Fundamental Notions in Algebra – Exercise No. 2

- 1. Let A and B be R-algebras. Prove that the tensor product $A \otimes_R B$ has a structure of an R-algebra with a multiplication $(a \otimes b) \cdot (c \otimes d) = (ac \otimes bd)$.
- 2. Let M and N be two modules over a commutative ring R.
 - (a) Show that there exists a homomorphism of R-algebras

 $f : \operatorname{End}_R(M) \otimes_R \operatorname{End}_R(N) \to \operatorname{End}_R(M \otimes_R N)$

such that $f(A \otimes B)(m \otimes n) := A(m) \otimes B(n)$.

- (b) Show that homomorphism f from (a) is an isomorphism, if M and N are free and finitely generated.
- (c) Consider dual module $M^* := Hom_R(M, R)$. Show that there exists a homomorphism $g: M^* \otimes_R N \to Hom_R(M, N)$ of *R*-modules such that $g(f \otimes n)(m) := f(m)n$.
- (d) Show that homomorphism g from (c) is an isomorphism, if M is free and finitely generated.
- (e) Are the assumptions in (b) and (d) necessary?
- 3. (a) Show that for any two sets I and J there is a natural isomorphism of R-modules $R^I \otimes_R R^J \cong R^{I \times J}$.
 - (b) Let R be a commutative ring, and let G and H be groups. Show that there are natural isomorphisms of R-algebras

$$R[G \times H] \cong R[G] \otimes_R R[H] \cong (R[G])[H].$$

- (c) Let \mathbb{H} be the algebra of real quaternions. Show that the \mathbb{R} -algebras $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H}$ is isomorphic to $\operatorname{Mat}_4(\mathbb{R})$. *Hint*: Construct an algebra homomorphism $f : \mathbb{H} \otimes_{\mathbb{R}} \mathbb{H} \to \operatorname{End}_{\mathbb{R}}(\mathbb{H})$ such that $f(x \otimes y)(z) := x \cdot z \cdot \overline{y}$.
- 4. Let $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ be an exact sequence of *R*-modules. Show that the following are equivalent.
 - (a) The sequence splits.
 - (b) The submodule f(A) is a direct summand in B, (that is, there exists a submodule $D \subset B$ such that $D \cap f(A) = 0$ and B = D + f(A), thus $B := D \oplus f(A)$).
 - (c) There exists a homomorphism $r: B \to A$ such that $r \circ f = id_A$.
 - (d) There exists a homomorphism $s: C \to B$ such that $g \circ s = id_C$.
- 5. (a) Show that an exact sequence $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ always splits if C is free.
 - (b) Find an example of a non-split short exact sequence.
 - (c) Show that for a ring R the following are equivalent:
 - i. Every short exact sequence of R-modules splits
 - ii. For every R-module M, every R-submodule N is a direct summand.