Fundamental Notions in Algebra - Exc. No. 11

1. Let $\rho: G \rightarrow \operatorname{Aut}_{k}(V)$ be a finite-dimensional irreducible representation of a group G over an algebraically closed field k.
(a) Show that $\rho(G) \subset \operatorname{Aut}_{k}(V)$ spans $\operatorname{End}_{k}(V)$ as a k-vector space.
(b) Assume that G is abelian. Show that V is one-dimensional.
(c) Definition: An element $a \in \operatorname{Aut}_{k}(V)$ is called unipotent, if $a-1 \in$ $\operatorname{End}_{k}(V)$ is nilpotent.
Assume that $\rho(g)$ is unipotent for each $g \in G$. Show that ρ is a trivial one-dimensional representation.

Hint:

i. Show first that if endomorphism $A \in \operatorname{End}_{k}(V)$ satisfies $\operatorname{Tr}(A B)=$ 0 for all $B \in \operatorname{End}_{k}(V)$, then $A=0$.
ii. Show that $\operatorname{Tr}((\rho(g)-1) \rho(h))=0$ for all $g, h \in G$.
iii. Deduce that $\rho(g)=1$ for all $g \in G$.
2. Let V be a finite-dimensional vector space over an algebraically closed field k, and let G be a subgroup of $\operatorname{Aut}_{k}(V)$ such that each $g \in G$ is unipotent.
(a) Show that there exists a basis e_{1}, \ldots, e_{n} of V such that with respect to it each $g \in G$ is upper-triangular.

Hint:

i. Show that there exists a non-zero vector $e_{1} \in V$ such that $g\left(e_{1}\right)=$ e_{1} for all $g \in G$.
ii. Show that for every G-invariant subspace $W \subset V$ and each $g \in$ G, the induced automorphisms $\left.g\right|_{W} \in \operatorname{Aut}_{k}(W)$ and $\left.g\right|_{V / W} \in$ $\operatorname{Aut}_{k}(V / W)$ are unipotent.
iii. Prove the assertion by induction on the dimension of V.
(b) Show that the group G is nilpotent.
3. Let $\rho_{1}: G_{1} \rightarrow \operatorname{Aut}_{k}\left(V_{1}\right)$ and $\rho_{2}: G_{2} \rightarrow \operatorname{Aut}_{k}\left(V_{2}\right)$ be two finite-dimensional representations of groups G_{1} and G_{2} over an algebraically closed field k.
(a) Show that if ρ_{1} and ρ_{2} are irreducible, then the exterior product representation $\rho_{1} \boxtimes \rho_{2}: G_{1} \times G_{2} \rightarrow \operatorname{Aut}\left(V_{1} \otimes_{K} V_{2}\right)$ is irreducible as well.
(b) Conversely, for every finite-dimensional irreducible representation ρ : $G_{1} \times G_{2} \rightarrow \operatorname{Aut}_{k}(V)$ is of the form $\rho_{1} \boxtimes \rho_{2}$ for certain irreducible representations $\rho_{1}: G_{1} \rightarrow \operatorname{Aut}_{k}\left(V_{1}\right)$ and $\rho_{2}: G_{2} \rightarrow \operatorname{Aut}_{k}\left(V_{2}\right)$.
Hint: Show first that the restriction $\left.\rho\right|_{G_{1}}: G_{1} \rightarrow \operatorname{Aut}_{k}(V)$ decomposes as a direct sum $\left.\rho\right|_{G_{1}} \cong \oplus \rho_{1}$ of several copies of a certain irreducible representation ρ_{1} of G_{1}.
(c) Show that the character of $\rho:=\rho_{2} \boxtimes \rho_{2}$ satisfies
$\chi_{\rho}\left(g_{1}, g_{2}\right)=\chi_{\rho_{1}}\left(g_{1}\right) \cdot \chi_{\rho_{2}}\left(g_{2}\right)$ for all $g_{1} \in G_{1}, g_{2} \in G_{2}$.
(d) Show that assertions (a) and (b) are false if k is not algebraically closed.

