Fundamental Notions in Algebra - Exercise No. 7

1. Let A and B be algebras over k, and let $D \subset A$ and $E \subset B k$-subalgebras. Show that $C_{A \otimes_{k} B}\left(D \otimes_{k} E\right)=C_{A}(D) \otimes_{k} C_{B}(E)$.
2. Let S be an algebra over k of dimension n^{2}. Show that the following are equivalent:
(a) S is a simple central algebra over k;
(b) $S_{\bar{k}} \cong \operatorname{Mat}_{n}(\bar{k})$, where \bar{k} is the algebraic closure of k;
(c) $S_{L} \cong \operatorname{Mat}_{n}(L)$ for some finite extension L / k with $n \mid[L: k]$.
3. (a) Let D be a division ring, and let F be the minimal division subalgebra of D containing 1. Show that F is a subfield of $Z(D)$, isomorphic either to the field of rational numbers \mathbb{Q} or to the finite field \mathbb{F}_{p} for some prime p.
(b) Let D be a division ring, $G \subset D^{\times}$be a finite subgroup, and F as in (a). Assume either that G is commutative or that $F=\mathbb{F}_{p}$ for some p. Show that G is cyclic.
Hint. Show first that in both cases the subalgebra $E:=\left\{\sum_{g \in G} a_{g} g: a_{g} \in F\right\}$ is a field.
(c) Give an example of a division algebra D and a non-cyclic finite subgroup $G \subset D^{\times}$.
4. Show that the conclusion of the Skolem Noether theorem remains true if we assume that S is a simple central artinian algebra over k, and R is simple finite-dimensional algebra over k.
Hint. Mimic the original proof: show first that the algebra $R \otimes_{k} S$ is simple and artinian. Next write S in the form $\operatorname{End}_{D}(V)$. Endow V with two structures of $R \otimes_{k} S$-modules, one using $f: R \rightarrow S$ and the other using $g: R \rightarrow S$. Then show that there exists a morphism $j: V \rightarrow V$ such that

- $j \circ d=d \circ j$ for every $d \in D$,
- $j \circ f(r)=g(r) \circ j$ for every $r \in R$
- j is either one-to-one or is onto.

Prove that such j has to be an isomorphism.
5. Let k be a field of characteristic different from 2 , and let D be a noncommutative division algebra over k of dimension 4 . Show that $Z(D)=k$ and there exist elements $i, j \in D$ such that $\{1, i, j, i j\}$ is a basis of D over $k, j i=-i j$ and $i^{2}=a, j^{2}=b$ for some $a, b \in k$.
6. (a) Let D be a central finite-dimensional division algebra over k. Show that k-algebra $\operatorname{Mat}_{n_{1}}(D)$ can be embedded into the k-algebra $\operatorname{Mat}_{n_{2}}(k)$ if and only if the product $n_{1} \operatorname{dim}_{k}(D)$ divides n_{2}.
(b) Let D_{1}, D_{2}, D_{3} be central finite-dimensional division algebras over k such that $D_{1} \otimes_{k} D_{2}^{o p} \cong \operatorname{Mat}_{n_{3}}\left(D_{3}\right)$. Show that k-algebra $\operatorname{Mat}_{n_{1}}\left(D_{1}\right)$ can be embedded into the k-algebra $\operatorname{Mat}_{n_{2}}\left(D_{2}\right)$ if and only if the product $n_{1} \operatorname{dim}_{k}(D)$ divides $n_{2} n_{3}$.
Hint. Write $\operatorname{Mat}_{n_{2}}\left(D_{2}\right)$ in the form $\operatorname{End}_{D_{2}^{o p}}(V)$ and try to embed $\operatorname{Mat}_{n_{1}}\left(D_{1}\right) \otimes_{k} D_{2}^{o p}$ into $\operatorname{End}_{k}(V)$.

