Posets, sheaves, and their derived equivalences

Sefi Ladkani

Einstein Institute of Mathematics The Hebrew University of Jerusalem

http://www.ma.huji.ac.il/~sefil/

Posets, diagrams and sheaves

X - poset (finite partially ordered set)

 \mathcal{A} – abelian category

 \mathcal{A}^X – the category of *diagrams* over X with values in \mathcal{A} , or *functors* $F: X \to \mathcal{A}$ consisting of:

- An object F_x of \mathcal{A} for each $x \in X$.
- A morphism $r_{xx'} \in \text{Hom}_{\mathcal{A}}(F_x, F_{x'})$ for each $x \leq x'$.

such that $r_{xx''} = r_{x'x''}r_{xx'}$ for all $x \le x' \le x''$ (commutativity).

Natural *topology* on X: $U \subseteq X$ is open if $x \in U, x \leq x' \Rightarrow x' \in U$

Diagrams can be identified with *sheaves* over X with values in \mathcal{A} .

Universal derived equivalence

Two posets X and Y are universally derived equivalent $(X \stackrel{u}{\sim} Y)$ if $\mathcal{D}^b(\mathcal{A}^X) \simeq \mathcal{D}^b(\mathcal{A}^Y)$

for any abelian category \mathcal{A} .

Fix a field k, and specialize:

mod k – the category of finite dimensional vector spaces over k.

 $(\mod k)^X$ can be identified with the category of finitely generated right modules over the incidence algebra of X over k.

X and Y are *derived equivalent* $(X \sim Y)$ if $\mathcal{D}^b(\operatorname{mod} kX) \simeq \mathcal{D}^b(\operatorname{mod} kY)$

Constructions of derived equivalent posets

Common theme: structured reversal of order relations.

- Generalized reflections (universal derived equivalences)
 - *Flip-Flops*, with application to posets of tilting modules
 - Generalized BGP reflections
 - Hybrid construction
- Mirroring with respect to a *bipartite* structure
 - *Mates* of triangular matrix algebras

Flip-Flops

Let (X, \leq_X) , (Y, \leq_Y) be posets, $f : X \to Y$ order-preserving.

Define two partial orders \leq_{+}^{f} , \leq_{-}^{f} on $X \sqcup Y$ as follows:

- Keep the original partial orders inside X and Y.
- Add the relations

$$egin{aligned} &x\leq^f_+y \Longleftrightarrow f(x)\leq_Y y\ &y\leq^f_-x \Longleftrightarrow y\leq_Y f(x) \end{aligned}$$

for $x \in X$, $y \in Y$.

Theorem. $(X \sqcup Y, \leq^f_+) \stackrel{u}{\sim} (X \sqcup Y, \leq^f_-).$

Flip-Flop – Example

 $2 \mapsto 1 \hspace{0.2cm} 4 \mapsto 1 \hspace{0.2cm} 5 \mapsto 3 \hspace{0.2cm} 6 \mapsto 1 \hspace{0.2cm} 7 \mapsto 3 \hspace{0.2cm} 9 \mapsto 8 \hspace{0.2cm} 12 \mapsto 8 \hspace{0.2cm} 13 \mapsto 10 \hspace{0.2cm} 14 \mapsto 11$

Application – Posets of tilting modules

Q - quiver without oriented cycles, k - field T_Q - poset of *tilting modules* of kQ [Riedtmann-Schofield, Happel-Unger]

x - a source in QQ' - the BGP reflection with respect to x. $T_Q^x - tilting modules containing the simple at <math>x$ as summand

Theorem. T_Q and $T_{Q'}$ are related via a flip-flop.

$$\mathcal{T}_Q \simeq (\mathcal{T}_Q \setminus \mathcal{T}_Q^x \sqcup \mathcal{T}_Q^x, \leq^f_+) \qquad \qquad \mathcal{T}_{Q'} \simeq (\mathcal{T}_{Q'} \setminus \mathcal{T}_{Q'}^x \sqcup \mathcal{T}_{Q'}^x, \leq^{f'}_-)$$

Corollary. If $Q_1 \sim Q_2$ then $\mathcal{T}_{Q_1} \stackrel{u}{\sim} \mathcal{T}_{Q_2}$.

Generalized BGP reflections

Let (Y, \leq) be poset, $Y_0 \subseteq Y$ a subset with the property $[y, \cdot] \cap [y', \cdot] = \phi = [\cdot, y] \cap [\cdot, y']$ for all $y \neq y'$ in Y_0

Define two partial orders $\leq_{+}^{Y_0}$, $\leq_{-}^{Y_0}$ on $\{*\} \cup Y$ as follows:

- Keep the original partial order inside Y.
- Add the relations

$$* <^{Y_0}_+ y \iff \exists y_0 \in Y_0 \text{ with } y_0 \leq y \\ y <^{Y_0}_- * \iff \exists y_0 \in Y_0 \text{ with } y \leq y_0$$

for $y \in Y$.

Generalized BGP reflections – continued

The vertex * is a *source* in the Hasse diagram of $\leq_{+}^{Y_0}$, with arrows ending at the vertices of Y_0 .

The Hasse diagram of $\leq_{-}^{Y_0}$ is obtained by reverting the orientations of the arrows from *, making it into a *sink*.

Theorem. $(\{*\} \cup Y, \leq^{Y_0}) \stackrel{u}{\sim} (\{*\} \cup Y, \leq^{Y_0}).$

Example.

Hybrid construction – setup

 (X, \leq_X) , (Y, \leq_Y) - posets, $\{Y_x\}_{x \in X}$ - collection of subsets $Y_x \subseteq Y$, with the properties:

• For all $x \in X$,

 $[y, \cdot] \cap [y', \cdot] = \phi = [\cdot, y] \cap [\cdot, y']$ for all $y \neq y'$ in Y_x

• For all $x \leq x'$, there exists an isomorphism $\varphi_{x,x'}: Y_x \xrightarrow{\sim} Y_{x'}$ with $y \leq_Y \varphi_{x,x'}(y)$ for all $y \in Y_x$

It follows that $\{Y_x\}_{x \in X}$ is a *local system* of subsets of Y:

 $\varphi_{x,x''} = \varphi_{x',x''} \varphi_{x,x'}$ for all $x \le x' \le x''$.

Hybrid construction – result

Define two partial orders on \leq_+ , \leq_- on $X \sqcup Y$ as follows:

- Keep the original partial orders inside X and Y.
- Add the relations

 $x \leq_+ y \iff \exists y_x \in Y_x \text{ with } y_x \leq_Y y$ $y \leq_- x \iff \exists y_x \in Y_x \text{ with } y \leq_Y y_x$ for $x \in X, y \in Y$.

Theorem. $(X \sqcup Y, \leq_+) \stackrel{u}{\sim} (X \sqcup Y, \leq_-).$

Remarks.

- When $X = \{*\}$, we recover the generalized BGP reflection.
- When $Y_x = \{*\}$ for all $x \in X$, we recover the flip-flop.

Mirroring with respect to a bipartite structure

Let S be bipartite. $(S = S_0 \sqcup S_1 \text{ with } s < s' \Rightarrow s \in S_0 \text{ and } s' \in S_1)$

Let $\mathfrak{X} = \{X_s\}_{s \in S}$ be a collection of posets indexed by S.

Define two partial orders \leq_+ and \leq_- on $\bigsqcup_{s \in S} X_s$ as follows:

- Keep the original partial order inside each X_s .
- Add the relations

 $x_s <_+ x_t \iff s < t$ $x_t <_- x_s \iff t < s$

for $x_s \in X_s$, $x_t \in X_t$.

Theorem. $(\bigsqcup_{s \in S} X_s, \leq_+) \sim (\bigsqcup_{s \in S} X_s, \leq_-).$

Bipartite structure – example

Mates of triangular matrix algebras

Let k be a field, R and S k-algebras and $_RM_S$ bimodule. Consider the *triangular matrix algebras*

$$\Lambda = \begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \quad \text{and} \quad \tilde{\Lambda} = \begin{pmatrix} S & DM \\ 0 & R \end{pmatrix}$$

where $DM = \text{Hom}_k(M, k)$.

Theorem. $\mathcal{D}^b(\text{mod }\Lambda) \simeq \mathcal{D}^b(\text{mod }\widetilde{\Lambda})$, under the assumptions:

- $\dim_k R < \infty$, $\dim_k S < \infty$, $\dim_k M < \infty$
- gl.dim $R < \infty$, gl.dim $S < \infty$