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Mutation classes with constant number of arrows and derived equivalences

Motivation

The BGP reflection is an operation on quivers defined at
specific vertices: sinks and sources.

Given a quiver Q and a sink/source s in Q, it produces a
new quiver, denoted σs(Q).

It has the following properties:

• Combinatorially,

Q and σs(Q) have the same number of arrows.

• Algebraically,

the path algebra of Q and that of σs(Q) are derived
equivalent.
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Reflection [Bernstein-Gelfand-Ponomarev 1973]

A quiver Q is a directed graph.

A vertex s of Q is a . . .
. . . sink, if there are no arrows starting at s;
. . . source, if there are no arrows ending at s.

Let s be a sink or a source in Q.
The BGP reflection of Q at s is a new quiver σs(Q),
obtained from Q by inverting all the arrows incident to s.

Example.
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Mutation classes with constant number of arrows and derived equivalences

Path algebras of quivers

K – field (or commutative ring), Q – quiver

The path algebra KQ is the K-algebra

• spanned by all paths in Q,

• with multiplication given by composition of paths.

Example.

Q =
•2 β

""•1
α <<

•3
KQ =

∗ ∗ ∗0 ∗ ∗
0 0 ∗


e1, e2, e3, α, β, αβ α · β = αβ β · α = 0
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Derived equivalence

R – ring, ModR – the category of (right) R-modules.

The derived category D(ModR) is obtained from the cat-

egory of complexes of R-modules by formally inverting all

the quasi-isomorphisms. It is a triangulated category .

A quasi-isomorphism is a morphism of complexes f : K → L

inducing isomorphisms Hif : HiK
∼−→ HiL on the cohomol-

ogy for all i ∈ Z.

Two rings R, S are Morita equivalent if ModR ' ModS.

They are derived equivalent if D(ModR) ' D(ModS).
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Motivation (revisited)

The BGP reflection is an operation on quivers defined at
specific vertices: sinks and sources.

Given a quiver Q and a sink/source s in Q, it produces a
new quiver, denoted σs(Q).

It has the following properties:

• Combinatorially,

Q and σs(Q) have the same number of arrows.

• Algebraically,

the path algebra of Q and that of σs(Q) are derived
equivalent [BGP 1973, Happel]
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Generalizations to arbitrary vertices

Reflection can only be done at sinks or sources.

Combinatorially, it is generalized to arbitrary vertices in the
form of mutation of quivers [Fomin-Zelevinsky 2002].

Algebraically, path algebras of quivers are generalized by
Jacobian algebras of quivers with potential [Derksen-Weyman-

Zelevinsky 2008], for which there is also a notion of mutation.

However, for these mutations,

• The number of arrows is not always preserved,

• The Jacobian algebras may not be derived equivalent.
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Quiver mutation [Fomin-Zelevinsky]

Q – quiver without loops ( •�� ) and 2-cycles (• ((•hh ),
k – any vertex in Q.

The mutation of Q at k, denoted µk(Q), is a new quiver
obtained from Q as follows:

1. For any pair i
α−→ k

β−→ j, add new arrow i
[αβ]−−−→ j,

2. Invert the incoming and outgoing arrows at k,

3. Remove a maximal set of 2-cycles.

Example.
•

~~• //•

`` 1−→
•

~~• //•

``

gg

2−→
•

  •

>>

//•gg

3−→
•

  •

>>

•
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Quivers with potential (QP)

A potential W is a linear combination of cycles in KQ.

The Jacobian algebra P(Q,W ) is the quotient of KQ by
the ideal generated by all the directional derivatives of W .

Example.
•

α
~~• β

//•
γ`` W = αβγ P(Q,W ) = KQ/(αβ, βγ, γα)

Q  µk(Q) admits a “good” extension to QP mutation
(Q,W ) µk(Q,W ) [Derksen-Weyman-Zelevinsky 2008].

Example.( •
α
~~•

β
//•
γ``

,W = αβγ

)
 

( •
  •

>>

•
,W ′ = 0

)
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Discussion

Two properties that a (QP) mutation may possibly have:

• Combinatorially,
Q and µk(Q) have the same number of arrows.

• Algebraically, the Jacobian algebra of (Q,W ) and that
of µk(Q,W ) are derived equivalent.

In order to have these properties for arbitrary quivers we
had to restrict to specific vertices (sinks/sources).

If we want to have these properties for mutations at arbi-
trary vertices we need to restrict to specific quivers.

This motivates the following two problems . . .
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Two Problems

Combinatorial problem: Find all quivers such that:

(C) Performing arbitrary sequences of mutations does not
change their number of arrows.

Algebraic Problem: Find all QPs such that:

(A) Performing arbitrary sequences of QP mutations does
not change the derived equivalence class of their Jaco-
bian algebras.

In this talk, we will . . .

• . . . find all solutions of (C).

• . . . show that any solution of (C)  solution of (A).

11



Mutation classes with constant number of arrows and derived equivalences

Some quivers with property (C)

Combinatorial problem: Find all quivers such that:

(C) Performing arbitrary sequences of mutations does not

change their number of arrows.

No. of vertices ≤ 2 3 4 5

Quivers satisfying (C) All
•

����•

EE EE

•oooo

•
��

��

•
88

&&

•oooo

•
ZZ None
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Some QPs with property (A)

Algebraic Problem: Find all QPs such that:

(A) Performing arbitrary sequences of QP mutations does

not change the derived equivalence class of their Jaco-

bian algebras.

(Q,W ) satisfying (A) dimP(Q,W )

≤ 2 vertices All <∞

acyclic, ≥ 3 vertices None <∞

3-Calabi-Yau [Keller-Yang 2011] All ∞
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No a-priori relation between properties
(C) and (A)

Consider mutations at the red and green vertices:

•

��•

!!

FF

•oo

•

OO

•oo

OO ∼

•

��•

FF

��

•oo

• //•

OO 6∼

•

• //

��

•

XX

��• //•

aa

The Jacobian algebras are cluster-tilted of Dynkin type D5

[Bastian-Holm-L. 2010]
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Quivers with finite mutation class

If a quiver satisfies (C), then its mutation class is finite.

Theorem. [Felikson-Shapiro-Tumarkin 2008]

The connected quivers whose mutation class is finite are:

• Those with ≤ 2 vertices; or

• The quivers arising from surface triangulations; or

• The 11 exceptional quivers E6,7,8, Ê6,7,8,
̂̂
E6,7,8, X6,7

(and members in their mutation classes).

Remark. No exceptional quiver satisfies property (C).
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Quivers from surface triangulations

A marked bordered surface is a pair (S,M) consisting of:

• a compact, connected, oriented surface S
(possibly with boundary),

• a finite set M ⊂ S of marked points, containing at least
one point on each boundary component of S.

(S,M) is unpunctured if M ⊂ ∂S.

Facts. [Fomin-Shapiro-Thurston 2008]

triangulation  adjacency quiver

flip  mutation

all triangulations of (S,M)  finite mutation class
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Solution to the combinatorial problem

Theorem [L]. The connected quivers with property

(C) Performing arbitrary sequences of mutations does not
change their number of arrows.

are:

1. Quivers with ≤ 2 vertices;

2. Adjacency quivers of triangulations of a surface without
boundary and one puncture; ( Qg,0)

3. Adjacency quivers of triangulations of a surface with
boundary and exactly one marked point on each bound-
ary component (no punctures). ( Qg,b)

The mutation classes are therefore parameterized by the
genus g and the number of boundary components b.
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Representative quivers in Qg,0 for g = 1,2,3,4
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Representative quivers for some Qg,b (b ≥ 1)
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Numerical properties of Qg,0, Qg,b

No. of vertices No. of arrows
Qg,0 6g − 3 12g − 6
Qg,b 6(g − 1) + 4b 12(g − 1) + 7b

Moreover, for any quiver in Qg,0, at any vertex:

(in-degree,out-degree) = (2,2).

Corollary [L]. Let n > 1. There is a connected quiver on n

vertices with property (C) if and only if n 6≡ 1,5 (mod 6).
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Potentials on adjacency quivers

Two kinds of oriented cycles in adjacency quivers:

• 3-cycles corresponding to internal triangles,

• cycles around punctures,

give rise to a potential W = W∆ +WP . [Labardini 2009]

In the unpunctured case, W = W∆ and the Jacobian alge-
bra is finite-dimensional gentle [ABCP 2010].

When there is only one puncture and no boundary , we also
set W = W∆, ignoring the term WP .
The Jacobian algebra is infinite-dimensional and locally
gentle in the sense of [Bessenrodt-Holm 2008].
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Results on the algebraic problem

Theorem [L]. Any QP in Qg,b (b ≥ 1) has property

(A) Performing arbitrary sequences of QP mutations does
not change the derived equivalence class of the Jaco-
bian algebras.

Moreover, the Jacobian algebras corresponding to a class
Qg,b form a complete derived equivalence class of finite-
dimensional algebras.

Remark. Explicit descriptions of complete derived equiv-
alence classes of algebras are quite rare since it is hard to
control all possible tilting complexes.

Other instances where such description is possible include
the Brauer tree algebras [König-Zimmermann, Rickard].
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Results on the algebraic problem

Theorem [L]. (continued)

• Any QP in Qg,0 satisfies (A). Its Jacobian algebra is
infinite dimensional and not 3-Calabi-Yau.

• If a QP arising from a triangulation of an unpunctured
surface satisfies (A), then it must belong to one of the
classes Qg,b (b ≥ 1).

• A QP in an exceptional mutation class satisfies (A) if
and only if it belongs to the class of

̂̂
E6 or X6. In these

cases the Jacobian algebras are finite-dimensional.

Corollary. For any quiver Q satisfying (C) there is a natu-
rally associated potential W such that (Q,W ) satisfies (A).
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The key proposition

Relating the combinatorial and algebraic properties for a
large class of quivers with potentials.

Proposition [L]. For (Q,W ) arising from a triangulation of
a marked unpunctured surface and a vertex k in Q, TFAE:

(i) (in-degree, out-degree) of k is not (1,1);

(ii) Q and µk(Q) have the same number of arrows;

(iii) P(Q,W ) and P(µk(Q,W )) are derived equivalent;

(iv) The QP mutation of (Q,W ) at k is good.

Application [L]. Derived equivalence classification of the
gentle algebras arising from surface triangulations.
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A map of finite-dimensional algebras

Gorenstein

Gentle

Jacobian
surface triangulations

cluster-tilted

A

Â

D

D̂

E

Ê

̂̂
E
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