Fundamental Notions in Algebra – Exercise No. 4

- 1. Let V be a vector space over a field F of countable dimension, let $R = \operatorname{End}_F(V)$ be the set of linear endomorphisms of V, and let $I = \operatorname{End}_F^f(V)$ the the set of linear endomorphisms of V of finite rank.
 - (a) Show that I is a two-sided ideal of R, and the quotient ring R/I is simple.
 - (b) Show that the ring R/I is not semisimple.
- 2. (a) Let M be an artinian module. Show that every submodule and factor module of M is artinian.
 - (b) Let M be a module, $P_1 \supseteq P_2$ and N submodules, and assume that $P_1 \cap N = P_2 \cap N$ and $P_1 + N = P_2 + N$. Show that $P_1 = P_2$.
 - (c) Show that if $N \subset M$ and M/N are artinian, then M is artinian.
 - (d) Assume that R is an artinian ring. Show that every finitely generated R-module is artinian.
 - (e) Which of the assertions (a),(c),(d) will remain true if one replaces the word "artinian" by "noetherian"?
 - (f) Show that a module M has finite length if and only if it is both noetherian and artinian.
- 3. (a) Show that \mathbb{Z} is a noetherian ring which is not artinian.
 - (b) Let p be a prime number and let $\mathbb{Z}_{p^{\infty}}$ be the submodule of \mathbb{Q}/\mathbb{Z} consisting of elements which are annihilated by some power of p. Show that $\mathbb{Z}_{p^{\infty}}$ is an artinian \mathbb{Z} -module which is not noetherian.
 - (c) Give an example of a ring which is not noetherian.
- 4. Let M be an R-module.
 - (a) Assume either that R is an artinian ring or that M is an artinian module. Show that M contains a simple submodule.
 - (b) Is the assertion in (a) still true if one replaces the word "artinian" by "noetherian"?
- 5. Let K/k be an infinite field extension. Denote by R the subset of $Mat_2(K)$ consisting of elements of the form

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$

with $a, b \in K, c \in k$. Show that:

- (a) R is a subring of Mat₂(K);
- (b) The ring R is noetherian and artinian;
- (c) The ring R^{op} is neither noetherian nor artinian;
- (d) The rings R and R^{op} are not isomorphic.
- 6. (a) Prove Fitting's lemma: If M is an artinian module, and $f: M \to M$ is an injective homomorphism, then f is surjective.
 - (b) Prove the dual statement: If M is a noetherian module, and $f: M \to M$ is a surjective homomorphism, then f is injective.