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Posets, diagrams and sheaves

X – poset (finite partially ordered set)

A – abelian category

AX – the category of diagrams over X with values in A, or functors
F : X → A, consisting of:

• An object Fx of A for each x ∈ X.

• A morphism rxx′ ∈ HomA(Fx, Fx′) for each x < x′.

such that rxx′′ = rx′x′′rxx′ for all x < x′ < x′′ (commutativity).

Natural topology on X: U ⊆ X is open if x ∈ U , x ≤ x′ ⇒ x′ ∈ U

Diagrams can be identified with sheaves over X with values in A.
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Posets, diagrams and sheaves – Example

Let X = {1,2,3,4} with 1 < 2, 1 < 3, 1 < 4, 2 < 4, 3 < 4.

A diagram over X is shown on the right:
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The open sets are

φ, {4}, {2,4}, {3,4}, {2,3,4}, {1,2,3,4}.
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Derived categories

B – abelian category, Cb(B) – the category of bounded complexes

K• = . . .
d−→ K−1 d−→ K0 d−→ K1 d−→ . . .

with Ki ∈ B, d2 = 0 and Ki = 0 for |i| � 0.

A morphism f : K• → L• is a quasi-isomorphism if

Hif : HiK• → HiL•

are isomorphisms for all i ∈ Z.

The bounded derived category Db(B) is obtained from Cb(B) by local-
ization with respect to the quasi-isomorphisms (that is, we formally
invert all quasi-isomorphisms).
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Universal derived equivalence

Two posets X and Y are universally derived equivalent (X
u∼ Y ) if

Db(AX) ' Db(AY )

for any abelian category A.

Fix a field k, and specialize:
mod k – the category of finite dimensional vector spaces over k.

(mod k)X can be identified with the category of finitely generated
right modules over the incidence algebra of X over k.

X and Y are derived equivalent (X ∼ Y ) if

Db(mod kX) ' Db(mod kY )

5



Universal derived equivalences of posets and applications to cluster-tilting objects

Comments on derived equivalence

No known algorithm that decides if X ∼ Y (or X
u∼ Y ).

However, one can use:

• Invariants of the derived category;
If X ∼ Y then X and Y must have the same invariants.

Examples of invariants are:

• The number of points of X.

• The Euler bilinear form on X, closely related to the Möbius func-
tion of X.

• Constructions
Start with some “nice” X and get many Y -s with X ∼ Y .
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Known constructions

• BGP Reflection
When X is a tree and s ∈ X is a source (or a sink), invert all arrows
from (to) s and get a new tree X ′ with X ′ ∼ X.

Example.

• ← • → • • → • → • • → • ← •

• The square and D4
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New construction – Flip-flops

Let (X,≤X), (Y,≤Y ) be posets, f : X → Y order-preserving.

Define two partial orders ≤f
+, ≤f

− on X t Y as follows:

• Keep the original partial orders inside X and Y .

• Add the relations

x ≤f
+ y ⇐⇒ f(x) ≤Y y

y ≤f
− x⇐⇒ y ≤Y f(x)

for x ∈ X, y ∈ Y .

Theorem [L1]. (X t Y ,≤f
+)

u∼ (X t Y ,≤f
−).
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Flip-flop – An example

f : 8 7→ 1 9 7→ 2 11 7→ 10 12 7→ 6 14 7→ 13
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Cluster tilting objects

Q – quiver without oriented cycles with n vertices; k – field

The cluster category associated with Q [BMRRT,CCS,FZ] is defined as
the orbit category

CQ = Db(mod kQ)/ν · [−2]

where ν : Db(mod kQ)→ Db(mod kQ) is the Serre functor .

Indecomposables: ind CQ = ind kQ ∪ {Px[1] : x is a vertex of Q}.

A (basic) object T of CQ is cluster tilting if HomCQ(T, T [1]) = 0 and
T has n indecomposable summands.

TQ – the set of cluster tilting objects in CQ.
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Partial order on the set of cluster tilting objects

For T =
⊕n

i=1 Ti ∈ TQ, let T̂ ∈ mod kQ be the sum of the Ti which are
in ind kQ. Consider the torsion class

fac T̂ =
{
M ∈ mod kQ : M is a quotient of T̂m for some m ≥ 1

}
and define [IT] a partial order on TQ by setting T ≤ T ′ if fac T̂ ⊇ fac T̂ ′.

When Q is a Dynkin diagram of type A, D, or E, the poset TQ is
known also as a Cambrian lattice [R], which is a quotient of the weak
order on the corresponding Coxeter group.

In type A with the linear orientation, we get the Tamari lattices.
Their Hasse diagrams are the 1-skeletons of polytopes known as the
Stasheff Associhedra.
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Tamari Lattices for A1 and A2

A1:

T• (ab)c→ a(bc)

A2:

T•→• ((ab)c)d
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Tamari Lattice for A3

T•→•→• (((ab)c)d)e
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Flip-flops on posets of cluster tilting objects

Q – quiver without oriented cycles; x – a sink in Q.

Q′ – the BGP reflection with respect to x.

Theorem [L2]. TQ and TQ′ are related via a flip-flop.

TQ ' (T x
Q t TQ \ T

x
Q,≤f

+) TQ′ ' (T x[1]
Q′ t TQ′ \ T

x[1]
Q′ ,≤f ′

−)

T x
Q – cluster tilting objects in TQ containing Px as summand.

T x[1]
Q′ – cluster tilting objects in TQ′ containing Px[1] as summand.

f and f ′ are defined via cluster mutation.

Corollary. If Db(mod kQ1) ' Db(mod kQ2) then TQ1

u∼ TQ2
.
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