Universal derived equivalences of posets and applications to cluster-tilting objects

Sefi Ladkani

Max-Planck-Institute for Mathematics, Bonn

http://guests.mpim-bonn.mpg.de/sefil/
Universal derived equivalences of posets and applications to cluster-tilting objects

Posets, diagrams and sheaves

X – *poset* (finite partially ordered set)

\mathcal{A} – abelian category

\mathcal{A}^X – the category of *diagrams* over X with values in \mathcal{A}, or *functors* $F : X \to \mathcal{A}$, consisting of:

- An *object* F_x of \mathcal{A} for each $x \in X$.
- A *morphism* $r_{xx'} \in \text{Hom}_\mathcal{A}(F_x, F_{x'})$ for each $x < x'$.

such that $r_{xx''} = r_{x'x''}r_{xx'}$ for all $x < x' < x''$ (*commutativity*).

Natural *topology* on X: $U \subseteq X$ is *open* if $x \in U$, $x \leq x' \Rightarrow x' \in U$

Diagrams can be identified with *sheaves* over X with values in \mathcal{A}.
Posets, diagrams and sheaves – Example

Let $X = \{1, 2, 3, 4\}$ with $1 < 2$, $1 < 3$, $1 < 4$, $2 < 4$, $3 < 4$.

A *diagram* over X is shown on the right:

The *open sets* are

$$\emptyset, \{4\}, \{2, 4\}, \{3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}.$$
Universal derived equivalences of posets and applications to cluster-tilting objects

Derived categories

\mathcal{B} – abelian category, $\mathcal{C}^b(\mathcal{B})$ – the category of *bounded complexes*

$$K^\bullet = \ldots \xrightarrow{d} K^{-1} \xrightarrow{d} K^0 \xrightarrow{d} K^1 \xrightarrow{d} \ldots$$

with $K^i \in \mathcal{B}$, $d^2 = 0$ and $K^i = 0$ for $|i| \gg 0$.

A morphism $f : K^\bullet \to L^\bullet$ is a *quasi-isomorphism* if

$$H^i f : H^i K^\bullet \to H^i L^\bullet$$

are isomorphisms for all $i \in \mathbb{Z}$.

The *bounded derived category* $\mathcal{D}^b(\mathcal{B})$ is obtained from $\mathcal{C}^b(\mathcal{B})$ by *localization* with respect to the quasi-isomorphisms (that is, we formally invert all quasi-isomorphisms).
Universal derived equivalence

Two posets X and Y are *universally derived equivalent* ($X \overset{u}{\sim} Y$) if

$$\mathcal{D}^b(A^X) \cong \mathcal{D}^b(A^Y)$$

for any abelian category A.

Fix a field k, and specialize:

mod k – the category of finite dimensional vector spaces over k.

$(\text{mod } k)^X$ can be identified with the category of finitely generated *right modules* over the *incidence algebra* of X over k.

X and Y are *derived equivalent* ($X \sim Y$) if

$$\mathcal{D}^b(\text{mod } kX) \cong \mathcal{D}^b(\text{mod } kY)$$
Comments on derived equivalence

No known *algorithm* that decides if $X \sim Y$ (or $X^u \sim Y$).

However, one can use:

- *Invariants* of the derived category;
 If $X \sim Y$ then X and Y must have the same invariants.

Examples of invariants are:
- The *number of points* of X.
- The *Euler bilinear form* on X, closely related to the *Möbius function* of X.

- *Constructions*
 Start with some “nice” X and get many Y-s with $X \sim Y$.
Known constructions

- **BGP Reflection**
 When X is a tree and $s \in X$ is a source (or a sink), invert all arrows from (to) s and get a new tree X' with $X' \sim X$.

Example.

- $\bullet \leftrightarrow \bullet \rightarrow \bullet$
- $\bullet \rightarrow \bullet \rightarrow \bullet$
- $\bullet \rightarrow \bullet \leftrightarrow \bullet$

- **The square and D_4**

The square and D_4 are equivalent.
Universal derived equivalences of posets and applications to cluster-tilting objects

New construction – Flip-flops

Let \((X, \leq_X), (Y, \leq_Y)\) be posets, \(f : X \to Y\) order-preserving.

Define two partial orders \(\leq^+_f, \leq^-_f\) on \(X \sqcup Y\) as follows:

- Keep the original partial orders inside \(X\) and \(Y\).
- Add the relations

\[
\begin{align*}
x \leq^+_f y & \iff f(x) \leq_Y y \\
y \leq^-_f x & \iff y \leq_Y f(x)
\end{align*}
\]

for \(x \in X, y \in Y\).

Theorem [L1]. \((X \sqcup Y, \leq^+_f) \sim (X \sqcup Y, \leq^-_f)\).
Universal derived equivalences of posets and applications to cluster-tilting objects

Flip-flop – An example

\[f : \quad 8 \leftrightarrow 1 \quad 9 \leftrightarrow 2 \quad 11 \leftrightarrow 10 \quad 12 \leftrightarrow 6 \quad 14 \leftrightarrow 13 \]

\((X \sqcup Y, \leq^f)\)

\((X \sqcup Y, \leq^f)\)
Cluster tilting objects

Q – quiver without oriented cycles with n vertices; k – field

The **cluster category** associated with Q [BMRRT, CCS, FZ] is defined as the orbit category

$$
\mathcal{C}_Q = \mathcal{D}^b(\text{mod } kQ)/\nu \cdot [-2]
$$

where $\nu : \mathcal{D}^b(\text{mod } kQ) \to \mathcal{D}^b(\text{mod } kQ)$ is the **Serre functor**.

Indecomposables: $\text{ind } \mathcal{C}_Q = \text{ind } kQ \cup \{P_x[1] : x \text{ is a vertex of } Q\}$.

A (basic) object T of \mathcal{C}_Q is **cluster tilting** if $\text{Hom}_{\mathcal{C}_Q}(T, T[1]) = 0$ and T has n indecomposable summands.

\mathcal{T}_Q – the set of cluster tilting objects in \mathcal{C}_Q.
Universal derived equivalences of posets and applications to cluster-tilting objects

Partial order on the set of cluster tilting objects

For $T = \bigoplus_{i=1}^{n} T_i \in \mathcal{T}_Q$, let $\hat{T} \in \text{mod } kQ$ be the sum of the T_i which are in $\text{ind } kQ$. Consider the torsion class

$$\text{fac } \hat{T} = \left\{ M \in \text{mod } kQ : M \text{ is a quotient of } \hat{T}^m \text{ for some } m \geq 1 \right\}$$

and define [IT] a partial order on \mathcal{T}_Q by setting $T \leq T'$ if $\text{fac } \hat{T} \supset \text{fac } \hat{T}'$.

When Q is a Dynkin diagram of type A, D, or E, the poset \mathcal{T}_Q is known also as a Cambrian lattice [R], which is a quotient of the weak order on the corresponding Coxeter group.

In type A with the linear orientation, we get the Tamari lattices. Their Hasse diagrams are the 1-skeletons of polytopes known as the Stasheff Associahedra.
Tamari Lattices for A_1 and A_2

A_1:

$\mathcal{T}_\bullet \rightarrow (ab)c \rightarrow a(bc)$

A_2:

$\mathcal{T}_\bullet \rightarrow ((ab)c)d \rightarrow ((a(bc))d \rightarrow (a((bc)d) \rightarrow a((bc)d) \rightarrow a(b(cd)) \rightarrow a(b(cd))$
Tamari Lattice for A_3
Universal derived equivalences of posets and applications to cluster-tilting objects

Flip-flops on posets of cluster tilting objects

Q – quiver without oriented cycles; x – a sink in Q.
Q' – the BGP reflection with respect to x.

Theorem [L2]. \mathcal{T}_Q and $\mathcal{T}_{Q'}$ are related via a flip-flop.

$$
\mathcal{T}_Q \simeq (\mathcal{T}_Q^x \sqcup \mathcal{T}_Q \setminus \mathcal{T}_Q^x, \leq f) \quad \mathcal{T}_{Q'} \simeq (\mathcal{T}_{Q'}^{x[1]} \sqcup \mathcal{T}_{Q'} \setminus \mathcal{T}_{Q'}^{x[1]}, \leq f')
$$

\mathcal{T}_Q^x – cluster tilting objects in \mathcal{T}_Q containing P_x as summand.
$\mathcal{T}_{Q'}^{x[1]}$ – cluster tilting objects in $\mathcal{T}_{Q'}$ containing $P_x[1]$ as summand.

f and f' are defined via cluster mutation.

Corollary. If $\mathcal{D}^b(\text{mod } kQ_1) \simeq \mathcal{D}^b(\text{mod } kQ_2)$ then $\mathcal{T}_{Q_1} \overset{u}{\sim} \mathcal{T}_{Q_2}$.
Universal derived equivalences of posets and applications to cluster-tilting objects

References

