Constructions of Derived Equivalences of Finite Posets

Sefi Ladkani

Einstein Institute of Mathematics
The Hebrew University of Jerusalem
http://www.ma.huji.ac.il/~sefil/

Constructions of derived equivalences of finite posets

Notions

X - Poset (finite partially ordered set).

The Hasse diagram G_{X} of X is a directed acyclic graph.

- Vertices: the elements $x \in X$.
- Edges $x \rightarrow y$ for pairs $x<y$ with no z such that $x<z<y$.
X carries a natural topology:

$$
U \subseteq X \text { is open if } x \in U, y \geq x \Rightarrow y \in U
$$

We get a finite T_{0} topological space.

Equivalence of notions:

$$
\text { Posets } \Leftrightarrow \text { Finite } T_{0} \text { spaces }
$$

For a field k, the incidence algebra $k X$ of X is a matrix subalgebra spanned by $e_{x y}$ for $x \leq y$.

Constructions of derived equivalences of finite posets
 Example

Poset $X=\{1,2,3,4\}$ with

$$
1<2, \quad 1<3, \quad 1<4, \quad 2<3, \quad 2<4, \quad 3<4
$$

Hasse diagram

Topology

The open sets are:

$$
\phi,\{4\},\{2,4\},\{3,4\},\{2,3,4\},\{1,2,3,4\}
$$

Incidence algebra (* can take any value)

$$
\left(\begin{array}{llll}
* & * & * & * \\
0 & * & 0 & * \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right)
$$

Constructions of derived equivalences of finite posets

Three Equivalent Categories

$\mathcal{A}-$ Abelian category.

- Sheaves over X with values in \mathcal{A} :

$$
U \mapsto \mathcal{F}(U) \quad U \subseteq X \text { open }
$$

with restriction maps $\mathcal{F}(U) \rightarrow \mathcal{F}(V)(U \supseteq V)$, pre-sheaf and gluing conditions.

- Commutative diagrams of shape G_{X} over \mathcal{A}, or functors $X \rightarrow \mathcal{A}$:

$$
F_{x} \xrightarrow{r_{x y}} F_{y} \quad x \rightarrow y
$$

with $r_{x y} \in \operatorname{hom}_{\mathcal{A}}\left(F_{x}, F_{y}\right)$ and commutativity relations.

Fix a field k, and specialize:
\mathcal{A} - finite dimensional vector spaces over k

- Finitely generated right modules over the incidence algebra of X over k.

Constructions of derived equivalences of finite posets

The Problem

$\mathcal{D}^{b}(X)$ - Bounded derived category of sheaves / diagrams / modules (over X).

Two posets X, Y are equivalent $(X \sim Y)$ if

$$
\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)
$$

Problem. When $X \sim Y$ for two posets X, Y ?

No known algorithm that decides if $X \sim Y$; however one can use:

- Invariants of the derived category;

If $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$ then X and Y must have the same invariants.

Examples of invariants are:

- The number of points of X.
- The Euler bilinear form on X.
- Constructions

Start with some "nice" X and get many Y-s with $X \sim Y$.

Constructions of derived equivalences of finite posets

Known Constructions

- BGP Reflection

When X is a tree and $s \in X$ is a source (or a sink), invert all arrows from (to) s and get a new tree X^{\prime} with $X^{\prime} \sim X$.

Example.

are equivalent.

- The square and D_{4}

are equivalent.

Constructions of derived equivalences of finite posets

New Construction

A few definitions

Given a poset S, denote by $S^{o p}$ the opposite poset, with $S^{o p}=S$ and $s \leq s^{\prime}$ in $S^{o p}$ if and only if $s \geq s^{\prime}$ in S.

A poset S is called a bipartite graph if we can partition $S=S_{0} \amalg S_{1}$ with S_{0}, S_{1} discrete with the property that $s<s^{\prime}$ in S implies $s \in S_{0}$, $s^{\prime} \in S_{1}$.

Let $\mathfrak{X}=\left\{X_{s}\right\}_{s \in S}$ be a collection of posets indexed by the elements of another poset S.

The lexicographic sum of the X_{s} along S, denoted $\oplus_{S} \mathfrak{X}$, is a new poset (X, \leq);
Its elements are $X=\coprod_{s \in S} X_{s}$, with the order $x \leq y$ for $x \in X_{s}, y \in X_{t}$ if either $s<t$ (in S) or $s=t$ and $x \leq y$ (in X_{s}).

Constructions of derived equivalences of finite posets

New Construction - Theorem

Theorem.

If S is a bipartite graph and $\mathfrak{X}=\left\{X_{s}\right\}_{s \in S}$ is a collection of posets, then

```
\oplusS\mathfrak{X}~\mp@subsup{\oplus}{Sop}{}\mathfrak{X}
```


Example.

Constructions of derived equivalences of finite posets

Idea of the Proof

Let $Y \subset X$ be closed, $U=X \backslash Y$. Denote by $i: Y \rightarrow X, j: U \rightarrow X$ the inclusions.

Consider the truncations $\tilde{P_{y}}=i_{*} i^{-1} P_{y}, \tilde{I_{u}}=$ $j_{!} j^{-1} I_{u}$ for $y \in Y, u \in U$.

Example. $X=Y \cup U$.

Then $\left\{\tilde{P}_{y}\right\}_{y \in Y} \cup\left\{\tilde{I}_{u}[1]\right\}_{u \in U}$ is a strongly exceptional collection in $\mathcal{D}^{b}(X)$, hence

$$
\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}\left(A_{Y}\right)
$$

where $A_{Y}=\operatorname{End}_{\mathcal{D}^{b}(X)}\left(\left(\oplus_{Y} \tilde{P}_{y}\right) \oplus\left(\oplus_{U} \tilde{I_{u}}\right)[1]\right)$.

Constructions of derived equivalences of finite posets

Proof - continued

k-basis of the algebra A_{Y}
$\left\{e_{y y^{\prime}}: y \leq y^{\prime}\right\} \cup\left\{e_{u^{\prime} u}: u^{\prime} \leq u\right\} \cup\left\{e_{u y}: y<u\right\}$ where $y, y^{\prime} \in Y, u^{\prime}, u \in U$.

Multiplication formulas

$$
\begin{aligned}
& e_{y y^{\prime}} e_{y^{\prime} y^{\prime \prime}}=e_{y y^{\prime \prime}}, e_{u^{\prime \prime} u^{\prime}} e_{u^{\prime} u}=e_{u^{\prime \prime} u} \\
& e_{u y} e_{y y^{\prime}}=e_{u y^{\prime}} \text { if } y^{\prime}<u \text { and } 0 \text { otherwise. } \\
& e_{u^{\prime} u} e_{u y}=e_{u^{\prime} y} \text { if } y<u^{\prime} \text { and } 0 \text { otherwise. }
\end{aligned}
$$

Define a binary relation \leq^{\prime} on $X^{\prime}=U \amalg Y$ by

$$
\begin{gathered}
u^{\prime} \leq^{\prime} u \Leftrightarrow u^{\prime} \leq u \quad y \leq^{\prime} y^{\prime} \Leftrightarrow y \leq y^{\prime} \\
u<^{\prime} y \Leftrightarrow y<u
\end{gathered}
$$

\leq^{\prime} is a partial order if and only if

$$
y \leq y^{\prime} \in Y, u^{\prime} \leq u \in U, y<u \Rightarrow y^{\prime}<u^{\prime}
$$

In this case, the algebra A_{Y} is isomorphic to the incidence algebra of $\left(X^{\prime}, \leq^{\prime}\right)$.

Constructions of derived equivalences of finite posets

Ordinal Sums

Corollary. $X \oplus Y \sim Y \oplus X$.
Proposition. Assume that for any X, Y, Z,
(*) $\quad X \oplus Y \oplus Z \sim Y \oplus X \oplus Z$

Then, for all X_{1}, \ldots, X_{n} and $\pi \in S_{n}$,

$$
X_{\pi(1)} \oplus \cdots \oplus X_{\pi(n)} \sim X_{1} \oplus \cdots \oplus X_{n}
$$

Counterexample to (\star).

are not equivalent!

