Derived Equivalences of Categories of Sheaves over Finite Partially Ordered Sets

Sefi Ladkani

Einstein Institute of Mathematics
The Hebrew University of Jerusalem

Derived equivalences of finite posets

Introduction

The purpose of my research is to explore the bounded derived categories $\mathcal{D}^{b}(X)$ of diagram categories over finite posets X.

Applications and Related areas:

1. (Geometry) Computation of the cohomology of subspace arrangements [3].
2. (Combinatorics) Study of h-vectors of convex polytopes [4].
3. (String theory) Homological mirror symmetry [5].
4. (Algebraic geometry) Study of derived categories of coherent sheaves over algebraic varieties [2];
Non-commutative geometry.

Derived equivalences of finite posets

Posets

A poset (X, \leq) is a set X with a binary relation \leq satisfying
(reflexive)
$x \leq x$
(anti-symmetric)
$x \leq y, y \leq x \Rightarrow x=y$
(transitive)
$x \leq y, y \leq z \Rightarrow x \leq z$

Examples:

1. The set of natural numbers with the usual order: $0<1<2<3<\ldots$.
2. The set of integers with the division relation: $a \leq b$ if a divides b.
3. The set $\mathcal{P}(Y)$ of all subsets of a given set Y with the inclusion relation: $S \leq T$ if $S \subseteq T$.

$$
\phi \leq\{a\} \leq\{a, b\} \quad, \quad \phi \leq\{b\} \leq\{a, b\}
$$

Derived equivalences of finite posets

Hasse Diagrams

Given a finite poset (X, \leq), its Hasse diagram is a directed graph;

- Its vertices are the elements $x \in X$.
- Its edges $x \rightarrow y$ are pairs $x<y$ such that no z satisfies $x<z<y$.

Examples:

1. The natural numbers:

$$
0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow \ldots
$$

2. $\mathcal{P}(\{a, b, c\})$:

Derived equivalences of finite posets

Diagram Categories

Let (X, \leq) be a finite poset (as a Hasse diagram) and let k be a field.

The diagram category over X consists of objects and morphisms.

An object consists of:

- Finite dimensional vector space V_{x} for each vertex $x \in X$.
- Linear transformation $T_{x y}: V_{x} \rightarrow V_{y}$ for each edge $x \rightarrow y$.

We require that the composition of the linear transformations along a path depends only on its starting and ending points.

Example. $\mathcal{P}(\{a, b\})$. An object is a diagram below with $T_{24} T_{12}=T_{34} T_{13}$.

Derived equivalences of finite posets

A morphism between two objects $\left\{V_{x}, T_{x y}\right\}$, $\left\{V_{x}^{\prime}, T_{x y}^{\prime}\right\}$ consists of linear transformations

$$
f_{x}: V_{x} \rightarrow V_{x}^{\prime}
$$

for each vertex $x \in X$, such that for any edge $x \rightarrow y$,

$$
f_{y} T_{x y}=T_{x y}^{\prime} f_{x}
$$

Example. $\mathcal{P}(\{a, b\})$. A morphism is a tuple ($f_{1}, f_{2}, f_{3}, f_{4}$) such that all squares in the following diagram are commutative.

Derived equivalences of finite posets

Topology and Algebra

Define a topology on X by:

$$
U \subseteq X \text { is open if } x \in U, y \geq x \Rightarrow y \in U
$$

The incidence algebra A_{X} of X is a matrix subalgebra generated by $E_{x y}$ for $x \leq y$.

Example. $\mathcal{P}(\{a, b\})$. The incidence algebra is: (* can take any value)

$$
\left(\begin{array}{llll}
* & * & * & * \\
0 & * & 0 & * \\
0 & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right)
$$

The open sets are:

$$
\phi,\{4\},\{2,4\},\{3,4\},\{2,3,4\},\{1,2,3,4\}
$$

Three equivalent notions:

Diagrams on X (finite poset)
Sheaves on X (topology as above)
(Right) finite dimensional modules over A_{X}

Derived equivalences of finite posets

The Derived Category

A complex of diagrams is a sequence of diagrams \mathcal{F}_{n} and morphisms $d_{n}: \mathcal{F}_{n} \rightarrow \mathcal{F}_{n+1}$

$$
\cdots \rightarrow \mathcal{F}_{-1} \xrightarrow{d_{-1}} \mathcal{F}_{0} \xrightarrow{d_{0}} \mathcal{F}_{1} \xrightarrow{d_{1}} \mathcal{F}_{2} \rightarrow \ldots
$$

such that $d_{n+1} d_{n}=0$ for all n.

A complex is bounded if $\mathcal{F}_{n}=0$ for all but finite number of n.

Complexes also form a category.

The derived category is obtained by taking complexes modulo a suitable equivalence relation (quasi-isomorphism).

We will focus on the bounded derived category corresponding to bounded complexes of diagrams on X, and denote it by $\mathcal{D}^{b}(X)$.

Derived equivalences of finite posets

The Problem

Two posets X, Y are equivalent $(X \sim Y)$ if

$$
\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)
$$

Problem. When $X \sim Y$ for two posets X, Y ?

No known algorithm that decides if $X \sim Y$; however one can use:

Invariants of the derived category;
If $\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(Y)$ then X and Y must have the same invariants.

Examples of invariants are:

- The number of points of X.
- The Euler bilinear form on X.

Constructions

Start with some "nice" X and get many Y-s with $X \sim Y$.

Derived equivalences of finite posets

Known Constructions

BGP Reflection [1]

When X is a tree and $s \in X$ is a source (or a sink), invert all arrows from (to) s and get a new tree X^{\prime} with $X^{\prime} \sim X$.

Example.

are equivalent.
D_{4} and the square

and
are equivalent.

Derived equivalences of finite posets

New Construction

A few definitions

Given a poset S, denote by $S^{o p}$ the opposite poset, with $S^{o p}=S$ and $s \leq s^{\prime}$ in $S^{o p}$ if and only if $s \geq s^{\prime}$ in S.

A poset S is called a bipartite graph if we can partition $S=S_{0} \amalg S_{1}$ with S_{0}, S_{1} discrete with the property that $s<s^{\prime}$ in S implies $s \in S_{0}, s^{\prime} \in S_{1}$.

Let $\mathfrak{X}=\left\{X_{s}\right\}_{s \in S}$ be a collection of posets indexed by the elements of another poset S.

The lexicographic sum of the X_{s} along S, denoted $\oplus_{S} \mathfrak{X}$, is a new poset (X, \leq);
Its elements are $X=\amalg_{s \in S} X_{s}$, with the order $x \leq y$ for $x \in X_{s}, y \in X_{t}$ if either $s<t$ (in S) or $s=t$ and $x \leq y$ (in X_{s}).

Derived equivalences of finite posets

New Construction - Theorem

Theorem.

If S is a bipartite graph and $\mathfrak{X}=\left\{X_{s}\right\}_{s \in S}$ is a collection of posets, then

$$
\oplus_{S} \mathfrak{X} \sim \oplus_{S o p} \mathfrak{X}
$$

This theorem generalizes some of the known constructions.

Example.

Corollary. $X \oplus Y \sim Y \oplus X$

Derived equivalences of finite posets

Idea of the Proof

Let $Y \subset X$ be closed, $U=X \backslash Y$. Denote by $i: Y \rightarrow X, j: U \rightarrow X$ the inclusions.

Consider the truncations $\tilde{P}_{y}=i_{*} i^{-1} P_{y}, \tilde{I_{u}}=$ $j_{!} j^{-1} I_{u}$ for $y \in Y, u \in U$.

Example. $X=Y \cup U$.

P_{y}

$\widetilde{P_{y}}$

Then $\left\{\widetilde{P}_{y}\right\}_{y \in Y} \cup\left\{\widetilde{I}_{u}[1]\right\}_{u \in U}$ is a strongly exceptional collection in $\mathcal{D}^{b}(X)$, hence

$$
\mathcal{D}^{b}(X) \simeq \mathcal{D}^{b}(A)
$$

where $A=\operatorname{End}_{\mathcal{D}^{b}(X)}\left(\left(\oplus_{Y} \tilde{P}_{y}\right) \oplus\left(\oplus_{U} \tilde{I_{u}}\right)[1]\right)$.
Choose Y such that A is an incidence algebra, and then identify its underlying poset.

Derived equivalences of finite posets

A Generalization?

Question. Is the theorem also true for posets S with 3 layers?

The simplest case to consider is the ordinal sum of three posets: $X \oplus Y \oplus Z$.

Note that

$$
\begin{aligned}
& X \oplus Y \oplus Z \sim Y \oplus Z \oplus X \sim Z \oplus X \oplus Y \\
& Y \oplus X \oplus Z \sim X \oplus Z \oplus Y \sim Z \oplus Y \oplus X
\end{aligned}
$$

(why?)
Counterexample.

are not equivalent!

References

[1] Bernstein I.N., Gelfand I.M., Ponomarev V.A. Coxeter functors and Gabriel's theorem. Uspehi Mat. Nauk 28 (1973), no. 2 (170), 19-33.
[2] Bondal A., Orlov D. Derived Categories of coherent sheaves. Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), 47-56.
[3] Deligne P., Goresky M., MacPherson R., L'algèbre de cohomologie du complément, dans un espace affine, d'une famille finie de sous-espaces affines. Michigan Math. J. 48 (2000), 121-136.
[4] Karu, K. Hard Lefschetz theorem for nonrational polytopes. Invent. Math. 157 (2004), no. 2, 419-447.
[5] Kontsevich, Maxim. Homological algebra of mirror symmetry. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 120-139, Birkhäuser, Basel, 1995.
[6] Stanley R.P. Enumerative Combinatorics, Vol. I, Wadsworth and Brooks, 1986.

