Sefi Ladkani

Max-Planck-Institute for Mathematics, Bonn

http://guests.mpim-bonn.mpg.de/sefil/

Posets, diagrams and sheaves

X - poset (finite partially ordered set)

 \mathcal{A} – abelian category

 \mathcal{A}^X – the category of *diagrams* over X with values in \mathcal{A} , or *functors* $F: X \to \mathcal{A}$, consisting of:

- An object F_x of \mathcal{A} for each $x \in X$.
- A morphism $r_{xx'} \in \text{Hom}_{\mathcal{A}}(F_x, F_{x'})$ for each x < x'.

such that $r_{xx''} = r_{x'x''}r_{xx'}$ for all x < x' < x'' (commutativity).

Natural *topology* on X: $U \subseteq X$ is open if $x \in U, x \leq x' \Rightarrow x' \in U$

Diagrams can be identified with *sheaves* over X with values in \mathcal{A} .

Posets, diagrams and sheaves – Example Let $X = \{1, 2, 3, 4\}$ with 1 < 2, 1 < 3, 1 < 4, 2 < 4, 3 < 4.

A *diagram* over X is shown on the right:

 $r_{24}r_{12} = r_{14} = r_{34}r_{13}$

The open sets are

 ϕ , {4}, {2,4}, {3,4}, {2,3,4}, {1,2,3,4}.

Derived categories

 \mathcal{B} – abelian category, $\mathcal{C}^{b}(\mathcal{B})$ – the category of **bounded complexes**

$$K^{\bullet} = \dots \xrightarrow{d} K^{-1} \xrightarrow{d} K^{0} \xrightarrow{d} K^{1} \xrightarrow{d} \dots$$

with $K^i \in \mathcal{B}$, $d^2 = 0$ and $K^i = 0$ for $|i| \gg 0$.

A morphism $f: K^{\bullet} \to L^{\bullet}$ is a *quasi-isomorphism* if

$$H^i f : H^i K^{\bullet} \to H^i L^{\bullet}$$

are isomorphisms for all $i \in \mathbb{Z}$.

The bounded derived category $\mathcal{D}^{b}(\mathcal{B})$ is obtained from $\mathcal{C}^{b}(\mathcal{B})$ by localization with respect to the quasi-isomorphisms (that is, we formally invert all quasi-isomorphisms).

Universal derived equivalence

Two posets X and Y are universally derived equivalent $(X \stackrel{u}{\sim} Y)$ if $\mathcal{D}^b(\mathcal{A}^X) \simeq \mathcal{D}^b(\mathcal{A}^Y)$

for any abelian category \mathcal{A} .

Fix a field k, and specialize:

mod k – the category of finite dimensional vector spaces over k.

 $(\mod k)^X$ can be identified with the category of finitely generated right modules over the incidence algebra of X over k.

X and Y are *derived equivalent* $(X \sim Y)$ if $\mathcal{D}^b(\operatorname{mod} kX) \simeq \mathcal{D}^b(\operatorname{mod} kY)$

Comments on derived equivalence

No known *algorithm* that decides if $X \sim Y$ (or $X \stackrel{u}{\sim} Y$). However, one can use:

• *Invariants* of the derived category; If $X \sim Y$ then X and Y must have the same invariants.

Examples of invariants are:

- The *number of points* of X.
- The *Euler bilinear form* on *X*, closely related to the *Möbius function* of *X*.

• Constructions

Start with some "nice" X and get many Y-s with $X \sim Y$.

Known constructions

• BGP Reflection

When X is a tree and $s \in X$ is a *source* (or a *sink*), invert all arrows from (to) s and get a new tree X' with $X' \sim X$.

Example.

New construction – Flip-flops

Let (X, \leq_X) , (Y, \leq_Y) be posets, $f : X \to Y$ order-preserving.

Define two partial orders \leq_{+}^{f} , \leq_{-}^{f} on $X \sqcup Y$ as follows:

- Keep the original partial orders inside X and Y.
- Add the relations

$$egin{aligned} &x\leq^f_+y \Longleftrightarrow f(x)\leq_Y y\ &y\leq^f_-x \Longleftrightarrow y\leq_Y f(x) \end{aligned}$$

for $x \in X$, $y \in Y$.

Theorem [L1]. $(X \sqcup Y, \leq^f_+) \stackrel{u}{\sim} (X \sqcup Y, \leq^f_-).$

9

Cluster tilting objects

Q – quiver without oriented cycles with n vertices; k – field

The cluster category associated with $Q \; [{\rm BMRRT,CCS,FZ}]$ is defined as the orbit category

$$\mathcal{C}_Q = \mathcal{D}^b(\operatorname{mod} kQ)/\nu \cdot [-2]$$

where $\nu : \mathcal{D}^b(\mod kQ) \to \mathcal{D}^b(\mod kQ)$ is the *Serre functor*.

Indecomposables: ind $C_Q = \operatorname{ind} kQ \cup \{P_x[1] : x \text{ is a vertex of } Q\}.$

A (basic) object T of C_Q is *cluster tilting* if $Hom_{C_Q}(T, T[1]) = 0$ and T has n indecomposable summands.

 \mathcal{T}_Q – the set of cluster tilting objects in \mathcal{C}_Q .

Partial order on the set of cluster tilting objects

For $T = \bigoplus_{i=1}^{n} T_i \in \mathcal{T}_Q$, let $\hat{T} \in \text{mod } kQ$ be the sum of the T_i which are in ind kQ. Consider the *torsion class*

 $\operatorname{fac} \widehat{T} = \left\{ M \in \operatorname{mod} kQ : M \text{ is a quotient of } \widehat{T}^m \text{ for some } m \ge 1 \right\}$

and define [IT] a *partial order* on \mathcal{T}_Q by setting $T \leq T'$ if fac $\widehat{T} \supseteq$ fac $\widehat{T'}$.

When Q is a Dynkin diagram of type A, D, or E, the poset T_Q is known also as a *Cambrian lattice* [R], which is a quotient of the *weak* order on the corresponding Coxeter group.

In type A with the linear orientation, we get the *Tamari lattices*. Their Hasse diagrams are the 1-skeletons of polytopes known as the *Stasheff Associhedra*.

Tamari Lattice for A_3

Flip-flops on posets of cluster tilting objects

Q – quiver without oriented cycles; x – a sink in Q. Q' – the *BGP reflection* with respect to x.

Theorem [L2]. \mathcal{T}_Q and $\mathcal{T}_{Q'}$ are related via a flip-flop.

$$\mathcal{T}_Q \simeq (\mathcal{T}_Q^x \sqcup \mathcal{T}_Q \setminus \mathcal{T}_Q^x, \leq^f_+) \qquad \mathcal{T}_{Q'} \simeq (\mathcal{T}_{Q'}^{x[1]} \sqcup \mathcal{T}_{Q'} \setminus \mathcal{T}_{Q'}^{x[1]}, \leq^{f'}_-)$$

 \mathcal{T}_Q^x – cluster tilting objects in \mathcal{T}_Q containing P_x as summand. $\mathcal{T}_{Q'}^{x[1]}$ – cluster tilting objects in $\mathcal{T}_{Q'}$ containing $P_x[1]$ as summand.

f and f' are defined via *cluster mutation*.

Corollary. If $\mathcal{D}^b(\mod kQ_1) \simeq \mathcal{D}^b(\mod kQ_2)$ then $\mathcal{T}_{Q_1} \stackrel{u}{\sim} \mathcal{T}_{Q_2}$.

References

- **BGP** I.N. Bernstein, I.M. Gel'fand, and V.A. Ponomarev, *Coxeter functors and Gabriel's theorem.*, Russ. Math. Surv. **28** (1973), no. 2, 17–32 (English).
- BMRRT Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov, *Tilting theory and cluster combinatorics*, Adv. Math. 204 (2006), no. 2, 572–618.
- **CCS** P. Caldero, F. Chapoton, and R. Schiffler, *Quivers with relations arising from clusters (A_n case)*, Trans. Amer. Math. Soc. **358** (2006), no. 3, 1347–1364 (electronic).
- **FZ** Sergey Fomin and Andrei Zelevinsky, *Cluster algebras. I. Foundations*, J. Amer. Math. Soc. **15** (2002), no. 2, 497–529 (electronic).
- **IT** Colin Ingalls and Hugh Thomas, *Noncrossing partitions and representations of quivers*, arXiv:math/0612219v2.
- L1 Sefi Ladkani, Universal derived equivalences of posets, arXiv:0705.0946v2.
- L2 Sefi Ladkani, Universal derived equivalences of posets of cluster tilting objects, arXiv:0710.2860.
- **R** Nathan Reading, *Cambrian lattices*, Adv. Math. **205** (2006), no. 2, 313–353.