Fundamental Notions in Algebra – Exercise No. 8

1. Let D be a finite-dimensional algebra over K. Show that

- (a) D is a division algebra if and only if the subalgebra $K[x] \subset D$ is a field for each $x \in D$.
- (b) D is a division algebra if and only if D is an integral domain, that is, does not have zero-divisors.
- (c) A finite-dimensional subalgebra of a division algebra is a division algebra.
- (d) A finite ring without zero divisors is a division ring.
- 2. Let A and B be commutative rings.

Definition: A set P is called a (A, B)-bimodule, if P has a structure of an A-module and a B-module, which satisfy (ax)b = a(xb) for all $a \in A, b \in B$ and $x \in P$.

Let M be an A-module, N a B-module and P a (A, B)-bimodule. Show that $M \otimes_A P$ has a structure of a B-module, $P \otimes_B N$ has a structure of an A-module, and $(M \otimes_A P) \otimes_B N \cong M \otimes_A (P \otimes_B N)$.

- 3. Let A be a central simple algebra over K of dimesion n^2 . Show that
 - (a) $ind(A) \mid n$, and ind(A) = n is and only if D is a division algebra.
 - (b) $ind(A) = min\{[L:K] \mid L \text{ splits } A\} = gcd\{[L:K] \mid L \text{ splits } A\},$ where gcd means "the greatest common divisor".
 - (c) For every finite extension L/K, we have $\operatorname{ind}(A_L) \mid \operatorname{ind}(A)$ and $\operatorname{ind}(A) \mid [L:K] \operatorname{ind}(A_L)$.
- 4. Let D_1 and D_2 be finite dimensional division algebras over a field K (not necessary central) such that $(\dim_K D_1, \dim_K D_2) = 1$. Show that $D_1 \otimes_K D_2$ is a division algebra in the following way:
 - (a) Show first the assertion when D_1 and D_2 are fields.
 - (b) Show the assertion when D_1 is central over K and D_2 is a field. (Use exercise 3).
 - (c) Set $L_1 := Z(D_1)$ and $L_2 := Z(D_2)$. Deduce the general case using isomorphism $D_1 \otimes_K D_2 \cong D_1 \otimes_{L_1} L_1 \otimes_K L_2 \otimes_{L_2} D_2$.
- 5. Let L/K be a finite Galois extension of degree n, and set G = Gal(L/K). The group G acts on L and we denote by $L\langle G \rangle$ the non-commutative "twisted" group ring consisting of the elements $\left\{ \sum_{g \in G} b_g g \mid b_g \in L \right\}$ with the product given by the rule gb = g(b)g (or equivalently, $(b_gg)(b_hh) = b_gg(b_h)gh$).

Show that $L\langle G \rangle$ is isomorphic to $Mat_n(K)$.