Generalized reflections and derived equivalences of posets

Sefi Ladkani

Einstein Institute of Mathematics
The Hebrew University of Jerusalem
http://www.ma.huji.ac.il/~sefil/

Posets, diagrams and sheaves

X - poset (finite partially ordered set)
\mathcal{A} - abelian category
\mathcal{A}^{X} - the category of diagrams over X with values in \mathcal{A}, or functors $F: X \rightarrow \mathcal{A}$, consisting of:

- An object F_{x} of \mathcal{A} for each $x \in X$.
- A morphism $r_{x x^{\prime}} \in \operatorname{Hom}_{\mathcal{A}}\left(F_{x}, F_{x^{\prime}}\right)$ for each $x<x^{\prime}$.
such that $r_{x x^{\prime \prime}}=r_{x^{\prime} x^{\prime \prime}} r_{x x^{\prime}}$ for all $x<x^{\prime}<x^{\prime \prime}$ (commutativity).
Natural topology on $X: \quad U \subseteq X$ is open if $x \in U, x \leq x^{\prime} \Rightarrow x^{\prime} \in U$
Diagrams can be identified with sheaves over X with values in \mathcal{A}.

Posets, diagrams and sheaves - Example

Let $X=\{1,2,3,4\}$ with $1<2,1<3,1<4,2<4,3<4$.

A diagram over X is shown on the right:

$$
r_{24} r_{12}=r_{14}=r_{34} r_{13}
$$

The open sets are

$$
\phi,\{4\},\{2,4\},\{3,4\},\{2,3,4\},\{1,2,3,4\} .
$$

Derived categories

\mathcal{B} - abelian category, $\mathcal{C}^{b}(\mathcal{B})$ - the category of bounded complexes

$$
K^{\bullet}=\ldots \xrightarrow{d} K^{-1} \xrightarrow{d} K^{0} \xrightarrow{d} K^{1} \xrightarrow{d} \ldots
$$

with $K^{i} \in \mathcal{B}, d^{2}=0$ and $K^{i}=0$ for $|i| \gg 0$.
A morphism $f: K^{\bullet} \rightarrow L^{\bullet}$ is a quasi-isomorphism if

$$
H^{i} f: H^{i} K^{\bullet} \rightarrow H^{i} L^{\bullet}
$$

are isomorphisms for all $i \in \mathbb{Z}$.
The bounded derived category $\mathcal{D}^{b}(\mathcal{B})$ is obtained from $\mathcal{C}^{b}(\mathcal{B})$ by localization with respect to the quasi-isomorphisms (that is, we formally invert all quasi-isomorphisms).

Universal derived equivalence

Two posets X and Y are universally derived equivalent ($X \stackrel{u}{\sim} Y$) if

$$
\mathcal{D}^{b}\left(\mathcal{A}^{X}\right) \simeq \mathcal{D}^{b}\left(\mathcal{A}^{Y}\right)
$$

for any abelian category \mathcal{A}.
Fix a field k, and specialize: $\bmod k$ - the category of finite dimensional vector spaces over k.
$(\bmod k)^{X}$ can be identified with the category of finitely generated right modules over the incidence algebra of X over k.
X and Y are derived equivalent $(X \sim Y)$ if

$$
\mathcal{D}^{b}(\bmod k X) \simeq \mathcal{D}^{b}(\bmod k Y)
$$

Comments on derived equivalence

No known algorithm that decides if $X \sim Y$ (or $X \stackrel{u}{\sim} Y$).
However, one can use:

- Invariants of the derived category;

If $X \sim Y$ then X and Y must have the same invariants.
Examples of invariants are:

- The number of points of X.
- The Euler bilinear form on X, closely related to the Möbius function of X.
- Constructions

Start with some "nice" X and get many Y-s with $X \sim Y$.

Known constructions

- BGP Reflection

When X is a tree and $s \in X$ is a source (or a sink), invert all arrows from (to) s and get a new tree X^{\prime} with $X^{\prime} \sim X$.

Example.

$\bullet \rightarrow \bullet \bullet$
$\bullet \rightarrow \bullet \bullet$

- The square and D_{4}

Constructions of derived equivalent posets

Common theme: structured reversal of order relations.

- Generalized reflections (universal derived equivalences)
- Flip-Flops, with application to posets of cluster tilting objects
- Generalized BGP reflections
- Hybrid construction
- Mirroring with respect to a bipartite structure
- Mates of triangular matrix algebras

Flip-Flops

Let $\left(X, \leq_{X}\right),\left(Y, \leq_{Y}\right)$ be posets, $f: X \rightarrow Y$ order-preserving.
Define two partial orders $\leq_{+}^{f}, \leq_{-}^{f}$ on $X \sqcup Y$ as follows:

- Keep the original partial orders inside X and Y.
- Add the relations

$$
\begin{aligned}
& x \leq_{+}^{f} y \Longleftrightarrow f(x) \leq_{Y} y \\
& y \leq_{-}^{f} x \Longleftrightarrow y \leq_{Y} f(x)
\end{aligned}
$$

for $x \in X, y \in Y$.

Theorem. $\left(X \sqcup Y, \leq_{+}^{f}\right) \stackrel{u}{\sim}\left(X \sqcup Y, \leq_{-}^{f}\right)$.

Flip-Flop - Example

Application - Posets of cluster tilting objects

Q - quiver without oriented cycles, k - field
\mathcal{T}_{Q} - poset of cluster tilting objects in the cluster category of $k Q$ [BMRRT, CCS, FZ]

When Q is a Dynkin diagram of type A, D, or E , the poset \mathcal{T}_{Q} is known as a Cambrian lattice [Reading], which is a quotient of the weak order on the corresponding Coxeter group.

In type A with the linear orientation, we get the Tamari lattices. Their Hasse diagrams are the 1 -skeletons of polytopes known as the Stasheff Associhedra.

Tamari Lattices for A_{1} and A_{2}

A_{1} :

$$
\mathcal{T}_{\bullet}
$$

$$
(a b) c \rightarrow a(b c)
$$

A_{2} :
$\mathcal{T}_{\bullet \rightarrow \bullet}$

Tamari Lattice for A_{3}

Flip-flops on posets of cluster tilting objects

Q - quiver without oriented cycles.
x - a sink in Q.
Q^{\prime} - the BGP reflection with respect to x.

Theorem. \mathcal{T}_{Q} and $\mathcal{T}_{Q^{\prime}}$ are related via a flip-flop.

$$
\mathcal{T}_{Q} \simeq\left(\mathcal{I}_{Q}^{x} \sqcup \mathcal{T}_{Q} \backslash \mathcal{I}_{Q}^{x}, \leq_{+}^{f}\right) \quad \mathcal{T}_{Q^{\prime}} \simeq\left(\mathcal{I}_{Q^{\prime}}^{x} \sqcup \mathcal{T}_{Q^{\prime}} \backslash \mathcal{I}_{Q^{\prime}}^{x}, \leq_{-}^{f^{\prime}}\right)
$$

Corollary. If $Q_{1} \sim Q_{2}$ then $\mathcal{T}_{Q_{1}} \stackrel{u}{\sim} \mathcal{T}_{Q_{2}}$.

Generalized BGP reflections

Let (Y, \leq) be poset, $Y_{0} \subseteq Y$ a subset with the property

$$
[y, \cdot] \cap\left[y^{\prime}, \cdot\right]=\phi=[\cdot, y] \cap\left[\cdot, y^{\prime}\right] \quad \text { for all } y \neq y^{\prime} \text { in } Y_{0}
$$

Define two partial orders $\leq_{+}^{Y_{0}}, \leq_{-}^{Y_{0}}$ on $\{*\} \cup Y$ as follows:

- Keep the original partial order inside Y.
- Add the relations

$$
\begin{aligned}
& *<_{+}^{Y_{0}} y \Longleftrightarrow \exists y_{0} \in Y_{0} \text { with } y_{0} \leq y \\
& y<_{-}^{Y_{0}} * \Longleftrightarrow \exists y_{0} \in Y_{0} \text { with } y \leq y_{0}
\end{aligned}
$$

for $y \in Y$.

Generalized BGP reflections - continued

The vertex $*$ is a source in the Hasse diagram of $\leq_{+}^{Y_{0}}$, with arrows ending at the vertices of Y_{0}.

The Hasse diagram of $\leq_{-}^{Y_{0}}$ is obtained by reverting the orientations of the arrows from $*$, making it into a sink.

Theorem. $\left(\{*\} \cup Y, \leq_{+}^{Y_{0}}\right) \stackrel{u}{\sim}\left(\{*\} \cup Y, \leq_{-}^{Y_{0}}\right)$.

Example.

Hybrid construction - setup

$\left(X, \leq_{X}\right),\left(Y, \leq_{Y}\right)-$ posets, $\left\{Y_{x}\right\}_{x \in X}-$ collection of subsets $Y_{x} \subseteq Y$, with the properties:

- For all $x \in X$,

$$
[y, \cdot] \cap\left[y^{\prime}, \cdot\right]=\phi=[\cdot, y] \cap\left[\cdot, y^{\prime}\right] \quad \text { for all } y \neq y^{\prime} \text { in } Y_{x}
$$

- For all $x \leq x^{\prime}$, there exists an isomorphism $\varphi_{x, x^{\prime}}: Y_{x} \xrightarrow{\sim} Y_{x^{\prime}}$ with

$$
y \leq_{Y} \varphi_{x, x^{\prime}}(y) \quad \text { for all } y \in Y_{x}
$$

It follows that $\left\{Y_{x}\right\}_{x \in X}$ is a local system of subsets of Y :

$$
\varphi_{x, x^{\prime \prime}}=\varphi_{x^{\prime}, x^{\prime \prime}} \varphi_{x, x^{\prime}} \quad \text { for all } x \leq x^{\prime} \leq x^{\prime \prime}
$$

Hybrid construction - result

Define two partial orders on \leq_{+}, \leq_{-}on $X \sqcup Y$ as follows:

- Keep the original partial orders inside X and Y.
- Add the relations

$$
\begin{aligned}
& x \leq_{+} y \Longleftrightarrow \exists y_{x} \in Y_{x} \text { with } y_{x} \leq_{Y} y \\
& y \leq-x \Longleftrightarrow \exists y_{x} \in Y_{x} \text { with } y \leq_{Y} y_{x}
\end{aligned}
$$

for $x \in X, y \in Y$.
Theorem. $\left(X \sqcup Y, \leq_{+}\right) \stackrel{u}{\sim}\left(X \sqcup Y, \leq_{-}\right)$.

Remarks.

- When $X=\{*\}$, we recover the generalized BGP reflection.
- When $Y_{x}=\{*\}$ for all $x \in X$, we recover the flip-flop.

Mirroring with respect to a bipartite structure

Let S be bipartite. ($S=S_{0} \sqcup S_{1}$ with $s<s^{\prime} \Rightarrow s \in S_{0}$ and $s^{\prime} \in S_{1}$)
Let $\mathfrak{X}=\left\{X_{s}\right\}_{s \in S}$ be a collection of posets indexed by S.
Define two partial orders \leq_{+}and \leq_{-}on $\bigsqcup_{s \in S} X_{s}$ as follows:

- Keep the original partial order inside each X_{s}.
- Add the relations

$$
x_{s}<_{+} x_{t} \Longleftrightarrow s<t \Longleftrightarrow x_{t}<-x_{s}
$$

for $x_{s} \in X_{s}, x_{t} \in X_{t}$.

Theorem. $\left(\bigsqcup_{s \in S} X_{s}, \leq_{+}\right) \stackrel{u}{\sim}\left(\bigsqcup_{s \in S} X_{s}, \leq_{-}\right)$.

Bipartite structure - example

$\left(\bigsqcup_{s \in S} X_{s}, \leq_{+}\right)$

$\left(\bigsqcup_{s \in S} X_{s}, \leq_{-}\right)$

Mates of triangular matrix algebras

Let k be a field, R and $S k$-algebras and ${ }_{R} M_{S}$ bimodule. Consider the triangular matrix algebras

$$
\Lambda=\left(\begin{array}{cc}
R & M \\
0 & S
\end{array}\right) \quad \text { and } \quad \tilde{\Lambda}=\left(\begin{array}{cc}
S & D M \\
0 & R
\end{array}\right)
$$

where $D M=\operatorname{Hom}_{k}(M, k)$.

Theorem. $\mathcal{D}^{b}(\operatorname{Mod} \Lambda) \simeq \mathcal{D}^{b}(\operatorname{Mod} \tilde{\Lambda})$, under the assumptions:

- $\operatorname{dim}_{k} M<\infty$
- $\operatorname{dim}_{k} S<\infty$, gl.dim $S<\infty$

