Combinatorial aspects of derived equivalence

Sefi Ladkani

University of Bonn
http://guests.mpim-bonn.mpg.de/sefil/

What is the connection between ...

The finite dimensional algebras arising from these combinatorial data given by quivers with relations have equivalent derived categories of modules.

Quivers with relations

A quiver Q is an oriented graph.
K - field, the path algebra $K Q$ is

- spanned by all paths in Q,
- with multiplication given by composition of paths.

Example.

$$
\begin{array}{ll}
Q=\bullet_{1} \xrightarrow{\alpha} \bullet_{2} \xrightarrow{\beta} \bullet_{3} & K Q=\left(\begin{array}{ccc}
* & * & * \\
0 & * & * \\
0 & 0 & *
\end{array}\right) \\
e_{1}, e_{2}, e_{3}, \alpha, \beta, \alpha \beta & \alpha \cdot \beta=\alpha \beta
\end{array} \beta \cdot \alpha=0
$$

Quivers with relations (continued)

relation - a linear combination of paths having the same endpoints.

- zero relation p

$\alpha \beta$
- commutativity relation $p-q$

$$
\alpha \beta-\gamma \delta
$$

A quiver Q with relations defines an algebra $K Q / I$ by considering the path algebra $K Q$ modulo the ideal I generated by all the relations.

Theorem [Gabriel]. If K is algebraically closed, then any finite dimensional K-algebra is Morita equivalent to a quiver with relations.

Example 1 - Line

K - field, $n, r \geq 2$,

$$
\operatorname{Line}(n, r)=K \overrightarrow{A_{n}} /\left(x^{r}\right)
$$

Given by the linear quiver $\overrightarrow{A_{n}}$

with zero relations - all the paths of length r.

Example. Line $(10,3)$

Example 2 - Rectangle

$n, m \geq 1$.

$$
\operatorname{Rect}(n, m)=K \overrightarrow{A_{n}} \otimes_{K} K \overrightarrow{A_{m}}
$$

Given by the rectangular n-by- m quiver

with all commutativity relations.

Example 3 - Triangle

$\operatorname{Triang}(n)$ is the Auslander algebra of $K \overrightarrow{A_{n}}$.

It has a triangular quiver having sides of length n, with zero and commutativity relations.

Example. Triang(4)

Derived categories

\mathcal{A} - abelian category, $\mathcal{C}(\mathcal{A})$ - the category of complexes

$$
K^{\bullet}=\ldots \xrightarrow{d} K^{-1} \xrightarrow{d} K^{0} \xrightarrow{d} K^{1} \xrightarrow{d} \ldots
$$

with $K^{i} \in \mathcal{A}$ and $d^{2}=0$.
A morphism $f: K^{\bullet} \rightarrow L^{\bullet}$ is a quasi-isomorphism if

$$
H^{i} f: H^{i} K^{\bullet} \rightarrow H^{i} L^{\bullet}
$$

are isomorphisms for all $i \in \mathbb{Z}$.

The derived category $\mathcal{D}(\mathcal{A})$ is obtained from $\mathcal{C}(\mathcal{A})$ by localization with respect to the quasi-isomorphisms (that is, we formally invert all quasi-isomorphisms). It is a triangulated category.

Perspective

Triangulated and derived categories can relate objects of different nature:

- Coherent sheaves over algebraic varieties and modules over noncommutative algebras [Beilinson 1978, Kapranov 1988]
- Homological mirror symmetry conjecture [Kontsevich 1994]
. . . but also relate non-isomorphic objects of the same nature:
- Morita theory for derived categories of modules [Rickard 1989]
- Derived categories of coherent sheaves [Bondal-Orlov 2002]
- Broué's conjecture on blocks of group algebras [Broué 1990]

Derived equivalence of rings

Theorem [Rickard 1989]. Let R, S be rings. Then

$$
\mathcal{D}(\operatorname{Mod} R) \simeq \mathcal{D}(\operatorname{Mod} S) \quad(R, S \text { are derived equivalent, } R \sim S)
$$

if and only if there exists a tilting complex $T \in \mathcal{D}(\operatorname{Mod} R)$

- exceptional: $\operatorname{Hom}_{\mathcal{D}(\operatorname{Mod} R)}(T, T[i])=0$ for $i \neq 0$,
- compact generator: $\langle\operatorname{add} T\rangle=\operatorname{per} R$,
such that $S \simeq \operatorname{End}_{\mathcal{D}(\operatorname{Mod} R)}(T)$.

Problems. existence? constructions?

Derived equivalences of lines, rectangles and triangles

Theorem [L].

$$
\begin{aligned}
& \operatorname{Rect}(n, r) \sim \operatorname{Line}(n \cdot r, r+1) \\
& \operatorname{Rect}(2 r+1, r) \sim \operatorname{Triang}(2 r)
\end{aligned}
$$

Example. $\operatorname{Line}(10,3) \sim \operatorname{Rect}(5,2) \sim \operatorname{Triang}(4)$.
Remark. Can be generalized to higher dimensional shapes (simplices, prisms, boxes etc.)

- Derived accessible algebras [Lenzing - de la Peña 2008]
- Categories of singularities; weighted projective lines; nilpotent operators [Kussin-Lenzing-Meltzer]
- Higher ADE chain.

Tilting complexes from existing ones - tensor

$A, B-K$-algebras, K - commutative ring, $\otimes=\otimes_{K}$,
T - tilting complex over A,
U - tilting complex over $B+$ technical conditions ...
Theorem [Rickard 1991]. $T \otimes U$ is a tilting complex over $A \otimes B$ with endomorphism ring $\mathrm{End}_{\mathcal{D}(A)}(T) \otimes \mathrm{End}_{\mathcal{D}(B)}(U)$. Hence

$$
A \otimes B \sim \operatorname{End}_{\mathcal{D}(A)}(T) \otimes \operatorname{End}_{\mathcal{D}(B)}(U)
$$

Remark. Derived equivalence between tensor products of algebras.

New tilting complexes from existing ones

$T_{1}, T_{2}, \ldots, T_{n}$ - tilting complexes over A, $U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n}$ - tilting complex over $B+$ technical conditions \ldots Theorem [L]. Assume multiple exceptionality:
$\forall 1 \leq i, j \leq n \quad \operatorname{Hom}_{\mathcal{D}(B)}\left(U_{i}, U_{j}\right) \neq 0 \Rightarrow \operatorname{Hom}_{\mathcal{D}(A)}\left(T_{i}, T_{j}[r]\right)=0 \quad \forall r \neq 0$. Then $\left(T_{1} \otimes U_{1}\right) \oplus\left(T_{2} \otimes U_{2}\right) \oplus \cdots \oplus\left(T_{n} \otimes U_{n}\right)$ is a tilting complex over $A \otimes B$ with endomorphism ring given as the generalized matrix ring

$$
\left(\begin{array}{ccc}
& \vdots & \\
\ldots & M_{i j} & \ldots \\
& \vdots &
\end{array}\right), \text { where } M_{i j}=\operatorname{Hom}_{\mathcal{D}(A)}\left(T_{j}, T_{i}\right) \otimes \operatorname{Hom}_{\mathcal{D}(B)}\left(U_{j}, U_{i}\right)
$$

- Derived equivalence between componentwise tensor products.
- Implies the derived equivalences of lines, rectangles, triangles ..i4

Global vs. local operations

The previous derived equivalences are global in nature - they change the quiver drastically.

Motivated by an algorithmic point of view, we seek local operations on the quivers that will produce derived equivalent algebras.

Example - BGP Reflections at sinks/sources

Q - quiver without oriented cycles, $s-\operatorname{sink}$ in Q, i.e. no outgoing arrows from s.
$\sigma_{s} Q$ - the BGP reflection with respect to s, obtained from Q by inverting all arrows incident to s, so that s becomes a source.

Theorem [Bernstein-Gelfand-Ponomarev]. $K Q \sim K \sigma_{s} Q$.

Example.

Remark. Generalized by [Auslander-Platzeck-Reiten] to sinks in quivers of arbitrary finite-dimensional algebras.

What about other vertices?

- Combinatorial answer: quiver mutation [Fomin-Zelevinsky 2002].
- Algebraic answer: mutations of algebras.

We will define these notions and explore the relations between them.

Quiver mutation [Fomin-Zelevinsky]

Q - quiver without loops (\bullet) and 2-cycles ($\bullet \bullet$),
k - any vertex in Q.
The mutation of Q at k, denoted $\mu_{k}(Q)$, is obtained as follows:

1. For any pair $i \xrightarrow{\alpha} k \xrightarrow{\beta} j$, add new arrow $i \xrightarrow{[\alpha \beta]} j$,
2. Invert the incoming and outgoing arrows at k,
3. Remove a maximal set of 2-cycles.

Example.

Quivers and anti-symmetric matrices

\{quivers, no loops and 2-cycles\} \leftrightarrow \{anti-symmetric integral matrices $\}$

$$
\begin{gathered}
Q \leftrightarrow B_{Q} \\
\left(B_{Q}\right)_{i j}=\mid\{\text { arrows } j \rightarrow i\}|-|\{\text { arrows } i \rightarrow j\} \mid
\end{gathered}
$$

Example.

Quiver mutation - matrix version

Mutation as a change-of-basis for the anti-symmetric bilinear form [FZ, Geiss-Leclerc-Schröer]

$$
B_{\mu_{k}(Q)}=\left(r_{k}^{+}\right)^{T} B_{Q} r_{k}^{+}=\left(r_{k}^{-}\right)^{T} B_{Q} r_{k}^{-}
$$

where

$$
\begin{array}{ll}
r_{k}^{-}=\left(\begin{array}{ccccc}
1 & & & & \\
* & \cdots & & & \\
* & * & -1 & * & * \\
& & & \ddots & 1
\end{array}\right) & r_{k}^{+}=\left(\begin{array}{ccccc}
1 & & & & \\
& \cdots & & & \\
* & * & -1 & * & * \\
& & & & \\
& & & &
\end{array}\right) \\
\left(r_{k}^{-}\right)_{k j}=\mid\{\text { arrows } j \rightarrow k\} \mid & \left(r_{k}^{+}\right)_{k j}=\mid\{\text { arrows } k \rightarrow j\} \mid \quad(j \neq k)
\end{array}
$$

From vertices to complexes

K - algebraically closed field, $A=K Q / I$ - quiver with relations, vertex $i \rightsquigarrow$ projective P_{i}, \quad arrow $i \rightarrow j \rightsquigarrow \operatorname{map} P_{j} \rightarrow P_{i}$
k - vertex in Q without loops,

$$
T_{k}^{-}=\left(P_{k} \rightarrow \bigoplus_{j \rightarrow k} P_{j}\right) \oplus \bigoplus_{i \neq k} P_{i}, \quad T_{k}^{+}=\left(\bigoplus_{k \rightarrow j} P_{j} \rightarrow P_{k}\right) \oplus \bigoplus_{i \neq k} P_{i}
$$

Are these tilting complexes?

- Always compact generators,
- Exceptionality is expressed in terms of the combinatorial data.

Mutations of algebras

If T_{k}^{-}is a tilting complex, the negative mutation at k is defined as

$$
\mu_{k}^{-}(A)=\operatorname{End}_{\mathcal{D}(A)}\left(T_{k}^{-}\right)
$$

If T_{k}^{+}is a tilting complex, the positive mutation at k is defined as

$$
\mu_{k}^{+}(A)=\operatorname{End}_{\mathcal{D}(A)}\left(T_{k}^{+}\right)
$$

- There are up to two mutations at a vertex,
- Mutations yield derived equivalent algebras,
- Mutations are perverse Morita equivalences [Chuang-Rouquier],
- Closely related to the Brenner-Butler tilting modules.

Mutations of algebras - Example

$\mu_{1}^{-}(A)$ is not defined

$\mu_{3}^{-}(A)=\bullet_{1}^{\bullet_{3}^{2}}$
$\mu_{3}^{+}(A)$ is not defined
Remark. For $A^{\prime}=\mu_{2}^{-}(A)$, neither $\mu_{1}^{-}\left(A^{\prime}\right)$ nor $\mu_{1}^{+}\left(A^{\prime}\right)$ are defined.

Cartan matrices and Euler forms

C_{A} - the Cartan matrix of A, defined by $\left(C_{A}\right)_{i j}=\operatorname{dim}_{K} \operatorname{Hom}_{A}\left(P_{i}, P_{j}\right)$.
Remark. The bilinear form defined by C_{A} is invariant under derived equivalence.

Lemma.

$$
C_{\mu_{k}^{-}(A)}=r_{k}^{-} C_{A}\left(r_{k}^{-}\right)^{T} \quad C_{\mu_{k}^{+}(A)}=r_{k}^{+} C_{A}\left(r_{k}^{+}\right)^{T}
$$

whenever the mutations are defined.
When A has finite global dimension, its Euler form is $c_{A}=C_{A}^{-T}$, and

$$
c_{\mu_{k}^{-}(A)}=\left(r_{k}^{-}\right)^{T} c_{A} r_{k}^{-} \quad c_{\mu_{k}^{+}(A)}=\left(r_{k}^{+}\right)^{T} c_{A} r_{k}^{+}
$$

whenever the mutations are defined.

Applications of mutations of algebras

Mutations behave particularly well for the following classes of algebras:

- Algebras of global dimension 2
- 2-CY-tilted algebras, i.e. endomorphism algebras of cluster-tilting objects in 2-Calabi-Yau triangulated categories, including clustertilted algebras and finite-dimensional Jacobian algebras.
[Amiot, Buan-Iyama-Reiten-Scott, Buan-Marsh-Reineke-Reiten-Todorov, BMR, Iyama-Yoshino, Keller-Reiten, ...]
- Endomorphism algebras of cluster-tilting objects in stably 2-CY Frobenius categories [BIRSc, GLS, Palu, ...]

Application 1 - Algebras of global dimension 2

A - finite-dimensional K-algebra of global dimension 2.
The ordinary quiver Q_{A} has

$$
\mid\{\text { arrows } i \rightarrow j\} \mid=\operatorname{dim}_{K} \operatorname{Ext}_{A}^{1}\left(S_{i}, S_{j}\right)
$$

The extended quiver \widetilde{Q}_{A} [Assem-Brüstle-Schiffler, Keller] has

$$
\mid\{\text { arrows } i \rightarrow j\} \mid=\operatorname{dim}_{K} \operatorname{Ext}_{A}^{1}\left(S_{i}, S_{j}\right)+\operatorname{dim}_{K} \operatorname{Ext}_{A}^{2}\left(S_{j}, S_{i}\right)
$$

so that $B_{\widetilde{Q}_{A}}=c_{A}-c_{A}^{T}$ is the anti-symmetrization of c_{A}.
Example.

Mutations of algebras of global dimension 2

Assume: gl. $\operatorname{dim} A \leq 2$ and \widetilde{Q}_{A} without loops and 2-cycles.

Theorem [L].

If $\mu_{k}^{-}(A)$ is defined and gl. $\operatorname{dim} \mu_{k}^{-}(A) \leq 2$, then $\widetilde{Q}_{\mu_{k}^{-}(A)}=\mu_{k}\left(\widetilde{Q}_{A}\right)$.
If $\mu_{k}^{+}(A)$ is defined and $\mathrm{gl} . \operatorname{dim} \mu_{k}^{+}(A) \leq 2$, then $\widetilde{Q}_{\mu_{k}^{+}(A)}=\mu_{k}\left(\widetilde{Q}_{A}\right)$.
Remark. Not all quiver mutations correspond to algebra mutations.

Question.

Can derived equivalences be realized as sequences of mutations?

Example - Sequence of mutations

$1,2,3,4,5,6,7,8,9,10,11,1,2,3,4,5,12,13,14,15,7,8,9,10,1,2,3,4$, $21,19,16,20,17,12,18,13,7,21,19,16,20,17,12,21,19,16$

Consequences for cluster algebras

Theorem [L]. $\widetilde{Q}_{\text {Triang }(2 r)}$ and $\widetilde{Q}_{\operatorname{Rect}(2 r+1, r)}$ are mutation equivalent.

These are the cluster types of the cluster algebra structures on ...

- $\widetilde{Q}_{\text {Triang }(2 r)} \rightsquigarrow$ upper-triangular unipotent matrices in $\mathrm{SL}_{2 r+2}$ [Geiss-Leclerc-Schröer]
- $\widetilde{Q}_{\text {Rect }(2 r+1, r)} \rightsquigarrow$ Grassmannian $\operatorname{Gr}_{r+1,3 r+3}$ [Scott 2006]

Corollary. These cluster algebras have the same cluster type.

Application 2 - Cluster-tilted algebras

Q - quiver, which is mutation equivalent to an acyclic one, Λ_{Q} - the cluster-tilted algebra [BMR] corresponding to Q.

It is the endomorphism algebra of a suitable cluster-tilting object in a cluster category [BMRRT].

- The quiver of \wedge_{Q} is Q,
- The relations are uniquely determined, using mutations of quivers with potential [Derksen-Weyman-Zelevinsky, Buan-Iyama-Reiten-Smith].

Good and bad (quiver) mutations

Motivation. Relate mutation of quivers with mutation of algebras.

The quiver mutation of Q at k is good if

$$
\wedge_{\mu_{k}(Q)} \simeq \mu_{k}^{-}\left(\Lambda_{Q}\right), \quad\left(\text { equivalently, } \wedge_{Q} \simeq \mu_{k}^{+}\left(\wedge_{\mu_{k}(Q)}\right)\right)
$$

otherwise it is bad.

Two reasons for bad quiver mutations:

- The algebra mutation $\mu_{k}^{-}\left(\Lambda_{Q}\right)$ is not defined, or
- The algebra mutation $\mu_{k}^{-}\left(\wedge_{Q}\right)$ is defined, but takes incorrect value.

Good and bad mutations - Examples

Example. The mutation at the vertex 2 is bad.

$\alpha \beta, \beta \gamma, \gamma \alpha$

Example. The mutation at the vertex 2 is good.

Question. Are "most" mutations good or bad?

Cluster-tilted algebras of Dynkin type E

Theorem [Bastian-Holm-L]. Complete derived equivalence classification of cluster-tilted algebras of Dynkin type E.

The following are equivalent for two such algebras:

- Their Cartan matrices represent equivalent bilinear forms over \mathbb{Z},
- They are derived equivalent,
- Their quivers can be connected by a sequence of good mutations.

Type	Number	Classes
E_{6}	67	6
E_{7}	416	14
E_{8}	1574	15

Cluster-tilted algebras of Dynkin type A

- Description of the quivers
[Buan-Vatne 2008, Caldero-Chapoton-Schiffler 2006]
- Complete derived equivalence classification [Buan-Vatne 2008]
- Counting the number of quivers [Torkildsen 2008]

Type	Number	Classes
A_{n}	$\sim \frac{1}{\sqrt{\pi}} 4^{n+1} n^{-5 / 2}$	$\sim \frac{1}{2} n$

Conceptual explanation

A necessary condition for

$$
\wedge_{\mu_{k}(Q)} \simeq \mu_{k}^{-}\left(\Lambda_{Q}\right), \quad\left(\text { equivalently, } \wedge_{Q} \simeq \mu_{k}^{+}\left(\wedge_{\mu_{k}(Q)}\right)\right)
$$

is that both algebra mutations $\mu_{k}^{-}\left(\Lambda_{Q}\right)$ and $\mu_{k}^{+}\left(\Lambda_{\mu_{k}(Q)}\right)$ are defined.
Theorem [L]. This condition is also sufficient!

- That is, if both algebra mutations are defined, they automatically take the correct values.
- Based on a result of [Hu-Xi].

Remark. With slight modifications, applicable to arbitrary clustertilted algebras and even more generally, to 2-CY-tilted algebras.

Algorithm to decide on good mutation

Assume: the Cartan matrices $C_{\Lambda_{Q}}$ and $C_{\Lambda_{\mu_{k}(Q)}}$ are invertible over \mathbb{Q}.
Theorem [L]. There is an effective algorithm that decides whether $\Lambda_{\mu_{k}(Q)} \simeq \mu_{k}^{-}\left(\Lambda_{Q}\right)$, using only the data of the Cartan matrices.

It builds on the Gorenstein property [Keller-Reiten] and on [Dehy-Keller].

Algorithm - Example

$$
\begin{gathered}
\wedge=\bullet_{1} \longrightarrow 2 \\
C_{\Lambda}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right) \quad\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1
\end{array}\right)=C_{\Lambda^{\prime}} \\
C_{\Lambda} C_{\Lambda}^{-T}=\left(\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & -1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) \quad\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
1 & -1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & -1 & 0 & 1
\end{array}\right)=\left(C_{\Lambda^{\prime}} C_{\Lambda^{\prime}}^{-T}\right)^{-1}
\end{gathered}
$$

Sequences of good mutations

The quivers of derived equivalent cluster-tilted algebras of Dynkin type A or E are connected by sequences of good mutations.

Result [Bastian-Holm-L]. Far-reaching derived equivalence classification of cluster-tilted algebras of Dynkin type D.

Remark. There are derived equivalent cluster-tilted algebras of type D whose quivers are not connected by good mutations.

Summary

We discussed the derived equivalence of algebras arising from combinatorial data as quivers with relations.

- Global reasonings - based on tensor products.
- Local reasonings - based on mutations of algebras.
- Mutation of algebras vs. quiver mutation -
- Algebras of global dimension 2,
- 2-CY-tilted algebras, in particular cluster-tilted algebras.

For further details, see:
arXiv:0911.5137, arXiv:1001.4765, arXiv:0906.3422.

