Constructions of Derived Equivalences of Finite Posets

Sefi Ladkani

Einstein Institute of Mathematics The Hebrew University of Jerusalem

http://www.ma.huji.ac.il/~sefil/

Constructions of derived equivalences of finite posets

Notions

X - Poset (finite partially ordered set).

The *Hasse diagram* G_X of X is a directed acyclic graph.

- Vertices: the elements $x \in X$.
- Edges $x \to y$ for pairs x < y with no z such that x < z < y.

X carries a natural *topology*:

 $U \subseteq X$ is open if $x \in U, y \ge x \Rightarrow y \in U$

We get a finite T_0 topological space.

Equivalence of notions:

Posets
$$\Leftrightarrow$$
 Finite T_0 spaces

For a field k, the *incidence algebra* kX of X is a matrix subalgebra spanned by e_{xy} for $x \leq y$. Constructions of derived equivalences of finite posets

Example

Poset $X = \{1, 2, 3, 4\}$ with 1 < 2, 1 < 3, 1 < 4, 2 < 3, 2 < 4, 3 < 4

Hasse diagram

Topology

The open sets are:

 $\phi, \{4\}, \{2,4\}, \{3,4\}, \{2,3,4\}, \{1,2,3,4\}$

Incidence algebra (* can take any value)

$$\begin{pmatrix} * & * & * & * \\ 0 & * & 0 & * \\ 0 & 0 & * & * \\ 0 & 0 & 0 & * \end{pmatrix}$$

Three Equivalent Categories

 \mathcal{A} – Abelian category.

• Sheaves over X with values in \mathcal{A} :

 $U \mapsto \mathcal{F}(U)$ $U \subseteq X$ open

with restriction maps $\mathcal{F}(U) \to \mathcal{F}(V)$ $(U \supseteq V)$, pre-sheaf and gluing conditions.

• Commutative diagrams of shape G_X over \mathcal{A} , or functors $X \to \mathcal{A}$:

$$F_x \xrightarrow{r_{xy}} F_y \qquad \qquad x \to y$$

with $r_{xy} \in \hom_{\mathcal{A}}(F_x, F_y)$ and commutativity relations.

Fix a field k, and specialize: A – finite dimensional vector spaces over k

• Finitely generated *right modules* over the *incidence algebra* of X over k.

The Problem

 $\mathcal{D}^{b}(X)$ – *Bounded derived category* of sheaves / diagrams / modules (over X).

Two posets X, Y are *equivalent* $(X \sim Y)$ if $\mathcal{D}^b(X) \simeq \mathcal{D}^b(Y)$

Problem. When $X \sim Y$ for two posets X, Y?

No known algorithm that decides if $X \sim Y$; however one can use:

• *Invariants* of the derived category; If $\mathcal{D}^b(X) \simeq \mathcal{D}^b(Y)$ then X and Y must have the same invariants.

Examples of invariants are:

- The *number of points* of X.
- The *Euler bilinear form* on X.

• Constructions

Start with some "nice" X and get many Y-s with $X \sim Y$.

Known Constructions

• BGP Reflection

When X is a tree and $s \in X$ is a *source* (or a *sink*), invert all arrows from (to) s and get a new tree X' with $X' \sim X$.

New Construction

A few definitions

Given a poset S, denote by S^{op} the *opposite poset*, with $S^{op} = S$ and $s \leq s'$ in S^{op} if and only if $s \geq s'$ in S.

A poset S is called a *bipartite graph* if we can partition $S = S_0 \amalg S_1$ with S_0, S_1 discrete with the property that s < s' in S implies $s \in S_0$, $s' \in S_1$.

Let $\mathfrak{X} = \{X_s\}_{s \in S}$ be a collection of posets indexed by the elements of another poset S.

The lexicographic sum of the X_s along S, denoted $\bigoplus_S \mathfrak{X}$, is a new poset (X, \leq) ; Its elements are $X = \coprod_{s \in S} X_s$, with the order $x \leq y$ for $x \in X_s$, $y \in X_t$ if either s < t (in S) or s = t and $x \leq y$ (in X_s). Constructions of derived equivalences of finite posets

New Construction – Theorem

Theorem.

If S is a bipartite graph and $\mathfrak{X} = \{X_s\}_{s \in S}$ is a collection of posets, then

 $\oplus_S \mathfrak{X} \sim \oplus_{S^{op}} \mathfrak{X}$

Example.

Idea of the Proof

Let $Y \subset X$ be closed, $U = X \setminus Y$. Denote by $i: Y \to X$, $j: U \to X$ the inclusions.

Consider the truncations $\tilde{P}_y = i_* i^{-1} P_y$, $\tilde{I}_u = j_! j^{-1} I_u$ for $y \in Y$, $u \in U$.

Example. $X = Y \cup U$.

Then ${\{\tilde{P}_y\}_{y\in Y} \cup \{\tilde{I}_u[1]\}_{u\in U}}$ is a *strongly exceptional collection* in $\mathcal{D}^b(X)$, hence

 $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(A_{Y})$ where $A_{Y} = \operatorname{End}_{\mathcal{D}^{b}(X)}((\oplus_{Y} \tilde{P}_{y}) \oplus (\oplus_{U} \tilde{I}_{u})[1]).$

Proof – continued

k-basis of the algebra A_Y

$$\begin{split} & \left\{ e_{yy'} \ : \ y \leq y' \right\} \cup \left\{ e_{u'u} \ : \ u' \leq u \right\} \cup \left\{ e_{uy} \ : \ y < u \right\} \\ & \text{where } y, y' \in Y, \ u', u \in U. \end{split}$$

Multiplication formulas

 $e_{yy^\prime}e_{y^\prime y^{\prime\prime}}=e_{yy^{\prime\prime}}$, $e_{u^{\prime\prime}u^\prime}e_{u^\prime u}=e_{u^{\prime\prime}u}$

 $e_{uy}e_{yy'} = e_{uy'}$ if y' < u and 0 otherwise. $e_{u'u}e_{uy} = e_{u'y}$ if y < u' and 0 otherwise.

Define a *binary relation* \leq' on $X' = U \amalg Y$ by

$$u' \leq 'u \Leftrightarrow u' \leq u \qquad y \leq 'y' \Leftrightarrow y \leq y'$$

 $u < 'y \Leftrightarrow y < u$

 \leq' is a *partial order* if and only if

 $y \le y' \in Y, \, u' \le u \in U, \, y < u \Rightarrow y' < u'$

In this case, the algebra A_Y is isomorphic to the *incidence algebra* of (X', \leq') .

Ordinal Sums

Corollary. $X \oplus Y \sim Y \oplus X$.

Proposition. Assume that for any X, Y, Z,

 $(\star) X \oplus Y \oplus Z \sim Y \oplus X \oplus Z$

Then, for all X_1, \ldots, X_n and $\pi \in S_n$,

 $X_{\pi(1)} \oplus \cdots \oplus X_{\pi(n)} \sim X_1 \oplus \cdots \oplus X_n$

Counterexample to (\star) .

