
HOMEWORK #10
SOLUTIONS TO SELECTED PROBLEMS

Problem 10.6. The idea is to use the theorems that show the existence of
elements with special cycle structure (when viewed as permutation on the
roots). Here are a few examples.

The polynomial f(t) = t5 − 4t + 2. f(t) is irreducible over Q by Eisenstein
criterion with the prime 2. Evaluating, we see that f(−1) = 5 and f(1) = −1
so f has a root in [−1, 1]. Moreover, f ′(t) = 5t4 − 4 and f ′′(t) = 20t3 so
f has a local maximum at t0 = − 4

√
4/5 > −1 (so f(t0) > 0) and a local

minimum at t1 = 4
√

4/5 < 1 (so f(t1) < 0). But limx→−∞ f(x) = −∞ and
limx→∞ f(x) = ∞, so there are two more roots, one smaller than −1 and the
other larger than 1. The above considerations show that f has exactly three
real roots. By using the appropriate theorem on irreducible polynomials of
degree p having exactly p− 2 real roots, we see that the Galois group of the
splitting field of f over Q is S5.

The polynomial f(t) = t4 + 2t2 + t + 3. Here we will examine the reduction
of f modulo various primes p.

Reducing modulo 2, we get t4 + t + 1 over F2. We check that there are
no roots in F2, so the only possible factorization is of the form

t4+t+1 = (t2+at+b)(t2+ct+d) = t4+(a+c)t3+(b+d+ac)t2+(ad+bc)t+bd

but then a + c = 0 (coefficient of t3) and b = d = 1 (coefficient of t0), but
then ad + bc = a + c = 0 contradicting ad + bc = 1 (coefficient of t1).

We proved that the reduction of f modulo 2 is irreducible. This shows
that f is irreducible in Z[t], since any factorization in Z[t] can be reduced to
a factorization in F2[t]. By Gauss lemma, f is irreducible in Q[t]. Moreover,
by the Theorem 10.1, we get an element in the Galois group of f which is a
cycle of length 4.

Now we reduce modulo 3. We get t4 +2t2 + t ∈ F3[t]. Obviously, we have
a factorization t4+2t2+t = t(t3+2t+1). The factor t3+2t+1 is irreducible
since it is of degree 3 and has no roots in F3. Again, by Theorem 10.1, we
get an element in the Galois group of f which is a cycle of length 3.

We can label the roots so that the cycle of length 4 is σ4 = (1234).
The cycle of length 3, σ3, involves three labels, so by conjugation with
an appropriate power of σ4 we can assume that σ3 = (123). But now
σ−1

4 σ3 = (4321)(123) = (34) is a simple transposition of adjacent labels, so
the group generated by σ3 and σ4 contains a cycle of length 4 and a simple
transposition of adjacent elements, hence it is equal to S4.

We conclude that the Galois group of (the splitting field of) f over Q is
S4.

1


