a strict commutative ring spectrum, we see that RE is not the homotopy type of an
ultra-commutative ring spectrum.

In the second part of this paper, we analyse the structure of a G∞-multiplication on Moore
spectra. We obtain the following result, which characterizes the G∞-ring structures on global
Moore spectra via purely algebraic data:

Theorem (Theorem 3.14). The functor

π0 : G∞-Mooretorsion-free → GlPowtorsion-free
left

is an equivalence of categories between the homotopy category of G∞-Moore spectra for countable
torsion-free rings and the category of countable torsion-free left-induced global power functors.

Here, a left induced global power functor is one where the multiplication map A⊗R(e)→ R is
an isomorphism of global Green functors, where A denotes the Burnside ring global power functor.
The restriction to torsion-free rings is necessary, since already the existence of multiplications on
Moore spectra in the presence of torsion is a subtle question. Countability is a mild technical
assumption we use in order to construct such Moore spectra. The above theorem shows that
whenever multiplications on Moore spectra are tractable, then also the power operations are
completely determined by algebraic power operations on the represented ring. This relation can
be used to prove that neither the Moore spectra S(Z/p) nor S(Z[i]) can be endowed with a
G∞-ring structure. This is a shadow of the classical results that these spectra do not support
an A∞- or E∞-structure respectively. However, the G∞-result can be obtained by elementary
calculations of the power operations in the Burnside ring.

Moreover, the theory of left-induced global power functors is closely linked to the theory of
β-rings. In fact, we prove the following theorem, which allows to induce β-ring structures from
global power operations.

Theorem (Theorem 3.38). The assignment (G, R) 7→ R(G) extends to a functor

ev : Repop × GlPowA-defl → β-Rings,

which sends a conjugacy class of a morphism of compact Lie groups to the corresponding restric-
tion.

Here, Rep is the category of compact Lie groups and conjugacy classes of continuous ho-
momorphisms between these, and GlPowA-defl denotes the category of global power functors
equipped with deflation maps R(K ×G)⊗ A(K)→ R(G). This includes all left-induced global
power functors. In particular, this shows that for a Moore spectrum SB that supports a G∞-ring
structure, all equivariant homotopy groups πG

0 (SB) ∼= A(G) ⊗ B come endowed with the struc-
ture of a β-ring. Moreover, this condition also includes (equivariant) stable cohomotopy π0

G(X)
for a based space X, hence we reprove the fact that stable cohomotopy can be equipped with
the structure of a β-ring from [17].
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The above theorem shows that the notion of a global power functor with A-deflations captures
the structure of a ring supporting β-ring structures at all compact Lie groups at once. Hence,
it provides a unifying point of view to the theory of β-rings, which has proven rather hard to
understand.

Structure In Section 1, we recall orthogonal spectra as a model for global homotopy theory,
and the multiplicative aspects leading to power operations. Moreover, we give a construction of
the external power operations on the equivariant homotopy groups of any spectrum.
In Section 2, we define G∞-ring spectra and see that they support power operations on their
homotopy groups. We also compare this new notion to classical H∞-ring spectra by means of an
adjunction featuring the forgetful functor, and provide a homotopical comparison of the derived
symmetric algebra monad G = LP and extended symmetric powers Σ∞

+ (EglΣm) ∧Σm
X∧m.

In the last section, we analyse G∞-ring Moore spectra. On the topological side, we prove that
power operations on A⊗B are equivalent to a G∞-ring structure on SB for torsion-free B. On
the algebraic side, we prove that such power operations give rise to β-ring structures on A(G)⊗B
for all compact Lie groups G. This comparison also yields β-operations on stable cohomotopy
groups π0(X).
In the appendix, we collect results from the theory of monads used throughout our work. In
particular, we study under which 2- and double categorical functors monads and monad functors
are preserved. We utilize these results when constructing the adjunction between G∞- and
H∞-ring spectra.

Acknowledgements This paper is a revised version of a Master’s thesis written at the Uni-
versity of Bonn. I would like to thank my supervisor Stefan Schwede for suggesting the topic of
G∞-ring spectra and β-rings to me and for his constant support and encouragement.
I would also like to thank Markus Hausmann for helpful remarks, Irakli Patchkoria for answering
questions on Moore spectra and Jack Davies for interesting conversations on global power func-
tors. I also thank the anonymous referee for helpful comments, leading to several improvements
of the exposition.

1 Power operations on ultra-commutative ring spectra
In this chapter, we give an introduction to power operations on the global homotopy groups of an
ultra-commutative ring spectrum, and construct external power operations for any orthogonal
spectrum. We work throughout this article in the context of global homotopy theory, where
the adjective ‘global’ indicates that we study equivariant spectra for all compact Lie groups at
once. As a model, we use the model category of global orthogonal spectra provided by Stefan
Schwede in [32], and we use this work as a general referencing point for the foundations of global
homotopy theory.

The category of orthogonal spectra is endowed with a symmetric monoidal structure, and
commutative monoids are called ultra-commutative ring spectra. These spectra support power
operations on their global homotopy groups. Such power operations are important additional
structure, as emphasized most prominently in the work of Hill, Hopkins and Ravenel on the
non-existence of elements of Kervaire invariant one in [19]. We recall the multiplicative aspects
of global homotopy theory and the formalism of power operations.

Moreover, we introduce external power operations in Construction 1.13. These are defined
on the homotopy groups of any orthogonal spectrum X, but only take values in the homotopy
groups of the symmetric powers PmX. For an ultra-commutative ring spectrum, the structure
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morphism PX → X then recovers the usual power operations. These external power operations
are used in Section 2.1 to define power operations on the homotopy groups of any G∞-ring
spectrum.

Orthogonal spectra and homotopy groups

We assume familiarity with the context of global orthogonal spectra and ultra-commutative ring
spectra, as established in [32, Chapters 3-5]. We quickly collect the relevant notions.

We denote by Sp the category of orthogonal spectra, see also [27]. For any compact Lie
group G and integer k, we can associate to an orthogonal spectrum X its k-th G-equivariant
homotopy group πG

k (X) [32, 3.1.11]. A morphism f : X → Y of orthogonal spectra is called a
global equivalence if it induces isomorphisms f∗ : πG

k (X)→ πG
k (Y ) for all compact Lie groups G

and all k. The resulting homotopy category obtained by inverting global equivalences is called
the global homotopy category GH.

The collection of homotopy groups π0(X) = {πG
0 (X)}G for any orthogonal spectrum X comes

equipped with restriction maps α∗ : πK
0 (X)→ πG

0 (X) for any continuous homomorphism α : G→
K of compact Lie groups [32, Construction 3.1.15], and with transfer maps trG

H : πH
0 (X)→ πG

0 (X)
for any closed subgroup H ⊂ G [32, Construction 3.2.22], which are trivial if the Weyl group
WGH is infinite. These morphisms endow π0(X) with the structure of a global functor [32,
Definition 4.2.2], and the category of global functors is denoted GF . It is defined as the category
of additive functors from the global Burnside category A [32, Construction 4.2.1] to abelian
groups. Here the Burnside category has as objects the compact Lie groups and the morphisms
are generated by restrictions and transfers [32, Proposition 4.2.5]. Composition inside A contains
the information about the compositions of transfers and restrictions, such as the double coset
formula [32, Theorem 3.4.9].

Note that the notion of a global functor is a global version of a Mackey functor for a fixed
compact Lie group G. The adjective ‘global’ refers to the fact that we allow restrictions along
arbitrary group homomorphisms, not just inclusions. There are various different global versions
of Mackey functors, and we refer to [32, Remark 4.2.16] for a discussion of the different definitions.
Remark 1.1. The global homotopy groups for a fixed compact Lie group G can be considered as
a functor

GH → Sets, X 7→ πG
0 (X).

This functor is representable by the suspension spectrum of the global classifying space BglG by
[32, Theorem 4.4.3 i)]. The orthogonal space BglG is a generalization of the classical space BG,
and we recall its construction now:

For two inner product spaces V and W , we denote with L(V, W ) the space of linear isometric
embeddings from V into W . Let G be a compact Lie group. We define, for any G-representation
V , the orthogonal G-space LV = L(V, _) with the right G-action by precomposition with the
G-action on V , and the orthogonal space LG,V = L(V, _)/G. By [32, Proposition 1.1.26], the
global homotopy types of LV and LG,V are independent of the choice of the G-representation V
as long as V is faithful. We then denote for any faithful V the orthogonal G-spaces EglG = LV

and BglG = LG,V .
We have a stable tautological class eG ∈ πG

0 (Σ∞
+ BglG) as defined in [32, 4.1.12], and the pair

(Σ∞
+ BglG, eG) represents πG

0 in the sense that

GH(Σ∞
+ BglG, X)→ πG

0 (X)
[f ] 7→ f∗(eG)

(1.2)

is a bijection for every orthogonal spectrum X.
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We can moreover describe the suspension spectrum of BglG as follows (see [32, 3.1.2]): Choose
a faithful G-representation V , such that LG,V represents BglG. Then, for any inner product space
W , we define a homeomorphism

SW ∧ L(V, W )+ ∼= O(V, W ) ∧ SV , (1.3)

called the untwisting isomorphism, using that we can trivialize the orthogonal complement bundle
over L(V, W ) with an additional copy of V . These homeomorphisms descend to G-orbits and
assemble for varying W into an isomorphism

Σ∞
+ BglG→ O(V, _) ∧G SV =: FG,V SV . (1.4)

Global Green and power functors

We now give more details about the multiplicative structure on orthogonal spectra and homotopy
groups.
The category of orthogonal spectra has a symmetric monoidal structure using the smash product
as defined in [32, Definition 3.5.1]. Using this symmetric monoidal structure, we can define a
symmetric algebra monad PX =

∨
m≥0 PmX with PmX = X∧m/Σm for orthogonal spectra X

and a notion of commutative monoids in this category.

Definition 1.5. An ultra-commutative ring spectrum is a commutative monoid in the category
Sp of orthogonal spectra. We write ucom for the category of ultra-commutative ring spectra and
multiplicative maps.

Note that the categories of P-algebras and of ultra-commutative ring spectra are isomorphic.
This strict multiplication induces a rich structure on the homotopy groups of ultra-commutative
ring spectra. Besides endowing the homotopy groups with the structure of a commutative monoid
in the category of global functors, it also induces power operations. We now give a short recol-
lection on how these multiplications and power operations are constructed.

The category of global functors has a symmetric monoidal structure, called the box product,
arising as a Day convolution product, compare [32, Construction 4.2.27].

Definition 1.6. A global Green functor is a commutative monoid in the category GF endowed
with the symmetric monoidal structure provided by the box product. A morphism of global
Green functors is a morphism of global functors compatible with the multiplication.

Explicitly, the multiplication map R □ R → R of a global Green functor is equivalent both
to a family of multiplication maps

× : R(G)×R(K)→ R(G×K)

for all compact Lie groups G and K, and to a family of diagonal products

· : R(G)×R(G)→ R(G) (1.7)

for all compact Lie groups G. These multiplications have to satisfy the properties explained after
[32, Definition 5.1.3]. The relationship between these formulations via restrictions along diagonal
and projections is elaborated upon in [32, Remark 4.2.20].

Classically, it is well known that the equivariant homotopy groups of a homotopy commutative
G-ring spectrum support the structure of a Green functor. The same is true here.
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Proposition 1.8. There is an external multiplication map

⊠ : πG
0 (X)× πK

0 (Y )→ πG×K
0 (X ∧ Y ), (1.9)

defined for any two orthogonal spectra X and Y . Upon composition with the induced map of
the multiplication E ∧ E → E for a homotopy commutative ring spectrum E, this defines the
structure of a global Green functor on π0(E).

Proof. This statement is already contained in the discussion of multiplications on global functors
from [32]. The definition of the external multiplication map is given in [32, Construction 4.1.20],
and its properties are listed in [32, Theorem 4.1.22]. These, together with the properties of
the multiplication on E, imply that π0(E) with this multiplication is indeed a global Green
functor.

Remark 1.10. To define the power operations induced by an ultra-commutative ring spectrum,
we recall the wreath product Σm ≀ G of the symmetric group Σm on m letters with a group G.
We refer to [32, Construction 2.2.3] for details. The wreath product is defined as the semidirect
product Σm ≀G = Σm ⋉ Gm with respect to the permutation action of the symmetric group on
the factors of Gm. This has a natural action on the m-th power Am of a G-set A, given by the
G-action on each factor and the permutation action of Σm on the factors. In particular, if V is a
G-representation, then V m is a Σm ≀G-representation, which is faithful if V is a non-zero faithful
G-representation.

Now we can define the power operations as follows: Let E be an ultra-commutative ring
spectrum, then we define for f : SV → E(V ) in πG

0 (E), where V is some G-representation, the
(Σm ≀G)-map

P m(f) : SV m ∼= (SV )∧m fm

−−→ E(V )∧m µV,...,V−−−−−→ E(V m), (1.11)

which represents an element in πΣm≀G
0 (E). The map µV,...,V is the value of the m-fold multipli-

cation map E∧m → E on the inner product space V m. This assignment defines a morphism

P m : πG
0 (E)→ πΣm≀G

0 (E)

for all m ≥ 1.
These power operations satisfy equivariant versions of the properties of powers in a ring, and
compatibility results with the restriction and transfer maps present on the global homotopy
groups. These properties are condensed into the notion of a global power functor, defined in [32,
Definition 5.1.6].

Theorem 1.12. For an ultra-commutative ring spectrum E, the global homotopy groups π0(E)
together with the operations

P m : πG
0 (E)→ πΣm≀G

0 (E)

as defined in (1.11) form a global power functor.

For the proof we refer to [32, Theorem 5.1.11].

External power operations

We see that a strict multiplication on an orthogonal spectrum gives rise to power operations on
the global homotopy groups. We now ask the question whether we need the full structure of
an ultra-commutative ring spectrum to obtain these power operations. In classical homotopy
theory, we have the notion of H∞-ring spectra from [13], which is only defined in the stable
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homotopy category. Such H∞-ring spectra also define power operations on their homotopy and
cohomology groups. We define a global analogue in this paper. To facilitate the proof that the
global homotopy groups of a G∞-ring spectrum support power operations, we introduce external
power operations.

The multiplication on the homotopy groups of a homotopy commutative ring spectrum can
be constructed by defining an external multiplication as described in (1.9), which exists for any
two orthogonal spectra. Upon composition with the homotopy multiplication, this gives the
structure of a global Green functor on the homotopy groups. We now define a similar external
power operation for any orthogonal spectrum.
Construction 1.13. Let X be an orthogonal spectrum. We set PmX = X∧m/Σm and define
maps

P̂ m : πG
0 (X)→ πΣm≀G

0 (PmX)
for every compact Lie group G and m ≥ 1 as follows: For a G-representation V and a G-
equivariant map f : SV → X(V ) representing an element in πG

0 (X), we set

P̂ m(f) : SV m ∼= (SV )∧m fm

−−→ X(V )∧m iV,...,V−−−−→ X∧m(V m) pr(V m)−−−−−→ (PmX)(V m),

where the morphism iV,...,V is the iteration of the universal bimorphism from the definition of
the smash product (see [32, Definition 3.5.1]), and pr: X∧m → X∧m/Σm is the projection.
We claim that this map is Σm ≀G-equivariant: To see this, let

(σ; g∗) = (σ; g1, . . . , gm) ∈ Σm ≀G

be an element of the wreath product. Then we consider the following diagram, where σ · (_ )
signifies the Σm-action by permutation:

(SV )∧m X(V )∧m X∧m(V m) (PmX)(V m)

(SV )∧m X(V )∧m X∧m(V m) (PmX)(V m)

Sσ·V m = σ · (SV )∧m σ ·X(V )∧m (σ ·X∧m)(σ · V m) (PmX)(σ · V m)

f∧m

g∗

(σ;g∗)

iV,...,V

g∗ g∗ g∗

(σ;g∗)
f∧m

σ

iV,...,V

σ σ σ

f∧m iV,...,V

In this diagram, the upper left square commutes by equivariance of f , the other squares on
the top commute as the horizontal map iV,...,V is an m-morphism of spectra, and pr also is
a morphism of spectra. The squares on the bottom row commute by the symmetry property
of both the direct sum of inner product spaces and the smash product of spectra, and as we
exactly quotient out the permutation action on X∧m in the passage to PmX. Thus this diagram
is commutative and proves that the morphism P̂ m(f) is Σm ≀ G-equivariant, hence defines an
element in πΣm≀G

0 (PmX).
These maps P̂ m are called external power operations. Note that the quotient X∧m → Pm(X) is
necessary for this definition, since on X∧m we have to consider the Σm-action by permuting the
factors.

These external operations fit into a commutative diagram

πG
0 (X) πG

0 (PX) πG
0 (X)

πΣm≀G
0 (PmX) πΣm≀G

0 (PX) πΣm≀G
0 (PmX),

(incl1)∗

P̂ m

(pr1)∗

P m
P̂ m

(inclm)∗ (prm)∗

(1.14)
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where inclm : PmX → PX is the inclusion as the wedge summand indexed by m and prm is
the projection onto the wedge summand indexed by m. Moreover, we use that PX as an ultra-
commutative ring spectrum has power operations on its homotopy groups. This diagram exhibits
P̂ m as a retract of P m.

Note that by definition, we obtain the power operation of an ultra-commutative ring spectrum
E by composing with the map induced by the multiplication PmE → E. However, we also
can consider a weaker type of structure which also allows to internalize these external power
operations. This leads to the notion of a G∞-ring spectrum.

2 G∞-ring spectra and their properties
In this chapter, we give the definition of G∞-ring spectra in Definition 2.3. This notion is
a homotopical version of structured ring spectra, with structure morphisms only defined in the
global homotopy category. This structured multiplication allows us to construct power operations
on the equivariant homotopy groups of a G∞-ring spectrum in Construction 2.12.

The notion of G∞-ring spectra is a global generalization of the non-equivariant notion of
an H∞-ring spectrum from [13, Definition I.3.1]. In Section 2.2 we construct an adjunction
between G∞- and H∞-ring spectra. The left adjoint is a forgetful functor from the globally
equivariant G∞-ring spectrum to the non-equivariant H∞-ring spectrum. The right adjoint
exhibits a way to obtain a G∞-ring spectrum from an H∞-ring spectrum, thought of as a “global
Borel construction”. This also gives a way to generate examples of G∞-ring spectra which do not
come as the homotopy types of ultra-commutative ring spectra, see Remark 2.32. For this, we
use the non-equivariant examples of Noel in [28] and Lawson in [24] of H∞-ring spectra which
do not rigidify to commutative ring spectra.

In Section 2.3, we compare the derived symmetric powers to a global version of the extended
powers DmX = (EΣm)+ ∧Σm

X∧m in Theorem 2.37. This can be used to give an alternative
description of G∞-ring spectra, which is closer to the original definition from [13].

2.1 Definition of G∞-ring spectra and their power operations
Recall that the multiplication maps PmE → E of an ultra-commutative ring spectrum can
be used to define internal power operations on the homotopy groups of E from the external
power operations defined in Construction 1.13. But all that is really needed are such maps on
the homotopy groups, hence we define the corresponding structure on the level of the global
homotopy category GH. To do so, we make use of the positive global model structures on Sp
and ucom, which are constructed in [32, Proposition 4.3.33 and Theorem 5.4.3].

Lemma 2.1. The functors Sp ucom
P

U
form a Quillen adjoint functor pair, with respect to

the positive global model structures on both sides.

Proof. It is clear that these functors are adjoint to one another. To prove that this is a Quillen
adjunction, it suffices to show that the right adjoint U preserves both fibrations and acyclic
fibrations. This is directly evident from the characterization of global equivalences and positive
global fibrations of ultra-commutative ring spectra by their underlying maps.

In fact, the model structure on ucom is transferred from the positive model structure on Sp
along this adjunction.
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Now, every Quillen adjunction defines an adjunction on the homotopy categories, see [21,
Lemma 1.3.10], hence we get an adjunction

GH Ho(ucom).
LglP

Ho(U)

Note that U is already homotopical, so it can be derived without a fibrant replacement. From
this adjunction, we obtain the monad

G = Ho(U) ◦ LglP : GH → GH. (2.2)

Definition 2.3. A G∞-ring spectrum is an algebra over the monad G.

Example 2.4. As we obtain the notion of G∞-ring spectra as algebras over a derived monad
G = LglP, we see that algebras over the point-set monad P, i.e. ultra-commutative ring spectra,
also induce a G∞-ring structure on their global homotopy type. This already gives a broad class
of examples, which encompasses the sphere spectrum S, Eilenberg-Mac Lane spectra HR for a
global power functor R as constructed in [32, Theorem 5.4.14], and the global versions of Thom
and K-theory spectra from [32, Chapter 6].
These examples as homotopy types of ultra-commutative ring spectra however do not provide all
G∞-ring spectra: In Theorems 2.33 and 2.34, we provide examples of G∞-ring spectra which are
not the homotopy type of an ultra-commutative ring spectrum such that the G∞-ring structure
is induced by the ultra-commutative multiplication.

Remark 2.5. We also note that the definition of G∞-ring spectra is not the same as that of a
homotopy commutative ring spectrum in GH. This can be seen from the fact that a homotopy
commutative ring spectrum does not support power operations on its homotopy groups, whereas
Proposition 2.13 proves the existence of equivariant power operations for G∞-ring spectra. For
the same reason, G∞-ring spectra posses more structure than H∞-rings internal to the global
homotopy category GH. The difference lies in the fact that the derived symmetric power GmX
can be represented by the global extended power Σ∞

+ EglΣm∧Σm
X∧m as shown in Theorem 2.37.

In contrast, for an H∞-ring spectrum, the non-equivariant extended powers Σ∞
+ EΣm ∧Σm

X∧m

would be used.
Our aim is to define power operations on the homotopy groups of a G∞-ring spectrum. Since

the definition of G∞-ring spectra is internal to the global homotopy category, we also rephrase
the external power operations in terms of the representability of the homotopy groups in GH. To
do this, we derive the levels of P separately with respect to the positive global model structures
from [32, 4.3.33 and 5.4.3].

Lemma 2.6. Let f : X → Y be a global equivalence between positively cofibrant spectra, and let
m ≥ 0. Then Pmf : PmX → PmY is a global equivalence in Sp.

Proof. We follow the argument given at the end of the proof of [32, Theorem 5.4.12]. By 2.1,
we know that the functor P : Sp → ucom is left Quillen. By Ken Brown’s lemma [21, Lemma
1.1.12], Pf : PX → PY is a global equivalence of ultra-commutative ring spectra, hence by
definition a global equivalence of the underlying spectra. But the transformations Pm inclm−−−→
P =

∨
m≥0 Pm prm−−→ Pm exhibit Pmf as a retract of Pf , thus also this morphism is a global

equivalence.

Remark 2.7. This lemma is enough to conclude that Pm : Sp→ Sp admits a left derived functor

Gm : GH → GH.
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However, one can indeed show more: for any m > 0, the functor Pm : Sp→ Sp preserves positive
cofibrations and acyclic positive cofibrations between positively cofibrant spectra. This uses
[16, Theorem 22], that the positive cofibrations are symmetrizable [32, Theorem 5.4.1] and that
smashing with positively cofibrant spectra preserves weak equivalences [32, Theorem 4.3.27].

We now calculate the value of the functor G on the sphere spectrum and on the representing
spectra Σ∞

+ BglG for the global homotopy groups. We use this to define the external power
operations intrinsically in GH.

Example 2.8. We calculate the value of G on the sphere spectrum S:
Since S is not positively cofibrant, we need to positively replace it. For this, consider the map

λΣ1,R,0 : FΣ1,RS1 → FΣ1,0 = S

from [32, 4.1.28]. This map is a global equivalence by [32, Theorem 4.1.29], as 0 is a faithful
representation of the trivial group Σ1. Moreover, the spectrum FΣ1,RS1 = O(R, _) ∧ S1 is
positively cofibrant, hence this map λΣ1,R,0 can be chosen as a positively cofibrant replacement.
Then, we have that GmS is represented by

Pm(FΣ1,RS1) ∼= O(Rm, _) ∧Σm Sm = FΣm,RmSm.

Hence, by the description of the global classifying spaces via semifree orthogonal spectra in (1.4)
and since Rm is a faithful Σm-representation, we see that

GmS ∼= Σ∞
+ BglΣm.

More generally, we can calculate Gm(Σ∞
+ BglG) for any compact Lie group, with the previous

calculation a special case for G = e, using the identification Σ∞
+ Bgle ∼= S. For this calculation,

choose a non-zero faithful G-representation V . Then we can write

Σ∞
+ BglG ∼= FG,V SV

as in (1.4). Now, the spectrum FG,V SV is positively cofibrant, and we calculate

Pm(FG,V SV ) ∼= FGm,V mSV m

/Σm
∼= FΣm≀G,V mSV m

,

where for the last identification, we used that the permutation action of Σm and the action of Gm

on V m assemble into the natural action of Σm ≀G. Then V m is a faithful Σm ≀G-representation,
hence we see that

Gm(Σ∞
+ BglG) ∼= Σ∞

+ Bgl(Σm ≀G). (2.9)

Construction 2.10. We now give another description of the external power operation, using
our calculation of Gm on the representing spectra for πG

0 .
Let f ∈ πG

0 (X) be an element of the homotopy groups of a global homotopy type X. By
the representability result (1.2), we can represent f by a map f : Σ∞

+ BglG → X in the global
homotopy category. Then, we define for m ≥ 1

Gm(f) : Σ∞
+ Bgl(Σm ≀G) ∼= Gm(Σ∞

+ BglG) Gmf−−−→ GmX,

and this morphism represents an element in πΣm≀G
0 (GmX). Thus we define the external opera-

tions as the effect of the functor Gm on the homotopy groups πG
0 (X) ∼= GH(Σ∞

+ BglG, X), and
obtain maps

Gm : πG
0 (X)→ πΣm≀G

0 (GmX).
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Lemma 2.11. For a positively cofibrant spectrum X, the two external operations P̂ m and
Gm : πG

0 (X)→ πΣm≀G
0 (PmX) agree.

Proof. Let f ∈ GH(Σ∞
+ BglG, X), then by (1.2) the corresponding class in πG

0 (X) is f∗(eG).
Concretely, let f : SV ∧ (BglG)+(V )→ X(V ) for a non-zero faithful G-representation V . We can
always represent f on a faithful G-representation, since we can embed any G-representation into
a faithful one. Then, the tautological class in πG

0 (Σ∞
+ BglG) is

eG : SV _∧IdV−−−−→ SV ∧ (BglG)+(V ) = SV ∧ L(V, V )+/G,

and the tautological class for Σm ≀G is

eΣm≀G : SV m _∧IdV m−−−−−→ SV m

∧ L(V m, V m)+/(Σm ≀G).

Note that this element agrees with

P̂ meG : SV m (_∧IdV )m

−−−−−−−→ SV m

∧ (L(V, V )+/G)m pr−→ SV m

∧ L(V m, V m)+/(Σm ≀G).

We now compare P̂ m(f∗(eG)) and (Gmf)∗(eΣm≀G). Since X is positively cofibrant, we can write
Pm instead of Gm. Then by naturality of the external power operations, we obtain

P̂ m(f∗(eG)) = Pm(f)∗(P̂ m(eG)) = Pm(f)∗(eΣm≀G).

Hence, the two operations agree.

We now prove that a G∞-ring spectrum structure indeed gives rise to power operations on
the homotopy groups.

Construction 2.12. Let E be a G∞-ring spectrum. We consider the multiplication map
GE → E in the homotopy category. Since we can derive P levelwise, this decomposes into
maps ζm : GmE → E. Thus, we define the power operations as

P m = π0(ζm) ◦Gm : πG
0 (E)→ πΣm≀G

0 (GmE)→ πΣm≀G
0 (E).

Proposition 2.13. Let E be a G∞-ring spectrum with structure map ζ : GE → E. Then the
operations P m defined in Construction 2.12, together with the multiplication given by ζ2, define
a structure of a global power functor on π0(E).

Proof. The map ζ2 : G2E → E together with the unit map makes E into an homotopy commu-
tative ring spectrum, hence π0(E) is a global Green functor by Proposition 1.8. Moreover, we
need to check the relations for the global power operations as listed in [32, Definition 5.1.6]. For
this, we use the same naturality as in the proof of Lemma 2.11 and check on the representing
spectra Σ∞

+ BglG. Since the arguments are all similar, we focus on one property here:
Let i, j ≥ 0, and x ∈ πG

0 (E). We need to check that Φ∗
i,j(P i+j(x)) = P i(x) × P j(x) holds

in π
Σi≀G×Σj ≀G
0 (E). Here, the map Φi,j : Σi ≀ G × Σj ≀ G → Σi+j ≀ G is given by juxtaposition

of permutations. Let x be represented by a map f : Σ∞
+ BglG → E in GH. Then the power

operations on x are given as P m(x) = π0(ζm)(Gmf)∗(eΣm≀G).
We now consider the maps φi,j : PiX ∧ PjX → Pi+jX, given for any X by forming orbits

along Φi,j in X∧i+j/(Σi × Σj) → X∧i+j/(Σi+j). For X = Σ∞
+ BglG, this map represents the

restriction Φ∗
i,j : π

Σi+j ≀G
0 → π

Σi≀G×Σj ≀G
0 , meaning that (φi,j)∗(eΣi≀G × eΣj ≀G) = Φ∗

i,j(eΣi+j ≀G).
Moreover, φi,j : Pi ∧ Pj → Pi+j features in the monad structure of the functor P, hence also in
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the derived monad structure for G. The fact that ζ defines a G∞-structure hence shows that we
have the commutative square

GiE ∧L GjE E ∧L E

Gi+jE E.

ζi∧ζj

φi,j µ

ζi+j

(2.14)

Here, µ is the homotopy multiplication induced by ζ2. This square is also used in the original
definition of H∞-ring spectra in [13, Definition I.3.1]. In total, we calculate

π0(ζi+j)(Gi+jf)Φ∗
i,j(eΣi+j ≀G) =π0(ζi+j)(Gi+jf)(φi,j)∗(eΣi≀G × eΣj ≀G)

=π0(ζi+j)(φi,j)∗(Gif ∧Gjf)∗(eΣi≀G × eΣj ≀G)
=π0(ζi)(Gif)∗(eΣi≀G)× π0(ζj)(Gjf)∗(eΣj ≀G).

This proves one of the relations of a global power functor, the other ones follow similarly by
considering GkGm(Σ∞

+ BglG), Gm(Σ∞
+ BglG ∧ Σ∞

+ BglK) and Gm(Σ∞
+ BglG ∨ Σ∞

+ BglG).

Remark 2.15. As an application of this description of the external power operations, we also define
external cohomology operations, and show that a G∞-structure can be used to internalize these
operations. These internal cohomology operations are also constructed for an ultra-commutative
ring spectrum in [32, Remark 5.1.14].
Let X be an orthogonal spectrum and A be a cofibrant based G-space. We define an orthogonal
space LG,V A = L(V, _)∧G A for any G-representation V , similar to the construction in Remark
1.1. Then we define the G-equivariant X-cohomology of A as

X0
G(A) = [Σ∞

+ LG,V A, X],

where [_, _] denotes the morphisms in GH, and V is any faithful G-representation. Then,
external power operations on this X-cohomology are defined by

P̂ m : X0
G(A) = [Σ∞

+ LG,V A, X] Gm

−−→[GmΣ∞
+ LG,V A,GmX]

=[Σ∞
+ LΣm≀G,V mAm,GmX] = (GmX)0

Σm≀G(Am).

Here, we used a relative version of the calculations in 2.8 to calculate

GmΣ∞
+ LG,V A ∼= Σ∞

+ LΣm≀G,V mAm.

Using a G∞-ring structure on X, given by morphisms ζm : GmX → X, we can internalize these
operations to

P m : X0
G(A) P̂ m

−−→ (GmX)0
Σm≀G(Am) (ζm)∗−−−−→ X0

Σm≀G(Am).

In [32, Remark 5.1.14], it is shown that these power operations forget to the classical power
operations X0(A)→ X0(BΣm × A) on the non-equivariant X-cohomology of A upon postcom-
position with the diagonal on A. These are the power operations induced by an H∞-structure
on X in [13, Definition I.4.1]
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2.2 An adjunction between G∞- and H∞-ring spectra
In this section, we compare the notion of G∞-ring spectra to the classical notion of H∞-ring
spectra. This is accomplished by lifting the adjunction

GH SH
U

R

to structured ring spectra, where U is the forgetful functor and R its right adjoint. This adjunc-
tion is exhibited in [32, Theorem 4.5.1].
Remark 2.16. In this chapter, we use for the stable homotopy category the positive stable model
structure defined by Stolz in [38, Chapter 1.3]. There, it is called the S-model structure. This
model structure has the following two desirable properties, which we use in order to analyse the
derivability of the symmetric product functor P in Lemma 2.19:

i) The cofibrations and positive acyclic cofibrations are symmetrizable [16, Definition 3]: If
f : X → Y is a cofibration, then for all n ≥ 1 the iterated pushout product map

f□n/Σn : Qn(f)/Σn → Pn(Y )

is a cofibration. Here, Qn(f) is the colimit over the punctured cube diagram

{0→ 1}n \ {1, . . . , 1} → Sp

(i1, . . . , in) 7→ Zi1 ∧ . . . ∧ Zin

id ∧ . . . ∧ (0→ 1) ∧ . . . ∧ id 7→ id ∧ . . . ∧ f ∧ . . . ∧ id.

In this definition, we set

Zi =
{

X if i = 0
Y if i = 1.

The corresponding property also holds for the positive acyclic cofibrations. That these
properties hold for the stable model structure constructed by Stolz follows from observing
that the cofibrations agree with those of the global model structure constructed by Schwede
in [32, Chapter 4.3], where symmetrizability is verified in [32, Theorem 5.4.1]. For the acyclic
cofibrations, a similar calculation can be carried out.

ii) Cofibrant objects are flat: If X is cofibrant in the stable model structure, then X ∧ _
preserves stable equivalences [38, Proposition 1.3.11].

These properties are required in order to apply the results from [16], in particular Theorem
25, which states that the functor Pn preserves weak equivalences between positively cofibrant
objects.

2.2.1 Lifting the forgetful functor GH → SH to structured ring spectra

We first recall the classical definition of H∞-ring spectra: As defined in [13, I, Definition 3.1], an
H∞-ring spectrum X is defined by maps

ξm : DmX → X,

where DmX = (EΣm)+ ∧Σm
X∧m. These maps are required to satisfy compatibility conditions

such as the one used in (2.14). Note that this formulation uses the modern smash product, which
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was not yet available in the original definition. Unravelling the definitions in [13] however gives
this formulation. In contrast, our definition of G∞-ring spectra uses a modern point-set category
of spectra to obtain the monad G, and defines G∞-ring spectra as algebras over this monad.
As this definition is more conceptual and allows us to use the results from Appendix A, we also
formulate the notion of H∞-ring spectra in this way.
For this, note that the adjunction

Sp Com
P

UCom

is also a Quillen adjunction with respect to the positive stable model structures defined by Stolz
in [38, Proposition 1.3.10 and Theorem 1.3.28]. Thus we obtain a derived adjunction

SH Host(Com).
LstP

Ho(UCom)

Definition 2.17. An H∞-ring spectrum is an algebra over the monad H = Ho(UCom) ◦ LstP.

By abuse of notation, we will also denote H as LstP, since it is the left derived functor of
P : Sp→ Sp. In the same way, we denote G by LglP.

That our definition using LstP agrees with the original definition follows from the following
statement, after the necessary translations regarding the different models for spectra:

Lemma 2.18. Let X be a positive stably cofibrant orthogonal spectrum. Then the map

p : DmX = (EΣm)+ ∧Σm
X∧m → X∧m/Σm = PmX

that collapses EΣm is a stable weak equivalence.

Proof. Since we work in the stable model structure constructed by Stolz, this is the statement
of [38, Lemma 1.3.17], where a cellular induction along the lines of [13, p. 36-37] is carried out.
The analogous statement for the more commonly used projective model structure by Mandell-
May-Schwede-Shipley is [27, Lemma 15.5].

Using this definition of H∞-ring spectra, we show that the underlying stable homotopy type
of a G∞-ring spectrum is an H∞-spectrum. To do this, we show that the derived functor
U : GH → SH is a monad functor in the sense of A.4. We deduce this formally from a variant of
the fact that taking the homotopy category of a model category is a pseudo-2-functor [21, 1.4.2f]:

We consider the 2-category (Model, left) of model categories and left Quillen functors. Then,
[21, 1.4.3] shows that taking homotopy categories and left derived functors is a pseudo 2-functor
L : (Model, left) → Cat. Hence, by Corollary A.6 the functor L preserves monads and monad
morphisms.

However, the functor P : Sp → Sp is not left Quillen, but merely left derivable, i.e. it sends
weak equivalences between cofibrant objects to weak equivalences, in both the stable and the
global positive model structure. Moreover, all compositions P◦k : Sp→ Sp can be derived:

Lemma 2.19. Let X be a positively cofibrant spectrum in either the stable or global model
structure, and let A =

∨
I S be a wedge of sphere spectra. Then P(A ∨ X) ∼= B ∨ Y , where

B =
∨

J S is a wedge of spheres which only depends on A, and where Y is a positively cofibrant
spectrum. Moreover, if f : X → X ′ is a weak equivalence between positively cofibrant spectra,
then also P(id ∨ f) is a weak equivalence of the form id ∨ g : B ∨ Y → B ∨ Y ′.
In particular, for any k ≥ 1, the functor P◦k : Sp→ Sp sends weak equivalences between positively
cofibrant spectra to weak equivalences.
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Proof. We write

P(A ∨X) ∼= P(A) ∧ P(X) ∼= P(A) ∧ (S ∨ P>0(X)) ∼= P(A) ∨ (P(A) ∧ P>0(X))

Now, we see that

P(A) = P

(∨
I

S

)
∼=
∧
I

(PS) ∼=
∧
I

∨
i≥0

S

 ∼= ∨
NI

(∧
I

S

)
∼=
∨
NI

S

is a wedge of spheres. Moreover, the spectrum P>0X is positively cofibrant by applying [16,
Corollary 10] to the positive model structures, and hence also P(A)∧P>0X is positively cofibrant.
This proves the first assertion, putting B = P(A) and Y = P(A) ∧ P>0X. If f : X → X ′ is a
weak equivalence between positively cofibrant spectra, so are P>0(f) and P(A) ∧ P>0(f) by the
observations in Remark 2.16. This proves the second part of the lemma, since P(id ∨ f) =
idP(A) ∨ (P(A) ∧ P>0(f)).
In total, this proves the conclusion that P◦k preserves weak equivalences between positively
cofibrant spectra by induction.

Now we generalize the statement of [21, 1.4.3] to encompass all left derivable functors. There
are two problems: the class of left derivable functors is not closed under composition, and if F
and G are composable left derivable functors such that GF also is left derivable, the natural
transformation LG ◦ LF → L(GF ) might not be invertible. However, we obtain the following
result:

Proposition 2.20. Let (Model, all) be the 2-category of model categories and all functors and
natural transformations, and let LDer1 denote the class of all left derivable functors and LDer2
the class of all natural transformations between left derivable functors. Then the assignment

L : (Model,LDer1,LDer2)→ Cat
C 7→ Ho(C), F 7→ LF, η 7→ Lη

comes equipped with the following structure:

i) A unitality isomorphism αC : idHo(C) → L(idC) for any model category C.

ii) A natural transformation µG,F : LG ◦ LF → L(GF ) for any pair of left derivable functors
F : C → D, G : D → E such that GF is also left derivable.

These satisfy the properties of a lax 2-functor from Definition A.2 where they are defined.
Moreover, if F : C → D is left derivable and U : D → E is homotopical, then UF is left derivable
and µU,F is invertible.

Proof. The proof is the same as that of [21, 1.4.3], where we weaken the requirement of being
left Quillen to sending weak equivalences between cofibrant objects to weak equivalences.

We consider the following commutative diagram

Spgl Spst

Spgl Spst,

U

Pgl Pst

U

(2.21)
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which exhibits the functor U as a monad functor between (Pgl, µgl, ηgl) and (Pst, µst, ηst). More-
over, since U is homotopical, it guarantees that all composites P◦i ◦ U ◦ P◦j = U ◦ P◦i+j are
left derivable. Proposition 2.20 allows us to conclude that taking homotopy categories and left
derived functors preserves the monads P on Spgl and Spst as well as the functor U between them.

Proposition 2.22. The left derived functors LPst and LPgl have the structure of monads via
the natural transformations

Lµgl ◦ µPgl,Pgl , Lηgl ◦ αSpgl

and the analogous transformations for LPst.
Moreover, the derived functor Ho(U) : Ho(Spgl)→ Ho(Spst) has the structure of a monad functor
between LPgl and LPst via the transformation µ−1

U,Pgl
◦ µPst,U .

Proof. This is the statement of Corollary A.6. To apply this corollary as stated, we would need
to have a lax 2-functor L : Model → Cat encompassing all left derivable functors. However, it
suffices that we have the required structure morphisms for all composites P◦i

st ◦ U ◦ P◦j
gl with

i + j ≤ 3. This is the case by Lemma 2.19 and the commutative square 2.21.

Since monad functors lift to functors on the categories of algebras, we have proven the fol-
lowing:

Proposition 2.23. The functor U lifts to a functor from the category of G∞-ring spectra to the
category of H∞-ring spectra.
Explicitly, let X be a G∞-ring spectrum with structure map h : LPglX → X. Then the map
h ◦ µ−1

U,Pgl
◦ µPst,U : (LstP)UX → UX defines an H∞-ring structure on the stable homotopy type

UX. Moreover, for a G∞-ring morphism f : X → Y in GH between two G∞-ring spectra, the
map U(f) ∈ SH(UX, UY ) is an H∞-ring map.

Using this result, we get the commutative diagram

Hogl(ucom) (G∞-ring spectra)

Host(Com) (H∞-ring spectra)

(2.24)

of homotopy categories of structured ring spectra, where all functors are forgetful ones.

2.2.2 Lifting the right adjoint SH → GH to structured ring spectra

In this section, we study whether the forgetful functor U from the category of G∞-ring spectra
to H∞-ring spectra from (2.24) has adjoints. The corresponding question for the homotopy
categories SH and GH is investigated in [32, Chapter 4.5], and we use these results to obtain
a right adjoint to the forgetful functor. This gives us a way to define G∞-ring spectra from
H∞-ring spectra, and we use this to give examples of G∞-ring spectra which do not come from
ultra-commutative ring spectra.

We first recall the right adjoint R : SH → GH to the forgetful functor from [32, Construction
4.5.21].

Construction 2.25. We define the functor

b : Sp→ Sp
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as a “global Borel construction”: For an orthogonal spectrum X and an inner product space V ,
we set

(bX)(V ) = map(L(V,R∞), X(V )),

with structure morphisms defined as in [32, 4.5.21].
We also define a natural transformation i : Id→ b via the map

iX(V ) : X(V )→ map(L(V,R∞), X(V )), x 7→ constx .

The morphism iX(V ) is a non-equivariant homotopy equivalence for all inner product spaces V ,
as the space L(V,R∞) is contractible. Hence the induced morphism iX : X → bX is invertible
in the stable homotopy category.
Moreover, b comes equipped with a lax symmetric monoidal structure for the smash product
of orthogonal spectra, such that i : Id → b is a monoidal transformation. Thus, we obtain the
following:

Corollary 2.26. The functor b : Sp→ Sp defines a monad endofunctor in the sense of Definition
A.4 of the symmetric algebra monad P on Sp.
Moreover, the transformation i : Id→ b is a monadic transformation.

By [32, Propositon 4.5.22], the functor b represents the right adjoint to the forgetful functor
U : GH → SH on stable Ω-spectra. We modify this statement to hold on positive Ω-spectra,
since we need positive model structures for the study of commutative ring spectra. Recall that
for obtaining the stable homotopy category, we use the stable S-model structure constructed
by Stolz in [38, Proposition 1.3.10], in order to achieve derivability of the symmetric powers
in Lemma 2.19. Note that this model structure has fewer fibrant objects than the projective
positive stable model structure from [27, Theorem 14.2], so all fibrant objects are in particular
positive Ω-spectra.

Proposition 2.27. Let X be a positive orthogonal Ω-spectrum.

i) Then bX is a positive global Ω-spectrum whose homotopy type lies in the image of the right
adjoint R.

ii) For every orthogonal spectrum A, the two homomorphisms

GH(A, bX) U−→ SH(A, bX) (iX )−1
∗−−−−→ SH(A, X)

are isomorphisms. In particular, the counit of the adjunction between U and R is given by
i−1
X : bX → X ∈ SH(bX, X).

Proof. The proof is completely analogous to the proof of [32, Proposition 4.5.22]. The cited proof
that bX is a global Ω-spectrum works level-wise, hence if X is only a positive Ω-spectrum, bX
is a positive global Ω-spectrum. That bX is right induced from the stable homotopy category
can be seen by replacing bX by the globally equivalent Ω sh(bX) and using that the shift of a
positive Ω-spectrum is a Ω-spectrum.
Moreover, ii) is a formal consequence of i), as indicated in the proof of [32, 4.5.22].

Moreover, we check that b is right derivable.

Lemma 2.28. Let f : X → Y be a stable equivalence between (positive) Ω-spectra. Then b(f) is
a global equivalence.
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Proof. Since f is a stable equivalence between (positive) Ω-spectra, it is a (positive) level equiv-
alence. Since the G-space L(V,R∞) is G-cofibrant and free for any faithful G-representation V ,
mapping out of it takes weak equivalences to G-weak equivalences. Thus, b takes (positive) level
equivalences to (positive) level equivalences and thus to global equivalences. Hence, b(f) is a
global equivalence.

Using this, we describe the unit of the adjunction GH SH
U

R
in a similar way to the results

for the counit in Proposition 2.27 ii).

Lemma 2.29. Let X and Y be (positive) Ω-spectra, and assume that X is moreover (positively)
cofibrant. Then, the composition

SH(X, Y ) b−→ GH(bX, bY ) (iX )∗

−−−→ GH(X, bY )

is a bijection inverse to

GH(X, bY ) U−→ SH(X, bY ) (iY )−1
∗−−−−→ SH(X, Y ).

Proof. We consider the diagram

GH(X, bY ) GH(bX, bY )

SH(X, bY ) SH(X, Y ).

U

(iX )∗

(iY )∗

b

As both (iY )−1
∗ and U are bijective, it suffices to show that this diagram is commutative, i.e.

that (iY )∗ = U ◦ (iX)∗ ◦ b. This is a consequence of the fact that i : Id→ b is natural.

Now, we set up the double categorical context we use to prove that the above adjunction lifts
to G∞- and H∞-ring spectra.
We first consider the double category Model of model categories, left Quillen functors as vertical
morphisms, right Quillen functors as horizontal morphisms and all natural transformations as
2-cells. Then, [36, Theorem 7.6] shows that taking the homotopy category and derived functors
defines a pseudo double functor into the double category Sq(Cat) of categories, functors as
horizontal and vertical morphisms and natural transformations as 2-cells.
In our context, however, neither the symmetric algebra monads Pgl and Pst nor b are Quillen
functors, but merely derivable. Hence, as in Proposition 2.20, we restrict to the classes of left
and right derivable functors respectively, and obtain the following result:

Proposition 2.30. Let (Model, all, all) denote the double category of model categories and all
functors as horizontal and vertical morphisms, and natural transformations as 2-cells. Let LDer
be the class of left derivable functors, RDer denote the class of right derivable functors and Der2
denote the class of natural transformations of the form FG → KH with G, K right derivable
and F, H left derivable. Then the assignment

Ho: (Model,LDer,RDer,Der2)→ Sq(Cat)
C 7→ Ho(C), F 7→ LF, G 7→ RG, η 7→ Ho(η)

comes equipped with the following structure:
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i) Unitality isomorphisms αv
C : idHo(C) → L(idC) and αh

C : R(idC) → idHo(C) for any model
category C.

ii) A natural transformation µv
G,F : LG ◦ LF → L(GF ) for any pair of left derivable functors

F : C → D, G : D → E such that GF is also left derivable.

iii) A natural transformation µh
G,F : R(GF )→ RG ◦RF for any pair of right derivable functors

F : C → D, G : D → E such that GF is also right derivable.

These satisfy the properties of a lax-oplax double functor from Definition A.7 where they are
defined.
Moreover, if F : C → D and G : D → E are right derivable and either F is right Quillen or G is
homotopical, then GF is right derivable and µh

G,F is invertible.

Proof. The proof is the same as for [36, Theorem 7.6], where we weaken the requirements from
being Quillen to being derivable. The last statement about invertibility of µh

G,F follows from
the description of this transformation as (GF )P GpF P−−−−→ GPFP , where p : id → P denotes a
functorial fibrant replacement. If G is homotopical, it sends the weak equivalence pF P to a weak
equivalence. If F is right Quillen, FP is fibrant and thus pF P is a weak equivalence between
fibrant objects. Since G is right derivable, it then sends pF P to a weak equivalence.

Now, we have all the ingredients to prove that we have an adjunction between G∞-ring
spectra and H∞-ring spectra.

Theorem 2.31. Let R : SH → GH denote the right adjoint to U : GH → SH.

i) The functor R : SH → GH induces a functor R̂ from the category of H∞-ring spectra to the
category of G∞-ring spectra.

ii) The functor R̂ is right adjoint to the forgetful functor U , with adjunction unit lifted from
I : idGH → RU and adjunction counit lifted from J−1 : UR→ idSH, where both I and J are
obtained from deriving i : id→ b.

Proof. i) We have seen that P◦i
gl and P◦j

st are left derivable for all i, j ≥ 0 and that b is right
derivable, and moreover that b has the structure of a monad morphism between Pst and Pgl
by Corollary 2.26. Hence the above Proposition 2.30 suffices to invoke Proposition A.11 to
conclude that the right derived functor R = Rb : SH → GH is a monad functor between
LstP and LglP. Hence, it lifts to a functor R̂ : (H∞-Rings)→ (G∞-Rings).

ii) We know that both R = R(b) and U = R(u) for the forgetful functor u : Spgl → Spst are
monad functors. Hence both compositions RU and UR are monad functors.
Moreover, we note that both compositions ub and bu are right derivable, since u is homo-
topical and sends global Ω-spectra to non-equivariant Ω-spectra, on which b is homotopical
by Lemma 2.28. Moreover, they are monad functors as composites of monad functors, and
hence so are the derived functors R(ub) and R(bu). We start by constructing I.
We define

I = µh
b,u ◦Ho(i) ◦ (αh

Spgl
)−1 : idGH → R(idSpgl)→ R(bu)→ Rb ◦Ru = RU.

Since i is a monadic transformation by Corollary 2.26 and any lax-oplax double functor
preserves these by Proposition A.11, we see that Ho(i) is monadic. Moreover, by Lemma
A.12, both µh

b,u and αh
Spgl

are monadic, and thus also (αh
Spgl

)−1. In total, I is a monadic
transformation as a composition of such.
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Analogously, we define J = µh
u,b ◦Ho(i)◦ (αh

Spst
)−1, this also is a monadic transformation by

the same arguments. Moreover, J is invertible, since µh
u,b is by Proposition 2.30, (αh

Spst
)−1

by definition and Ho(i) is invertible in the stable homotopy category since i is a stable
equivalence. Thus also J−1 : UR→ idSH is a monadic transformation.
Hence, the two transformations I : idGH → RU and J−1 : UR→ idSH lift to the categories of
algebras. Moreover, Lemma 2.29 shows that for any homotopy types X ∈ GH and Y ∈ SH,
the morphisms

SH(UX, Y ) R−→ GH(RUX, RY ) I∗

−→ GH(X, RY )
and

GH(X, RY ) U−→ SH(UX, URY ) J−1
∗−−→ SH(UX, Y )

are inverse isomorphisms, and thus I and J−1 are unit and counit of an adjunction. As
the forgetful functor from the categories of algebras to the base category is faithful, this
property lifts to prove that the lifts of I and J−1 are unit and counit of an adjunction

G∞-Rings H∞-Rings
U

R̂

.

As an application of this result, we use the right adjoint to give examples of G∞-ring spectra
which are not obtained as the homotopy type of an ultra-commutative ring spectrum.
Remark 2.32. Let X ∈ SH be an H∞-ring spectrum. Then we consider the induced G∞-ring
structure on the global homotopy type RX. This induces an H∞-ring structure on U(RX). The
map JX : X → U(RX), defined in the proof of Theorem 2.31, is a stable equivalence and by
monadicity of the transformation an isomorphism of H∞-ring spectra.

Assume now that there is an ultra-commutative ring spectrum Y such that the homotopy type
of Y is RX, and such that the G∞-ring structure is induced from the structure map PY → Y of
Y . Then, the H∞-ring structure on U(RX) is induced by the commutative multiplication on UY .
But the H∞-ring spectrum U(RX) is equivalent to X. Hence, if we find an ultra-commutative
representative Y for the G∞-ring spectrum RX, then UY is a commutative ring spectrum which
induces the H∞-ring structure on X.

Thus, in order to provide examples of G∞-ring spectra that are not induced by ultra-
commutative ring spectra, it is enough to consider this question non-equivariantly, where coun-
terexamples are already exhibited in the papers [28] and [24].

Theorem 2.33 ([28, Theorem 1.2]). Let sk ∈ H2k(BU ;Z(2)) be a primitive generator. Define
the space KLk as the homotopy fibre

KLk
ik−→ BU(2)

4sk−−→ K(Z(2), 2k)

and consider the suspension spectra

Σ∞
+ KLk

Σ∞
+ ik−−−→ Σ∞

+ BU(2)
Σ∞

+ 4sk−−−−→ Σ∞
+ K(Z(2), 2k)

Then, for any k, the spectrum Σ∞
+ KLk admits the structure of an H∞-ring spectrum, and Σ∞

+ ik

is an H∞-ring map. Moreover, for k = 15, the H∞-ring structure of Σ∞
+ KL15 is not induced by

an E∞-ring spectrum.

As the homotopy category of E∞-ring spectra is equivalent to the homotopy category of
commutative ring spectra, for example by [14, Chapters II.3 and 4], this indeed gives rise to an
example of a G∞-ring spectrum whose structure is not induced from an ultra-commutative ring
spectrum.
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Theorem 2.34 ([24, Theorem 1]). Let Rk be a wedge of Eilenberg-Mac Lane spectra such that
π∗Rk is isomorphic to the graded ring F2[x]/(x3), where |x| = −2k. Then Rk has an H∞-ring
structure, and for k > 3, these structures are not induced from commutative ring spectra.

For more details on these examples, the reader is referred to the cited articles.

2.3 Homotopical analysis of the extended powers
In this section, we generalize the analysis of the symmetric powers PmX classically provided by
Lemma 2.18, comparing them to the extended powers (EΣm)+ ∧Σm

X∧m, to the global context.
Thus, we connect our definition of G∞-ring spectra using the derived monad G to the original
definition of H∞-ring spectra using the extended powers. As in the G-equivariant version of
Lemma 2.18 given in [19, Proposition B.117], we need to replace the universal space EΣm with
an appropriate global object. The correct analogue is the global universal space EglΣm defined
in Remark 1.1.

Recall that the global universal space EglΣm is constructed as LV , where V is a faithful Σm-
representation. Then, its suspension spectrum can be described by the untwisting isomorphism

Σ∞
+ LV → O(V, _) ∧ SV = FV SV (2.35)

as defined in (1.3). This isomorphism Σ∞
+ LV → FV SV induces the isomorphism Σ∞

+ LG,V
∼=

FG,V SV from (1.4) on G-orbits.
We also consider the morphism

λG,V,W : FG,V ⊕W SV → FG,W (2.36)

defined in [32, 4.1.28] for any compact Lie group G and G-representations V and W with W
faithful. At an inner product space U , the map λG,V,W is represented as

O(V ⊕W, U) ∧G SV → O(W, U)/G

[(u, φ), t] 7→ [u + φ(t), φ ◦ i2],

where i2 : W → V ⊕ W is the inclusion as the second factor. The map λG,V,W is a global
equivalence by [32, Theorem 4.1.29].

Theorem 2.37. Let X be a positively cofibrant orthogonal spectrum, and n ≥ 1. Then the map

q = qX
n : Σ∞

+ LRn ∧Σn
X∧n → X∧n/Σn = PnX

that collapses Σ∞
+ LRn to S = Σ∞

+ ∗ is a global equivalence.

Proof. For the proof, we use a Σn-equivariant decomposition

Σ∞
+ LRn ∼= FRnSn j←− (FRS1)∧n.

The isomorphism j arises from the homeomorphism (S1)∧n ∼= Sn and the isomorphism (FR)∧n ∼=
FRn from [32, Remark C.11]. This decomposition is Σn-equivariant, since both of the involved
maps are symmetric. Explicitly, this isomorphism is given at inner product spaces U1, . . . , Un as

(FRS1)(U1) ∧ . . . ∧ (FRS1)(Un)
jU1,...,Un−−−−−−→ (FRnSn)(U1 ⊕ . . .⊕ Un)

[(u1, φ1), t1] ∧ . . . ∧ [(un, φn), tn] 7→ [(u1 ⊕ . . .⊕ un, φ1 ⊕ . . .⊕ φn), t1 ∧ . . . ∧ tn].
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Using this decomposition, we can rewrite the domain of the morphism q as follows:

Σ∞
+ LRn ∧Σn

X∧n ∼=FRnSn ∧Σn
X∧n

∼=(FRS1)∧n ∧Σn
X∧n

∼=(FRS1 ∧X)∧n/Σn

We claim that under this translation, the morphism q corresponds to the morphism

(λΣ1,R,0 ∧X)∧n/Σn : (FΣ1,RS1 ∧X)∧n/Σn → (FΣ1,0 ∧X)∧n/Σn

from (2.36). Note that Σ1 = e is the trivial group, and hence 0 is a faithful Σ1-representation.
Moreover, FΣ1,0 = O(0, _)/Σ1 ∼= S is the sphere spectrum. To prove this claim, we consider the
diagram

(FRS1)∧n ∧Σn
X∧n (FRS1 ∧X)∧n/Σn

FRnSn ∧Σn
X∧n

Σ∞
+ LRn ∧Σn X∧n X∧n/Σn.

j∧Σn X∧n

(λΣ1,R,0∧X)∧n/Σn

untwisting
λΣ1,Rn,0∧X∧n

q

(2.38)

We first consider the upper diagram. Let U1, . . . , Un be inner product spaces, and consider the
diagram

(FRS1)(U1) ∧ . . . ∧ (FRS1)(Un) O(0, U1) ∧ . . . ∧O(0, Un)

(FRnSn)(U1 ⊕ . . .⊕ Un) O(0, U1 ⊕ . . .⊕ Un) ∼= SU1⊕...⊕Un

λR,0(U1)∧...∧λR,0(Un)

jU1,...,Un

∼=

⊕

λRn,0(U1⊕...⊕Un)

Evaluating this on an element yields

[(u1, φ1), t1] ∧ . . . ∧ [(un, φn), tn] [u1 + φ1(t1)] ∧ . . . ∧ [un + φn(tn)]

[(u1 ⊕ . . .⊕ un, φ1 ⊕ . . .⊕ φn), t1 ∧ . . . ∧ tn] [(u1 ⊕ . . .⊕ un) + (φ1(t1)⊕ . . .⊕ φn(tn))]

By applying (_) ∧Σn
X∧n to this diagram, we see that the upper half of (2.38) commutes. For

the second half of the Diagram (2.38), let U be an inner product space. We need to consider the
left diagram

O(Rn, U) ∧ Sn

SU ∧ L(Rn, U) O(0, U) = SU

λΣ1,Rn,0(U)
untwisting

q(U)

[(u, φ), t]

[u + φ(t), φ] [u + φ(t)].

On elements, this takes the right form.
Thus, also this part of the Diagram (2.38) commutes. Hence, we have translated the statement

of the theorem into the claim that the map

Pn(λΣ1,R,0 ∧X) = (λΣ1,R,0 ∧X)∧n/Σn : Pn(FΣ1,RS1 ∧X)→ PnX
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is a global equivalence. But by [32, Theorem 4.1.29], the morphism λΣ1,R,0 is a global equivalence.
As the spectrum X is positively cofibrant, smashing with X preserves global equivalences by [32,
Theorem 4.3.27]. Moreover, we know by Lemma 2.6 that Pn sends global equivalences between
positively cofibrant spectra to global equivalences. As both X and FΣ1,RS1 = FRS1 are positively
cofibrant, this proves that Pn(λΣ1,R,0 ∧X) is a global equivalence, and hence also q is.

Remark 2.39. Here, we used a decomposition of the global classifying space Σ∞
+ LRn and the fact

that we already know that Pn preserves global equivalences by Lemma 2.6 to give an easy proof
of the theorem. Our proof thus relies on the fact that we already have a model structure on
commutative ring spectra, following the approach of White in [47] via analysing the symmetric
powers Pn. More classically, in [14], [27] and [38], the theorems analogous to Theorem 2.37 are
used to provide the model structure on commutative ring spectra. In these sources, the proof
of the above theorem is done by a cellular induction, see for example the proof of [14, Theorem
III.5.1]. A similar proof can also be done in our context, using the above calculations for the
induction start and then using [16, Theorem 22] for the induction over the cell attachments.

3 Power operations on Moore spectra and β-rings
In this part of the article, we study G∞-structures on global Moore spectra SB for torsion-free
commutative rings B. We show that G∞-ring structures on SB provide β-ring structures on
all equivariant homotopy groups. The reason that we study Moore spectra is first of all that
they are (almost) completely determined by the underlying algebra of the ring B, so we can
translate the topological structure of being a G∞-ring spectrum into an algebraic structure on
B. Moreover, a Moore spectrum can be thought of as an extension of coefficients of the sphere
spectrum and hence has relevance to talking about cohomology theories with coefficients in a
ring B. Hence, providing power operations in the Moore spectrum SB is a first step to providing
power operations on these extended cohomology theories.

It is known classically that torsion in the ring B obstructs the existence of a highly structured
multiplication on the Moore spectrum SB. We can also show that these obstructions occur in
the algebra of global power functors. Hence, we restrict our analysis to the class of torsion-free
rings, where these phenomena are not visible.

In Section 3.1, we study the topological side of the situation and construct from a global
power structure on the homotopy groups of a Moore spectrum a G∞-ring structure. In Theorem
3.14, we arrive at an equivalence between the homotopy category of Moore spectra for torsion-free
rings equipped with a G∞-structure and the category of corresponding global power functors.
Using one direction of this relationship, which does not need the torsion-freeness assumption,
we also obtain easy arguments that the Moore spectra for Z/n and Z[i] cannot support G∞-ring
structures. This is a shadow of the classical facts that these spectra cannot support an A∞- or
E∞-structure respectively.

Then, in an algebraic Section 3.2, we study for which rings there can be global power opera-
tions on the homotopy groups of SB. For this, we link the power operations on global functors
of the form A⊗B to β-ring structures on A(G)⊗B. In particular, we give a new perspective on
these objects, using a well-structured theory of global power operations to obtain β-rings. This
approach is also used to obtain the β-ring structure of stable cohomotopy.

A similar analysis has already been done by Julia Singer in her PhD-thesis [37, Chapter 2.4]
in the case of H∞-structures. There, the representation ring functor R takes the role of the
Burnside ring. Our treatment generalizes the results to a global context.

In this chapter, all rings B are commutative and unital.
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3.1 G∞-structure on Moore spectra for global power functors
In this section, we construct G∞-ring structures on Moore spectra from power operations on
their homotopy groups. It is well known that the existence of a multiplication on Moore spectra
is a subtle question, which traces back to the fact that the cone of a map is only well defined
in the homotopy category up to non-canonical isomorphism. This distinguishes them notably
from Eilenberg-MacLane spectra, which are unique in a more rigorous way and hence are better-
behaved for algebraic manipulations. However, there are classes of rings which work better than
others, in particular, torsion-free rings support multiplications on their Moore spectra. We thus
restrict our attention to the subcategory of torsion-free rings in the following chapter. The main
examples of Moore spectra for torsion rings that do not support commutative multiplications
are S(Z/2), which does not admit a unital multiplication, and S(Z/3), where Massey products
obstruct the associativity of the multiplication. A remark about the latter phenomenon can be
found in [3, Example 3.3], and details for the first can be found in [4, Theorem 1.1]. In fact, no
Moore spectrum S(Z/n) can have an An-ring structure. That no Moore spectrum S(Z/n) can
be endowed with a G∞-structure can be seen in Corollary 3.5, where we show that A⊗Z/n does
not admit the structure of a global power functor. In a similar way, we also observe that the
Moore spectrum for the Gaussian integers S(Z[i]) does not support a G∞-ring structure. This
is a shadow of the result that this spectrum also cannot be endowed with an E∞-multiplication.
Note, however, that the non-existence results for G∞-ring structures for S(Z/p) and S(Z[i]) are
obtained by easy algebraic calculations rather than by higher obstructions. In this way, the
global viewpoint simplifies the calculations.

For countable torsion-free rings B however, these problems vanish, and we are able to de-
scribe G∞-ring structures on Moore spectra completely algebraically. Theorem 3.14 provides an
equivalence of G∞-ring structures on SB and global power functor structures on A⊗B.

In this chapter, we use the triangulated structure of the categories SH and GH. As a refer-
ence for these triangulated structures we use [32, Chapter 4.4].

Recall from [32, Theorem 4.5.1] that the forgetful functor U : GH → SH has both adjoints,
and that the left adjoint is the left derived functor of the identity functor Id : Sp → Sp. As
such, it can be represented by assigning to a non-equivariant spectrum X a non-equivariant
cofibrant replacement QX, considered as a global homotopy type. By construction of the model
structures, in fact any non-equivariant stable equivalence between cofibrant spectra is a global
equivalence. We call the objects in the image of the left adjoint left induced homotopy types, and
a spectrum left induced (from the trivial group) if its homotopy type is. When we talk about
Moore spectra for rings, we require that all their homology is not only concentrated in degree 0,
but also determined by non-equivariant data. Hence we make the following definition:
Definition 3.1. Let B be a ring. A (global) Moore spectrum for B is a connective spectrum
X, left induced from the trivial group, such that He

0(X) ∼= πe
0(X) ∼= B and He

∗(X) = 0 for all
∗ ≠ 0. We denote a Moore spectrum for the ring B by SB.

Since we study power operations on the homotopy groups of a Moore spectrum, we need to
calculate π0(SB) as a global functor. This can be done in terms of B, using that SB is connective
and left induced.
Proposition 3.2. Let X be a connective spectrum left induced from the trivial group. Then the
exterior product

⊠ : πG
0 (S)⊗ πe

0(X)→ πG×e
0 (S ∧X) ∼= πG

0 (X)
is an isomorphism of abelian groups. As the group G varies, these assemble into an isomorphism

π0(S)⊗ πe
0(X)→ π0(X)
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of global functors. If X is a homotopy ring spectrum, then this is an isomorphism of global Green
functors.

Proof. We first observe that the proposition is true in the case X = S, since in this case πe
0(S) ∼= Z,

and the exterior product is the multiplication map

πG
0 (S)⊗ Z→ πG

0 (S),

which is an isomorphism. Moreover, we note that the class of spectra X for which the exterior
product map is an isomorphism is closed under coproducts, since ⊠ is additive in the spectrum
X. It is also closed under cones as defined before [32, Proposition 4.4.13], by the following
argument:
Suppose we have a distinguished triangle

X → Y → Z → X[1]

of connective spectra in the stable homotopy category, where for X and Y , the map

⊠ : πG
0 (S)⊗ πe

0(_)→ πG
0 (_)

is an isomorphism. Then the left-induced triangle is also distinguished, and we obtain a long
exact sequence in homotopy groups

πG
0 (X)→ πG

0 (Y )→ πG
0 (Z)→ πG

−1(X) = 0

for all compact Lie groups G. As the exterior product is natural, we obtain the commutative
diagram

πG
0 (S)⊗ πe

0(X) πG
0 (S)⊗ πe

0(Y ) πG
0 (S)⊗ πe

0(Z) 0

πG
0 (X) πG

0 (Y ) πG
0 (Z) 0

⊠ ⊠ ⊠

with exact rows, where the two left vertical maps are isomorphisms. Then by the 5-lemma, also
for Z the exterior product is an isomorphism.
Then by [32, Proposition 4.4.13], respectively its non-equivariant analogue, the map ⊠ is an
isomorphism for all connective left-induced spectra, since the sphere spectrum is a compact
weak generator of SH.

Now, by the properties of the external product [32, Theorem 4.1.22], the map ⊠ is a morphism
of global functors, and levelwise an isomorphism, hence it is an isomorphism of global functors.
Moreover, if X is a homotopy ring spectrum, then ⊠ is a map of global Green functors. This
proves the proposition.

Remark 3.3. The above statement can also be deduced from an identification of the genuine fixed
points of a left induced spectrum. Let X be a non-equivariant spectrum and denote by LX the
corresponding left induced spectrum. Then we obtain

(LX)G ≃ SG ∧X,

where (_)G denotes the genuine fixed point functor. This relation can easily be seen using an
∞-categorical approach: Here, the functor (_) 7→ (L_)G preserves colimits, hence we are able to
calculate (LX)G by evaluating the functor on the sphere spectrum and smashing with X. From
this formula, we deduce the above proposition by observing that πG

0 (X) = π0(XG) and that π0
is strict monoidal on connective spectra.
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Corollary 3.4. Let X be a left induced spectrum. If X supports the structure of a G∞-ring
spectrum, then it induces the structure of a global power functor on π0(X) ∼= A⊗ πe

0(X).

Thus, we take particular interest in global power functors of the form A⊗B in the following.
These can also be described as global power functors R where the multiplication map A⊗R(e)→
R, arising from the A-module structure of R, is an isomorphism of global Green functors. We
call such global power functors left-induced and call the full subcategory of such global power
functors GlPowleft. Any morphism between such left-induced global power functors is already
determined by the morphism at the trivial group e.

Note that a priori, A⊗B only has the structure of a global Green functor for a ring B. The
existence of power operations is additional structure. In Section 3.2, we exhibit a relationship
between global power functor structures on A⊗B and β-ring structures on A(G)⊗B. Moreover,
we can show that for certain rings, such power operations cannot exist:

Corollary 3.5. The Moore spectra S(Z/n) for n ∈ N and S(Z[i]) do not support a G∞-ring
structure.

Proof. We claim that the global functor A ⊗ Z/n does not support a global power functor
structure. Suppose otherwise, then we in particular obtain power operations

P m : Z/n→ A(Σm)⊗ Z/n

for all m ≥ 0. Note that since Z/n is additively cyclic, if a power operation exists, it is induced by
the power operations on A upon taking the quotient by n, using additivity. Hence, we can provide
formulas for the power operations in terms of powers of finite sets. We claim that if p is any prime
factor of n, then the power operation P p : Z→ A(Σp) does not descend to Z/n→ A(Σp)⊗Z/n.

To check this, we calculate P p(n) ∈ A(Σp). We observe by the explicit description of the
power operations on the Burnside ring of a finite group in [32, Example 5.3.1] that the element
P p(n) ∈ A(Σp) is represented by the Σp-set [n]p with the permutation action, where we denote
by [n] the set {1, . . . n} with no group actions. We decompose this Σp-set as a disjoint union of
Σp-orbits.

In particular, we consider the free orbits in [n]p. Such orbits are in bijection with equivalence
classes of points (k1, . . . , kp) with pairwise different ki, up to reordering. There are

(
n
p

)
such

classes, hence this is the coefficient of Σp/e in [n]p. Since we have(
n

p

)
= n · . . . · (n− p + 1)

p · . . . · 1

and in the numerator, only n is divisible by p, we see that
(

n
p

)
is divisible by n

p , but not by n.
Thus the element P p(n) ∈ A(Σp) is not divisible by n. Hence we do not have power operations
on the global functors A⊗ Z/n for any n.

For the case Z[i], we use the relation (P m(i))2 = P m(−1). Then, we observe that P 2(−1) =
t−1, where we denote t = trΣ2

e ∈ A(Σ2). This is not a square in A(Σ2)⊗Z[i], as we can calculate

(at + b)2 = 2a(a + b)t + b2

for a, b ∈ Z[i], and 2 is not invertible in Z[i].

Note that A ⊗ Z/n does however support truncated power operations, namely maps P k for
all k < p, where p is the smallest prime divisor of n. This can be shown by similar computations
as above for all stabilizers of points in [n]p. Such truncated power operations are also an object
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of research, for example in [9], and relate to the fact that S(Z/p) has an Ap−1-multiplication.
Moreover, we observe that P 2(−1) = t − 1 becomes a square after inverting 2 in A ⊗ Z[i]. In
fact, there is a strict commutative model for the Moore spectrum of Z[i, 1

2 ].

We now study the reverse direction in the case that X is a global Moore spectrum. We aim
to define a G∞-ring structure on SB from power operations on its homotopy groups. As already
mentioned, we restrict to torsion-free rings in the following.

We first show that the ring structure of B induces the structure of a homotopy ring spectrum
on SB. For this, we show that we can test properties of morphisms between Moore spectra on
the homotopy groups. This lemma should be well-known, but since the author is not aware of a
proof in the literature, it is included here for completeness’ sake.

Lemma 3.6. The functor

πe
0 : Mooretorsion-free → Abtorsion-free

between the homotopy category of Moore spectra of torsion-free abelian groups and the category
of torsion-free abelian groups is fully-faithful, and hence an equivalence of categories.

Proof. Let A and B be torsion-free groups. We have to calculate the group of morphisms
[SA,SB] := GH(SA,SB). Note that in fact GH(SA,SB) ∼= SH(SA,SB), since Moore spectra are
left induced. To calculate this group of morphisms, we consider a free resolution

0→ Z⊕I → Z⊕J → A→ 0 (3.7)

of A. Then we take as a model of the Moore spectrum for A the cone∨
I

S→
∨
J

S→ SA.

Using this distinguished triangle and mapping into SB, we obtain an exact sequence[∨
J

ΣS,SB

]
→

[∨
I

ΣS,SB

]
→ [SA,SB]→

[∨
J

S,SB

]
→

[∨
I

S,SB

]
.

Since the homotopy classes are additive under wedges, we can write the above sequence as

Hom(Z⊕J , π1(SB))→ Hom(Z⊕I , π1(SB))→ [SA,SB]→ Hom(Z⊕J , B)→ Hom(Z⊕I , B).

As Hom is left exact and the sequence (3.7) is exact, we see that the kernel of the rightmost map
is Hom(A, B). Moreover, the cokernel of the leftmost map is isomorphic to Ext1

Z(A, π1(SB)).
We now calculate π1(SB), using a free resolution

0→ Z⊕I′
→ Z⊕J′

→ B → 0,

which gives a cofibre sequence in the global homotopy category. The associated long exact
sequence in homotopy groups gives⊕

I′

Z/2→
⊕
J′

Z/2→ π1(SB)→
⊕

I′

Z→
⊕
J′

Z,

using π1(S) ∼= Z/2. As the rightmost map is injective and tensor product is right-exact, we
obtain π1(SB) ∼= B ⊗ Z/2.
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Since Ext1
Z is additive, we see that Ext1

Z(A, B/2) is 2-torsion. Moreover, the sequence 0 →
A

2−→ A → A/2 → 0 is exact, as A is torsion-free, and the long exact sequence of Ext-functors
yields that

Ext1
Z(A, B/2) 2−→ Ext1

Z(A, B/2)→ Ext2
Z(A/2, B/2) = 0

is exact. Thus Ext1
Z(A, B/2) is also 2-divisible and hence vanishes.

To consider ring structures on Moore spectra, we need to calculate whether SB ∧SB is again
a Moore spectrum. This follows from the following:

Proposition 3.8. Let A and B be commutative rings whose underlying abelian group is torsion-
free. Then the external product

H∗(SA,Z)⊗H∗(SB,Z)→ H∗(SA ∧ SB,Z)

in homology is an isomorphism. Hence SA ∧ SB is a Moore spectrum for A⊗B.

Proof. This follows from the Künneth-theorem, see for example [1, KT1 and Note 12]. The
homology groups H∗(SA) and H∗(SB) are flat over Z, since they are torsion-free. This proves
that H∗(SA ∧ SB) is A⊗B concentrated in degree 0.

Corollary 3.9. The equivalence from Lemma 3.6 induces an equivalence

πe
0 : Mooretorsion-free

Rings → Ringstorsion-free

between the homotopy category of commutative homotopy ring Moore spectra for torsion-free rings
and the category of torsion-free commutative rings.

We now follow the same approach in order to put a G∞-ring structure on SB. Note that
G(SB) is not a Moore spectrum, since it is not left induced. However, we still can calculate the
group [G(SB),SB] in terms of the homotopy groups of SB. The proof of the following lemma
uses representability of the equivariant homotopy groups for the case that B is finitely generated
and free. In order to reduce to this case, we assume countability of the group B.

Lemma 3.10. Let B be a countable torsion-free abelian group, and let Y be an orthogonal
spectrum such that there is an isomorphism π1(Y ) ∼= R ⊗ A of global functors, where A is a
commutative ring and R is a global functor such that for any finite group G, R(G) is finite.
Then for any of the spectra X = G(SB) or X = G(G(SB)), the morphism

π0 : GH(X, Y )→ GF(π0(X), π0(Y )) (3.11)

is an isomorphism.

Proof. We start by considering X = G(SB), and first consider the case that B is free. Then we
choose a basis (xi)i∈I of B, such that SB ∼=

∨
i∈I S. We calculate

Gm(SB) =Gm

(∨
i∈I

S⟨xi⟩

)
=
∨
(m)

∧
i∈I

mi ̸=0

GmiS =
∨
(m)

∧
i∈I

mi ̸=0

Σ∞
+ BglΣmi

=
∨
(m)

Σ∞
+ Bgl

×
i∈I

mi ̸=0

Σmi

 ,

(3.12)
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where (m) = (mi)i∈I runs through all partitions m =
∑

i∈I, mi ̸=0 mi.
By representability of the homotopy groups πG

0 by Σ∞
+ BglG from (1.2), the map π0 (3.11) is an

isomorphism for the spectra

X = Σ∞
+ Bgl

×
i∈I

mi ̸=0

Σmi

 .

As both domain and codomain of the map (3.11) are additive under wedges, also for G(SB) the
morphism π0 is an isomorphism.

Let now B be a general torsion-free abelian group. By [25], any flat module M is isomorphic
to a directed colimit of finitely generated free modules, generated on finite sets of elements in
M . Since over Z, flat and torsion-free are equivalent, we can write B ∼= colimi∈I Bi as a directed
colimit of finitely generated free Z-modules. Moreover, since B is countable, we find a cofinal
sequential system in the directed indexing system, so that we can write B as a sequential colimit
of finitely generated free modules Bn with n ∈ N. To see that this is the case, we consider the
directed system (φA : FA → B)A∈S(B) for the directed set S(B) of finite subsets of B. Here,
FA is the free module on A. Then, S(B) is countable. We choose a bijection s : N→ S(B) and
iteratively define Bn as follows: We set B1 = Fs(1). Once we have defined Bn = FAn

, we take an
element An+1 such that both An and s(n + 1) map to An+1 in the directed set S(B) and define
Bn+1 = FAn+1 . This clearly defines a cofinal sequential subset of S(B).

We can then lift this sequential system to a cofibrant system SBn of Moore spectra, such that
the colimit colimn SBn models the homotopy colimit. Since homology commutes with sequential
homotopy colimits, we see that SB ∼= colimn SBn is a model for the Moore spectrum of B.
Since sequential colimits of ultra-commutative ring spectra are calculated on the underlying
spectra, also the functor P : Sp → Sp commutes with sequential colimits, and thus G(SB) ∼=
colimn G(SBn). Then, we obtain the Milnor exact sequence

0→ lim
n

1GH(G(SBn), ΩY )→ GH(G(SB), Y )→ lim
n
GH(G(SBn), Y )→ 0.

By the above arguments for free modules B, we see that the right hand object is isomorphic to

lim
n
GH(G(SBn), Y ) ∼= lim

n
HomGF (π0(G(SBn)), π0(Y )) ∼= HomGF (π0(G(SB)), π0(Y )).

Similarly, the left hand object is isomorphic to

lim
n

1GH(G(SBn), ΩY ) ∼= lim
n

1 HomGF (π0(G(SBn)), π1(Y )).

By the calculations (3.12), this last term is isomorphic to

lim
n

1
∏

(mn)

π
Σ(mn)
1 (Y ),

where the product is over all tupels of natural numbers mn
i ≥ 0 indexed on a basis In of Bn, and

we denote Σ(mn) =×i∈In
Σmn

i
. Now this lim1-term decomposes as the product

∏
m≥0

 lim
n

1
∏∑

In
mn

i
=m

π
Σ(mn)
1 (Y )

 ∼= ∏
m≥0

 lim
n

1

A⊗
∏∑

In
mn

i
=m

R(Σ(mn))


 .

In each of the individual lim1-terms, the inverse system consists only of tensor products of finite
groups with A, since In is finite for every n and R(G) is finite for any finite group G. Thus,
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these systems satisfy the Mittag-Leffler condition and thus the lim1-term vanishes.
This proves that the morphism π0 is an isomorphism.

The arguments for G(G(SB)) are completely analogous.

We now check that the assumptions on π1(Y ) are satisfied in the case of a Moore spectrum
SB.

Lemma 3.13. Let B be an abelian group and SB be a Moore spectrum for B. Then

i) there is an isomorphism π1(SB) ∼= π1(S)⊗B of global functors, given by ⊠.

ii) for any finite group G, the homotopy group πG
1 (S) is finite.

Proof. Let 0→ Z⊕I → Z⊕J → B → 0 be a free resolution of B. Then, we construct the Moore
spectrum SB as the mapping cone in ∨

I

S→
∨
J

S→ SB.

Thus, the long exact sequence of homotopy groups becomes

. . .→
⊕

I

π1(S)→
⊕

J

π1(S)→ π1(SB)→

→
⊕

I

π0(S)→
⊕

J

π0(S)→ π0(SB).

Now, by freeness of πG
0 (S) ∼= A(G), we know that the second row of this sequence is left exact,

so the first row is right exact. Moreover, tensoring with π1(S) is right exact, hence applying this
to the sequence 0→ Z⊕I → Z⊕J → B → 0 proves π1(SB) ∼= π1(S)⊗B.

For the second statement, we use the tom Dieck splitting [41, Satz 2] and the Adams isomor-
phism [2, Theorem 5.4], which decompose for any compact Lie group G the homotopy groups
as

πG
1 (S) ∼=

⊕
(H)⊂G

πWGH
1 (EWGH+ ∧ SH) ∼=

⊕
(H)⊂G

π1(Σ∞
+ BWGH).

Here, the sum runs over conjugacy classes of closed subgroups of G, and WGH denotes the Weyl
group of H in G. Now the based suspension spectrum of BWGH splits stably as S∨ Σ̃∞

+ BWGH,
a sum of the sphere spectrum and the reduced suspension spectrum of BWGH. Thus, we find

π1(Σ∞
+ BWGH) ∼= π1(S)⊕ πst

1 (BWGH) ∼= Z/2⊕ π0(WGH)ab.

Hence, πG
1 (S) is finite for any finite group G.

Theorem 3.14. The functor

π0 : G∞-Mooretorsion-free → GlPowtorsion-free
left

is an equivalence of categories between the homotopy category of G∞-Moore spectra for countable
torsion-free commutative rings and the category of countable torsion-free left-induced global power
functors R.
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Proof. We first prove that the functor π0 from the theorem is essentially surjective. Thus, let
B = R(e) for a torsion-free left-induced global power functor R ∼= A ⊗ B. We have to define a
G∞-multiplication ζ : G(SB)→ SB on SB.

By Lemma 3.10, we know that the map

π0 : GH(G(SB),SB)→ GF(π0(G(SB)), π0(SB))

is an isomorphism. We have calculated the homotopy groups global functor of SB in Proposition
3.2 to be A⊗ B. Moreover, by [32, Theorem 5.4.11], we have that π0(G(SB)) is the free global
power functor on the global functor π0(SB) ∼= A⊗B. We denote this free global power functor
by F (A⊗B).

This free global power functor is part of a diagram

GlPow GlGreen GF
U

U

U

C P

F

of adjunctions, where all functors labelled U are forgetful functors and right adjoints, P is the
symmetric algebra functor for the box product of global functors and C is the free global power
functor for a global Green functor constructed in [32, Proposition 5.2.21]. We now claim that
the composite adjunction featuring F is monadic. For this, we use Beck’s monadicity theorem,
see for example [26, VI.7 Theorem 1].

Let R ⇒ S be a pair of parallel arrows in GlPow that has a split coequalizer in GF . Then
by monadicity of the adjunction GlGreen GF

U

P
, the coequalizer in GF has the unique struc-

ture of a global Green functor such that it is a coequalizer of R ⇒ S in GlGreen. Since
GlPow is also comonadic over GlGreen by [32, Theorem 5.2.13], colimits in GlPow are cre-
ated by U : GlPow → GlGreen. Thus, Beck’s monadicity theorem shows that the adjunction
GlPow GF

U

F
is monadic. We denote the associated monad UF also by F .

Hence, the power functor structure on R ∼= A⊗B is equivalent to a morphism τ : F (A⊗B)→
A ⊗ B, satisfying the compatibility conditions with the monad structure on F . Since π0 (3.11)
is an isomorphism for G(SB) and SB, this morphism τ : F (A ⊗ B) → A ⊗ B is the image of a
unique morphism ζ : G(SB) → SB under the functor π0. We claim that ζ endows SB with the
structure of a G∞-ring spectrum.

For this, we check that the functor π0 : GH≥0 → GF sends the monad diagrams for G to
those of F . Here, the subscript ≥ 0 denotes the full subcategory on the connective spectra. For
this, we consider the diagrams

GH≥0 Ho(ucom)≥0

GF GlPow

LglP

π0 π0

F

and
Ho(ucom)≥0 GH≥0

GlPow GF .

U

π0 π0

U

(3.15)

The right diagram commutes, thus we get a natural transformation ρ : F ◦ π0 → π0 ◦LglP in the
left diagram as the mate of the right isomorphism (see [22, Proposition 2.1] for the definition of
mates). This transformation is thus defined by freeness of F , and [32, Theorem 5.4.11] proves
that ρ is a natural isomorphism. The pasting of the two diagrams in (3.15), using the inverse of
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the transformation ρ, then exhibits π0 : GH≥0 → GF as a monad functor between the monads
G and F . For the compatibility with the monad structure, naturality of mates is used.

Thus, we see that the G∞-diagrams

G(G(SB)) G(SB)

G(SB) SB

G(ζ)

µ ζ

ζ

and
SB G(SB)

SB

η

ζ

are sent under π0 to the corresponding diagrams for the monad F . Since τ defines the structure
of an F -algebra on A ⊗ B by assumption, the monad diagrams for A ⊗ B commute. Using
Lemma 3.10 for morphisms out of G(G(SB)) and Lemma 3.6 for SB, also the G∞-diagrams for
SB commute. This proves that

π0 : G∞-Mooretorsion-free → GlPowtorsion-free
left

is essentially surjective.
To check that π0 is also fully faithful, we only need to check that the unique induced map

SB → SC from Lemma 3.6 for a map f : A ⊗ B → A ⊗ C of left induced global power functors
is a morphism of G∞-ring spectra. But this again follows from Lemma 3.10 by looking at the
diagrams 

G(SB) SB

G(SC) SC

ζB

ζC

 7→


F (A⊗B) A⊗B

F (A⊗ C) A⊗ C

τB

F f f

τC

 .

Here, the right diagram commutes by assumptions on f , so also the left diagram commutes. In
total, the functor

π0 : G∞-Mooretorsion-free → GlPowtorsion-free
left

is an equivalence of categories.

3.2 The relation to β-rings
We now connect the theory of global power functors to the theory of β-rings. For this, we use
the perspective of global power functors as coalgebras over the comonad exp on the category of
global Green functors, see [32, Chapter 5.2]. Thus, a global power functor R comes with power
operations R(G) → exp(R; G) ⊂

∏
m≥0 R(Σm ≀ G). On the other hand, a β-ring A has power

operations indexed by the Burnside rings of symmetric groups, given as maps A⊗ A(Σm)→ A.
In order to obtain such structure from the power operations on a global power functor, we assume
that the global power functor R comes equipped with deflation maps R(K×G)×A(K)→ R(G).
These allow to dualize the power operations to obtain β-operations on the values R(G).

It is a classical observation that the Burnside rings in fact support such deflations. Thus, we
can apply the theory presented in this section to the left induced global power functors A⊗ B,
which by Theorem 3.14 completely parametrize G∞-ring structures on Moore spectra SB. Such
structures are hence tied to β-ring structures on A(G)⊗B, extending the classical β-ring A(G).
Another example possessing the necessary deflations is given by stable cohomotopy π0(X) for any
based space X. Here, the deflations can be constructed by the theory of polynomial operations,
as described in [44] and [17]. Thus, our approach of providing β-operations via global power
operations and deflations gives back the classical examples of β-rings.
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Our approach is loosely based on the discussion of τ -rings in [15, Section 4.2], which itself
goes back to [20].
Note that we could also consider deflations indexed by arbitrary global power functors T instead
of A. For the representation ring global power functor, this yields the theory of λ-rings. However,
there are not many other examples of global power functors supporting deflations, so we focus
on the Burnside ring in this work.
Remark 3.16. We give a short overview over the history of the notion of β-rings.
The notion of a β-ring was first introduced by Rymer in [31], based on the question posed by
Boorman in [10] whether there is a theory of β-rings which formalizes the β-operations on the
Burnside ring defined in this work. Rymer, however, did not define his operator ring structure
on B =

⊕
m≥0 A(Σm) properly, a fact explained and amended by Ochoa in [29]. An explicit

construction of the β-operations, using the language of polynomial operations, is given by Vallejo
in [43], and he extended the definition of a β-ring by a unitality condition in [45].
Lastly, the survey article [17] of Guillot provides more details on the history of β-rings and their
connection to λ-rings, as well as showing that stable cohomotopy is an example of a β-ring.
Moreover, there an additivity condition is added to the notion of β-rings.

A β-ring encodes power operations indexed by Burnside rings. This is formalized by a certain
operator ring:

Definition 3.17. We denote
B =

⊕
m≥0

A(Σm).

We endow this abelian group with a commutative multiplication via

x · y = trΣk+l

Σk×Σl
(x× y)

for x ∈ A(Σk) and y ∈ A(Σl). This defines a ring structure on B. Moreover, we define an
operation ∗ on B as follows: Let x ∈ A(Σk) and yi ∈ A(Σli) for 1 ≤ i ≤ n. Then we define

x ∗ (y1 + . . . + yn) =
∑
(k)

trΣ(k)·(l)

×Σki
≀Σli

(
n×

i=1
P ki(yi) · ((×Σki

≀ pΣli
)∗Φ∗

(k))(x)
)

, (3.18)

where the sum runs over all partitions (k) = (ki)i=1,...,n of k, we denote (k) · (l) :=
∑n

i=1 kili
and the transfer is along the monomorphisms Ψki,li

and Φ(kili)i
[32, 2.2.5-6]. In the map×Σki

≀
pΣli

:×Σki
≀ Σli

→×Σki
, the product runs over i = 1 to n and the map pΣli

: Σli
→ e is the

unique map to the trivial group.
The operation ∗ is additive in the first component and can be extended linearly to give a map
∗ : B×B→ B.

The operation ∗ is sometimes called plethysm, for example in [29] and in [20] for the repre-
sentation ring instead of the Burnside ring. It makes B into an operator ring by [45, Theorem
1.11]. We then define a β-ring as an operator module over B. The following definition is given
in [45, Definition 1.12]. Note that here and in the following, we denote by Map the collection of
maps of sets. In contrast, Hom in the following denotes ring homomorphisms.

Definition 3.19. A β-ring is a commutative ring A together with a map ϑ : B → Map(A, A)
such that, for all a ∈ A and x, y ∈ B, the following relations hold:

i) ϑ(x + y) = ϑ(x) + ϑ(y)
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ii) ϑ(x · y) = ϑ(x) · ϑ(y)

iii) ϑ(x ∗ y) = ϑ(x) ◦ ϑ(y)

iv) ϑ(1)(a) = 1 for the multiplicative unit 1 ∈ A(Σ0) ⊂ B on the left and 1 ∈ A on the right

v) ϑ(e) = idA, where e = 1 ∈ A(Σ1) ⊂ B is a unit for the operation ∗.

In the first two statements, we use the pointwise ring structure on Map(A, A).

For the construction of a β-ring structure on R(G) for a global power functor R, we need an
additional structure in the form of a pairing with the Burnside ring.

Definition 3.20. Let R be a global power functor. Maps

⟨_, _⟩K,G : R(K ×G)× A(K)→ R(G),

defined for all compact Lie groups K and G, are called A-deflations if the maps ⟨_, _⟩K,G are
biadditive and satisfy

i) ⟨(K × α)∗r, x⟩K,G = α∗⟨r, x⟩K,L for any continuous group homomorphism α : G→ L.

ii) ⟨trK×G
L×G r, x⟩K,G = ⟨r, resK

L x⟩L,G for any closed subgroup L ⊂ K, and the reversed relation
also holds.

iii) ⟨(α×G)∗r, α∗x⟩ = ⟨r, x⟩ for r ∈ R(K×G), x ∈ A(K) and a surjective group homomorphism
α : L→ K.

iv) ⟨r, 1⟩ = r for all r ∈ R(G) and 1 ∈ A(e).

v) ⟨r · s, x · y⟩K,G = ⟨r, x⟩K,G · ⟨s, y⟩K,G for all r, s ∈ R(K ×G) and x, y ∈ A(K).

vi) ⟨r · pr∗
K y, x⟩K,G = ⟨r, y · x⟩K,G for all r ∈ R(K ×G) and x, y ∈ A(K).

vii) ⟨(δG
n )∗P n⟨r, y⟩, x⟩ = ⟨(δΣk,G

n )∗(P n(r)·(Σn ≀prΣk
)∗P n(y)), (Σn ≀pΣk

)∗x⟩ for all r ∈ R(Σk×G),
y ∈ A(Σk) and x ∈ A(Σn). Here, we considered the diagonal inclusion

δG
n : Σn ×G→ Σn ≀G, (σ, g) 7→ (σ; g, . . . , g) (3.21)

and the relative version δΣk,G
n : (Σn ≀ Σk)×G→ Σn ≀ (Σk ×G).

We denote by GlPowA-defl the category of global power functors with A-deflations and morphisms
of global power functors compatible with the pairing ⟨_, _⟩.

Remark 3.22. In practice, such a deflation pairing on a global power functor often arises from
actual deflations, i.e. maps φ∗ : R(G)→ R(K) for surjective group homomorphisms φ : G→ K.
These satisfy certain relations, as exhibited in [12] for finite groups, and packaged in [46, Chapter
8] in the notion of a globally defined Mackey functor. The compatibility of the deflations with
the power operations also explains the compatibility condition of the above deflation pairing with
the power operations.
In the following, we only use the deflation pairing on a global power functor R.

Lemma 3.23. For the left-induced global power functor A⊗ C for a ring C, the composition

A(K ×G)⊗ C ⊗ A(K) ×−→ A(K ×G×K)⊗ C
∆∗

K−−→ A(K ×G)⊗ C
(prG)∗−−−−→ A(G)⊗ C

defines an A-deflation. Here ∆K : K×G→ K×G×K is the diagonal of K, and (prG)∗ denotes
the deflation along prG : K ×G→ G present in the Burnside rings.
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We omit the calculations of the properties of this pairing. We recall however the definition
of the deflations, since they are the main part of this construction:

Construction 3.24. In the case of finite groups, the deflations in the Burnside ring global
functor are described as follows: Let f : G → K be a group homomorphism, and X be a finite
G-set. Then we define f∗(X) = K ×G X = (K × X)/G, where we identify (k · f(g), x) with
(k, gx) for all g ∈ G, and consider f∗(X) as a K-set by the multiplication on the K-factor. This
defines a map A(G)→ A(K). For the general case of a morphism G→ K of compact Lie groups,
this construction is generalized in [41, Proposition 20] and [42, Proposition IV.2.18].

Remark 3.25. Another main example of a global functor with A-deflations is stable cohomotopy
π0(X) for a based space X. By Remark 2.15, we have restricted power operations on the
equivariant stable cohomotopy defined by

π0
G(X) P m

−−→ π0
Σm≀G(Xm) (δG

m)∗

−−−−→ π0
Σm×G(Xm) ∆∗

−−→ π0
Σm×G(X).

As explained below, these restricted power operations, using δG
m, are also used to obtain the

β-operations. Hence, the theory developed below is also applicable to equivariant stable coho-
motopy.
Moreover, we obtain a pairing π0

K×G(X) × A(K) → π0
G(X) by generalizing the definition for A

to an arbitrary base. We again restrict to finite groups. We may define operations on stable
cohomotopy by defining additive (or only polynomial) operations on the monoid Cov+(X) of
isomorphism classes of (equivariant) coverings over X. Non-equivariantly, this is [44, Theorem
2.4], building on the observations by Segal in [35]. The main observation for this is that stable
cohomotopy can be seen as the group completion of the monoid of coverings over X, which is a
consequence of the Barratt-Priddy-Quillen theorem [6, 30, 34]. The equivariant statement holds
analogously, using the equivariant Barratt-Priddy-Quillen theorem established in [33, 18, 7].

Hence, let E → X be a (K ×G)-equivariant covering of X and T be a finite K-set. Then we
define ⟨E → X, T ⟩ to be E ×K T , which is a G-equivariant covering. One can check that this is
biadditive and induces a pairing π0

K×G(X)× A(K)→ π0
G(X) as required.

Suppose now that R is a global power functor with A-deflations. We are ultimately interested
in a pairing R(Σm ≀ G) ⊗ A(Σm) → R(G), hence we use the morphism δG

m : Σm × G → Σm ≀ G
from (3.21) to define

R(Σm ≀G)⊗ A(Σm) (δG
m)∗⊗id−−−−−−→ R(Σm ×G)⊗ A(Σm) ⟨_,_⟩Σm,G−−−−−−−→ R(G).

Using these definitions, we can define for any global power functor R with A-deflations a
morphism

DG : exp(R; G)→ Map(B, R(G))

x = (xn)n≥0 7→

(yn) 7→
∑
n≥0
⟨(δG

n )∗xn, yn⟩

 .
(3.26)

Proposition 3.27. Let R be a global power functor with A-deflations and G be a compact Lie
group. Then for any x ∈ exp(R; G), the morphism DG(x) is a ring homomorphism.

Proof. Additivity of the morphism DG(x) : B → R(G) is clear from biadditivity of the pairing
⟨_, _⟩. Moreover, let 1 ∈ A(Σ0) be the multiplicative unit of B. Then we calculate

DG(x)(1) = ⟨(δG
0 )∗x0, 1⟩ = p∗

G(x0) = 1,
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using that exponential sequences have as zeroth term the unit of R(e) and that δG
0 is the unique

map pG : G→ e.
Now, we check that the map DG(x) is multiplicative. Recall that the product on B is the

transfer product from Definition 3.17. For two elements y, z ∈ B, we have

DG(x)(y · z) =
∑
n≥0

〈
(δG

n )∗xn,
∑

k+l=n

trΣk+l

Σk×Σl
(yk × zl)

〉
=
∑

k,l≥0
⟨resΣk+l×G

Σk×Σl×G(δG
k+l)∗xk+l, yk × zl⟩

=
∑

k,l≥0
⟨∆∗

G((δG
k )∗xk × (δG

l )∗xl), yk × zl⟩

=
∑

k,l≥0
⟨(δG

k )∗xk, yk⟩ · ⟨(δG
l )∗xl, zl⟩

=DG(x)(y) ·DG(x)(z).

Here, we use that the morphisms δG
k+l◦(Φk,l×G) and ΦG

k,l◦(δG
k ×δG

l )◦∆G : Σk×Σl×G→ Σk+l ≀G
agree and that the sequence x is exponential.

Using this morphism, we can now study how any global power functor R with A-deflations
induces the structure of a β-ring on R(G):

Construction 3.28. Let R be a global power functor with A-deflation and let G be a compact
Lie group. Then we define

ϑ̄G : R(G) P−→ exp(R; G) DG−−→ HomRings(B, R(G)),

where P denotes the power operation on R.
This map is adjoint to a map

ϑ : B→ Map(R(G), R(G)).

Proposition 3.29. The map ϑ makes R(G) into a β-ring.

Proof. This proof is a lengthy calculation, using the properties of the global power operations
and the pairing ⟨_, _⟩. An essentially similar calculation in the case R = A has been carried
out in [31, Theorem 2], where the relations are only checked for some additive generators of B,
and in [45, Corollary 1.16], where these calculations are extended to the entirety of B using the
theory of polynomial operations. Also, a similar calculation can be found in [29].

Corollary 3.30. The rings A(G) and π0
G(X) for any based space X carry the structure of β-

rings.

Corollary 3.31. Let C be a commutative ring. If A⊗C supports the structure of a global power
functor, then A(G)⊗ C inherits the structure of a β-ring.

Note that the β-ring structures on Burnside rings and stable cohomotopy rings are already
known by the classical literature. However, the above definition of the structure map ϑ illustrates
how this structure can be obtained from a more naturally arising structure, namely from a global
power functor structure on R together with deflations. We hope that this allows for a more
insightful picture of β-rings.

The definition of a β-ring only incorporates relations between the different operations ϑ(x)
on R(G), indexed by x ∈ B. It does not provide any compatibility of these operations with the
ring structure on R(G). We now add a condition of “external” additivity, due to [17]:
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Definition 3.32. We define
B2 =

⊕
p,q≥0

A(Σp × Σq).

This has a ring structure analogous to the one on B, given by x · y = trΣp+r×Σq+s

Σp×Σq×Σr×Σs
(x× y) for

x ∈ A(Σp × Σq) and y ∈ A(Σr × Σs). Moreover, we have maps

Φ: B→ B2, x 7→
∑

p+q=m

Φ∗
p,qx for x ∈ A(Σm)

and
× : B⊗B→ B2, x⊗ y 7→ x× y for x ∈ A(Σp), y ∈ A(Σq).

Additivity is then expressed by a morphism ϑ2 : B2 → Map(A×A, A) analogous to ϑ, using
the map Φ.

Definition 3.33. An additive β-ring is a commutative ring A with maps ϑ : B → Map(A, A)
and ϑ2 : B2 → Map(A×A, A) such that (A, ϑ) is a β-ring and the following properties hold:

i) ϑ2(x× y)(c, d) = ϑ(x)(c) · ϑ(y)(d) for all x, y ∈ B and all c, d ∈ A.

ii) ϑ(x)(c + d) = ϑ2(Φx)(c, d) for all x ∈ B and c, d ∈ A.

We construct such a map ϑ2 for R(G) when R a global power functor with A-deflations.

Construction 3.34. Let R be a global power functor with A-deflations. Then we define

D2 : exp(R; G)× exp(R; G)→ Hom(B2, R(G))

(x, y) 7→

z 7→
∑

p,q≥0
⟨(δG

p,q)∗(xp × yq), zp,q⟩

 ,

where δG
p,q = (δG

p × δG
q ) ◦∆G : Σp ×Σq ×G→ Σp ≀G×Σq ≀G is the diagonal on G. This in fact

takes values in ring homomorphisms by a similar argument to Proposition 3.27.
Moreover, we define

ϑ̄2 : R(G)×R(G) P ×P−−−→ exp(R; G)× exp(R; G) D2

−−→ Hom(B2, R(G)),

and denote the morphism adjoint to ϑ̄2 as

ϑ2 : B2 → Map(R(G)×R(G), R(G)).

Proposition 3.35. The morphisms ϑ and ϑ2 make R(G) into an additive β-ring.

Proof. We only prove part ii) from Definition 3.33, since the first assertion is an easy calculation,
using the description δG

p,q = (δG
p × δG

q ) ◦∆G.
We thus calculate

ϑ(x)(c + d) =
∑
m≥0
⟨(δG

m)∗P m(c + d), xm⟩

=
∑
m≥0

〈
(δG

m)∗
∑

p+q=m

trΣp+q≀G
Σp≀G×Σq≀G(P p(c)× P q(d)), xm

〉
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=
∑

p,q≥0
⟨trΣp+q×G

Σp×Σq×G(δG
p,q)∗(P p(c)× P q(d)), xp+q⟩

=
∑

p,q≥0
⟨(δG

p,q)∗(P p(c)× P q(d)), Φ∗
p,qxp+q⟩

=D2(P (c)× P (d))(Φx) = ϑ2(Φx)(c, d).

Here, in the third line, we use the observation that there is only one double coset in

Σp+q ×G\Σp+q ≀G/Σp ≀G× Σq ≀G,

and hence the double coset formula for (δG
p+q)∗ trΣp+q≀G

Σp≀G×Σq≀G consists of a single summand.

Finally, we consider in which sense this construction is functorial. We can study functoriality
both in the global power functor R and in the compact Lie group G.

Definition 3.36. Let A and A′ be additive β-rings with structure morphisms ϑ, ϑ2 and ϑ′, ϑ′2.
Then a morphism f : A→ A′ of β-rings is a ring homomorphism f such that the relations

f(ϑ(x)(a)) = ϑ′(x)(f(a)) and f(ϑ2(y)(a1, a2)) = ϑ′2(y)(f(a1), f(a2))

hold for all x ∈ B, y ∈ B2 and a, a1, a2 ∈ A.

Proposition 3.37. i) Let G be a compact Lie group and f : R → S be a morphism of global
power functors with A-deflations. Then f(G) is a morphism between the β-rings R(G) and
S(G).

ii) Let φ : K → G be a homomorphism of compact Lie groups and R be a global power functor
with A-deflations. Then φ∗ is a morphism between the β-rings R(G) and R(K).

Proof. We only check the compatibility with ϑ, the calculations for ϑ2 are similar.
For the first assertion, we calculate for x ∈ B and b ∈ R(G):

ϑS(x)(f(G)(b)) =DG(PS(f(G)(b)))(x) =
∑
n≥0
⟨(δG

n )∗P n
S (f(G)(b)), xn⟩

=
∑
n≥0
⟨f(Σn ×G)(δG

n )∗P n
R(b), xn⟩

=
∑
n≥0

f(G)⟨(δG
n )∗P n

R(b), xn⟩ = f(G)(ϑR(x)(b)).

For the second assertion, we calculate for x ∈ B and c ∈ R(G):

ϑK(x)(φ∗(c)) =
∑
n≥0
⟨(δK

n )∗P n(φ∗(c)), xn⟩

=
∑
n≥0
⟨(δK

n )∗(Σn ≀ φ)∗P n(c), xn⟩

=
∑
n≥0
⟨(Σn × φ)∗(δG

n )∗P n(c), xn⟩

=
∑
n≥0

φ∗⟨(δG
n )∗P n(c), xn⟩ = φ∗ϑG(x)(c).

The corresponding calculations with ϑ2 work analogously.
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Thus, we have proven the following result, where we denote by Rep the category of com-
pact Lie groups and conjugacy classes of continuous group homomorphisms and by β-Rings the
category of additive β-rings. Moreover, we denote by GlPowA-defl the category of global power
functors with A-deflations.
Theorem 3.38. The assignment (G, R) 7→ R(G) extends to a functor

ev : Repop × GlPowA-defl → β-Rings,

which sends a conjugacy class of a morphism of compact Lie groups to the corresponding restric-
tion.

In this theorem, we only treat restrictions. In fact, transfers do not induce morphisms of
β-rings. The reason is that transfers do not commute with the morphism (δG

n )∗.
To illustrate the theory of β-rings, we calculate the β-operations in one example.

Example 3.39. We apply our theory to the global power functor A, where C = Z = A(e).
Then we obtain β-ring structures on the Burnside rings A(G) for all compact Lie groups G. The
operations here are given as follows:
For the element x = Σn/H ∈ B =

⊕
n≥0 A(Σn), we obtain for finite G and a finite G-set X the

formula
ϑH(X) := ϑΣn/H(X) = ⟨P n(X), Σn/H⟩ = Σn/H ×Σn Xn = Xn/H,

where we consider the resulting set as a G-set. This formula agrees with the one from [43] and
generalizes to compact Lie groups as shown in [31]. Thus, in this case, we obtain the classical
β-ring structure on A(G), using our abstract definition. Also the iterated operations ϑ2 used for
additivity agree with those defined in [17, Example 3.2]. In fact, we have

ϑ2
H(X, Y ) = (Xp × Y q)/H

for a finite group G, finite G-sets X and Y and H ⊂ Σp × Σq.
The above construction of β-ring structures on R(G) highlights the importance of a global

point of view. Theorem 3.38 shows that the notion of a global power functor with A-deflations
encodes compatible β-ring structures for all compact Lie groups at once. In this way, we may
approach the still rather mysterious theory of β-rings from the direction of the well-structured
global power functors.
The comparison 3.38 is not perfect, however. It remains open to what extent we can represent
all β-rings by global power functors, for example. In general, the condition of having global
power operations on a ring is stronger than admitting a β-ring structure. Also, we require no
multiplicative behaviour of the operations ϑ, whereas the power operations of a global power
functor are multiplicative. In face of the complications posed in the analysis of β-rings, starting
with finding a feasible definition, it seems sensible to propose that the notion of global power
functors is the more fundamental one.

A Transferring monads under lax functors
In Section 2.2, we study two lifting theorems for functors between algebras over the derived
symmetric algebra monad in the global and stable homotopy categories. To separate the homo-
topy theoretic properties needed to provide the liftings from the formal background in monad
theory, it is convenient to use the language of 2-categories. We also treat aspects of double
categories, which we use when we encounter both left and right derived functors. For the theory
of 2-categories, we refer to [22], [40] and [11, Chapter 7], for the theory of double categories, we
refer to [22] and [36].
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Definition A.1. A 2-category is a category enriched in the category Cat of categories, and a
double category is a category object in Cat.

Thus, explicitly, a 2-category consists of classes of objects, morphisms and transformations,
where we have a horizontal composition ⋆ and a vertical composition ◦ of transformations,
and compositions of morphisms is strictly unital and associative. For horizontal and vertical
composition, we use the conventions

(η : g → g′) ⋆ (ϑ : f → f ′) = X Y Z

f

f ′

ϑ

g

g′

η and (η : g → h) ◦ (ϑ : f → g) = X Y.

f

g

h

ϑ

η

A double category consists of a class of objects, classes of horizontal and vertical morphisms each
being part of a category with common objects, and a class of transformations

X Y

Z W,

⇒

also called squares or 2-cells. Transformations can be composed both horizontally and vertically,
and all possible orders of composition agree. We denote horizontal composition by

⊟

and vertical
composition by ⊟. Note that for any double category C, we obtain two 2-categories V(C) and
H(C) by considering only vertical morphisms and 2-cells with identities as horizontal morphisms,
or considering horizontal morphisms respectively.

For these notions of higher categories, there exist various versions of functors and natural
transformations between them. We need the following:
Definition A.2. Let C and D be 2-categories. A lax 2-functor F : C → D consists of the following
data:

i) assignments X 7→ F (X), (f : X → Y ) 7→ (F (f) : F (X) → F (Y )) and (η : f → g) 7→
(F (η) : F (f)→ F (g)) of objects, morphisms and transformations,

ii) and transformations αX : idF (X) → F (idX) and µg,f : F (g) ◦ F (f) → F (gf) for any object
X and any pair (g, f) of composable morphisms in C.

These have to satisfy the compatibility conditions given in [11, Definition 7.5.1].
Definition A.3. Let F, G : C → D be two lax functors between 2-categories. A lax natural
transformation η : F → G between F and G consists of assignments

X 7→ (ηX : F (X)→ G(X)) and (f : X → Y ) 7→


F (X) G(X)

F (Y ) G(Y )

ηX

F f Gf
⇒
ηf

ηY

 ,

such that the compatibility conditions given in [11, Definition 7.5.2] are satisfied.
For two lax transformations η : F → G and θ : G→ H between lax 2-functors, the composite

is given by sending X to the morphism θX ◦ηX and a morphism f : X → Y to the transformation

F (X) G(X) H(X)

F (Y ) G(Y ) H(Y ).

ηX

F f Gf

θX

⇒
ηf

Hf
⇒
θf

ηY θY

41



We now relate these notions to the theory of monads. First note that the definition of a
monad can be given in any 2-category, generalizing an endofunctor T : C → C to an endomorphism
T : X → X of an object X and the multiplication and unitality natural transformations µ : TT →
T and η : Id → T to corresponding transformations. Moreover, we can consider morphisms
between such monads, compare [39, §1].

Definition A.4. Let C be a 2-category and (P, µ, η) and (Q, ν, ε) be monads on objects X and Y
of C respectively. A (lax) monad morphism is a pair (F, ρ), consisting of a morphism F : X → Y
and a transformation ρ : QF → FP , such that the diagrams

F QF

FP

εF

F η
ρ and

QQF QFP

FPP

QF FP

Qρ

νF

ρP

F µ

ρ

commute.
Let (F, ρ), (G, σ) : X → Y be two monad functors between P and Q. Then a monadic transforma-
tion between F and G is a transformation θ : F → G such that θP ◦ρ = σ◦Qθ as transformations
QF → GP .

Note that if a 2-category C admits a construction of algebras, i.e. a right adjoint to the
inclusion of C into the category of monads in C, then a monad morphism (F, ρ) : P → Q induces
a morphism between the corresponding objects of algebras over P and Q. In particular, a monad
functor in Cat induces a functor between the categories of algebras, and a monadic transformation
a transformation between the induced functors.

The following observation goes back to [8, 5.4.1]:

Lemma A.5. Let C be a 2-category, and let 1 be the terminal 2-category with a single object ∗, its
identity morphism and the identity natural transformation. Then, the category of lax 2-functors
1→ C and lax natural transformations and the category of monads and lax monad morphisms in
C are isomorphic via the functor

(T : 1→ C) 7→ (T (id∗) : T (∗)→ T (∗), µ : T (id∗) ◦ T (id∗)→ T (id∗), η : idT (∗) → T (id∗))

(ρ : S → T ) 7→

ρ∗ : S(∗)→ T (∗), ρ(id∗) :
T (∗) T (∗)

S(∗) T (∗)

ρ∗

S(id∗) T (id∗)
⇒

ρ∗

 .

The proof is an easy translation of the corresponding properties.
Using this description, we see that monads are preserved under any lax 2-functor, and lax

monad morphisms are preserved if we moreover assume that some of the structure maps of a lax
functor are invertible.

Corollary A.6. Let C and D be 2-categories and let F : C → D be a lax 2-functor. Let (T : X →
X, ν : T ◦ T → T, ε : idX → T ) be a monad in C. Then

(F (T ) : F (X)→ F (X), F (ν) ◦ µT,T : FT ◦ FT → FT, F (ε) ◦ ηX : idF X → FT )
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is a monad in D.
Moreover, let S, T be two monads in C on objects X and Y respectively, let (f : X → Y, ρ : Tf →
fS) be a lax monad morphism, and assume that the transformation µf,S is invertible. Then
(Ff : FX → FY, µ−1

f,S ◦F (ρ) ◦µT,f : FT ◦Ff → Ff ◦FS) is a lax monad morphism between FS
and FT .

Proof. The first part of this corollary follows directly from the above lemma: We can consider
the monad T in C as a lax 2-functor T : 1 → C. Then, the composition F ◦ T : 1 → D is a lax
2-functor, with coherence morphisms the composites of the coherence morphisms of F and T .
Thus, FT is a monad in D, and the structure of the monad is exactly given by the described
morphism.
For the second part, we note that the above lemma shows that a lax monad morphism from S to
T is the same as a lax natural transformation between the corresponding lax 2-functors 1 → C.
It is an easy argument that a lax 2-functor with invertible transformation µf,S preserves such a
transformation.

We now consider the double categorical context. This is used in Section 2.2 in order to
handle the occurrence of both right and left derived functors. These different types of functors
can conveniently be handled by assigning them as vertical and horizontal morphisms of a double
category, respectively.
In a double category C, we use a similar formalism as for 2-categories to consider whether a
corresponding notion of weak double functor preserves monads and morphisms between them.
We thus first define the appropriate notion of a weak double functor.

Definition A.7. Let C and D be double categories. A lax-oplax double functor F : C → D
consists of assignments of objects, horizontal 1-cells, vertical 1-cells and 2-cells of D to those of
C, and the following coherence data:

i) Invertible unitality 2-cells

FX FX

FX FX

F (idX )

⇒
αh

X

idF (X)

and
FX FX

FX FX

F (idX ) idF (X)

⇒
αv

X

for any object X of C.

ii) Composition 2-cell

FX FZ

FX FY FZ

F (gf)

⇒
µh

g,f

F f F g

and

FX FX

FY

FZ FZ

F (gf)

F f
⇒
µv

g,f

F g

for composable pairs X
f−→ Y

g−→ Z of horizontal and vertical morphisms, respectively.

These coherence cells need to satisfy the unitality, associativity and naturality relations as written
down in [36, Definition 6.1 v) and vi)].
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Remark A.8. Note that in [36], the direction of the vertical structure 2-cells is reversed. In that
work, all of the above are assumed to be isomorphisms, so the direction of the cells is irrelevant.
In our application, the 2-cells µv

g,f are not invertible in general, so we have to take care of the
orientation. We choose the given convention since deriving (vertical) left derivable functors comes
endowed with an oplax structure, and deriving (horizontal) right derivable functors with a lax
structure.
On the other hand, the unitality 2-cells αh

X and αv
X are assumed to be invertible. This allows us

to obtain from a lax-oplax double functor a lax 2-functor V(F ) : V(C) → V(D) by applying F
to vertical morphisms, and by defining

V(F )

 X X

Y Y

f g
⇒
η

 =

FX FX

FX FX

FY FY

FY FY.

⇒
(αh

X
)−1

F (idX )

F f F g
⇒
F η

F (idY )⇒
αh

X

In the same way, we obtain an oplax 2-functor H(F ) : H(C)→ H(D).
In fact, the constraint that all αh

X are invertible can be used to strictify F into a lax-oplax
functor where αh

X = idX holds. The main result is the following:

Lemma A.9. Let C and D be double categories and F : C → D be a lax-oplax double functor.
Let

X X

Y Y

f g
⇒
θ

and
X X ′

Y Y ′

h

g g′
⇒
η

k

be 2-cells in C. Then, the 2-cells

FX FX ′

FY FY ′

F h

F f F g′
⇒
F (θ

⊟

η)

F k

and

FX FX FX ′

FX FX

FY FY

FY FY FY ′

F h

⇒
(αh

X
)−1

F g′
⇒
F (η)

F (idX )

F f F g
⇒
F (θ)

F (idY )⇒
αh

Y

F k

in D agree. The analogous statement holds for F (η

⊟

θ).
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Proof. We use the following chain of pasting diagrams:

FX FX FX ′

FX FX

FY FY

FY FY FY ′

F h

⇒
(αh

X
)−1

F g′
⇒
F (η)

F (idX )

F f F g
⇒
F (θ)

F (idY )⇒
αh

Y

F k

=

FX FX FX ′

FX FX FX ′

FY FY FY ′

FY FY FY ′

F h

⇒
(αh

X
)−1

⇒
idF h

F (idX )

F f F g

F h

⇒
F (θ) F g′

⇒
F (η)

F (idY ) F k⇒
αh

Y

⇒
idF k

F k

=

FX FX ′

FX FX FX ′

FY FY FY ′

FY FY ′

F h

⇒
µh

h,id
F (idX )

F f F g

F h

⇒
F (θ) F g′

⇒
F (η)

F (idY ) F k⇒
(µh

k,id
)−1

F k

=
FX FX ′

FY FY ′.

F h

F f F g′
⇒
F (θ

⊟

η)

F k

Here, we used the unitality and naturality conditions on a lax-oplax double functor in the second
and third step respectively. Also note that the unitality condition guarantees that the transfor-
mation µh

k,id is indeed invertible.

Now, we define the relevant notions of monads and morphisms between them in a double cat-
egory. In our application, we have a left derivable monad and a right derivable monad morphism,
and this motivates the following definition. Moreover, we also define monadic transformations
between monad morphisms in this context.

Definition A.10. Let C be a double category. A vertical monad T in C is a monad in the
vertical 2-category V(C). A horizontal monad morphism between two vertical monads S and T
on objects X and Y respectively is a horizontal morphism F : X → Y together with a 2-cell

X Y

X Y,

F

S T
⇒
ρ

F

satisfying the unitality and mulitplicativity conditions

X Y Y

X Y Y

F

S T
⇒
ρ

⇒
ηT

F

=
X X Y

X X Y

S

F

⇒
ηS

⇒
idF

F
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and
X X Y

X Y

X X Y

S

S

F

⇒
µS

T
⇒
ρ

F

S T
⇒
ρ

F

=

X Y Y

Y

X Y Y.

F

S T
⇒
ρ

T
⇒
µT

T

F

For two horizontal monad morphisms (F, ρ) and (G, σ) between S and T , a monadic transfor-
mation is a 2-cell

X Y

X Y

F

⇒
η

G

such that

X Y

X Y

X Y

F

S T
⇒
ρ

F

⇒
η

G

=

X Y

X Y

X Y

F

⇒
η

G

S T
⇒
σ

G

holds.

Proposition A.11. Let C and D be two double categories and let L : C → D be a lax-oplax
double functor. Let (S, µ, η) be a vertical monad in C. Then

(V(L)(S),V(L)(µ) ◦ µS,S ,V(L)(η) ◦ αv
X)

is a vertical monad in D.
Moreover, let S and T be vertical monads in C and let (F, ρ) be a horizontal monad morphism
between them. Then (LF, Lρ) is a horizontal monad morphism between V(L)(S) and V(L)(T ).
Furthermore, for any monadic transformation η : F → G between two monad morphisms, the
natural transformation H(L)(η) is a monadic transformation between LF and LG.

Proof. The first part is a direct consequence of (A.6), since a vertical monad is a monad in the
vertical 2-category V(C) and L induces a lax 2-functor V(L) : V(C)→ V(D).

We now prove the second part. We check the unitality condition on (LF, Lρ), and thus
consider

LX LY LY LY

LY LY

LY LY

LX LY LY LY

LF

LS
⇒
Lρ

⇒
α−1

Y

⇒
αY

L(idY )

LT L(idY )
⇒
L(ηT )

L(idY )⇒
αY

LF

=

=
LX LY LY

LX LY LY

LF

LS L(idY )
⇒
L(ρ

⊟

ηT )
⇒
αY

LF

=
LX LY LY

LX LY LY

LF

LS L(idY )
⇒
L(ηS

⊟

idF )
⇒
αY

LF
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=

LX LX LY LY

LX LX

LX LX

LX LX LY LY

LF

⇒
α−1

X

L(idY )⇒
L(idF )

⇒
αY

LF

LS L(idX )
⇒
L(ηS)

LF⇒
αX

LF

=

LX LX LX LY

LX LX

LX LX

LX LX LX LY.

⇒
α−1

X

LF

L(idY )⇒
αX

⇒
idLF

LF

LS L(idX )
⇒
L(ηS)

LF⇒
αX

LF

Here, we use Lemma A.9 in the first and third step.
The multiplicativity condition is obtained by similar pasting diagrams. Thus (LF, L(ρ)) is a
horizontal monad morphism.
The fact that H(L)(η) is a monadic transformation between LF and LG is proven in the same
way, using a horizontal version of (A.9) for the exchange relation.

Using this proposition, we also consider how the structure transformations of a lax-oplax
double functor behave for a composite of monad functors.

Lemma A.12. Let C and D be double categories, R : X → X, S : Y → Y and T : Z → Z be
vertical monads in C and let (F, ρ) be a horizontal monad morphism from R to S and (G, σ)
be a horizontal monad morphism from S to T . Let moreover L : C → D be a lax-oplax double
functor. Then the structure maps µh

G,F : L(GF ) → LG ◦ LF and αh
X : L(idX) → idLX are

monadic transformations in D.

The proof follows easily using the naturality constrains of a lax-oplax double functor, see [36,
6.2].
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