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Abstract. We show that for piecewise hereditary algebras, the pe-
riodicity of the Coxeter transformation implies the non-negativity of
the Euler form. Contrary to previous assumptions, the condition of
piecewise heredity cannot be omitted, even for triangular algebras, as
demonstrated by incidence algebras of posets.

We also give a simple, direct proof, that certain products of reflec-
tions, defined for any square matrix A with 2 on its main diagonal, and
in particular the Coxeter transformation corresponding to a generalized
Cartan matrix, can be expressed as −A−1

+ At
−, where A+, A− are closely

associated with the upper and lower triangular parts of A.

1. Introduction

Let V be a free abelian group of finite rank and let 〈·, ·〉 : V × V → Z
be a non-degenerate Z-bilinear form on V . The Coxeter transformation Φ :
V → V corresponding to 〈·, ·〉 is defined via the equation 〈x, y〉 = −〈y, Φx〉
for x, y ∈ V [14].

The purpose of this paper is to study the relations between positivity
properties of the form 〈·, ·〉 and periodicity properties of its Coxeter trans-
formation Φ. Recall that 〈·, ·〉 is positive if 〈x, x〉 > 0 for all 0 6= x ∈ V ,
non-negative if 〈x, x〉 ≥ 0 for all x ∈ V and indefinite otherwise. The trans-
formation Φ is periodic if Φm equals the identity I for some integer m ≥ 1
and weakly periodic [20] if (Φm − I)n = 0 for some integers m,n ≥ 1.

Implications in one direction are given in the paper [20], where linear
algebra techniques are used to show that the Coxeter matrix Φ is periodic if
〈·, ·〉 is positive and weakly periodic if 〈·, ·〉 is non-negative. It is much harder
to establish implications in the other direction. As already noted in [20],
even if Φ is periodic, 〈·, ·〉 may be indefinite, so additional constraints are
needed.

An alternative definition of the Coxeter matrix is as a certain product
of reflections defined by a generalized Cartan matrix [1, 19], whereas the
definition given above is −C−1Ct where C is the matrix of the bilinear
form.

We claim similarly to [6], and give a simple, direct proof, that for any
square matrix A with 2 on its main diagonal, the product of the n reflections
it defines can be expressed as −A−1

+ At
− where A+, A− are closely associated
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with the upper and lower triangular parts of A, see Section 2. This claim
can be generalized to products in arbitrary order, and no other conditions
on A, such as being generalized Cartan, bipartite [1] or symmetric [12], are
needed. In particular, when 〈·, ·〉 is triangular, Φ can be written as a product
of the reflections defined by the symmetrization of 〈·, ·〉.

Further connections between periodicity and non-negativity are achieved
when we restrict ourselves to pairs (V, 〈·, ·〉) for which there exists a finite
dimensional k-algebra Λ over an algebraically closed field k, having finite
global dimension, such that V ∼= K0(modΛ) and 〈·, ·〉 coincides, under that
isomorphism, with the Euler form 〈·, ·〉Λ of Λ. Here modΛ denotes the
category of finite dimensional right Λ-modules. Since gl.dim Λ < ∞, the
form 〈·, ·〉Λ is non-degenerate, hence its Coxeter transformation ΦΛ is well-
defined and coincides with the image in K0(modΛ) of the Auslander-Reiten
translation on the bounded derived category Db(modΛ).

In Section 3 of the paper, we show that if Λ is piecewise hereditary, i.e. its
bounded derived categoryDb(modΛ) is equivalent as a triangulated category
to Db(H) for a hereditary abelian category H, then the periodicity of ΦΛ

implies the non-negativity of 〈·, ·〉Λ.
In that Section, we also show that when Λ is an incidence algebra of a

poset X, the Euler form 〈·, ·〉Λ and its Coxeter transformation ΦΛ can be
explicitly described in terms of the combinatorics of X.

Previously, [7] claimed that the condition of 〈·, ·〉 being triangular, that
is, its matrix with respect to some basis of V is upper triangular with ones
on the main diagonal, is enough for the periodicity of Φ to imply the non-
negativity of 〈·, ·〉. We find however examples of incidence algebras of posets
negating this claim, see Section 4.

2. Coxeter transformations of bilinear forms

2.1. The definition of the Coxeter matrix. Let V be a free abelian
group of finite rank and let 〈·, ·〉 : V ×V → Z be a non-degenerate Z-bilinear
form on V . Recall that 〈·, ·〉 is positive if 〈v, v〉 > 0 for all 0 6= v ∈ V , non-
negative if 〈v, v〉 ≥ 0 for all v ∈ V and indefinite otherwise. The Coxeter
transformation Φ : V → V corresponding to 〈·, ·〉 is defined via the equation
〈v, w〉 = −〈w,Φv〉 for all v, w ∈ V [14].

We consider the elements of Zn as column vectors, and denote by M t

the transpose of a matrix M . Let {ei}n
i=1 be the standard basis of Zn. By

choosing a Z-basis v1, . . . , vn of V , we may identify V with Zn and 〈·, ·〉
with the form 〈·, ·〉C defined by 〈x, y〉C = xtCy where C ∈ GLn(Z) is the
matrix whose entries are Cij = 〈vi, vj〉 for 1 ≤ i, j ≤ n. In other words,
〈vi, vj〉 = 〈ei, ej〉C . Under this identification, the matrix of Φ is −C−1Ct,
hence we define the Coxeter matrix ΦC of a matrix C ∈ GLn(Z) to be
ΦC = −C−1Ct.

Note that v = −C−1Ctv if and only if (C +Ct)v = 0, hence the geometric
multiplicity of the eigenvalue 1 in ΦC equals the dimension of the radical of
the symmetrized bilinear form C + Ct.

Definition 2.1. A matrix Φ ∈ GLn(Z) is periodic if Φm = I for some
m ≥ 1. Φ is weakly periodic if for some m ≥ 1, Φm − I is nilpotent.
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Definition 2.2. A matrix C ∈ GLn(Z) is unitriangular if C is upper trian-
gular and Cii = 1 for 1 ≤ i ≤ n.

Relations between the positivity of the bilinear form 〈·, ·〉C and the peri-
odicity of ΦC have been studied in [7, 20] and are summarized as follows:

Theorem 2.3. Let C ∈ GLn(Z). Then:
(1) [20, (2.8)] ΦC is periodic if 〈·, ·〉C is positive.
(2) [20, (3.4)] ΦC is weakly periodic if 〈·, ·〉C is non-negative.

However, [20, (3.8)] is an example of a matrix whose Coxeter matrix is
periodic but the corresponding bilinear form is indefinite.

2.2. Alternative definition as a product of reflections. Following [1,
2, 19], we review an alternative definition of the Coxeter matrix as a product
of reflections.

Let A be an n× n matrix with integer entries satisfying

Aii = 2 1 ≤ i ≤ n(A1)

Aij = 0 if and only if Aij = 0, 1 ≤ i, j ≤ n(A2)

The primitive graph of A (cf. [2]) is an undirected graph with n vertices,
where two vertices i 6= j are connected by an edge if Aij 6= 0. The matrix
A is indecomposable if its primitive graph is connected.

Define reflections r1, . . . , rn by

(2.1) ri(ej) = ej −Aijei 1 ≤ j ≤ n

In other words, ri is the matrix obtained from the identity matrix by sub-
tracting the i-th row of A. Denote by I the n× n identity matrix.

Lemma 2.4. Let A be a matrix satisfying (A1).
(a) r2

i = I for 1 ≤ i ≤ n.
(b) If A satisfies also (A2), then rirj = rjri for any two non-adjacent

vertices i, j on the primitive graph of A.

Proof. Since Aii = 2, we have ri(ei) = −ei, thus

r2
i (et) = ri(et −Aitei) = et −Aitei −Aitri(ei) = et

for all 1 ≤ t ≤ n, and the first assertion is proved.
If Aij = 0 then ri(ej) = ej . The assumptions on A imply that if i, j are

not adjacent, then ri(ej) = ej and rj(ei) = ei. Therefore, if 1 ≤ t ≤ n,

rirj(et) = ri(et −Ajtej) = et −Aitei −Ajtej

is symmetric in i and j, hence rirj = rjri. �

Consider the following two additional properties:

Aij ≤ 0 for all i 6= j(A3)

The primitive graph of A is bipartite(A4)

Definition 2.5. A matrix A is a generalized Cartan matrix if it satisfies
(A1), (A2) and (A3). A matrix A is bipartite if it satisfies (A1), (A2) and
(A4).
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For a generalized Cartan matrix A and a permutation π of {1, 2, . . . , n},
a Coxeter transformation is defined in [19] by Φ(A, π) = rπ(1)rπ(2) · · · rπ(n).
For a bipartite matrix A, let Σ1 q Σ2 be a corresponding partition of
{1, 2, . . . , n} and consider RA = R1R2 where Rk =

∏
i∈Σk

ri, k = 1, 2,
see [2]. Note that by Lemma 2.4, the matrices Rk do not depend on the
order of reflections within each product. Note also that RA equals Φ(A, π)
for a suitable π.

Recall that the spectrum of a square matrix Φ with complex entries, de-
noted spec(Φ), is the set of (complex) roots of the characteristic polynomial
of Φ. Let ρ(Φ) = max {|λ| : λ ∈ spec(Φ)} be the spectral radius of Φ.

We recall two results on the spectrum of Coxeter transformations corre-
sponding to generalized Cartan and bipartite matrices.

Theorem 2.6 ([19]). Let A be an indecomposable generalized Cartan matrix,
π ∈ Sn. If A is not of finite or affine type, then ρ(Φ(A, π)) > 1.

Theorem 2.7 ([1, p. 63],[2, p. 344]). Let A be a bipartite matrix.
(a) λ2 ∈ spec(RA) if and only if λ + 2 + λ−1 ∈ spec(A).
(b) If A is also symmetric, then spec(RA) ⊂ S1 ∪ R.

2.3. Linking the two definitions. Let R be any commutative ring with 1
and let e1, . . . , en be a basis of a free R-module of rank n. Let A be an n×n
matrix with entries in R satisfying (A1) (where 2 means 1 + 1), and define
the reflections r1, . . . , rn as in (2.1). When we want to stress the dependence
of the reflections on A, we shall use the notation rA

1 , . . . , rA
n .

Lemma 2.8. Let 1 ≤ s ≤ n. Then for every 1 ≤ t ≤ n,

(r1 · · · rs)(et) = et +
s∑

k=1

(−1)k
∑

1≤i1<i2<···<ik≤s

Ai1i2 · · ·Aik−1ikAiktei1

Proof. By induction on s, the case s = 1 being just the definition of r1,
and for the induction step, expand rs+1(et) as et − As+1,tes+1 and use the
hypothesis for s.

(r1 · · · rsrs+1)(et) = (r1 · · · rs)(et)−As+1,t(r1 · · · rs)(es+1)

= et −As+1,tes+1 +
s∑

k=1

(−1)k
∑

1≤i1<i2<···<ik≤s

Ai1i2 · · ·Aik−1ikAiktei1

+
s∑

k=1

(−1)k+1
∑

1≤i1<i2<···<ik≤s

Ai1i2 · · ·Aik−1ikAik,s+1As+1,tei1

= et −
s+1∑
k=1

(−1)k
∑

1≤i1<i2<···<ik≤s+1

Ai1i2 · · ·Aik−1ikAiktei1

�

Define two n× n matrices A+ and A− by

(A+)ij =


Aij i < j

1 i = j

0 i > j

(A−)ij =


Aji i < j

1 i = j

0 i > j
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Then A = A+ +At
−, and one can think of A+, A− as the upper and lower

triangular parts of A. The matrices A+ and A− are invertible since A+ − I
and A−− I are nilpotent. Note that A is symmetric if and only if A+ = A−

Theorem 2.9. If A satisfies (A1), then rA
1 rA

2 · · · rA
n = −A−1

+ At
−.

Proof. By Lemma 2.8 with s = n,

(r1 · · · rn)(et) = et +
n∑

k=1

(−1)k
∑

1≤i1<i2<···<ik≤n

Ai1i2 · · ·Aik−1ikAiktei1

This can be written in matrix form, using the definition of A+, as follows:

r1 · · · rn = I +
n∑

k=1

(−1)k(A+ − I)k−1A

= I − (I − (A+ − I) + (A+ − I)2 − . . . )A

= I −A−1
+ (A+ + At

−) = −A−1
+ At

−

�

Remark 2.10. Theorem 2.9 is still true when we drop the condition (A1)
and slightly change the definition of A−, by (A−)ii = Aii − 1 for 1 ≤ i ≤ n.
However, in that case the matrices ri are no longer reflections.

Theorem 2.9 provides a link between the definition of the Coxeter matrix
as a specific automorphism of the bilinear form and its definition as a product
of n reflections, as shown by the following corollary.

Corollary 2.11. Let C ∈ GLn(Z) be a unitriangular matrix. Then ΦC =
Φ(C + Ct, id), that is, ΦC = rA

1 rA
2 · · · rA

n for A = C + Ct.

In fact, this corollary is proved in [12] for the case where ΦC is a Coxeter
element in an arbitrary Coxeter group of finite rank represented as a group
of linear transformations on a real inner product space, so that the Cartan
matrix A is symmetric.

Proof. Apply Theorem 2.9 for the matrix A = C + Ct, which satisfies (A1),
(A2) and A+ = A− = C. �

Denote by Sn the group of permutations on {1, 2, . . . , n} and let π ∈ Sn.
One could deduce a generalized version of Theorem 2.9 for the product of
the n reflections in an arbitrary order by proving an analogue of Lemma 2.8
for arbitrary π. Instead, we will derive the generalized version from the
original one using permutation matrices.

Define the permutation matrix Pπ by Pπ(ei) = eπ(i) for all 1 ≤ i ≤ n.
Note that P−1

π = P t
π. Given a matrix A, let Aπ denote the matrix P−1

π APπ,
so that (Aπ)ij = Aπ(i)π(j). Obviously, if A satisfies (A1), so does Aπ.

Lemma 2.12. Let 1 ≤ i ≤ n. Then rAπ
i = P−1

π rA
π(i)Pπ.

Proof. For all 1 ≤ t ≤ n,(
P−1

π rA
π(i)Pπ

)
(et) = P−1

π

(
eπ(t) −Aπ(i)π(t)eπ(i)

)
= et −Aπ(i)π(t)ei = rAπ

i (et)

�
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Define two n× n matrices Aπ,+ and Aπ,− by

(Aπ,+)ij =


Aij π−1(i) < π−1(j)
1 i = j

0 otherwise
(Aπ,−)ij =


Aji π−1(i) < π−1(j)
1 i = j

0 otherwise

Direct calculation shows that Aπ,+ = Pπ(Aπ)+P−1
π , Aπ,− = Pπ(Aπ)−P t

π and
A = Aπ,+ + At

π,−.

Corollary 2.13. Let A satisfy (A1) and let π ∈ Sn. Then

rA
π(1)r

A
π(2) . . . rA

π(n) = −A−1
π,+At

π,−

Proof. By Lemma 2.12 and Theorem 2.9 applied for Aπ,

rA
π(1)r

A
π(2) . . . rA

π(n) = Pπ

(
rAπ
1 rAπ

2 . . . rAπ
n

)
P−1

π = −Pπ(Aπ)−1
+ (Aπ)t

−P t
π

= −
(
Pπ(Aπ)−1

+ P−1
π

) (
Pπ(Aπ)t

−P t
π

)
= −A−1

π,+At
π,−

�

3. Periodicity and non-negativity for piecewise hereditary
algebras and posets

Let k be a field, and let A be an abelian k-category of finite global di-
mension with finite dimensional Ext-spaces. Denote by Db(A) its bounded
derived category and by K0(A) its Grothendieck group. The expression

〈X, Y 〉A =
∑
i∈Z

(−1)i dimk HomDb(A)(X, Y [i])

is well-defined for X, Y ∈ Db(A) and induces a Z-bilinear form on K0(A),
known as the Euler form. When 〈·, ·〉A is non-degenerate, the unique trans-
formation ΦA : K0(A) → K0(A) satisfying 〈x, y〉A = −〈y, ΦAx〉A for all
x, y ∈ K0(A) is called the Coxeter transformation of A. For more details
we refer the reader to [15].

Two such abelian k-categories A and B are said to be derived equiva-
lent if there exists a triangulated equivalence F : Db(A) ' Db(B). In this
case, the forms 〈·, ·〉A and 〈·, ·〉B are equivalent over Z, hence the positivity
properties of the Euler form and the periodicity properties of the Coxeter
transformation are invariants of derived equivalence.

Let Λ be a finite dimensional algebra of finite global dimension over an
algebraically closed field k, and consider the k-category modΛ of finitely
generated right modules over Λ. Denote by Db(Λ) its bounded derived cat-
egory, by K0(Λ) its Grothendieck group and by 〈·, ·〉Λ the Euler form. Then
K0(Λ) is free of finite rank, with a Z-basis consisting of the representatives
of the isomorphism classes of simple modules in modΛ. The form 〈·, ·〉Λ is
non-degenerate, and its Coxeter transformation ΦΛ coincides with the linear
map on K0(Λ) induced by the Auslander-Reiten translation on Db(Λ). For
more details see [9, (III.1)], [18, (2.4)] or [15].
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3.1. Path algebras of quivers without oriented cycles. The first ex-
ample of algebras Λ for which the connection between the positivity of 〈·, ·〉Λ
and the periodicity of ΦΛ is completely understood is the class of path al-
gebras of quivers without oriented cycles, or more generally hereditary al-
gebras, see [15, Theorem 18.5]. We briefly review the main results.

A (finite) quiver Q is a directed graph with a finite number of vertices and
edges. The underlying graph of Q is the undirected graph obtained from Q
by forgetting the orientations of the edges. An oriented cycle is a nontrivial
path in Q starting and ending at the same vertex. The path algebra kQ is
the algebra over k having as a k-basis the set of all (oriented) paths in Q;
the product of two paths is their composition, if defined, and zero otherwise.

When Q has no oriented cycles, the path algebra kQ is hereditary and
finite-dimensional. Denote by 〈·, ·〉Q its Euler form and by ΦQ its Cox-
eter transformation. The matrix of 〈·, ·〉Q with respect to the basis of simple
modules is unitriangular, and its symmetrization is generalized Cartan. The
relations between the periodicity of ΦQ and the positivity of 〈·, ·〉Q are sum-
marized in the following well-known proposition, see [1, 3, 5, 19] and [18,
(1.2)].

Proposition 3.1. Let Q be a connected quiver without oriented cycles.
Then:

(a) ΦQ is periodic if and only if 〈·, ·〉Q is positive, equivalently the un-
derlying graph of Q is a Dynkin diagram of type A, D or E.

(b) ΦQ is weakly periodic if and only if 〈·, ·〉Q is non-negative, equiva-
lently the underlying graph of Q is a Dynkin diagram or an extended
Dynkin diagram of type Ã, D̃ or Ẽ.

3.2. Canonical algebras. Another interesting class of algebras for which
the connection between non-negativity and periodicity is established are the
canonical algebras, introduced in [18].

The Grothendieck group and the Euler form of canonical algebras were
thoroughly studied in [14]. If Λ is canonical of type (p,λλλ) where p =
(p1, . . . , pt) and λλλ = (λ3, . . . , λt) is a sequence of pairwise distinct elements
of k \ {0}, then the rank of K0(Λ) is

∑t
i=1 pi− (t− 2) and the characteristic

polynomial of the Coxeter transformation ΦΛ equals (T−1)2
∏t

i=1
T pi−1
T−1 [14,

Prop. 7.8)]. In particular, ρ(ΦΛ) = 1 and the eigenvalues of ΦΛ are roots of
unity, hence ΦΛ is weakly periodic.

The following proposition follows from [14, Prop. 10.3], see also [16].

Proposition 3.2. Let Λ be a canonical algebra of type (p,λλλ). If ΦΛ is
periodic then p is one of (2, 3, 6), (2, 4, 4), (3, 3, 3) or (2, 2, 2, 2). In any of
these cases, 〈·, ·〉Λ is non-negative.

3.3. Extending to piecewise hereditary algebras. We extend the re-
sults of the previous sections to the class of all piecewise hereditary algebras.

Definition 3.3. An algebra Λ over k is piecewise hereditary if there exist
a hereditary abelian category H and a triangulated equivalence Db(Λ) '
Db(H).
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Theorem 3.4. Let k be an algebraically closed field and let Λ be a finite
dimensional piecewise hereditary k-algebra. If ΦΛ is periodic, then 〈·, ·〉Λ is
non-negative.

Proof. By definition, there exists a hereditary categoryH and an equivalence
of triangulated categories F : Db(Λ) ' Db(H). By the invariance under
derived equivalence, it is enough to prove the theorem for ΦH and 〈·, ·〉H.
Moreover, we can assume that H is connected.

Now H is an Ext-finite k-category and F (ΛΛ) is a tilting complex in
Db(H), so by [11, Theorem 1.7], H admits a tilting object, that is, an object
T with Ext1H(T, T ) = 0 such that for any object X of H, the condition
HomH(T,X) = 0 = Ext1H(T,X) implies that X = 0.

By the classification of hereditary connected Ext-finite k-categories with
tilting object up to derived equivalence over an algebraically closed field [10],
H is derived equivalent to mod H for a finite dimensional hereditary algebra
H or to modΛ for a canonical algebra Λ. Again by invariance under derived
equivalence we may assume that H = modH or H = modΛ.

For H = modH, we can replace H by a path algebra of a finite connected
quiver without oriented cycles, and then use Proposition 3.1. For H =
modΛ, the result follows from Proposition 3.2. �

3.4. Incidence algebras of posets. Let X be a finite partially ordered
set (poset) and let k be a field. The incidence algebra kX is the k-algebra
spanned by elements exy for the pairs x ≤ y in X, with multiplication defined
by exyezw = δyzexw. Finite dimensional right modules over kX can be
identified with commutative diagrams of finite dimensional k-vector spaces
over the Hasse diagram of X which is the directed graph whose vertices are
the points of X, with an arrow from x to y if x < y and there is no z ∈ X
with x < z < y.

We recollect the basic facts on the Euler form of posets and refer the
reader to [13] for details. The algebra kX is of finite global dimension,
hence its Euler form, denoted 〈·, ·〉X , is well-defined and non-degenerate.
Denote by CX , ΦX the matrices of 〈·, ·〉X and its Coxeter transformation
with respect to the basis of simple kX-modules.

The incidence matrix of X, denoted 1X , is the X ×X matrix defined by

(1X)xy =

{
1 x ≤ y

0 otherwise

By extending the partial order on X to a linear order, we can always arrange
the elements of X such that the incidence matrix is unitriangular. In particu-
lar, 1X is invertible over Z. Recall that the Möbius function µX : X×X → Z
is defined by µX(x, y) = (1−1

X )xy.

Lemma 3.5 ([13, Prop. 3.11]). CX = 1−1
X .

Lemma 3.6. Let x, y ∈ X. Then (ΦX)xy = −
∑

z : z≥x µX(y, z).

Proof. Since ΦX = −C−1
X Ct

X = −1X1−t
X ,

(ΦX)xy = −
∑
z∈X

(1X)xz(1−1
X )yz = −

∑
z : z≥x

µX(y, z)
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�

When the Hasse diagram of X has the property that any two vertices x, y
are connected by at most one directed path, the Möbius function takes a
very simple form, namely

µX(x, y) =


1 y = x

−1 x → y is an edge in the Hasse diagram
0 otherwise

In this case, Lemma 3.6 coincides with Proposition 3.1 of [4], taking the
Hasse diagram as the quiver.

Lemma 3.7. If X and Y are posets, then

CX×Y = CX ⊗ CY ΦX×Y = −ΦX ⊗ ΦY

Proof. Observe that 1X×Y = 1X ⊗ 1Y . �

Corollary 3.8. Let X, Y be posets with periodic Coxeter matrices. Then
X × Y has also periodic Coxeter matrix.

Since non-negativity of forms is not preserved under tensor products,
Corollary 3.8 can be used to construct posets with periodic Coxeter matrix
but with indefinite Euler form, see Example 4.4.

4. Examples

For a poset X, let CX , ΦX be as in the previous section. In particular we
may assume that CX is unitriangular. The symmetrization AX = CX + Ct

X
satisfies (A1) and (A2), but in general it is not bipartite nor generalized
Cartan.

4.1. Spectral properties of ΦX .

Example 4.1. The spectrum of ΦX does not determine that of AX (Com-
pare with Theorem 2.7a).

The four posets whose Hasse diagrams are depicted in Figure 1 are derived
equivalent (as they are all piecewise hereditary of type D5), hence their
Coxeter matrices are similar and have the same spectrum, namely the roots
of the characteristic polynomial x5 + x4 + x + 1. However, the spectra of
the corresponding symmetrized forms are different. Figure 1 also shows for
each poset X the characteristic polynomial of the matrix of its symmetrized
form.

Example 4.2. A poset X with spec ΦX 6⊆ S1 ∪ R (Compare with Theo-
rem 2.7b).

Let X be the following poset.

•

��2
22

22

&&MMMMMMMMMM •

����
��
�

��2
22

22
•

����
��
�

xxqqqqqqqqqq

•

��2
22

22

&&MMMMMMMMMM •

����
��
�

��2
22

22
•

����
��
�

xxqqqqqqqqqq

• •
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•
��@

@@
@

• // • // •

•

??~~~~

•
��@

@@
@

•
��@

@@
@

??~~~~
• // •

•

??~~~~

x5−10x4+36x3−56x2+34x−4 x5−10x4+34x3−48x2+26x−4

•
��~~

~~
��@

@@
@

•
��@

@@
@ •

��~~
~~

// •

•

•
%%LLLLLLL

•

99rrrrrrr

��@
@@

@ •

• // •

??~~~~

x5−10x4+34x3−48x2+27x−4 x5−10x4+34x3−46x2+24x−4

Figure 1. Derived equivalent posets with different spectra
of the corresponding symmetrized bilinear forms.

The characteristic polynomial of ΦX is (x + 1)4(x4 − 2x3 + 6x2 − 2x + 1),

whose roots, besides −1, are z, z̄, z−1, z̄−1 with <z = 1+
√

2
√

3−3
2 and |z|2 =

1+
√

2
√

3−3

2−
√

3
− 1. These four roots are neither real nor on the unit circle.

An example of similar spectral behavior for path algebra of a quiver is
given in [15, Example 18.1].

Note that for all posets X with 7 elements or less, spec(ΦX) ⊆ S1 ∪ R.
This was verified using the database [8] and the Magma software package.

4.2. Counterexamples to [7, Prop. 1.2]. We give two examples of posets
showing that in general, for triangular algebras, the periodicity of the Cox-
eter transformation (and even of the Auslander-Reiten translation up to a
shift) does not imply the non-negativity of the Euler form.

Example 4.3. Consider the poset X with the following Hasse diagram.

•

����
��
�

��2
22

22

&&MMMMMMMMMM •

xxqqqqqqqqqq

����
��
�

��2
22

22

•

�� ""DD
DD

DD
D

((RRRRRRRRRRRRR •

||zz
zz

zz
z

�� ""DD
DD

DD
D •

vvlllllllllllll

||zz
zz

zz
z

��
• • •

Then Φ6
X = I but vtCXv = −1 for v =

(
1 1 1 1 1 0 0 0

)t (the
vertices are ordered in layers from top to bottom).

Example 4.4. Let X = A3 ×D4 with the following orientations:

1
��=

==
= 2

����
��

3

1
��=

==
= 2

����
��

3
��
4
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The Hasse diagram of X is given by

1, 1

""EE
EE

))RRRRRRRRRR 1, 2

||yy
yy

))RRRRRRRRRR 2, 1

""EE
EE

uullllllllll 2, 2

||yy
yy

uullllllllll

1, 3

�� ))RRRRRRRRRR 3, 1

""EE
EE

3, 2

||yy
yy

2, 3

��uullllllllll

1, 4

))RRRRRRRRRR 3, 3

��

2, 4

uullllllllll

3, 4

so that X contains the following wild quiver as a subposet.

1, 3

))RRRRRRRRRR 3, 1

""EE
EE

3, 2

||yy
yy

2, 3

uullllllllll

3, 3

��
3, 4

It follows [17] that kX is not of finite representation type, hence by [21,
Theorem 6] the form 〈·, ·〉X is not weakly positive, that is, there exists a
vector v 6= 0 with non-negative coordinates such that 〈v, v〉X ≤ 0.

Moreover, we can exhibit a non-negative vector v such that vtCXv = −1,
namely v = (vx)x∈X where the integers vx are placed at the vertices as in
the following picture:

0
��=

==
=

&&NNNNNNNNN 0
����

��
&&NNNNNNNNN 0

��=
==

=

xxppppppppp 0
����

��
xxppppppppp

1
�� &&NNNNNNNNN 1

��=
==

= 1
����

��
1
��xxppppppppp

1

&&NNNNNNNNN 2
��

1

xxppppppppp

1

On the other hand, the Coxeter matrices of the quivers A3 and D4 are
periodic, their orders are 4 and 6 respectively. By Corollary 3.8, the Coxeter
matrix of X is periodic of order 12.

Contrary to Example 4.3, one can show that not only the image ΦX of
the Auslander-Reiten translation τX : Db(X) → Db(X) in the Grothendieck
group is periodic, but also that actually τ e

X ' [d] for some integers d, e ≥ 1.
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