Fundamental Notions in Algebra – Exercise No. 9

- 1. Let L/K be a finite Galois extension, and $\Gamma = Gal(L/K)$. Show that $B^2(\Gamma, L^{\times})$ is a subgroup of $Z^2(\Gamma, L^{\times})$.
- 2. Let L/K be a Galois extension, and $\Gamma = Gal(L/K)$. For a simple central finite-dimensional algebra A over K such that $L \subset A$ and $C_A(L) = L$, we denote by E = E(A) be normalizer $N_{A^{\times}}(L^{\times}) = \{a \in A^{\times} : aL^{\times}a^{-1} = L^{\times}\}.$
 - (a) Show that there exists a surjection $\pi_A : E(A) \to \Gamma$ such that $ele^{-1} = \pi_A(e)(l)$ for all $e \in E(A)$ and $l \in L$.
 - (b) Let A and A' be two simple central finite-dimensional algebras over K, containing L, such that $C_A(L) = L$ and $C_{A'}(L) = L$. Show that A is isomorphic to A' (as a K-algebra) if and only there exists a group isomorphism $f : E(A) \to E(A')$ such that f(l) = l for each $l \in L^{\times}$ and $\pi_{A'} \circ f = \pi_A$.
- 3. Let L/K be a finite Galois extension such that $\Gamma = Gal(L/K)$ is cyclic of degree *n*. Show that $Br(L/K) \cong K^{\times}/N_{L/K}(L^{\times})$, where $N_{L/K} : L^{\times} \to K^{\times}$ is the norm map $l \mapsto \prod_{\gamma \in \Gamma} \gamma(l)$.

Hint: Fix a generator σ of Γ . For every $b \in K^{\times}$ consider the algebra S(b) generated by the field L and an element x_{σ} with relations $x_{\sigma}^{n} = b$ and $x_{\sigma}l = \sigma(l)x_{\sigma}$ for all $l \in L$. Show that S(b) is a central simple algebra over K, and that the map $b \mapsto [S(b)]$ induces an isomorphism $K^{\times}/N_{L/K}(L^{\times}) \cong Br(L/K)$.

- Using the previous question prove the theorem of Wedderburn (that every finite division algebra is commutative) and the theorem of Frobenius (that R, C and H are the only finite-dimensional division algebras over R).
- 5. Let A be a simple central algebra over K of dimension n^2 .
 - (a) Show that there exists a map Nrd : $A \to K$ such that for every splitting field L of A and every isomorphism $f : A \otimes_K L \cong Mat_n(L)$ of L-algebras, we have $Nrd(a) = det(f(a \otimes 1))$ for each $a \in A$. (The map Nrd is called *the reduced norm* map.)

Hint: Choose a finite Galois extension L/K splitting A, an isomorpism $f : A \otimes_K L \cong Mat_n(L)$ of L-algebras and consider the map $Nrd : A \to L$ given by $Nrd(a) = \det(f(a \otimes 1))$. Show that

- i. Nrd does not depend on the choice of f.
- ii. Nrd takes values in K.
- iii. Nrd does not depend on the choice of L.
- (b) For each $a \in A$, let $L_a \in End_K(A)$ be the endomorphism defined by $L_a(x) = ax$. Show that $\det(L_a) = \operatorname{Nrd}(a)^n$.
- (c) Show that A is a division algebra if and only if $Nrd(a) \neq 0$ for every $a \neq 0$.