
ON JACOBIAN ALGEBRAS FROM CLOSED SURFACES

SEFI LADKANI

Abstract. We show that the quivers with potentials associated to ideal triangulations
of marked surfaces with empty boundary are not rigid, and their completed Jacobian
algebras are finite-dimensional and symmetric.

1. Introduction

In [10] Labardini-Fragoso associated a quiver with potential to any ideal triangulation
of a surface with marked points in such a way that flips of triangulations correspond
to mutations of the associated quivers with potentials, thus providing a link between
the work of Fomin, Shapiro and Thurston [6] on cluster algebras arising from marked
surfaces and the theory of quivers with potentials initiated by Derksen, Weyman and
Zelevinsky [5].

When the surface has non-empty boundary, the potential associated to any ideal
triangulation is rigid and its Jacobian algebra is finite-dimensional [10]. However, when
the surface has empty boundary, it was conjectured that the potential associated to any
ideal triangulation is not rigid [10, Conjecture 34]. The question whether its Jacobian
algebra is finite-dimensional or not has been open for some time, see [8, Problem 8.1], [9,
Question 6.4] and the survey [2, Remark 3.17]. The only cases where finite-dimensionality
has been established so far are the once-punctured torus [8, Example 8.2] and recently
the spheres with arbitrary number of punctures [11].

Our main result, stated in the following theorem, completely settles these questions.
Recall that the auxiliary algebraic data needed to define the potential consists of a
non-zero scalar (from a fixed field) for each puncture.

Theorem. Let (S,M) be a surface with marked points and empty boundary.

(a) If (S,M) is not a sphere with 4 punctures, then for any choice of scalars the
quiver with potential associated to any ideal triangulation of (S,M) is not rigid
and its (completed) Jacobian algebra is finite-dimensional and symmetric.

(b) If (S,M) is a sphere with 4 punctures, then the same conclusion holds provided
that the product of the scalars is not equal to 1.

The theorem provides in particular an explicit construction of infinitely many families
of symmetric, finite-dimensional Jacobian algebras.

As a consequence of the theorem we can associate a Hom-finite cluster category to
any marked surface with empty boundary in a similar way as in the case of non-empty
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boundary [2, §3.4]. It is the generalized cluster category of Amiot [1] associated to the
Jacobian algebra corresponding to (any) ideal triangulation. In the case of a sphere with
4 punctures, this category is a tubular cluster category studied by Barot and Geiss [4].

Corollary. Let (S,M) be a surface with marked points and empty boundary. Then there
is a Hom-finite triangulated 2-Calabi-Yau category C(S,M) with a cluster-tilted object for
each ideal triangulation.

We outline our strategy for proving the theorem. Since the properties of non-rigidity
and finite-dimensionality of Jacobian algebras are preserved under mutations of quivers
with potentials [5] and any two ideal triangulations of a surface with marked points
can be connected by a sequence of flips, it suffices to consider only one triangulation.
Therefore we can avoid technical complications by dealing only with those triangulations
which are suitably “nice”.

In Section 2 we consider triangulations with at least three arcs incident to every
puncture and develop a combinatorial model for the associated quiver with potential.
In Section 2.3 we introduce the additional conditions (?) and (�) on the quiver, and we
express them in terms of combinatorial properties of the corresponding triangulation.

Then, in Section 3 we investigate the relations in the Jacobian algebra of a quiver
with potential within the framework of our model. Some relations always hold, whereas
additional relations are obtained by assuming additional hypotheses involving either
condition (?) or (�). Under these hypotheses we carry out the actual proof in Section 4,
where we show that the potential is not rigid (Proposition 4.4) and the Jacobian algebra
is finite-dimensional (Proposition 4.2) and symmetric (Proposition 4.7).

The existence of “nice” triangulations is shown in Section 5. It implies that for
any surface with marked points and empty boundary there is a triangulation whose
associated quiver with potential satisfies one of the conditions (?) or (�), thus allowing
us to conclude the proof.

In addition we also compute the Cartan matrices and the centers of the Jacobian
algebras of the quivers with potentials considered in Section 4. For the precise statements
see Proposition 4.8, Corollary 4.9 and Proposition 4.11. In particular, the rank of the
Cartan matrix is bounded by the number of punctures, its determinant always vanishes
and the center is the quotient of a polynomial ring (with as many variables as the arcs
in the triangulation) by the ideal generated by all monomials of degree 2.

Since the property of a finite-dimensional algebra being symmetric, as well as its
center and the rank of its Cartan matrix are all invariant under derived equivalence, the
extension of the above results to all the quivers with potentials arising from triangulations
of marked surfaces with empty boundary is now a consequence of the following result:

All the Jacobian algebras associated to the ideal triangulations of a given surface with
marked points and empty boundary are derived equivalent.

We defer the proof of this result to a subsequent paper dealing with (weakly) sym-
metric Jacobian algebras in a broader framework.

2. Combinatorial model for the quiver with potential

Let (S,M) be a closed surface with marked points. Recall that S is a compact,
connected, oriented Riemann surface with empty boundary and M is a finite set of
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points in S, called also punctures. In this section we consider a fixed ideal triangulation
T of (S,M) with the property that

(T3) at each puncture p ∈M there are at least three arcs of T incident to p

(where an arc starting and ending at the same puncture is counted twice). In particular,
such a triangulation T does not contain any self-folded triangles. As we shall see in
Section 5, any marked closed surface has such a triangulation.

2.1. The quiver. Let Q be the adjacency quiver of T as defined by Fomin, Shapiro and
Thurston [6]. Recall that Q is constructed in the following way: its vertices are the arcs
of T , and we add an arrow from the arc i to the arc j if they are incident to a common
puncture p and the arc j immediately follows i in the counterclockwise order around p.

... p×

i

j

Remark 2.1. A-priori, this process may create 2-cycles that then have to be removed
when forming the adjacency quiver. However, due to our assumption (T3), this never
happens.

The next proposition lists some basic properties of the quiver Q which will be crucial
in our considerations. Denote by Q0 the set of vertices of Q and by Q1 the set of its
arrows.

Proposition 2.2. Let Q be the adjacency quiver of the triangulation T satisfying (T3).
Then:

(a) Q is connected, and there are no loops or 2-cycles in Q.
(b) For any i ∈ Q0, there are exactly two arrows in Q1 starting at i and two arrows

ending at i.
(c) There are invertible maps f, g : Q1 → Q1 with the following properties:

• For any α ∈ Q1, the set {f(α), g(α)} consists of the two arrows that start
at the vertex which α ends at;
• f3 is the identity on Q1.

Proof. Part (a) is evident from the construction.
To show (b), observe that any arc i is a side of exactly two triangles of T , and each

such triangle contributes one arrow starting at i and another ending at i.
For part (c), we define the maps f and g as follows. An arrow α corresponds to a pair

i, j of consecutive arcs around a common puncture p, as in Figure 1, so that α starts at
i and ends at j.

Let ` be the arc next to j in the counterclockwise order around p. We define g(α) to
be the corresponding arrow j → `.

Let q be the puncture at the other end of j and let k be the arc next to j in the
counterclockwise order around q. We define f(α) to be the corresponding arrow j → k.
Observe that the arcs i, j, k enclose a triangle of T , hence f2(α) is an arrow k → i and
f3(α) is the arrow α. In particular, the map f is invertible.
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Figure 1. Definition of the maps f and g on the set of arrows.
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Figure 2. Cycles in Q arise in two ways: either from triangles of T (left)
or from traversing the arcs around a puncture (right).

We note that the puncture q may coincide with the puncture p so that the arc ` may
coincide with k, for example in a triangulation of a once punctured torus. In this case
both arrows f(α) and g(α) start at j and end at k = `.

Finally, the map g is invertible; indeed, if `′ is the arc immediately preceding i in the
counterclockwise order around p, then by applying g on the corresponding arrow `′ → i
we get α. �

Since the map g is invertible, it induces a partition of the arrows in Q1 into g-orbits,
where the g-orbit of an arrow α ∈ Q1 is by definition the set of all arrows of the form
gi(α) for some i ∈ Z. Let nα be the size of the g-orbit of α, that is,

nα = min {r ∈ Z>0 : gr(α) = α}

Obviously, the function Q1 → Z>0 sending α to nα is constant on g-orbits.
Similarly, the invertible map f induces a partition of the arrows into f -orbits. Since

the arrows f(α) and g(α) start where α ends, the arrows of any f -orbit or g-orbit can
be arranged in a sequence whose concatenation is a cycle in Q.

The relations between these orbits and the triangulation are given in the next lemma.

Lemma 2.3. Let f , g be the invertible maps corresponding to the triangulation T .

(a) The f -orbits are of size 3; they are in one-to-one correspondence with the trian-
gles of T .

(b) The g-orbits are of size at least 3; they are in one-to-one correspondence with
the punctures.

Proof. Since f3 = id, the f -orbits are of size 1 or 3. The first case is impossible since
always f(α) 6= α as these arrows start at different vertices.
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Any triangle in T with sides i, j, k arranged in a clockwise order as in the left drawing
of Figure 2 gives rise to a 3-cycle i→ j → k → i in Q which can be written as

(2.1) α · f(α) · f2(α).

The arrows {α, f(α), f2(α)} form an f -orbit and any f -orbit is obtained in this way.
Fix a puncture, and let i0, i1, . . . , in−1, in = i0 be the sequence of arcs incident to that

puncture traversed in a counterclockwise order, as in the right drawing of Figure 2. We
get a cycle i0 → i1 → · · · → in−1 → i0 in Q which by construction of the map g can be
written as a path

(2.2) β · g(β) · . . . · gn−1(β)

whose arrows form a g-orbit. Moreover, any g-orbit is obtained in this way. �

2.2. The potential. In [10] Labardini associates to an ideal triangulation of a marked
bordered surface a quiver with potential, using auxiliary data consisting of a non-zero
scalar for every puncture (from a fixed field K). In the case of a triangulation of a
marked closed surface satisfying (T3), by the correspondence of Lemma 2.3 between the
punctures and the g-orbits on the set of arrows Q1 in the adjacency quiver, we may view
the auxiliary data as a function c : Q1 → K× which is constant on g-orbits.

Recall that a potential on a quiver Q is a (possibly infinite) linear combination of cycles

in the complete path algebra K̂Q of Q. An explicit form of the potential associated to
the triangulation T in terms of the combinatorics of its adjacency quiver exploited in
Proposition 2.2 is provided by the next proposition.

Proposition 2.4. Let (Q,W ) be the quiver with potential associated to T . Then the
quiver Q is the adjacency quiver of T described above and the potential W is given by
the formula

(2.3) W =
∑

α · f(α) · f2(α)−
∑

cββ · g(β) · . . . · gnβ−1(β)

where the first sum is taken over representatives α of the f -orbits in Q1 and the second
sum is taken over representatives β of g-orbits in Q1.

Proof. The triangulation T satisfies (T3), hence it does not contain self-folded triangles
and moreover in the formation of the adjacency quiver no 2-cycles had to be removed
(see Remark 2.1). Therefore no reduction is needed which means that the associated
quiver is identical to the adjacency quiver Q of T described above.

The associated potential W is by definition the sum of all 3-cycles in Q corresponding
to the triangles of T together with scalar multiples of the cycles of Q “around” each
puncture (see again Figure 2). By Lemma 2.3 and its proof, these cycles are precisely of
the forms (2.1) and (2.2) corresponding to the f -orbits and g-orbits, respectively. �

2.3. The conditions (?) and (�). In order to prove the finite-dimensionality of the
Jacobian algebra of (Q,W ) in full generality we need to introduce a mild condition on
the quiver Q concerning the size of its g-orbits. This condition is stated as follows:

(?) For any α ∈ Q1 we have nα ≥ 4 or nf(α) ≥ 4.

Let T be an ideal triangulation satisfying (T3). Then by Lemma 2.3 the size of any
g-orbit is at least 3, that is, nα ≥ 3 for any α ∈ Q1. The condition (?) just says that
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there are not too many g-orbits containing just 3 arrows; in other words, there are not
too many punctures with just three arcs around them.

As the next lemma shows, the following condition on a triangulation T guarantees
that its adjacency quiver satisfies (?):

(T31/2) T has (T3) and any arc has an endpoint with at least four arcs incident to it.

Lemma 2.5. Let T be a triangulation with property (T3). Then condition (?) is satisfied
for its adjacency quiver if and only if T has property (T31/2).

Proof. Assume that T has property (T31/2). Let α ∈ Q1 and set β = f(α). Then α
ends at some vertex j where β starts at. The endpoints of the arc j in the triangulation
correspond to the g-orbits of α and of β (which may coincide). Now the condition (T31/2)
together with Lemma 2.3 imply that at least one of these orbits contains at least four
arrows.

Conversely, assume that T does not have property (T31/2) and let j be an arc such
that both of its endpoints have only three incident arcs. Take an arrow α ∈ Q1 ending
at the vertex j. Then nα = nf(α) = 3. �

It is much easier to verify the following property (T4) of a triangulation T , which
obviously implies the property (T31/2):

(T4) at each puncture p ∈M there are at least four arcs of T incident to p.

Indeed, in Section 5 we will prove that with only two exceptions, namely the sphere
with 4 or 5 punctures, any marked closed surface has a triangulation with the prop-
erty (T4), and that the sphere with 5 punctures has a triangulation with property (T31/2).

However, the sphere with 4 punctures does not have a triangulation with prop-
erty (T31/2), so that an argument involving the condition (?) for the adjacency quiver
of a triangulation satisfying (T3) would not be applicable. In order to deal with this
particular case, we replace the condition (?) by the condition (�) on the g-orbits stated
as follows:

(�) For any α ∈ Q1 we have nα = 3

(or equivalently, g3 = id on Q1) which holds for any triangulation of a sphere with 4
punctures having property (T3). Under the additional assumption that the product
of the scalars associated to the punctures is not equal to 1, we are able to prove the
finite-dimensionality in this case as well by using similar techniques.

3. Relations in the Jacobian algebra

In this section we consider quivers with potential (Q,W ) of the following form: Q is
any quiver with the combinatorial properties described in Proposition 2.2, and W is the
potential given by the formula (2.3) in the statement of Proposition 2.4. As shown in
the previous section, this includes in particular the quivers with potential associated to
triangulations of a marked closed surface which have property (T3).
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3.1. PSL2(Z)-action on the quiver. In view of Proposition 2.2(b) we can make the
following definition.

Definition 3.1. For an arrow α ∈ Q1, denote by ᾱ the other arrow starting at the same
vertex as α.

In the next lemma we record the basic relations between the functions f , g and .̄

Lemma 3.2. Let α ∈ Q1.

(a) The set {f−1(α), g−1(α)} consists of the two arrows that end at the vertex which
α starts at.

(b) f(α) = g(α) and g(α) = f(α).
(c) gf−1(α) = fg−1(α) = ᾱ.
(d) f−1(ᾱ) = g−1(α) and g−1(ᾱ) = f−1(α).
(e) f−1g(α) = g−1f(α) and is equal the other arrow ending at the same vertex as α.

Proof. All these claims follow from the properties of the maps f and g described in
Proposition 2.2(c). For example, both arrows f−1(α) and g−1(α) end at the vertex
which α starts at. If they were identical, then applying f or g would give the same
arrow, namely α, a contradiction.

The other statements follow similarly. They are best illustrated in the following
pictures.

•

f−1(α)=g−1(ᾱ)
��

•

•
α

FF

ᾱ=gf−1(α)=fg−1(α)

��
•

g−1(α)=f−1(ᾱ)

FF

•

•

f−1g(α)=g−1f(α)
��

•

•
f(α)

FF

g(α)

��
•

α

FF

•
�

Proposition 3.3. The group PSL2(Z) acts transitively on the set of arrows Q1 and its
subgroup consisting of all the elements acting trivially is normal of finite index.

Proof. The group PSL2(Z) has a presentation by two generators x, y and relations x2 =
(xy)3 = 1. Its action on Q1 is obtained by letting x, y act on an arrow α ∈ Q1 via

x(α) = ᾱ, y(α) = g(α)

and noting that (xy)(α) = f(α) by the previous lemma.
Observe that any arrow starting or ending at a vertex which α starts or ends at

belongs to the PSL2(Z)-orbit of α. Since Q is connected, this implies that the action is
transitive. �

Lemma 3.4. Let α ∈ Q1, and let i, j, k be the starting vertices of the arrows α, f(α)
and f2(α), respectively.

(a) The three vertices i, j, k are different and the six arrows α, ᾱ, f(α), g(α), f2(α),
gf(α) are all distinct.

(b) f2(α) = gnᾱ−1(ᾱ).
(c) gf(α) = fgnᾱ−2(ᾱ).
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Proof. If any two of the vertices i, j, k were identical, then at least one of the arrows α,
f(α) or f2(α) would be a loop, a contradiction.

Now α, ᾱ are the two distinct arrows starting at i, and similarly f(α), g(α) are those
starting at j and f2(α), gf(α) those starting at k. As i, j, k are different, we get that
these six arrows are all distinct.

We illustrate the situation in the following picture

gnᾱ−2(ᾱ)��
•k

f2(α)=gnᾱ−1(ᾱ)

��

gf(α)=fgnᾱ−2(ᾱ)

[[

// •j

f(α)
DD

g(α)

��

•iα
oo ᾱ //

gnα−1(α)=f2(ᾱ)
XX

Applying Lemma 3.2, we get f2(α) = f−1(α) = g−1(ᾱ) = gnᾱ−1(ᾱ), hence also

gf(α) = (gf−1)f2(α) = (fg−1)gnᾱ−1(ᾱ) = fgnᾱ−2(ᾱ).

�

3.2. Basic relations. The quiver with potential (Q,W ) gives rise to the (completed)
Jacobian algebra Λ = P(Q,W ) which is our main object of study. It is defined as

the quotient of the completed path algebra K̂Q by the closure of the two-sided ideal
generated by the directional derivatives of W with respect to all arrows.

Lemma 3.5. For any β ∈ Q1 we have the following relation in Λ.

β · f(β) = cβ̄β̄ · g(β̄) · . . . · gnβ̄−2(β̄).

Proof. Since each arrow belongs to exactly one f -orbit and one g-orbit, we see that each
arrow appears exactly once in each of two sums comprising W in (2.3).

By computing the directional derivative of W with respect to the arrow α = f−1(β)
we see that

(3.1) f(α) · f2(α) = cαg(α) · g2(α) · . . . · gnα−1(α)

and the lemma follows by noting that β̄ = g(α) and hence nβ̄ = nα. �

Proposition 3.6. For any α ∈ Q1 we have the following relations in Λ.

α · f(α) · f2(α) = cαα · g(α) · g2(α) · . . . · gnα−1(α)

= cᾱᾱ · g(ᾱ) · g2(ᾱ) · . . . · gnᾱ−1(ᾱ) = ᾱ · f(ᾱ) · f2(ᾱ)
(3.2)

α · g(α) · fg(α) = cf(α)α · f(α) · gf(α) · g2f(α) · . . . · gnf(α)−2f(α)(3.3)

α · f(α) · gf(α) = cᾱᾱ · g(ᾱ) · . . . · gnᾱ−3(ᾱ) · gnᾱ−2(ᾱ) · fgnᾱ−2(ᾱ)(3.4)

Proof. The first equality in (3.2) follows from (3.1), whereas the second follows from
Lemma 3.5 with β = α and Lemma 3.4(b). We get the last equality from the first one
by interchanging α with ᾱ.



ON JACOBIAN ALGEBRAS FROM CLOSED SURFACES 9

The relation (3.3) follows from Lemma 3.5 with β = g(α), noting that β̄ = f(α).
Finally, (3.4) follows from Lemma 3.5 with β = α and Lemma 3.4(c). �

Definition 3.7. Let i ∈ Q0 and let α, ᾱ be the arrows starting at i. In view of (3.2),
the two 3-cycles

α · f(α) · f2(α), ᾱ · f(ᾱ) · f2(ᾱ)

as well as the scalar multiples of the nα-cycle and nᾱ-cycle

cαα · g(α) · g2(α) · . . . · gnα−1(α), cᾱᾱ · g(ᾱ) · g2(ᾱ) · . . . · gnᾱ−1(ᾱ)

starting and ending at i are all equal in Λ. We denote their common value by zi.

3.3. Additional relations. In this section we derive additional relations in the Jaco-
bian algebra under further hypotheses on the quiver. They are summarized in the next
proposition.

Proposition 3.8. Assume one of the following hypotheses:

• Q satisfies the condition (?); or
• Q satisfies the condition (�) and

∏
α∈Ω cα 6= 1, where Ω contains one represen-

tative from each g-orbit;

Then for any arrow α ∈ Q1, we have

α · g(α) · fg(α) = 0 and α · f(α) · gf(α) = 0

in the completed Jacobian algebra Λ = P(Q,W ).

The proof of the proposition is given by the series of lemmas below. The case of
condition (?) is dealt with in Lemma 3.9 and Lemma 3.10, and the case of condition (�)
is considered in Lemma 3.11 and Lemma 3.12.

Lemma 3.9. Assume that Q satisfies (?). Then for any arrow α ∈ Q1, there is an
arrow α′ ∈ Q1 and (scalar multiples of) paths q, q′ not both of length zero such that

α · g(α) · fg(α) = α · f(α) · gf(α) · q(3.5)

α · f(α) · gf(α) = q′ · α′ · g(α′) · fg(α′).(3.6)

Proof. The equation (3.5) follows from (3.3) whereas (3.6) follows from (3.4), taking
α′ = gnᾱ−3(ᾱ). The path q is of length nf(α) − 3 whereas q′ is of length nᾱ − 3. Since
nᾱ = nf2(α), the condition (?) (for the arrow f(α)) implies that nf(α) ≥ 4 or nᾱ ≥ 4. �

Lemma 3.10. Assume that Q satisfies (?). Then for any arrow α ∈ Q1, we have

α · g(α) · fg(α) = 0 and α · f(α) · gf(α) = 0

in the completed Jacobian algebra Λ.

Proof. We show that the first expression vanishes in Λ. The proof for the second is
similar. Indeed, invoking (3.5) and (3.6) we see that

α · g(α) · fg(α) = α · f(α) · gf(α) · q = q′ · α′ · g(α′) · fg(α′) · q
for some arrow α′ and paths q, q′ not both trivial. Thus, the path at the right hand side
is strictly longer than the left hand side and contains a subpath of the same form.
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Figure 3. The quiver satisfying condition (�). It arises from an ideal
triangulation of a sphere with 4 punctures having property (T3).

Set α1 = α′. By repeating this process we get a sequence {αm}m≥1 of arrows and
(scalar multiples of) paths qm, q′m whose lengths sum to at least m such that

α · g(α) · fg(α) = q′m · αm · g(αm) · fg(αm) · qm.

Since α · g(α) · fg(α) is equal in Λ to an arbitrarily long path, we deduce that it must
vanish in Λ. �

Lemma 3.11. Assume that Q satisfies (�). Then Q is isomorphic to the quiver shown
in Figure 3. In particular, it has 6 vertices, 12 arrows and 4 g-orbits. Moreover, for any
arrow α ∈ Q1, the arrows α, ᾱ, f(α) and f(ᾱ) belong to different g-orbits.

Proof. Since g3 acts on Q1 as the identity, the PSL2(Z)-action on Q1 described in Propo-
sition 3.3 induces a transitive action of the alternating group on four elements A4 which
has the presentation 〈x, y : x2 = (xy)3 = y3 = 1〉.

Therefore the number of arrows in Q divides 12. By Lemma 3.4 there are at least 6
arrows in Q. The case of 6 arrows is impossible since then Q would look like as

•

f2(α)=g2(α)

����•

f(α)

FF

g(α)

FF

•
α

oo
ᾱoo

and g3(α) = ᾱ would imply that Q does not satisfy (�) (as a side remark we note that
such Q arises from a triangulation of a once-punctured torus, and then the PSL2(Z)-
action induces an action of Z/6Z on Q1).

Therefore Q has 12 arrows and Q1 is a A4-torsor. The assertions now follow. For
example, the last one follows from the fact that in the presentation of A4 given above,
the elements 1, x, xy, xyx belong to different right cosets of the cyclic subgroup generated
by y. �

Lemma 3.12. Assume that Q satisfies (�) and that
∏
α∈Ω cα 6= 1, where Ω contains

one representative from each g-orbit. Then for any arrow α ∈ Q1, we have

α · g(α) · fg(α) = 0 and α · f(α) · gf(α) = 0

in the completed Jacobian algebra Λ.
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Proof. By the previous lemma, there are four g-orbits and α, ᾱ, f(α), f(ᾱ) lie in different
g-orbits, therefore by our assumption cαcᾱcf(α)cf(ᾱ) 6= 1.

Now by repeatedly applying (3.3) and (3.4) we get

α · g(α) · fg(α) = cf(α) α · f(α) · gf(α) = cf(α)cᾱ ᾱ · g(ᾱ) · fg(ᾱ)

= cf(α)cᾱcf(ᾱ) ᾱ · f(ᾱ) · gf(ᾱ) = cf(α)cᾱcf(ᾱ)cα α · g(α) · fg(α)

and the result follows. �

4. Jacobian algebras from “nice” triangulations

As in the previous section, we consider quivers with potential (Q,W ) of the following
form: Q is any quiver with the combinatorial properties described in Proposition 2.2,
and W is the potential given by the formula (2.3) in the statement of Proposition 2.4.

In this section, we investigate the (completed) Jacobian algebra Λ = P(Q,W ) under
one of the following additional hypotheses:

• Q satisfies the condition (?); or
• Q satisfies the condition (�) and

∏
α∈Ω cα 6= 1, where Ω contains one representa-

tive from each g-orbit;

(so that the conclusion of Proposition 3.8 holds) and show that Λ is finite-dimensional,
symmetric, and the potential is not rigid. In addition we compute the Cartan matrix
and the center of Λ.

4.1. Finite dimensionality.

Lemma 4.1. For any arrow α ∈ Q1 we have in the completed Jacobian algebra Λ

α · f(α) · f2(α) · α = 0 and α · g(α) · . . . · gnα−1(α) · α = 0.

Proof. In view of (3.2), it is enough to show that one of these expressions vanishes, since
the other is a scalar multiple of it. Using (3.2) again, we get

α · f(α) · f2(α) · α = ᾱ · f(ᾱ) · f2(ᾱ) · α
which vanishes by Proposition 3.8 applied to f(ᾱ), noting that α = gf2(ᾱ). �

Proposition 4.2. The algebra Λ is finite-dimensional. It has a basis consisting of the
paths

{ei}i∈Q0
∪ {α · g(α) · . . . · gr(α)}α∈Q1, 0≤r<nα−1 ∪ {zi}i∈Q0 .

Proof. To show the finite-dimensionality of Λ, it is enough to show that the image of

any sufficiently long path in K̂Q vanishes.
Indeed, by Proposition 2.2(c) such a path can be written as α0 ·α1 · . . . ·αN where for

every 0 ≤ j < N we have αj+1 = f(αj) or αj+1 = g(αj).
Now Proposition 3.8 and Lemma 4.1 tell us that the only paths whose image in Λ is

possibly non-zero are of the form α · g(α) · . . . · gr(α) for some 0 ≤ r ≤ nα − 1 or paths
of the form α · f(α) or α · f(α) · f2(α). As there are only finitely many such paths, this
shows the finite-dimensionality of Λ.

By Lemma 3.5 and (3.2), any path β · f(β) or β · f(β) · f2(β) can be expressed as
(scalar multiple) of a path of the form α · g(α) · . . . · gr(α) for suitable α ∈ Q1 and r ≥ 0.
Therefore the algebra Λ is spanned by the trivial paths ei for each vertex i ∈ Q0 together
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with the paths α · g(α) · . . . · gr(α) for α ∈ Q1 and 0 ≤ r ≤ nα − 1. The only relations
among these paths are the commutativity relations in (3.2), hence when forming a basis
for Λ we may take only those paths with r < nα − 1 and add the cycle zi for each
i ∈ Q0. �

Remark 4.3. The algebra Λ can therefore be written as a quiver with relations Λ '
KQ/I. The description of the ideal I ⊆ KQ depends on our hypothesis on Q; if Q
satisfies the condition (�), then

I =
〈
α · f(α)− cᾱᾱ · g(ᾱ) · . . . · gnᾱ−2(ᾱ) : α ∈ Q1

〉
,

whereas if Q satisfies the condition (?), then

I =
〈
α · f(α)− cᾱᾱ · g(ᾱ) · . . . · gnᾱ−2(ᾱ), β · f(β) · gf(β) : α ∈ Q1, β ∈ Θ

〉
where Θ ⊆ Q1 is a set of representatives of h-orbits for the (invertible) map h : Q1 → Q1

defined by h(β) = g−3(β̄).

4.2. Non-rigidity.

Proposition 4.4. The potential W is not rigid.

Proof. By [5, §8], in order to show that W is not rigid, one has to find a potential on Q
which is not cyclically equivalent to an element in the Jacobian ideal of W .

Indeed, consider a potential W ′ in K̂Q which is a 3-cycle W ′ = α · f(α) · f2(α) for
some arrow α ∈ Q1 starting at some vertex i. The image of W ′ in Λ is zi 6= 0, hence it
does not belong to the Jacobian ideal of W . Since this holds for any such 3-cycle, we
deduce that W ′ is not cyclically equivalent to an element of the Jacobian ideal of W ,
hence W is not rigid. �

4.3. Symmetry. For a finite-dimensional algebra Λ the space DΛ = HomK(Λ,K) of
K-linear functionals on Λ is a Λ-Λ-bimodule via

(ϕλ)(x) = ϕ(λx) (λϕ)(x) = ϕ(xλ)

for ϕ ∈ DΛ and λ, x ∈ Λ. The algebra Λ is called symmetric if DΛ and Λ are isomorphic
as Λ-Λ-bimodules. For an element λ ∈ Λ, define a dual element λ∨ ∈ DΛ by

λ∨(x) =

{
a if x = aλ for some a ∈ K
0 otherwise

so that (cλ)∨ = c−1λ∨ for any c ∈ K×.
Let Λ = P(Q,W ). There is a duality between paths which can be extended to a

K-linear isomorphism Φ : DΛ
∼−→ Λ defined in the following way. Any non-zero path in

Λ has the form p = α · g(α) · . . . · gr−1(α) for some α ∈ Q1 and 0 ≤ r ≤ nα (here, r = 0
means the path of length 0 corresponding to the starting vertex of α). The path p can
be completed to a cycle p · q along a g-orbit and we define Φ(p∨) to be the multiple of q
by the scalar corresponding to that g-orbit. More precisely,

(4.1) Φ((α · g(α) · . . . · gr−1(α))∨) = cαg
r(α) · . . . · gnα−1(α)
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which is well-defined by the identity (3.2). In particular, Φ(e∨i ) = zi and Φ(z∨i ) = ei for
any i ∈ Q0. Since DΛ has a basis{

e∨i
}
i∈Q0

∪
{(
α · g(α) · . . . · gr−1(α)

)∨}
α∈Q1, 1≤r≤nα−1

∪
{
z∨i
}
i∈Q0

Φ can be extended by linearity to a K-linear isomorphism Φ : DΛ→ Λ.
The next lemma shows that Φ has a similar completion property with respect to

f -orbits as well.

Lemma 4.5. Let α ∈ Q1. Then

Φ(α∨) = f(α) · f2(α) Φ((α · f(α))∨) = f2(α).

Proof. This follows from (3.1), Lemma 3.5 and Lemma 3.4(b). �

Lemma 4.6. Let i ∈ Q0, α ∈ Q1. Then α · zi = 0 and zi · α = 0.

Proof. We show only that zi · α = 0. The proof of the other claim is similar. Since zi is
a cycle starting and ending at i, it is enough to consider an arrow α starting at i. But
then we can write zi = α · f(α) · f2(α) and the result follows from Lemma 4.1. �

Proposition 4.7. The Jacobian algebra Λ of (Q,W ) is symmetric.

Proof. We show that the isomorphism of K-vector spaces Φ : DΛ→ Λ is an isomorphism
of Λ-Λ-bimodules. In other words, we need to verify that for any path p in Λ and any
i ∈ Q0, β ∈ Q1 we have

Φ(p∨ · ei) = Φ(p) · ei Φ(ei · p∨) = ei · Φ(p)(4.2)

Φ(p∨ · β) = Φ(p∨) · β Φ(β · p∨) = β · Φ(p∨).(4.3)

If p starts at i and ends at j, then Φ(p) is a multiple of a path starting at j and
ending at i. This shows (4.2). For (4.3), we start by noting that p∨ · β = 0 if p cannot
be written as a linear combination of paths starting at β and p∨ · β = q∨ if p can be
written uniquely as p = βq, and similarly for β · p∨.

Let p = ei for i ∈ Q0 and let β ∈ Q1. Then e∨i · β = 0, β · e∨i = 0 and (4.3) follows
from Lemma 4.6.

Let p = zi for some i ∈ Q0 and let α, ᾱ be the arrows starting at i. Then

z∨i · β =


(cαg(α) · . . . · gnα−1(α))∨ if β = α,

(cᾱg(ᾱ) · . . . · gnᾱ−1(ᾱ))∨ if β = ᾱ,

0 otherwise

β · z∨i =


(cαα · g(α) · . . . · gnα−2(α))∨ if β = gnα−1(α),

(cᾱᾱ · g(ᾱ) · . . . · gnᾱ−2(ᾱ))∨ if β = gnᾱ−1(ᾱ),

0 otherwise

and (4.3) follows from (4.1).
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Let p = α · g(α) · . . . · gr−1(α) for some α ∈ Q1. If 1 ≤ r < nα − 1, then

p∨ · β =

{
(g(α) · . . . · gr−1(α))∨ if β = α,

0 otherwise

β · p∨ =

{
(α · g(α) · . . . · gr−2(α))∨ if β = gr−1(α),

0 otherwise

and (4.3) follows from (4.1). Finally, if r = nα − 1 then p = c−1
α ᾱ · f(ᾱ) by Lemma 3.5

so that p∨ = cαf
2(ᾱ) = cαg

nα−1(α) and

p∨ · β =


(g(α) · . . . · gnα−2(α))∨ if β = α,

cαf(ᾱ)∨ if β = ᾱ,

0 otherwise

β · p∨ =


(α · g(α) · . . . · gnα−3(α))∨ if β = gn−2(α),

cαᾱ
∨ if β = f(ᾱ),

0 otherwise

thus (4.3) follows from (4.1), Lemma 3.4(b) and Lemma 4.5. �

4.4. The Cartan matrix. Recall that the Cartan matrix of Λ is a |Q0| × |Q0| matrix
whose (i, j)-entry is the dimension of the space of paths in Λ starting at the vertex i and
ending at j.

Any puncture p ∈ M defines a column vector vp ∈ ZQ0 in the following way. Let
i0, i1, . . . , in−1, in = i0 be the sequence of arcs incident to p traversed in a counterclock-
wise order, so that i0 → i1 → · · · → in−1 → i0 is a cycle whose arrows from a g-orbit. For
any arc i set vp(i) to be the number of times i appears in the sequence (i0, i1, . . . , in−1).
Set also np = n, or equivalently np =

∑
i∈Q0

vp(i).

Proposition 4.8. The Cartan matrix of Λ is given by the formula

CΛ =
∑
p∈M

vp · vTp

or equivalently, (CΛ)ij =
∑

p∈M vp(i)vp(j). Moreover, (CΛ)ii ∈ {2, 4} and (CΛ)ij ∈
{0, 1, 2, 4} for any i, j ∈ Q0. In particular, dimK Λ =

∑
p∈M n2

p.

Proof. Consider two different vertices i and j. Every non-zero path from i to j is of the
form α · g(α) · . . . · gr(α) for suitable α ∈ Q1 and r ≥ 0, and all these paths are linearly
independent. Hence the entry (CΛ)ij is just the number of such paths.

Any such path corresponds to traversal of the arcs around a puncture starting at the
arc i and ending at j going at a counterclockwise direction without completing a full
round. For a given puncture p, the number of such traversals is therefore vp(i)vp(j),
hence the number of all such paths is

∑
p∈M vp(i)vp(j).

If i = j then in this way we have not counted the trivial path ei, but on the other
hand we counted the cycle zi twice in view of the commutativity relations (3.2), so the
formula (CΛ)ii =

∑
p∈M vp(i)vp(i) still holds.

The remaining assertions on the entries (CΛ)ij follow from the fact that for any i ∈ Q0,
vp(i) ≥ 0 for p ∈M and

∑
p∈M vp(i) = 2. �
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Corollary 4.9. We have rankCΛ ≤ |M | and detCΛ = 0.

Proof. The rank of each of the |M | summands vpv
T
p of CΛ is 1, hence the first claim.

The second claim follows now from the fact that always |M | < |Q0|. Indeed, the number
of arcs in a triangulation of a closed surface with genus g and P punctures is 6g−6+3P
which always exceeds P . �

Remark 4.10. The vanishing of detCΛ comes in stark contrast to the situation for the
Jacobian algebras arising from triangulations of bordered surfaces without punctures.
Indeed, these algebras are gentle [3] and their Cartan determinants are always powers
of 2 by [7].

4.5. The center.

Proposition 4.11. The center Z(Λ) of Λ is isomorphic to the truncated polynomial
algebra K[{xi}i∈Q0 ]/({xixj}i,j∈Q0).

Proof. We show that a basis of Z(Λ) is given by 1 together with the cycles zi for each
i ∈ Q0. The relation zi · zj = 0 would follow from Lemma 4.6.

Let z ∈ Z(Λ). Since z commutes with the idempotents ei, it must be a sum of cycles.
Let us describe the non-zero cycles starting at a given vertex i ∈ Q0. Obviously, ei and
zi are such cycles. Let α be an arrow starting at i. If ᾱ and α are not in the same
g-orbit, then these are all such cycles, otherwise write ᾱ = gr(α) and then

wi = α · g(α) · . . . · gr−1(α), w′i = gr(α) · gr+1(α) · . . . · gnα−1(α)

are also non-zero cycles starting at i as in the following picture,

• •

•
α

FF

gr(α)=ᾱ

XX

•

gnα−1(α)

FF

•

gr−1(α)

XX

and together with ei and zi they form all such cycles.
Assume that α and ᾱ are in the same g-orbit. We want to show that in z the coefficients

of the cycles wi and w′i must vanish. Indeed, write

z = λiei + µizi + ρiwi + ρ′iw
′
i + . . .

for some scalars λi, µi, ρi, ρ
′
i where we ignore all cycles not starting at i.

Since there are no 2-cycles in Q, we have 3 ≤ r ≤ nα − 3 and w′i · ᾱ = 0 by Proposi-
tion 3.8. Thus, if ρi 6= 0, then by Lemma 4.6

z · ᾱ = λiᾱ+ ρiwi · ᾱ = λiᾱ+ ρiα · . . . · gr(α)

whereas ᾱ · z is a sum of paths all starting at ᾱ. Since α · . . . · gr(α) cannot be written
as a sum of paths starting at ᾱ, we get that z · ᾱ 6= ᾱ · z, a contradiction. We deduce
that ρi = 0. A similar argument with multiplication by α shows that ρ′i = 0 as well.

Finally note that all the coefficients λi must be equal, since Q is connected, whereas
there is no restriction on the coefficients µi in view of Lemma 4.6. �
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5. Existence of “nice” triangulations

Proposition 5.1. Let (S,M) be a marked closed surface. Then:

(a) If (S,M) is not a sphere with 4 or 5 punctures, it has a triangulation satisfy-
ing (T4).

(b) If (S,M) is a sphere with 5 punctures, it has a triangulation satisfying (T31/2),
but no triangulation satisfying (T4).

(c) If (S,M) is a sphere with 4 punctures, it has a triangulation satisfying (T3), but
no triangulation satisfying (T31/2).

The proof is by induction on the number of punctures, and follows by combining the
statements of the next lemmas.

Lemma 5.2. Let (S,M) be a marked closed surface and (S,M ′) the marked closed
surface obtained from (S,M) by adding one more puncture.

(a) If (S,M) has a triangulation satisfying (T3), then so does (S,M ′).
(b) If (S,M) has a triangulation satisfying (T31/2), then so does (S,M ′).
(c) If (S,M) has a triangulation satisfying (T4), then so does (S,M ′).

Proof. Let T be a triangulation of (S,M) without self-folded triangles. We may place
the additional puncture p of M ′ on an arc of T and obtain a triangulation T ′ of (S,M ′)
by adding four arcs incident to p as in the right picture below:

×

× ×

×

×

× ×p ×

×

In T ′ there are 4 arcs incident to p and the number of arcs incident to each other puncture
has not decreased. The lemma thus follows. �

Lemma 5.3. Any triangulation of a once-punctured closed surface of genus g ≥ 1 has
property (T4).

Proof. When counting the arcs incident to the puncture, each arc of the triangulation is
counted twice. Since there are 6g− 3 arcs in the triangulation, the puncture has 12g− 6
arcs incident to it. �

Lemma 5.4. (a) A sphere with 6 punctures has a triangulation satisfying (T4).
(b) A sphere with 5 punctures has a triangulation satisfying (T31/2), but no triangu-

lation satisfying (T4).
(c) A sphere with 4 punctures has a triangulation satisfying (T3), but no triangula-

tion satisfying (T31/2).

Proof. Figure 4 presents triangulations of spheres with 4, 5 and 6 punctures with the re-
quired properties. Note that they can be viewed as the faces of a tetrahedron, triangular
bipyramid and an octahedron, respectively.

No triangulation of a sphere with 4 or 5 punctures can satisfy (T4), since the number
of arcs (6 and 9, respectively) is less than twice the number of punctures. Moreover, a
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×

× ×

×

×

× ×

× ×

× ×

× ×

× ×

Figure 4. Triangulations of spheres with 4, 5 and 6 punctures.

triangulation of a sphere with 4 punctures which satisfies (T3) cannot satisfy (T31/2),
since at all the punctures there are exactly three incident arcs. �
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