Piecewise hereditary algebras and posets

Sefi Ladkani

Einstein Institute of Mathematics The Hebrew University of Jerusalem

http://www.ma.huji.ac.il/~sefil/

Motivation – piecewise hereditary posets

An abelian category \mathcal{A} is *piecewise hereditary* if

 $\mathcal{D}^b(\mathcal{A})\simeq\mathcal{D}^b(\mathcal{H})$

for some hereditary abelian category \mathcal{H} (gl.dim $\mathcal{H} = 1$). [Happel-Reiten-Smalø]

X - poset (finite partially ordered set)

k – field, kX – the *incidence algebra* of X over k

kX is *piecewise hereditary* if mod kX is piecewise hereditary.

Question. What distinguishes piecewise hereditary posets?

Several types of restrictions

• Bounds on the global dimension

in terms of *connectivity properties* of the *graph of indecomposables* for finite length, piecewise hereditary categories.

• Positivity properties of the Euler form

when the *Coxeter transformation* is periodic.

• Weight types of canonical algebras

derived equivalent to incidence algebras.

The graph of indecomposables

 ${\cal A}$ – finite length abelian category.

ind A – isomorphism classes of indecomposables of A.

 $G(\mathcal{A})$ – graph of indecomposables of \mathcal{A} :

- vertices: the elements of ind \mathcal{A} .
- edges: $Q \to Q'$ if $\operatorname{Hom}_{\mathcal{A}}(Q,Q') \neq 0$.

Let $k \ge 1$, $\varepsilon = (\varepsilon_0, \ldots, \varepsilon_{k-1}) - a$ sequence in $\{+1, -1\}^k$.

Let $Q, Q' \in \text{ind } A$. An ε -path from Q to Q' is a sequence of vertices

$$Q = Q_0, Q_1, \dots, Q_k = Q'$$

such that $Q_i \to Q_{i+1}$ if $\varepsilon_i = +1$ and $Q_{i+1} \to Q_i$ if $\varepsilon_i = -1$.

Bounds on the global dimension

A – finite length, *piecewise hereditary* category.

Theorem. If there exist $k \ge 1$, $\varepsilon \in \{1, -1\}^k$ and $Q_0 \in \text{ind } \mathcal{A}$ such that for any simple S there exists an ε -path from Q_0 to S, then

gl.dim $\mathcal{A} \leq k + 1$ and $pd_{\mathcal{A}}Q + id_{\mathcal{A}}Q \leq k + 2$ for any $Q \in ind \mathcal{A}$

Corollary. If A is a finite dimensional, piecewise hereditary, *sincere* algebra, then

gl.dim $A \leq 3$ and $pd_A Q + id_A Q \leq 4$ for any indecomposable Q

 $(M - \text{sincere module}, P_S - \text{projective cover of } S, \text{ use } M \leftarrow P_S \twoheadrightarrow S).$

Consequences for piecewise hereditary posets

Corollary. Let X be a poset. If kX is *piecewise hereditary*, then gl.dim $kX \leq 3$ and $pd_{kX}Q + id_{kX}Q \leq 4$ for any indecomposable Q

Example 1. X with kX piecewise hereditary and gl.dim kX = 3.

Example 2. $D_4 \times D_4$ is not piecewise hereditary:

 $D_4 \times D_4 \sim A_2 \times A_2 \times A_2 \times A_2$ (use [Auslander-Platzeck-Reiten, Rickard])

The Euler form and Coxeter transformation

 Λ – finite dimensional algebra, gl.dim $\Lambda < \infty$

 $\langle \cdot, \cdot \rangle_{\Lambda} : K_0(\Lambda) \times K_0(\Lambda) \to \mathbb{Z}$ – the *Euler form* of Λ

$$\langle M,N\rangle_{\Lambda} = \sum_{i\geq 0} (-1)^i \dim_k \operatorname{Ext}^i_{\Lambda}(M,N)$$

 $\langle \cdot, \cdot \rangle_{\Lambda}$ is *positive* if $\langle x, x \rangle_{\Lambda} > 0$ for $x \neq 0$, *non-negative* if $\langle x, x \rangle_{\Lambda} \ge 0$.

 Φ_{Λ} – the *Coxeter transformation* of Λ

$$\langle x, y \rangle_{\bigwedge} = - \langle y, \Phi_{\bigwedge}(x) \rangle_{\bigwedge}$$

 Φ_{Λ} is *periodic* if $\Phi_{\Lambda}^N = I$ for some N.

Periodicity of Φ_Λ and non-negativity of $\langle\cdot,\cdot\rangle_\Lambda$

Always: $\langle \cdot, \cdot \rangle_{\Lambda}$ positive $\Rightarrow \Phi_{\Lambda}$ periodic.

What about a converse?

Theorem. Λ – finite dimensional, *piecewise hereditary* algebra. Then

 Φ_Λ periodic $\Rightarrow \langle \cdot, \cdot \rangle_\Lambda$ non-negative

Proof uses Happel's classification of hereditary categories with tilting object and [A'Campo, Ringel, Lenzing - de la Peña]

Example. A poset X with $\Phi_{kX}^6 = I$ but $\langle \cdot, \cdot \rangle_{kX}$ indefinite.

Weight types of canonical algebras

k – algebraically closed field

 $\mathbf{p} = (p_1, \ldots, p_t) - weights, \lambda = (\lambda_3, \ldots, \lambda_t) - pairwise distinct in k \setminus \{0\}.$

 $\Lambda = \Lambda(\mathbf{p}, \boldsymbol{\lambda})$ – the *canonical algebra* of type $(\mathbf{p}, \boldsymbol{\lambda})$ [Ringel]

Theorem. A is derived equivalent to an *incidence algebra* of a poset if and only if $t \leq 3$ and $p \neq (1, p)$.

Example. A poset whose incidence algebra is derived equivalent to the canonical algebra of type (p_1, p_2, p_3) with $p_i \ge 3$.

