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1. Notation, terminology and recollections

The category ∆ has the objects [n] = {0, 1, . . . , n} for n ≥ 0, and as morphisms all weakly
monotone maps. A simplicial set is a contravariant functor from ∆ to the category of sets; a
morphism of simplicial sets is a natural transformation of functors. We write sset for the category
of simplicial sets.

If X : ∆op −→ (sets) is a simplicial set, we write

Xn = X([n])

and for a morphism α : [m] −→ [n] we write

α∗ = X(α) : Xn −→ Xm .

Elements of Xn are called n-simplices of X.

An n-simplex x of a simplicial set X is degenerate if x = s∗i (y) for some 0 ≤ i ≤ n− 1 and some
y ∈ Xn−1. And x is non-degenerate if it is not degenerate. If x is an arbitrary n-simplex of X,
then there is a unique pair (σ, z) consisting of a surjective morphism σ : [n] −→ [l] in ∆ and a
non-degenerate simplex z ∈ Xl such that x = σ∗(z).

We recall the Yoneda lemma for simplicial sets. The simplicial n-simplex is the functor

∆n = ∆(−, [n]) : ∆op −→ (sets)

Date: January 24, 2022.

1



2 STEFAN SCHWEDE

represented by the object [n] of ∆. For every simplicial set X, all n ≥ 0 and every n-simplex
x ∈ Xn, there is a unique morphism

x[ : ∆n −→ X

such that x[n(Id[n]) = x. We refer to x[ as the characteristic morphism of the n-simplex x; it is
given in dimensions m by

x[m : (∆n)m = ∆([m], [n]) −→ Xm , x[m(α) = α∗(x) .

The boundary ∂∆n is the simplicial subset of ∆n with

(∂∆n)m = {α ∈ ∆([m], [n]) : α is not surjective} .

Example 1.1. The k-simplices of ∆n are all weakly monotone maps from [k] to [n]. Such a map
α : [k] −→ [n] is non-degenerate as a simplex of ∆n if and only if it is injective.

2. Minimal representatives for geometric realization

The topological n-simplex is

∇n = {(t0, . . . , tn) ∈ Rn+1 : ti ≥ 0, t0 + · · ·+ tn = 1} .
This space is the convex hull of the standard basis vectors e0, e1, . . . , en of Rn+1, where ei =
(0, . . . , 0, 1, 0, . . . ) with 1 in the (i + 1)st coordinate. The topological simplices assemble into a
covariant functor ∇• : ∆ −→ Top by sending a morphism α : [m] −→ [n] in ∆ to the continuous
map

α∗ : ∇m −→ ∇n , (α(t0, . . . , tm))j =
∑
α(i)=j

ti .

The map α∗ can be characterized as the unique affine linear map whose behavior on the vertices
is given by α∗(ei) = eα(i).

The geometric realization of a simplicial set X is the space

|X| =
(∐

n≥0
Xn ×∇n

)
/ ∼ ;

here the set Xn is given the discrete topology, so that Xn ×∇n is a topological disjoint union of
copies of ∇n indexed by Xn. The equivalence relation ‘∼’ is generated by the relation

(2.1) (x, α∗(t)) ∼ (α∗(x), t)

for all x ∈ Xn, t ∈ ∇m and α : [m] −→ [n] a morphism in ∆. In more abstract categorical terms,
the realization is the coend of the functor

∆op ×∆ −→ Top , ([m], [n]) 7−→ Xm ×∇n .
Because the generating relation (2.1) for the geometric realization is not symmetric, it is not

immediately obvious when exactly points in the disjoint union of the spaces Xn×∇n are equivalent.
We will now argue that the equivalence classes have unique minimal representatives, which are
moreover easy to characterize.

Proposition 2.2. Let X be a simplicial set.

(i) Every equivalence class under the equivalence relation generated by (2.1) has a unique repre-
sentative (x, t) ∈ Xl ×∇l of minimal dimension l.
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(ii) An element (y, s) of Xn × ∇n is the minimal representative in its equivalence class if and
only if y is non-degenerate and s belongs to the interior of ∇n.

(iii) If (x, t) ∈ Xl×∇l is the minimal representative in the equivalence class of (y, s) ∈ Xn×∇n,
then there is a unique triple

(δ, σ, u)

consisting of an injective morphism δ : [k] −→ [n], a surjective morphism σ : [k] −→ [l], and
an interior point u of ∆k such that

δ∗(y) = σ∗(x) , s = δ∗(u) and t = σ∗(u) .

Proof. We write Xnd
l for the set of non-degenerate l-simplices of X, and we write

int(∇l) = {(t0, . . . , tl) ∈ ∇l : t0 > 0, . . . , tl > 0}

for the interior of the topological l-simplex. We define a map

(2.3) ρ :
∐

n≥0
Xn ×∇n −→

∐
l≥0

Xnd
l × int(∇l)

such that for ρ(y, s) is equivalent to (y, s).
We consider any pair (y, s) ∈ Xn ×∇n. We suppose that s = (s0, . . . , sn). Since the numbers

s0, . . . , sn are non-negative and sum up to 1, at least one of them must be positive. We suppose
that k + 1 of the real numbers s0, . . . , sn are positive. We let u = (u0, . . . , uk) be the sequence
obtained from (s0, . . . , sn) by deleting the 0’s and keeping the other entries in their order. Then
there is a unique injective monotone map δ : [k] −→ [n] such that

s = (s0, . . . , sn) = δ∗(u0, . . . , uk) = δ∗(u) .

Then

(y, s) = (y, δ∗(u)) ∼ (δ∗(y), u) .

The k-simplex δ∗(y) is of the form

δ∗(y) = σ∗(x)

for a unique surjective morphism σ : [k] −→ [l] in ∆ and a unique non-degenerate simplex x ∈ Xnd
l .

Thus

(δ∗(y), u) = (σ∗(x), u) ∼ (x, σ∗(u)) .

Since all coordinates of u are positive and σ∗ : ∇k −→ ∇l is summing up coordinates, all coordi-
nates of σ∗(u) are again positive, so σ∗(u) is an interior point of ∇l. We can thus define

ρ(y, s) = (x, σ∗(u)) ∈ Xnd
l × int(∇l) .

Claim: If (y, s) ∈ Xn × ∇n and (ȳ, s̄) ∈ Xn̄ × ∇n̄ are equivalent, then ρ(y, s) = ρ(ȳ, s̄). It
suffices to show the claim whenever (y, s) and (ȳ, s̄) are related by a generating relation (2.1) i.e.,
we can assume that y = α∗(ȳ) and s̄ = α∗(s) for some morphism α : [n] −→ [n̄]. We let (δ, u, σ, x)
be as in the construction of ρ(y, s). We choose a factorization (necessarily unique)

(2.4) α ◦ δ = δ̄ ◦ σ̄ : [k] −→ [n̄]

as a surjective morphism σ̄ : [k] −→ [k̄] followed by an injective morphism δ̄ : [k̄] −→ [n̄]. Then

s̄ = α∗(s) = α∗(δ∗(u)) = δ̄∗(σ̄∗(u)) .
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Since u is an interior point of ∇k and σ̄ is injective, σ̄∗(u) is an interior point of ∇k̄. This shows
that (δ̄, σ̄∗(u)) is the data in the first step of the construction of ρ(ȳ, s̄).

Then we write
δ̄∗(ȳ) = σ̂∗(x̂)

for a surjective morphism σ̂ : [k̄] −→ [l̂] and a non-degenerate element x̂ ∈ Xnd
l̂

(necessarily

unique). Then

σ∗(x) = δ∗(y) = δ∗(α∗(ȳ))

(2.4) = σ̄∗(δ̄∗(ȳ)) = σ̄∗(σ̂∗(x̂)) = (σ̂σ̄)∗(x̂) .

Since x and x̂ are non-degenerate and σ and σ̂σ̄ are surjective, the uniqueness shows that l = l̂,
σ = σ̂σ̄ and x = x̂. We conclude that

δ̄∗(ȳ) = σ̂∗(x̂) = σ̂∗(x) .

Altogether this shows that (δ̄, σ̄∗(u), σ̂, x) is the data in the construction of ρ(ȳ, s̄). So

ρ(ȳ, s̄) = [x, σ̂∗(σ̄∗(u))] = (x, σ∗(u)) = ρ(y, s) .

This proves the claim.

Now we can prove the proposition.
(i) Suppose that (y, s) is of minimal dimension among all pairs in its equivalence class. In the

construction of ρ(y, s) the map δ : [k] −→ [n] is injective and σ : [k] −→ [l] is surjective, so we have
n ≥ k ≥ l. Since (y, s) is of minimal dimension in its equivalence class and equivalent to ρ(y, s),
we must have n = k = l. But then δ = σ = Id[n], and so (y, s) = ρ(y, s). If (y′, s′) is another
representative of minimal dimension in the same equivalence class, then

(y, s) = ρ(y, s) = ρ(y′, s′) = (y′, s′) ,

where the second equation is the above claim. We record for later use that we have also shown
that the unique minimal representative in the equivalence class of (y, s) is ρ(y, s).

(ii) We showed in the proof of (i) that the minimal representative in every equivalence class
of (y, s) is ρ(y, s); this consists, by construction, of a non-degenerate simplex and interior point.
Now suppose conversely that (y, s) is a pair of a non-degenerate simplex and an interior point. In
the construction of ρ(y, s) we must then have δ = Id[n] (because s is an interior point); because
y = δ∗(y) = σ∗(x) is non-degenerate, we must have σ = Id[n]. So (y, s) = ρ(y, s); we showed in
the proof of (i) that therefore, (y, s) is the minimal representative in its equivalence class.

(iii) We showed in the proof of part (i) that (x, t) = ρ(y, s) is the minimal representative in the
class of (y, s), and the morphisms σ and δ and the point u were constructed in the definition of
ρ(y, s). To prove the uniqueness clause we observe that we had no other choice in the definition of
ρ(y, s): because u is non-degenerate, all of its coordinates are non-zero. So the relation s = δ∗(u)
forces k to be one less than the number of non-zero coordinates of s, and δ : [k] −→ [n] is unique
determined by the positions of the 0s in s. The pair (σ, x) is then determined because δ∗(y) is
uniquely a degeneracy of some non-degenerate simplex. �

Corollary 2.5. Let f : X −→ Y be a morphism of simplicial sets such that fn : Xn −→ Yn is
injective for every n ≥ 0.

(i) For every non-degenerate n-simplex x of X, the simplex fn(x) is non-degenerate.
(ii) The continuous map |f | : |X| −→ |Y | is injective.
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Proof. (i) We let x ∈ Xn be non-degenerate. We argue by contradiction and suppose that fn(x) =
s∗i (y) for some 0 ≤ i ≤ n− 1 and y ∈ Yn−1. Then

fn(s∗i (d
∗
i (x))) = s∗i (d

∗
i (fn(x))) = s∗i (d

∗
i (s
∗
i (y))) = s∗i (y) = f∗n(x) .

Because fn is injective, we conclude that x = s∗i (d
∗
i (x)). This contradicts the hypothesis that x is

non-degenerate.
(ii) We let (x, t) ∈ Xn×∇n and (x′, t′) ∈ Xm×∇m be the minimal representatives of two points

in |X| such that |f |[x, t] = |f |[x′, t′]. Then

[fn(x), t] = |f |[x, t] = |f |[x′, t′] = [fm(x′), t′] .

As minimal representatives, the simplices x and x′ are non-degenerate and the points t and t′ are
interior points in the respective simplices. By part (i) the simplices fn(x) and fm(x′) are again
non-degenerate. So (fn(x), t) and (fm(x′), t′) are minimal representatives of the same equivalence
class in |Y |. Uniqueness of minimal representatives thus forces

n = m , fn(x) = fm(x′) and t = t′ .

Because fn = fm is injective, also x = x′. So [x, t] = [x′, t′], and we have shown that |f | is
injective. �

Remark 2.6. Something stronger than stated in Corollary 2.5 is actually true. For every
morphism of simplicial sets f : X −→ Y that is dimensionwise injective, the continuous map
|f | : |X| −→ |Y | is closed and a homeomorphism onto its image. Even better: with respect to the
preferred CW-structures, the map |f | is a cellular homeomorphism onto a CW-subcomplex of |Y |.
We will show these facts in Theorem 3.8 below.

Corollary 2.7. For every simplicial set X, the composite∐
n≥0

Xnd
n ×∇n

inclusion−−−−−→
∐

n≥0
Xn ×∇n

quotient−−−−−→ |X|

is surjective.

For example, if X has only finitely many non-degenerate simplices altogether, then the source
of the above composite is compact, and hence the realization |X| is quasi-compact. We will see
below that much more is true: if X has only finitely many non-degenerate simplices, |X| is a finite
CW-complex.

Similarly, the existence, characterization and uniqueness of minimal representations are equiv-
alent to the fact that the continuous composite∐

n≥0
Xnd
n × int(∇n)

inclusion−−−−−→
∐

n≥0
Xn ×∇n

quotient−−−−−→ |X|

is bijective, where the source is now the disjoint union of the open simplices. This continuous
bijection is typically not a homeomorphism. We will later recognize the images of the sets {x} ×
int(∇n) as the open cells in the preferred CW-structure on |X|, see Theorem 3.8 below.

The two maps

|∆m| −→ ∇m , [α, t] 7−→ α∗(t)(2.8)

∇m −→ |∆m| , t 7−→ [Id[m], t]
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are mutually inverse homeomorphisms. The next proposition shows that these homeomorphisms
also identify the realization of |∂∆m| with the boundary

∂∇m = {(t0, . . . , tm) ∈ ∇m : ti = 0 for some 0 ≤ i ≤ m}
of the topological m-simplex.

Proposition 2.9. The composite

|∂∆m| |inclusion|−−−−−−→ |∆m| [α,t]7→α∗(t)−−−−−−−→∼=
∇m

is a homeomorphism onto the closed subspace ∂∇m of ∇m.

Proof. The first map induced by the inclusion ∂∆m −→ ∆m is injective by Corollary 2.5. The
non-degenerate simplices of ∂∆m are all injective morphisms α : [k] −→ [m] except Id[m]. Since
∂∆m has only finitely many non-degenerate simplices, the realization |∂∆m| is quasi-compact
by Corollary 2.7. Since ∇m is a Hausdorff space, the composite is a closed map, and so an
homeomorphism onto its image. Again by Corollary 2.7, the image of the composite is the union
of the images of the maps

α∗ : ∇k −→ ∇m

for all injective morphisms α : [k] −→ [m] other than Id[m]. This shows that the image of the
composite coincides with the boundary of ∇m. �

3. The preferred CW-structure on a geometric realization

In this section we will show that the geometric realization |X| of a simplicial set X comes with a
preferred CW-structure. The strategy to construct it is to observe that the skeleton filtration and
the ‘cell attachments’ already exist in the world of simplicial sets; because geometric realization
is left adjoint to the singular complex functor, it preserves colimits such as the simplicial cell
attachments.

We will also see that the CW-structure on |X| construction does not involve any choices; as a
result, morphisms of simplicial sets will realize to cellular maps for the preferred CW-structures.

Construction 3.1 (Simplicial skeleta). We let X be a simplicial set, and we consider a natural
number m ≥ 0. The m-skeleton is the simplicial subset skmX of X defined by

(skmX)n = {x ∈ Xn : x = α∗(y) for some y ∈ Xm and α : [n] −→ [m]} .
The sets (skmX)n are clearly closed under the simplicial structure maps of X, so they indeed form
a simplicial subset. By definition, skmX is the smallest simplicial subset of X that contains all
m-simplices of X.

Example 3.2. Every constant simplicial set is 0-dimensional, i.e., it coincides with its 0-skeleton.
Conversely, every simplicial set X with X = sk0X is isomorphic to the constant simplicial set
with value X0.

Example 3.3. The m-simplex ∆m is ‘m-dimensional‘ in the sense that skm(∆m) = ∆m. The
(m− 1)-skeleton of the simplicial m-simplex is its boundary:

skm−1(∆m) = ∂∆m .

Proposition 3.4. Let X be a simplicial set and m ≥ 0.
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(i) For n ≤ m, we have (skmX)n = Xn.
(ii) For n > m, every n-simplex of skmX is degenerate.
(iii) The simplicial set skmX is contained in skm+1X.
(iv) The simplicial set X is a colimit of the sequence of simplicial sets

sk0X ⊆ sk1X ⊆ sk2X ⊆ . . . ⊆ skmX ⊆ . . . .

(v) Every morphism f : X −→ Y of simplicial sets sends skmX to skm Y .

Proof. (i) For n ≤ m we can choose an injective morphism α : [n] −→ [m] and a surjective
morphism σ : [m] −→ [n] in the category ∆ such that σ ◦ α = Id[n]. Then every x ∈ Xn satisfies

x = (σ ◦ α)∗(x) = α∗(σ∗(x)) ,

so x belongs to (skmX)n.
(ii) We suppose that n > m, and that x = α∗(y) for some y ∈ Xm and some morphism

α : [n] −→ [m]. Since n is larger than m, the morphism α cannot be injective, so there is an
i ∈ {0, . . . , n−} such that α(i) = α(i+ 1). Then α = β ◦ si for some morphism β : [n− 1] −→ [m],
and hence

x = α∗(y) = s∗i (β
∗(y))

is degenerate.
(iii) We consider an n-simplex of the form x = α∗(y) for some α : [n] −→ [m] and y ∈ Xm.

Then

x = α∗(y) = (s0 ◦ d0 ◦ α)∗(y) = (d0 ◦ α)∗(s∗0(y)) ,

which shows that x ∈ (skm+1X)n.
(iv) Because the category of simplicial sets is a functor category, limits and colimits of simplicial

sets are calculated objectwise. So it suffices to show that for every n ≥ 0, the set Xn is a colimit
of the sequence of sets

(sk0X)n ⊆ (sk1X)n ⊆ (sk2X)n ⊆ . . . ⊆ (skmX)n ⊆ . . . .

However, by part (i) this sequence stabilizes from the n-skeleton onward, i.e.,

Xn = (sknX)n = (skn+1X)n = (skn+2X)n = . . . ,

so Xn is a colimit of this sequence.
(v) If x = α∗(y) ∈ Xn for some α : [n] −→ [m] and y ∈ Xm, then

fn(x) = fn(α∗(y)) = α∗(fm(y)) ,

so fn(x) belongs to (skm Y )n. �

Remark 3.5. We let f : X −→ Y be any morphism of simplicial sets. By part (v) of the previous
proposition, f restricts to a morphism skm f : skmX −→ skm Y between the m-skeleta. This
extends the m-skeleton construction to a functor

skm : sset −→ sset .

Moreover, for varying simplicial sets X, the inclusions skmX −→ skm+1X and skmX −→ X
are natural transformations skm −→ skm+1 and skm −→ Id of endofunctors on the category of
simplicial sets.
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For the following proposition we record an observation. We let X be a simplicial set and m ≥ 0.
Let Y be a simplicial subset of X such that Xm−1 = Ym−1. Equivalently, skm−1 Y = skm−1X.
Then the following square commutes:

∂∆m

x[|∂∆m
��

skm−1 ∆m //

skm−1(x[)
��

∆m

x[

��
skm−1 Y skm−1X // X

In other words: the characteristic morphism of every m-simplex of X sends ∂∆m into the simplicial
subset Y .

Proposition 3.6. Let X be a simplicial set and m ≥ 0. Let Y be a simplicial subset of X such
that Xm−1 = Ym−1. Suppose moreover that for n > m, every simplex in Xn \ Yn is degenerate.

(i) The commutative square∐
x∈Xm\Ym ∂∆m incl //

∐
x[|∂∆m

��

∐
x∈Xm\Ym ∆m

∐
x[

��
Y

incl
// X

is a pushout square of simplicial sets.
(ii) The commutative square∐

x∈Xm\Ym |∂∆m| incl //

∐
|x[||∂∆m

��

∐
x∈Xm\Ym |∆

m|
∐
x[

��
|Y |

incl
// |X|

is a pushout square of topological spaces.
(iii) The geometric realization |X| can be obtained from |Y | by attaching m-cells indexed by the

set Xm \ Ym.

Proof. (i) Because the category of simplicial sets is a functor category, colimits of simplicial sets
are calculated objectwise. So it suffices to show that for every k ≥ 0, the following square is a
pushout in the category of sets:

(3.7)
∐
x∈Xm\Ym(∂∆m)k

incl //

∐
x[k|∂∆m

��

∐
x∈Xm\Ym(∆m)k∐

x[k
��

Yk
incl

// Xk

Because the two horizontal maps are inclusions, the pushout property is equivalent to the property
that the right vertical map restricts to a bijection

(Xm \ Ym)× ((∆m)k \ (∂∆m)k) −→ Xk \ Yk , (x, α) 7−→ α∗(x) .
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The k-simplices of ∂∆m are all morphisms α : [k] −→ [m] that are not surjective. So we must
show that the map

(Xm \ Ym)× {α : [k] −→ [m] : α surjective} −→ Xk \ Yk , (x, α) 7−→ α∗(x)

is bijective. Injectivity is the fact, proven earlier, that the representation of a simplex as a degen-
eracy of some non-degenerate simplex is unique. Surjectivity is trivial for k < m (because then
Xk = Yk) and obvious for k = m. For k > m we consider any simplex x ∈ Xk \ Yk we write
x = α∗(x̄) for some surjective morphism α : [k] −→ [n] and some non-degenerate simplex x̄ ∈ Xn.
Because x does not belong to Yk, the simplex x̄ does not belong to Yn. So we must have n ≥ m,
because otherwise Xn = Yn. But we must also have n ≤ m, because otherwise all simplices in
Xn \ Yn are degenerate by hypothesis. Hence n = m, and so x is in the image of the map.

(ii) The geometric realization functor |− | : sset −→ Top is left adjoint to the singular complex
functor S : Top −→ sset. So geometric realization preserves colimits, in particular coproducts
and pushouts.

(iii) Part (ii) shows that |X| can be obtained from |Y | by attaching copies of |∆m| along |∂∆m|
indexed by the set Xm \ Ym. Proposition 2.9 shows that the pair (|∆m|, |∂∆m|) is homeomorphic
to the pair (∇m, ∂∇m), and hence also to the pair (Dm, Sm−1). This proves the claim. �

The following theorem is the main results of this section, and it summarizes all the key properties
of the preferred CW-structure on |X|.

Theorem 3.8. Let X be a simplicial set.

(i) The subspaces | skmX| for m ≥ 0 form a CW-structure on the geometric realization |X|, the
preferred CW-structure.

(ii) The m-cells of the preferred CW-structure biject with the set of non-degenerate m-simplices
of X.

(iii) Suppose that for n > m, every n-simplex of X is degenerate. Then the preferred CW-structure
on |X| is m-dimensional.

(iv) Suppose that the total number of non-degenerate simplices of X is finite. Then the preferred
CW-structure on |X| is finite. In particular, the space |X| is compact.

(v) For every morphism f : Y −→ X of simplicial sets, the continuous map |f | : |Y | −→ |X| is
cellular with respect to the preferred CW-structures.

(vi) If Y is a simplicial subset of X, then the preferred CW-structure on |Y | is a subcomplex of
the preferred CW-structure on |X|.

Proof. We prove parts (i) and (ii) together. We have (skm−1X)m−1 = Xm−1 = (skmX)m−1,
and for n > m, every n-simplex of skmX is degenerate. So Proposition 3.6 applies to the pair
(skmX, skm−1X). Since

(skmX)m \ (skm−1X)m

is precisely the set of non-degenerate m-simplices of X, we conclude that | skmX| can be obtained
from | skm−1X| by attaching m-cells indexed by the non-degenerate m-simplices of X.

The simplicial set X is the colimit of the sequence of its skeleta skmX. The geometric realization
functor is a left adjoint, so it preserves colimits. Hence |X| is a colimit, in the category of
topological spaces and continuous maps, of the sequence

| sk0X| −→ | sk1X| −→ | sk2X| −→ . . . −→ | skmX| −→ . . . .
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Each of these maps is a cell attachment, and hence in particular a closed embedding. So a colimit
of the sequence is the union with the weak topology.

Parts (iii) through (vi) are immediate consequences of parts (i) and (ii). �

Example 3.9 (Preferred CW-structure on |∆m|). We have seen an explicit homeomorphism

|∆m| ∼= ∇m , [α, t] 7−→ α∗(t)

between the realization of the simplicial m-simplex and the topological m-simplex. This homeo-
morphism identifies the preferred CW-structure on |∆m| with the ‘linear’ CW-structure on ∇m,
i.e., by the linear dimension of the faces. The k-skeleton of this CW-structure is

(∇m)k = {(t0, . . . , tm) ∈ ∇m : at least m− k of the coordinates t0, . . . tm are 0} .

Example 3.10 (Preferred CW-structure on |∆m/∂∆m|). We write ∆m/∂∆m for the quotient
simplicial set where the simplicial subset ∂∆m of ∆m is collapsed. In other words, in every
dimension n, all the n-simplices of ∂∆m are identified to a single n-simplex. This simplicial set
participates in a pushout square

∂∆m inclusion //

��

∆m

projection
��

∆0 // ∆m/∂∆m

Since geometric realization preserves colimits (such as pushouts), it produces a pushout square of
topological spaces

|∂∆m|
|inclusion| //

��

|∆m|

|projection|
��

|∆0| // |∆m/∂∆m|

The space |∆0| ∼= ∇0 is a single point, so this pushout says that the continuous map |projection| : |∆m| −→
|∆m/∂∆m| factors through a homeomorphism

|∆m|/|∂∆m| ∼= |∆m/∂∆m| .

By Proposition 2.9, the pair (|∆m|, |∂∆m|) is homeomorphic to the pair (∇m, ∂∇m) and so the
realization of ∆m/∂∆m is homeomorphic to

∇m/∂∇m ∼= Sm .

We invite the reader to check that ∆m/∂∆m has precisely two non-degenerate simplices: the
0-simplex consisting of the identified (∂∆m)0, and (the image of) the m-simplex Id[m]. So the
preferred CW-structure on |∆m/∂∆m| corresponds to the minimal CW-structure on Sm, with one
0-cell and one m-cell (or with two 0-cells if m = 0).
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4. The singular complex functor is homotopical

In this section we show that the singular complex functor takes weak homotopy equivalences of
topological spaces to homotopy equivalences of simplicial sets.

The functors of geometric realization and singular complex form an adjoint pair

sset
|−| // Top .
S
oo

The data of this adjunction is a bijection of morphisms sets

HomTop(|X|, A) ∼= Homsset(X,S(A))

that is natural in the simplicial set X and the topological space A. The data of the adjunction
can alternatively be specified by the unit or the counit of the adjunction. In our case, the unit is
the morphism of simplicial sets ηX : X −→ S|X| with components

(ηX)n : Xn −→ (S|X|)n = HomTop(∇n, |X|) , (ηX)n(x)(t) = [x, t] .

The counit is the continuous map

εZ : |S(Z)| −→ Z , εZ [f, t] = f(t) .

Here f : ∇n −→ Z is a singular n-simplex in the space Z, and t ∈ ∇n.
We will now argue that the adjunction bijection passes to a similar bijection of homotopy classes.

In the context of simplicial sets, ‘homotopy’ now refers to the equivalence relation generated by
elementary homotopies, i.e., morphisms of simplicial sets X×∆1 −→ S(A). As a matter of fact, for
the target S(A), this elementary homotopy relation is already symmetric and transitive, because
S(A) is an example of a so-called Kan complex, see also Remark 7.21; however, we will not use
this fact.

Proposition 4.1. Let A be a topological space and X a simplicial set. Then two continuous
maps f, g : |X| −→ A are homotopic if and only if the adjoint morphisms of simplicial sets

f [, g[ : X −→ S(A) are simplicially homotopic.

Proof. In one direction we let H : |X| × ∇1 −→ A by a homotopy from f to g, i.e., such that

H(−, (0, 1)) = f and H(−, (1, 0)) = g .

We define a morphism of simplicial sets

κ : X ×∆1 −→ S(|X| × ∇1)

in simplicial dimension n as the map

κn : Xn ×∆([n], [1]) −→ Sn(|X| × ∇1)

κn(x, α)(t) = ([x, t], α∗(t)) ∈ |X| × ∇1 .

Then the composite

X ×∆1 κ−−→ S(|X| × ∇1)
S(H)−−−−→ S(A)

is a simplicial homotopy from f [ to g[.
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For the converse implication we suppose that f [ and g[ are simplicially homotopic. Because
‘homotopy’ of continuous maps is an equivalence relation, we may assume without loss of generality
that there is an elementary homotopy

K : X ×∆1 −→ S(A)

from f [ to g[. Then the composite

|X| × ∇1 ∼= |X ×∆1| |κ|−−−→ |S(A)| εA−−−→ A

is a homotopy from f to g, where the first map is the inverse of the homeomorphism

|X ×∆1| (|p1|,|p2|)−−−−−−→∼=
|X| × |∆1| ∼= |X| × ∇1 ,

compare Exercise 11.2. �

Theorem 4.2. Let f : A −→ B be a weak homotopy equivalence of topological spaces. Then
S(f) : S(A) −→ S(B) is homotopy equivalence of simplicial sets.

Proof. Since f is a weak homotopy equivalence, the induced map of homotopy classes

f∗ = [K, f ] : [K,A] −→ [K,B]

is bijective for every CW-complex K, compare Exercise 10.2. In particular, the map

f∗ : [|S(B)|, A] −→ [|S(B)|, B]

is bijective. So there is a continuous map λ : |S(B)| −→ A, unique up to homotopy, such that the
composite f ◦λ : |S(B)| −→ B is homotopic to the counit εB of the adjunction between geometric
realization and singular complex. The adjoint

λ] : S(B) −→ S(A)

is then a morphism of simplicial sets, and Proposition 4.1 shows that S(f) ◦ λ] : S(B) −→ S(B)
is simplicially homotopic to the identity of S(B).

Now we will argue that the other composite λ] ◦ S(f) : S(A) −→ S(A) is also simplicially
homotopic to the identity. To see that, we exploit that the composite

f ◦ λ ◦ |S(f)| : |S(A)| −→ B

is homotopic to

εB ◦ |S(f)| = f ◦ εA .

Since the map

f∗ : [|S(A)|, A] −→ [|S(A)|, B]

is bijective, we conclude that λ ◦ |S(f)| : |S(A)| −→ A is homotopic to the counit εA. Passing to
adjoints shows that λ] ◦f is simplicially homotopic to the identity of S(A), by another application
of Proposition 4.1. �
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5. Homology of the geometric realization

In this section we prove that for every simplicial set X and all coefficient groups A, the unit
ηX : X −→ S|X| of the adjunction induces an isomorphism

Hn(ηX) : Hn(X;A) −→ Hn(|X|;A)

from the homology of the simplicial set to the singular homology of its geometric realization. As
a corollary we will deduce that for every space Z, the adjunction counit εZ : |S(Z)| −→ Z induces
isomorphisms of all singular homology groups.

Construction 5.1. We let (K,L) be a pair of simplicial sets, i.e., L is a simplicial subset of K.
The adjunction units and inclusions give rise to a commutative square of chain complexes:

C∗(L;A)
incl //

C∗(ηL;A)
��

C∗(K;A)

C∗(ηK ;A)
��

C∗(S|L|;A)
incl
// C∗(S|K|;A)

We write

(5.2) ηK,L : C∗(K;A)/C∗(L;A) −→ C∗(S|K|;A)/C∗(S|L|;A)

for the chain map induced on quotient complexes. The homology of the complex C∗(K;A)/C∗(L;A)
is the relative homology H∗(K,L;A) of the pair of simplicial sets (K,L); the homology of the
complex C∗(S|K|;A)/C∗(S|L|;A) is the relative homology H∗(|K|, |L|;A) of the pair of spaces
(|K|, |L|).
Theorem 5.3. For every pair of simplicial sets (K,L) and all abelian groups A, the chain map
ηK,L from (5.2) is a quasi-isomorphism. Hence the induced maps

Hn(ηK,L) : Hn(K,L;A) −→ Hn(|K|, |L|;A)

are isomorphisms of homology groups.

Proof. Claim 1: We consider two pairs (M,N) and (K,L) of simplicial sets that participate in a
pushout square:

N
incl //

f |N
��

M

f
��

L
incl

// K

If the theorem holds for the pair (M,N), then it also holds for the pair (K,L). The pushout
square gives rise to a commutative square of chain complexes

(5.4)

C∗(M ;A)/C∗(N ;A)
ηM,N

'
//

f∗ ∼=
��

C∗(S|M |;A)/C∗(S|N |;A)

S|f |∗
��

C∗(K;A)/C∗(L;A) ηK,L

// C∗(S|K|;A)/C∗(S|L|;A)

Because the square is a pushout, the right vertical morphism M −→ K restricts to bijections from
Mn \Nn onto Kn \ Ln for every n ≥ 0. So the left vertical chain map in (5.4) is an isomorphism
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of chain complexes. The upper horizontal morphism ηM,N is a quasi-isomorphism by hypothesis.
The effect of the right vertical morphism on homology groups is

|f |∗ : Hn(|M |, |N |;A) −→ Hn(|K|, |L|;A) ,

the induced homomorphism of the relative homology groups of the geometric realizations. Since
the square

|N |
|incl| //

|f ||N|
��

|M |

|f |
��

|L|
|incl|

// |K|

is a pushout of spaces and the horizontal maps are inclusions of CW-subcomplexes, excision
implies that the map of relative homology groups is an isomorphism. This means that also the
right vertical chain map in (5.4) is also a quasi-isomorphism. Since the other three chain maps in
(5.4) are quasi-isomorphisms, so is ηK,L, and this proves Claim 1.

Claim 2: We consider a triple of simplicial sets (K,L,M). If the theorem holds for two of the
three pairs (K,L), (L,M) and (K,M), then it also holds for the third pair. The triple of simplicial
sets yields two triples of chain complexes

C∗(M ;A) ⊂ C∗(L;A) ⊂ C∗(K;A) and

C∗(S|M |;A) ⊂ C∗(S|L|;A) ⊂ C∗(S|K|;A) .

From these we form two short exact sequences of chain complexes, related by the η-morphisms in
a commutative diagram:

0 // C∗(L;A)/C∗(M ;A) //

ηL,M

��

C∗(K;A)/(M ;A) //

ηK,M

��

C∗(K;A)/C∗(L;A) //

ηK,L

��

0

0 // C∗(S|L|;A)/C∗(S|M |;A) // C∗(S|K|;A)/(S|M |;A) // C∗(S|K|;A)/C∗(S|L|;A) // 0

We apply the 5-lemma to the resulting commutative diagram of long exact homology sequences:
since the theorem holds for two of the three pairs, every two out of three vertical morphisms of
homology groups are isomorphisms, hence so are the remaining ones. So the theorem holds for
the third pair, which proves Claim 2.

Claim 3: The theorem holds for the pair (∆m, ∂∆m) for all m ≥ 0. We argue by induction
on m. The induction starts with m = 0; then ∆0 is a constant simplicial set with one vertex
and ∂∆0 = ∅; also, the space |∆0| consists of a single point. So in this case we have individually
calculated H∗(∆

0, ∂∆0;A) and H∗(|∆0|, |∂∆0|;A), and both consists of a copy of A concentrated
in dimension 0. Moreover, the map η∆0,∂∆0 is a quasi-isomorphism by explicit verification.

For m ≥ 1 we let Λm0 denote the ‘0-th horn’ of ∆m, i.e., the simplicial subset generated
by d1, . . . , dm : [m − 1] −→ [m]. Then both ∆m and Λm0 are simplicially contractible, and
their geometric realizations |∆m| and |Λm0 | are contractible. So the relative homology groups
H∗(∆

m,Λm0 ;A) and H∗(|∆m|, |Λm0 |;A) are all trivial, and η∆m,Λm
0

is a quasi-isomorphism. The
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simplex d0 : [m − 1] −→ [m] is the unique non-degenerate simplex of ∂∆m that does not belong
to Λm0 . So the following square is a pushout of simplicial sets:

∂∆m−1 incl //

(d0)∗
��

∆m−1

(d0)∗
��

Λm0 incl
// ∂∆m

Since the theorem holds for the pair (∆m−1, ∂∆m−1) by induction, it holds for the pair (∂∆m,Λm0 )
by Claim 1. Since the theorem holds for the pairs (∆m,Λm0 ) and (∂∆m,Λm0 ), it holds for the pair
(∆m, ∂∆m) by Claim 2. This completes the inductive step, and hence the proof of Claim 3.

Claim 4: Suppose that the theorem holds for a family {(Ki, Li)}i∈I of pairs of simplicial sets.
Then the theorem also holds for the pair (qi∈IKi,qi∈ILi) of disjoint unions. The functors of geo-
metric realization and singular complex both preserves disjoint unions, and the functor C∗(−;A)
takes disjoint unions of simplicial sets to direct sums of chain complexes. So in the commutative
square ⊕

i∈I C∗(Ki;A)/C∗(Li;A)

⊕
ηKi,Li //

∼=
��

⊕
i∈I C∗(S|Ki|;A)/C∗(S|Li|;A)

∼=
��

C∗(qKi;A)/C∗(qLi;A) ηqKi,qLi

// C∗(S| qKi|;A)/C∗(S| q Li|;A)

the canonical vertical morphisms are isomorphisms. Any direct sum of quasi-isomorphisms is
a quasi-isomorphism, so the upper horizontal morphism is a quasi-isomorphism since all pairs
(Ki, Li) satisfy the hypothesis of the theorem. Hence the lower horizontal map is a quasi-
isomorphism, which proves Claim 4.

Claim 5: The theorem holds for the pair ((skmK)∪L,L) for all m ≥ −1. We argue by induction
on m; because sk−1K is empty, there is nothing to show for m = −1. Now we suppose that m ≥ 0,
and we assume the theorem for the pair ((skm−1K) ∪ L,L). We write

N = Kn.d.
m \ Lm

for the set of non-degenerate m-simplices in K \ L. Proposition 3.6 (i) provides a pushout in the
category of simplicial sets: ∐

N ∂∆m //

��

∐
N ∆m

��
(skm−1K) ∪ L // (skmK) ∪ L

The theorem holds for the pair (∆m, ∂∆m) by Claim 3, and hence also for the disjoint union
(
∐
N ∆m,

∐
N ∂∆m) by Claim 4. So the theorem holds for the pair ((skmK) ∪ L, (skm−1K) ∪ L)

by Claim 1. Since the theorem holds for the pair ((skm−1K) ∪L,L) by induction, Claim 2 shows
that theorem for the pair ((skmK) ∪ L,L).

Claim 6: The theorem holds in general. To show this, we fix a homology dimension n. Then
all simplices in K \ ((skn+1K) ∪ L), and all cells in |K| \ |(skn+1K) ∪ L| have dimension at least
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n+ 2, so the inclusion (skn+1K) ∪ L −→ K induces isomorphisms

Hn((skn+1K) ∪ L,L;A)
∼=−−→ Hn(K,L;A) and

Hn(|(skn+1K) ∪ L|, |L|;A)
∼=−−→ Hn(|K|, |L|;A) .

The theorem holds for the pair ((skn+1K)∪L,L) by Claim 5, so naturality of the η-maps establishes
the theorem for the pair (K,L). �

Corollary 5.5. For every space Z, the counit of the adjunction εZ : |S(Z)| −→ Z induces iso-
morphisms of all singular homology groups.

Proof. The composite

S(Z)
ηS(Z)−−−→ S|S(Z)| S(εZ)−−−→ S(Z)

is the identity, hence so is the composite

H∗(Z;A)
H∗(ηS(Z))−−−−−−→ H∗(|S(Z)|;A)

H∗(εZ)−−−−→ H∗(Z;A) .

The first map is an isomorphism by Theorem 5.3, applied to the pair (K,L) = (S(Z), ∅). So the
map H∗(εZ) is an isomorphism. �

6. The counit weak equivalence

In this section we will show that for every space Z, the counit of the adjunction εZ : |S(Z)| −→ Z
is a weak homotopy equivalence. This result was originally proved by John Milnor [4, Theorem 4],
who credits the result to Giever [2]. Since the space |S(Z)| comes with a preferred CW-structure,
this also yields a functorial and natural CW-approximation for any space Z.

Proposition 6.1. Let X be a non-empty simplicial set with the following properties:

• for all vertices x, y ∈ X0 there is a 1-simplex w ∈ X1 with d∗1(w) = x and d∗0(w) = y;
• for all 1-simplices u, v, w ∈ X1 such that

d∗0(u) = d∗1(v) , d∗0(v) = d∗0(w) and d∗1(u) = d∗1(w)

there is a 2-simplex z ∈ X2 such that

d∗0(z) = v , d∗1(z) = w and d∗2(w) = u .

Then the geometric realization |X| is simply connected.

Proof. We choose a vertex x ∈ X0; we abuse notation and also denote the corresponding 0-cell
of |X| by x, which we use as the basepoint. For every y ∈ X0 with y 6= x we choose a 1-simplex
s(y) ∈ X1 such that d∗0(s(y)) = y and d∗1(s(y)) = x; such 1-simplices exist by the first hypothesis.
We write T for the 1-dimensional simplicial subset of X generated by X0 and the 1-simplices s(y)
for all y ∈ X0 \ {x}. Then |T | is a 1-dimensional CW-complex with X0 as its set of 0-cells, and
such that every y 6= x is connected by a unique 1-cell to x. In particular, |T | is contractible. Since
|T | is a CW-subcomplex of |X|, the inclusion |T | −→ |X| has the homotopy extension property,
and so the quotient map

|X| −→ |X|/|T | ∼= |X/T |
is a homotopy equivalence. We may thus show that the geometric realization of X/T is simply
connected. Because T0 = X0, the simplicial set X/T has a unique vertex t, so its realization is
path connected.
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The geometric realization of sk1(X/T ) = (sk1X)/T is a 1-dimensional CW-complex with a
single 0-cell, i.e., a wedge of circles indexed by the non-degenerated 1-simplices(

sk1(X/T )
)n.d.

= X1 \ T1 .

By covering space theory, or an iterated application of the van Kampen theorem, the fundamental
group π1(| sk1(X/T )|, t) is a free group, generated by the loops represented by the non-degenerate 1-
simplices of X/T . By cellular approximation, the inclusion sk1(X/T ) −→ X/T induces an epimor-
phism of fundamental groups after geometric realization. So the fundamental group π1(|X/T |, t)
is generated by the homotopy classes of the loops

v[ : [0, 1] −→ |X/T | , s 7−→ [v, (s, 1− s)]

for all v ∈ X1 \ T1.

We will now use the second hypothesis to show that all the loops v[ are nullhomotopic. The
1-simplices u = s(d∗1(y)), v and w = s(d∗0(y)) satisfy the relations

d∗0(s(d∗1(v)))) = d∗1(v) , d∗0(s(d∗0(v))) = d∗0(v) and d∗1(s(d∗1(v))) = d∗1(s(d∗0(v))) = x .

These are precisely the hypotheses of the second assumption, so there exists a 2-simplex z ∈ X2

such that

d∗0(z) = v , d∗1(z) = w and d∗2(w) = u .

The composite

[0, 1]× [0, 1]
(s,t) 7→(t,(1−t)(1−s),(1−t)s)−−−−−−−−−−−−−−−−−→ ∇2 t7→[z,t]−−−−→ |X| '−−→ |X/T |

then provides a homotopy, relative endpoints, from the loop v[ to the constant loop at the base-
point t. �

Remark 6.2. Proposition 6.1 is a special case of a more general fact. Indeed, the two hypotheses
on the simplicial set in the previous proposition can equivalently be stated as extension properties:
the first condition is equivalent to requiring that every morphism of simplicial sets ∂∆1 −→ X
admits an extension to ∆1; the second condition is equivalent to requiring that every morphism
of simplicial sets ∂∆2 −→ X admits an extension to ∆2.

The generalization of Proposition 6.1 is as follows: let X be a simplicial set with the property
that for all 0 ≤ k ≤ n, every morphism of simplicial sets ∂∆k −→ X admits an extension to ∆k.
Then the geometric realization |X| is (n− 1)-connected.

Corollary 6.3. Let Z be a simply connected space.

(i) The singular complex S(Z) satisfies the hypotheses of Proposition 6.1.
(ii) The space |S(Z)| is simply connected.

Proof. (i) We let x, y be vertices of S(Z), i.e., maps x, y : ∇0 −→ Z (automatically continuous).
Since Z is path connected, we can choose a path from x(1) to y(1), which we can parameterize
as a continuous map w : ∇1 −→ Z such that ∇(1, 0) = x(1) and ∇(0, 1) = y(1). Then w is a
1-simplex of S(Z) that satisfies

d∗1(w)(1) = w(d1(1)) = w(1, 0) = x(1) ;

so d∗1(w) = x, and similarly d∗0(w) = y.
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Now we let u, v, w ∈ S(Z) be singular 1-simplices, i.e., continuous maps u, v, w : ∇1 −→ Z. The
hypotheses d∗0(u) = d∗1(v) d∗0(v) = d∗0(w) and d∗1(u) = d∗1(w) then translate into the relations

u(0, 1) = v(1, 0) , v(0, 1) = w(0, 1) and u(1, 0) = w(1, 0) .

We can thus define a continuous map

〈u, v, w〉 : ∂∇2 −→ Z

by

〈u, v, w〉(t0, t1, t2) =


v(t1, t2) if t0 = 0,

w(t0, t2) if t1 = 0, and

u(t0, t1) if t2 = 0.

Because Z is simply-connected, the map 〈u, v, w〉 admits a continuous extension h : ∇2 −→ Z.
This extension is a 2-simplex of S(Z) that satisfies d∗0(z) = v, d∗1(z) = w and d∗2(z) = u. Part (ii)
is now an application of Proposition 6.1. �

Theorem 6.4. For every topological space Z, the continuous map εZ : |S(Z)| −→ Z is a weak
homotopy equivalence.

Proof. We prove the result for successively more general classes of spaces.

Case 1: The space Z is simply connected and underlies a CW-complex. By Corollary 5.5 and
Corollary 6.3 (ii), the map εZ is a homology isomorphism between simply connected spaces, and
hence a weak homotopy equivalence by the corollary to the Hurewicz theorem.

Case 2: The space Z is path connected and underlies a CW-complex. Every CW-complex
is locally path connected and semi-locally simply connected. So there exists a universal cover
p : Z̃ −→ Z, and Z̃ is a simply connected space that admits a CW-structure. We let G be the group
of deck transformations of the universal cover p. We consider a singular simplex f : ∇n −→ Z.
Because simplices are simply connected and locally path connected, the deck transformation group
G acts freely and transitively on the set of lifts of f to Z̃. Hence the action of G on S(Z̃) is free
and the morphism of simplicial sets

S(p) : S(Z̃) −→ S(Z)

factors through an isomorphism of simplicial sets

S(Z̃)/G ∼= S(Z) .

Since the action of G on S(Z̃) is free, the induced action on |S(Z̃)| is free and properly discon-
tinuous, compare Exercise 11.3. So the quotient map

|S(Z̃)| −→ |S(Z̃)|/G

is a covering map. Since Z̃ is simply connected, so is |S(Z̃)| by Corollary 6.3 (ii). So this quotient

map exhibits |S(Z̃)| as a universal cover of |S(Z̃)|/G.
The geometric realization functor is a left adjoint, so it preserves colimits, such as orbits by a

group action. So the continuous map

|S(p)| : |S(Z̃)| −→ |S(Z)|
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factors through a homeomorphism

|S(Z̃)|/G ∼= S(Z) .

Altogether we conclude that the map |S(p)| is a universal covering.
In the commutative square

|S(Z̃)|
εZ̃ //

|S(p)|
��

Z̃

p

��
|S(Z)| εZ

// Z

both vertical maps are universal coverings, with isomorphic deck transformation groups. So the
map εZ : |S(Z)| −→ Z induces isomorphisms of fundamental groups for arbitrary basepoints.

Since Z̃ is simply connected and admits a CW-structure, the map εZ̃ : |S(Z̃)| −→ Z̃ is a weak
homotopy equivalence by Case 1. So it induces isomorphisms of all homotopy groups, and for all
choices of base points. Since covering maps induce isomorphisms of homotopy groups on πn for
n ≥ 2, we conclude that the map εZ : |S(Z)| −→ Z also induces isomorphisms of higher homotopy
groups.

Case 3: The space Z is path connected. We choose a CW-approximation, i.e., a weak homotopy
equivalence f : Y −→ Z whose source admits a CW-structure. Because Z is path connected, so is
Y . We contemplate the commutative square:

|S(Y )| εY //

|S(f)|
��

Y

f

��
|S(Z)| εZ

// Z

The map εY is a weak homotopy equivalence by Case 2. The morphism S(f) : S(Y ) −→ S(Z) is
a homotopy equivalence of simplicial sets by Theorem 4.2. So the geometric realization |S(f)| :
|S(Y )| −→ |S(Z)| is a homotopy equivalence of spaces. So the other three of the four maps in
the commutative square are weak homotopy equivalences; hence the map εZ is a weak homotopy
equivalence, too.

Case 4: The space Z is arbitrary. We show that the map π0(εZ) : π0(|S(Z)|) −→ π0(Z) is
bijective. Every point z ∈ Z provides a singular 0-simplex ẑ : ∇0 −→ Z with image z. The point
[ẑ, 1] ∈ |S(Z)| than maps to z under εZ . This shows in particular that π0(εZ) is surjective.

Every path component of |S(Z)| contains a 0-cell in the preferred CW-structure, which are
indexed by vertices of S(Z). For injectivity we can thus consider two 0-cells [f, 1], [g, 1] ∈ |S(Z)|
corresponding to singular 0-simplices f, g : ∇0 −→ |S(Z)|, such that εZ [f, 1] and εZ [g, 1] belong
to the same path component of Z. We can then choose a path connecting these two points, and
reparameterize it as a continuous map

h : ∇1 −→ Z

such that h(0, 1) = εZ [f, 1] and h(1, 0) = εZ [g, 1]. The map h is then a singular 1-simplex, and the
path

[0, 1] −→ |S(Z)| , s 7−→ [h, (s, 1− s)]
connects the points [f, 1] and [g, 1]. This shows that the map π0(εZ) is also injective.
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Now we show that for every point x ∈ |S(Z)| and all n ≥ 1, the map

(εZ)∗ : πn(|S(Z)|, x) −→ πn(Z, εZ(x))

is bijective. We let Z〈x〉 denote the path component of Z that contains the point ε(x), endowed
with the subspace topology. We consider the commutative square:

|S(Zx)|
εZx //

|S(inclusion)|
��

Zx

inclusion
��

|S(Z)| εZ
// Z

Because Zx is path connected, the upper horizontal map is a weak homotopy equivalence by Case 3.
Since the simplices ∇n are all path connected, every singular simplex ∇n −→ Z has image in a

unique path component of Z. So the singular complex S(Z) is the disjoint union of the singular
complexes of the path components Zx of Z, for x ∈ π0(Z), where Zx is endowed with the subspace
topology. Geometric realization preserves coproducts, so it takes disjoint unions of simplicial sets
to topological disjoint unions of spaces. Hence the left vertical map is the inclusion of the path
component of |S(Z)| that contains the point x. Higher homotopy groups only depend the path
component of the base point. So both vertical maps induce isomorphisms of higher homotopy
groups. Hence the lower map εZ also induces isomorphisms of all higher homotopy groups. So the
map εZ is a weak homotopy equivalence. �

7. Equivalences of homotopy categories

In this section we prove that the functors of singular complex and geometric realization descend
to equivalences of homotopy categories of topological spaces and simplicial sets. The upshot of
this section is a diagram of equivalences of categories:

Ho(TopCW)

inclusion '

��

sset[weak eq−1]

|−|
'

kk

Top[weak eq−1]
S
'

==

Here, Ho(TopCW) is the homotopy category of CW-complexes. Its objects are all spaces that admit
the structure of a CW-complex; its morphisms are homotopy classes of continuous maps. The two
other categories are certain localizations, a notion that we will introduce momentarily.

Many arguments in this section will be formal and categorical; all the hard work was done
in the previous sections in proving that the realization of every simplicial set admits a CW-
structure (Theorem 3.8), that the singular complex functor takes weak equivalences to homotopy
equivalences (Theorem 4.2), and that the adjunction counit εZ : |S(Z)| −→ Z is a weak homotopy
equivalence (Theorem 6.4).
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Definition 7.1. Let C be a category, and letW be a class of morphisms of C. A functor F : C −→ D
is W-inverting if it sends all morphisms in W to isomorphisms in D. A localization of C at W is a
functor γ : C −→ C[W−1] that is initial among W-inverting functors.

Let us take the time to spell out the previous definition in more detail: a functor γ : C −→
C[W−1] is a localization at W if and only if:

• the functor γ is W-inverting, and
• for every W-inverting functor F : C −→ D there exists a unique functor G : C[W−1] −→ D

such that Gγ = F .

We offer some comments to put localizations of categories into perspective.

(a) As always for objects with universal properties, localizations are unique up to preferred isomor-
phism of categories. Indeed, suppose that γ : C −→ D and µ : C −→ E are two localizations at
the same classW of C-morphisms. Since both functors takeW to isomorphisms, the universal
properties provide two functors G : D −→ E and H : E −→ D such that

G ◦ γ = µ and H ◦ µ = γ .

Then

H ◦G ◦ γ = γ = IdD ◦γ ,
so the uniqueness part of the universal property forces H ◦G = IdD. Reversing the roles of γ
and µ shows that G ◦H = IdE . So G and H are mutually inverse isomorphisms of categories.

(b) Localizations of categories γ : C −→ C[W−1] are bijective on objects. To see that, we let X be
any set, and we let EX denote the category with object set X, and with a unique morphism
(y, x) : x −→ y between any pair objects. The morphism (y, x) is then an isomorphism with
inverse (x, y) : y −→ x. The category EX is sometimes called the indiscrete category with
object set X. Because EX is a groupoid, every functor from C to EX isW-inverting, so every
functor C −→ EX extends uniquely over γ to a functor C[W−1] −→ EX. However, if D is any
category, then every map from the objects of D to X can be uniquely extended to a functor
D −→ EX. So altogether we conclude that every map from the object set of C to X extends
uniquely over γ to a map from the object set of C[W−1] to X. So γ is bijective on objects.

(c) If a localization of C at W exists, then we can choose a localization γ : C −→ C[W−1] with the
special property that C and C[W−1] have the same objects, and γ is the identity on objects.
Indeed, by the previous item, the localization functor is bijective on objects, so we can just
rename to object set of C[W−1] by C using γ.

(d) Localizations of categories are analogous to localizations in ring theory. A localization of a
ring R at a subset S is a ring homomorphism R −→ R[S−1] that takes all elements of S to
units, and that is initial with this property. In ring theory, rings are usually first encountered
for commutative rings, and typically under the assumption that the set S is multiplicatively
closed and contains 1. In that case, a localization R[S−1] can be constructed as fractions, i.e.,
equivalence class of pairs (r, s) ∈ R × S, where (r, s) ∼ (r′, s′) if and only if there is a t ∈ S
such that

rs′t = r′st .

The equivalence class of (r, s) is then denoted as a fraction r/s, a ring structure on the set
R[S−1] of fraction is defined by the rules from high school, and the map

R −→ R[S−1] , r 7−→ r/1
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is a localization.
(e) Localizations exist also for non-commutative rings, but in that generality the ring R[S−1] might

not have any explicit description that resembles ‘fractions’. There are sufficient conditions,
known as calculus of fractions, or the Ore condition, compare
https://en.wikipedia.org/wiki/Ore_condition

With respect to localizations, categories behave very much like non-commutative rings, in that
in complete generality, it might be hard to get one’s hands on the localization C[W−1].

(f) When interested in general localizations of categories, one needs to confront a certain amount
of set theory. The naive approach to assume a ‘class of objects’ and, for each pair of objects, a
‘set of morphisms’ becomes problematic. When pressed for a commitment on the set-theoretic
details, many people would probably choose to work in ZFC (Zermelo-Fraenkel axioms, plus
the axiom of choice), and also assume Grothendieck’s axiom of existence of universes, compare
https://en.wikipedia.org/wiki/Grothendieck_universe

For the localizations that we need, we can give concrete constructions, so we don’t worry about
the set theory foundations and continue to employ the naive approach to categories.

(g) In complete generality, one has to worry whether a localization C[W−1] might fail to exist for
set-theoretic size reasons. As explained in (c), one can always take C[W−1] to have the same
objects as C, and let γ : C −→ C[W−1] be the identity on objects. Every morphism X −→ Y
in C[W−1] is then a finite composite of the form

X = A1
γ(f1)−−−→ B1

γ(w1)−1

−−−−−→ A2
γ(f1)−−−→ B2

γ(wn)−1

−−−−−→ . . . Bn−1
γ(wn−1)−1

−−−−−−−→ An = Y .

But without further conditions on (C,W), there need not be a bound on the length of such a
sequence, and there is no control on which intermediate objects occur. In particular, there is
no guarantee that one can do with a set worth of intermediate objects, and that the morphisms
in C[W−1] form a set (as opposed to a class). If one works in ZFC with Grothendieck universes,
the localization will always exist if one is willing to pass to a larger universe.

(h) Gabriel and Zisman [1, Chapter I, 2.2] introduced a calculus of fractions for localizations, a
set of axioms that guarantees that every morphism in C[W−1] is a ‘fraction’ γ(f)/γ(w), i.e., a
composite of the form

X
γ(f)−−→ B

γ(w)−1

−−−−→ Y

of one C-morphism, and the inverse of one morphism inW. The localizations sset[weq−1] and
Top[weq−1] discussed below are examples of this situation, where one has a calculus of left
fractions, and the other one a calculus of right fractions.

The universal property of a localization γ : C −→ C[W−1] stipulates that precomposition with
γ is a bijection from the set of functors C[W−1] −→ D to the set of W-inverting functors C −→ D.
As we shall now show, the universal property for functors in fact implies an analogous universal
property for natural transformations; hence the universal property for sets of functors also holds
for categories of functors. For this purpose we introduce new notation. Given two categories C and
D, we write Fun(C,D) for the category whose objects are functors from C to D, and with natural
transformations as morphisms.

Proposition 7.2. Let γ : C −→ C[W−1] be a localization at a class W of morphisms. Then for
every category D, the restriction functor

Fun(γ,D) : Fun(C[W−1],D) −→ Fun(C,D)

https://en.wikipedia.org/wiki/Ore_condition
https://en.wikipedia.org/wiki/Grothendieck_universe
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is an isomorphism onto the full subcategory of Fun(C,D) spanned by the W-inverting functors.

Proof. On the level of objects, the claim is a restatement of the universal property of a localization.
At the level of morphisms, we exploit the fact that natural transformations can be reinterpreted
as functors, as follows. We let I denote the category with two objects 0 and 1, and with a unique
non-identity morphism a : 0 −→ 1. The data of the natural transformation τ : G −→ H between
functors G,H : C −→ D can be recoded as a functor

τ [ : C −→ Fun(I,D) ,

defined as follows. On objects, τ [(c) : I −→ D is the functor determined given by

τ [(c)(0) = G(c) , τ [(c)(1) = H(c) and τ [(c)(a) = τc .

On morphisms, τ [(f : c −→ d) is the natural transformation τ [(c) −→ τ [(d) whose value at the
two objects is

τ [(f)(0) = G(f) and τ [(f)(1) = H(f) .

This process is reversible, i.e., every functor C −→ Fun(I,D) is of the form τ [ for a unique natural
transformation of functors from C to D.

Now we apply the universal property of the localization γ : C −→ C[W−1] to the target category
Fun(I,D). We obtain that precomposition with γ is a bijection from the set of functors C[W−1] −→
Fun(I,D) to the set of W-inverting functors C −→ Fun(I,D). After translating functors to
Fun(I,D) into natural transformations as described in the previous paragraph, this becomes the
statement that precomposition with γ is a bijection from the set of natural transformations of
functors C[W−1] −→ D to the set of natural transformations between W-inverting functors C −→
D. But this is exactly the statement that

Fun(γ,D) : Fun(C[W−1],D) −→ Fun(C,D)

is bijective on morphism sets between all functors in the source. �

Remark 7.3. There is a slightly weaker notion of localization that takes seriously the fact that
the entirety of categories does not just form a category (of categories and functors), but even a
2-category (of categories, functors and natural transformations). We could call a functor γ : C −→
C[W−1] a weak localization at a class W of C-morphisms if for every category D, the restriction
functor

Fun(γ,D) : Fun(C[W−1],D) −→ Fun(C,D)

is an equivalence onto the full subcategory of Fun(C,D) spanned by theW-inverting functors. Since
isomorphisms of categories are in particular equivalences, Proposition 7.2 shows that localizations
are also weak localizations. The converse is not true: if γ : C −→ C[W−1] is a localization and
F : C[W−1] −→ E an equivalence of categories that is not an isomorphism (i.e., not bijective on
objects), then the composite Fγ : C −→ E is a weak localization, but not a localization, at W.

We will now show that the localization of the category sset of simplicial sets at the class of weak
homotopy equivalences is equivalent to Ho(TopCW), the homotopy category of CW-complexes. We
first construct the former localization.

Definition 7.4. A morphism f : X −→ Y of simplicial sets is a weak equivalence if its geometric
realization |f | : |X| −→ |Y | is a homotopy equivalence.
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Remark 7.5 (Homotopy equivalences versus weak equivalences). Because geometric realization
preserves the homotopy relation, every homotopy equivalence of simplicial sets is also a weak
equivalence, but not conversely. We illustrate this by an example. We consider the morphism of
simplicial sets

f : ∂∆2 −→ ∆1/∂∆1

that is determined by
f2(d2) = Id[1]

any by sending d0, d1 ∈ (∂∆2)1 to the collapsed boundary of ∆1. Under the homeomorphisms

|∂∆2| ∼= ∂∇2 and |∆1/∂∆1| ∼= ∇1/∂∇1 ∼= [0, 1]/{0, 1} ,
the realization of f becomes the continuous map

∂∇2 −→ [0, 1]/{0, 1}
that sends two of the three sides of ∂∇2 to the basepoint, and maps the third side linearly onto the
target. So the geometric realization of f is a homotopy equivalence, and f is a weak equivalence
of simplicial sets.

However, the morphism f is not a homotopy equivalence of simplicial sets. Indeed, because
∆1/∂∆1 has only one vertex, every morphism g : ∆1/∂∆1 −→ ∂∆2 must send the generating 1-
simplex to a 1-simplex of ∂∆2 whose two vertices are the same. But only the degenerate 1-simplices
of ∂∆2 have this property, so any such morphism g is constant at one of the three vertices of ∂∆2.
Hence the geometric realization |g| is a constant map, and thus not a homotopy equivalence.

Proposition 7.6. For every simplicial set X, the adjunction unit ηX : X −→ S|X| is a weak
equivalence.

Proof. The triangle identity of an adjunction shows that the following composite is the identity:

|X| |ηX |−−→ |S|X||
ε|X|−−→ |X|

The map ε|X| is a weak homotopy equivalence by Theorem 6.4. Since both |S|X|| and |X| are
CW-complexes by Theorem 3.8, the map ε|X| is even a homotopy equivalence by the Whitehead
Theorem. Since the composite is the identity, the map |ηX | is a homotopy equivalence, too. So
ηX is a weak equivalence. �

Construction 7.7 (Localization of simplicial sets at the weak equivalences). We define the cat-
egory sset[weq−1] to have all simplicial sets as its objects. Morphisms in sset[weq−1] are defined
by

Homsset[weq−1](X,Y ) = HomTop(|X|, |Y |)/homotopy .

Composition in sset[weq−1] is composition of homotopy classes of continuous maps. We define
a functor γ : sset −→ sset[weq−1] on objects by γ(X) = X, and on morphisms by sending a
morphism f : X −→ Y to the homotopy class of the continuous map |f | : |X| −→ |Y |.

As we shall now explain, every morphism in sset[weq−1] is a ‘fraction’ of a morphism of simplicial
sets and the inverse of a weak equivalence. This is a special property, not generally enjoyed by
localizations of categories.

Proposition 7.8. Let X and Y be simplicial sets, and let α : |X| −→ |Y | be a continuous map
between the geometric realizations.
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(i) The square of spaces and continuous maps

(7.9) |X|
|ηX | //

α

��

|S|X||

|S(α)|
��

|Y |
|ηY |

// |S|Y ||

commutes up to homotopy.
(ii) The relation

(7.10) [α] = γ(ηY )−1 ◦ γ(S(α) ◦ ηX)

holds as morphisms from X to Y in sset[weq−1].

Proof. (i) We compose both ways around the square (7.9) with the adjunction counit ε|Y | :
|S|Y || −→ |Y |; we get

ε|Y | ◦ |S(α)| ◦ |ηX | = α ◦ ε|X| ◦ |ηX | = α = ε|Y | ◦ |ηY | ◦ α .
We have used naturality of ε, and two instances of the triangle identity of an adjunction. The map
ε|Y | is a weak homotopy equivalence between CW-complexes, and hence a homotopy equivalence.
We can thus ‘cancel’ ε|Y | up to homotopy, and the previous equality implies that the maps

|S(α)| ◦ |ηX | , |ηY | ◦ α : |X| −→ |S|Y ||
are homotopic.

(ii) Because the square (7.9) commutes up to homotopy, the associated square of homotopy
classes commutes. Those associated homotopy classes of all four maps are morphisms in sset[weq−1],
and they form a commutative square in sset[weq−1]:

X
γ(ηX) //

[α]

��

S|X|

γ(S(α))

��
Y

γ(ηY )
// S|X|

Equivalently:
γ(ηY ) ◦ [α] = γ(S(α) ◦ ηX)

The morphism ηY : Y −→ S|Y | is a weak equivalence by Proposition 7.6, so γ(ηY ) is an isomor-
phism, and the relation (7.10) follows. �

Theorem 7.11. The functor γ : sset −→ sset[weq−1] is a localization at the class of weak
equivalences.

Proof. By the very definition, the realization functor takes weak equivalences of simplicial sets to
homotopy equivalences between CW-complexes; the latter become isomorphisms in the homotopy
category Ho(TopCW). So the functor γ takes weak equivalences in sset to isomorphisms in
sset[weq−1].

To establish the universal property, we let F : sset −→ D be any functor that inverts weak
equivalences. We must show that there is a unique functor G : sset[weq−1] −→ D such that
F = Gγ : sset −→ D. The uniqueness part is easy. Because γ is the identity on objects, we must



26 STEFAN SCHWEDE

have G(X) = G(γ(X)) = F (X) on objects. For the uniqueness on morphisms we apply G to the
fraction relation (7.10) to get

(7.12) G[α] = G
(
γ(ηY )−1 ◦ γ(S(α) ◦ ηX)

)
= F (ηY )−1 ◦ F (S(α)) ◦ F (ηX) .

So also the behavior of G on morphisms is determined by F .
The uniqueness argument also tells us how to define the functor G : sset[weq−1] −→ D in terms

of F : we must set G(X) = F (X) on objects, and define G on morphism by the formula (7.12).
This definition makes sense because ηY is a weak equivalence by Proposition 7.6, so the functor F
takes it to an isomorphism. We must still argue that the definition is well-defined, i.e., it does not
depend on the representative α within its homotopy class. To this end we show that the functor
F takes the same value on simplicially homotopic morphisms. We let H : X × ∆1 −→ Y be a
simplicial homotopy from f = H ◦ i0 to g = H ◦ i1, where i0, i1 : X −→ X × ∆1 are the two
end inclusions. We write p : X ×∆1 −→ X for the projection to the first factor. This morphism
geometrically realizes to a homotopy equivalence, so it is a weak equivalence. So by hypothesis,
F (p) : F (X × ∆1) −→ F (X) is an isomorphism in D. Because p ◦ i0 = IdX = p ◦ i1 , we have
F (p) ◦ F (i0) = IdF (X) = F (p) ◦ F (i1) . Since F (p) is an isomorphism, we deduce F (i0) = F (i1).
Hence

F (f) = F (H) ◦ F (i0) = F (H) ◦ F (i1) = F (g) .

This proves the claim. If now α is homotopic to α′ : |X| −→ |Y |, then the morphisms S(α),S(α′) :
S|X| −→ S|Y | are simplicially homotopic, so F (S(α)) = F (S(α′)) by the previous paragraph; so
the assignment (7.12) is well-defined.

To show that the assignment (7.12) is functorial we consider another simplicial set Z and a
continuous map β : |Y | −→ |Z|. Then

G[β] ◦G[α] = F (ηZ)−1 ◦ F (S(β)) ◦ F (ηY ) ◦ F (ηY )−1 ◦ F (S(α)) ◦ F (ηX)

= F (ηZ)−1 ◦ F (S(βα)) ◦ F (ηX) = G[βα] = G([β] ◦ [α]) .

The relation G[Id|X|] = IdG(X) is even easier, so G is indeed a functor.
Finally, we show that the functor G satisfies Gγ = F : sset −→ D. This is clear on objects.

To establish the relation on morphisms, we consider any morphism of simplicial sets f : X −→ Y .
We apply the functor F to the naturality relation of the adjunction unit η : Idsset −→ S ◦ | − | to
get

F (S|f |) ◦ F (ηX) = F (S|f | ◦ ηX) = F (ηY ◦ f) = F (ηY ) ◦ F (f) .

This yields

G(γ(f)) = G[|f |] =(7.12) F (ηY )−1 ◦ F (S|f |) ◦ F (ηX) = F (f) .

So the functors Gγ and F also agree on morphisms. �

Now we use the universal property to define an equivalence of categories between the localization
sset[weq−1] and the homotopy category Ho(TopCW). The geometric realization functor | − | :
sset −→ Top lands in the full subcategory TopCW, and it takes weak equivalences to homotopy
equivalences, which in turn become isomorphisms in the homotopy category Ho(TopCW). So the
composite functor

sset
|−|−−→ TopCW

proj−−→ Ho(TopCW)
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takes weak equivalences to isomorphisms. The universal property of the localization thus provides
a unique functor

Φ : sset[weq−1] −→ Ho(TopCW)

that makes the following diagram of categories and functors commute:

sset
|−| //

γ

��

TopCW

project

��
sset[weq−1]

Φ
// Ho(TopCW)

Theorem 7.13. The functor Φ : sset[weq−1] −→ Ho(TopCW) is an equivalence of categories.

Proof. If we chase through the definitions, we see that Φ is given on objects by Φ(S) = |X|, and
on morphisms,

Φ : Homsset[weq−1](X,Y ) = HomTop(|X|, |Y |)/homotopy −→ HomHo(TopCW)(|X|, |Y |)

is the identity. So Φ is fully faithful. To see that Φ is also essentially surjective, we let K be
any object of Ho(TopCW), i.e., a space that admits a CW-structure. Then by Theorem 6.4, the
adjunction counit εK : |S(K)| −→ K is a weak homotopy equivalence; since source and target of
εK admit CW-structures, εK is even a homotopy equivalence. So the homotopy class of εK is an
isomorphism in Ho(TopCW)

[εK ] : Φ(S(K)) = |S(K)|
∼=−−→ K .

Hence every object of Ho(TopCW) is isomorphic to an object in the image of the functor Φ. �

Now we turn to topological spaces, and we show that localization of spaces at weak homotopy
equivalences is equivalent to the categories sset[weq−1] and Ho(TopCW).

Construction 7.14 (Localization of spaces at the weak equivalences). We define the category
Top[weq−1] to have all topological spaces as its objects. Morphisms in Top[weq−1] are defined by

HomTop[weq−1](A,B) = HomTop(|S(A)|, |S(B)|)/homotopy .

Composition in Top[weq−1] is composition of homotopy classes of continuous maps. We define
a functor γ : Top −→ Top[weq−1] on objects by γ(A) = A, and on morphisms by sending a
continuous map f : A −→ B to the homotopy class of the map |S(f)| : |S(A)| −→ |S(B)|.

Again, every morphism in Top[weq−1] is a ‘fraction’ of a continuous map and the inverse
of a weak equivalence; in comparison to the fraction description in sset[weq−1] in (7.10), the
‘denominator’ is now on the right.

Proposition 7.15. Let A and B be topological spaces, and let α : |S(A)| −→ |S(B)| be a contin-
uous map. Then the relation

(7.16) [α] = γ(εB ◦ α) ◦ γ(εA)−1

holds as morphisms from A to B in Top[weq−1].
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Proof. The continuous map α participates in a diagram in Top:

(7.17) |S|S(A)||

|S(α)|
��

|S(εA)| // |S(A)|

α

��
|S|S(B)||

|S(εB)|
// |S(B)|

However, this diagram will typically not commute. (It would commute by naturality of ε if the
horizontal maps were ε|S(A)| and ε|S(B)|, but those are not the maps we are looking at.) We shall
now argue that the diagram (7.17) commutes up to homotopy. To this end we precompose both
ways around the square with the continuous map |ηS(A)| : |S(A)| −→ |S|S(A)||. Then we get

|S(εB)| ◦ |S(α)| ◦ |ηS(A)| ∼ |S(εB)| ◦ |ηS(B)| ◦ α = |S(εB) ◦ ηS(B)| ◦ α
= α = α ◦ |S(εA) ◦ ηS(A)| = α ◦ |S(εA)| ◦ |ηS(A)|

The first homotopy is provided by (7.9) for X = S(A) and Y = S(B). Besides this homotopy, we
have used two instances of the triangle identity of an adjunction. The morphism ηS(A) is a weak
equivalence by Proposition 7.6, so |ηS(A)| is a homotopy equivalence. We can thus ‘cancel’ |ηS(A)|
up to homotopy, and the previous equality implies that the maps

|S(εB)| ◦ |S(α)| , α ◦ |S(εA)| : |S|S(A)|| −→ |S(B)|
are homotopic.

Because the square (7.17) commutes up to homotopy, the associated square of homotopy classes
commutes. The associated homotopy classes of all four maps are morphisms in Top[weq−1], and
they form a commutative square in Top[weq−1]:

|S(A)|

γ(α)

��

γ(εA) // A

[α]

��
|S(B)|

γ(εB)
// B

Equivalently:
[α] ◦ γ(εA) = γ(εB ◦ α) .

The map εA : |S(A)| −→ A is a weak equivalence by Theorem 6.4, so γ(εA) is an isomorphism. So
the relation (7.16) holds. �

The following proof of the localization property of γ : Top −→ Top[weq−1] is quite similar to
the previous proof in the context of simplicial sets in Theorem 7.11.

Theorem 7.18. The functor γ : Top −→ Top[weq−1] is a localization at the class of weak
homotopy equivalences.

Proof. The composite functor
| − | ◦ S : Top −→ Top

takes weak equivalences to homotopy equivalences between CW-complexes; the latter become
isomorphisms in the homotopy category Ho(TopCW). So the functor γ takes weak equivalences
in Top to isomorphisms in Top[weq−1].
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To establish the universal property, we let F : Top −→ D be any functor that inverts weak
homotopy equivalences. We must show that there is a unique functor G : Top[weq−1] −→ D such
that F = Gγ : Top −→ D. The uniqueness part is easy. Because γ is the identity on objects, we
must have G(A) = G(γ(A)) = F (A) on objects. For the uniqueness on morphisms we apply G to
the fraction relation (7.16) to get

(7.19) G[α] = G
(
γ(εB ◦ α) ◦ γ(εA)−1

)
= F (εB) ◦ F (α) ◦ F (εA)−1 .

So also the behavior of G on morphisms is determined by F .
The uniqueness argument also tells us how to define the functor G : Top[weq−1] −→ D in

terms of F : we must set G(A) = F (A) on objects, and define G on morphism by the formula
(7.19). This definition makes sense because εA is a weak equivalence by Theorem 6.4, so the
functor F takes it to an isomorphism. We must still argue that the definition is well-defined,
i.e., it does not depend on the representative α within its homotopy class. To this end we show
that the functor F takes the same value on homotopic morphisms. The argument is essentially
the same as for simplicial sets in Theorem 7.11. We let H : A × [0, 1] −→ B be a homotopy
from f = H(−, 0) to g = H(−, 1). We write p : A × [0, 1] −→ A for the projection to the first
factor. This map is a homotopy equivalence, and hence a weak equivalence. So by hypothesis,
F (p) : F (A× [0, 1]) −→ F (A) is an isomorphism in D. The composite with the two end inclusions
i0, i1 : A −→ A× [0, 1] satisfy p◦i0 = IdA = p◦i1 , so we have F (p)◦F (i0) = IdF (A) = F (p)◦F (i1).
Since F (p) is an isomorphism, we deduce F (i0) = F (i1). Hence

F (f) = F (H) ◦ F (i0) = F (H) ◦ F (i1) = F (g) .

This proves that G is well-defined on morphisms.
To show that the assignment (7.19) is functorial we consider another space C and a continuous

map ν : |S(B)| −→ |S(C)|. Then

G[ν] ◦G[ψ] = F (εC) ◦ F (ν) ◦ F (εB)−1 ◦ F (εB) ◦ F (ψ) ◦ F (εA)−1

= F (εC) ◦ F (νψ) ◦ F (εA)−1 = G[νψ] = G([ν] ◦ [ψ]) .

The relation G[Id|S(A)|] = IdG(A) is even easier, so G is indeed a functor.
Finally, we show that the functor G satisfies Gγ = F : Top −→ D. This is clear on objects. To

establish the relation on morphisms, we consider any continuous map f : A −→ B. We apply the
functor F to the naturality relation of the adjunction counit ε : | − | ◦ S −→ IdTop to get

F (εB) ◦ F (|S(f)|) = F (εB ◦ |S(f)|) = F (f ◦ εA) = F (f) ◦ F (εA) .

This yields

G(γ(f)) = G[|S(f)|] =(7.19) F (εB) ◦ F (|S(f)|) ◦ F (εA)−1 = F (f) .

So the functors Gγ and F also agree on morphisms. �

Now we use the universal property to define an equivalence of categories between the localiza-
tions sset[weq−1] and Top[weq−1]. The realization functor

| − | : sset −→ Top

takes weak equivalences to homotopy equivalences, which are in particular weak equivalences. So
the composite functor

sset
|−|−−→ Top

γ−−→ Top[weq−1]
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takes weak equivalences to isomorphisms. Similarly, the composite functor

Top
S−−→ sset

γ−−→ sset[weq−1]

takes weak homotopy equivalences to isomorphisms. The universal properties of the localizations
γ : sset −→ sset[weq−1] and γ : Top −→ Top[weq−1] thus provide unique functors

α : sset[weq−1] −→ Top[weq−1] and β : Top[weq−1] −→ sset[weq−1]

that make the following diagram of categories and functors commute:

sset
|−| //

γ

��

Top

γ

��

S // sset

γ

��
sset[weq−1] α

// Top[weq−1]
β
// sset[weq−1]

Theorem 7.20. The composite functors

β ◦ α : sset[weq−1] −→ sset[weq−1] and α ◦ β : Top[weq−1] −→ Top[weq−1]

are naturally isomorphic to the respective identity functors. In particular, α and β are equivalences
of categories.

Proof. We give the argument for β ◦α; the argument for the other composite is completely analo-
gous, and we omit it. We compose the adjunction unit η : Idsset −→ S ◦ |− | with the localization
functor γ : sset −→ sset[weq−1] to obtain a natural transformation

γ ◦ η : γ −→ γ ◦ S ◦ | − | = β ◦ γ ◦ | − | = β ◦ α ◦ γ
between two functors from sset to sset[weq−1] that both invert weak equivalences. The universal
property of the localization functor for natural transformations (see Proposition 7.2) provides a
unique natural transformation

τ : Id −→ β ◦ α
of endofunctors on sset[weq−1] such that

τ ◦ γ = γ ◦ η .
For every simplicial set X, this in particular means that

τX = τγ(X) = γ(ηX) .

Because ηX : X −→ S|X| is a weak equivalence, γ(ηX) is an isomorphism in sset[weq−1]. So the
natural transformation τ is in fact a natural isomorphism. �

Remark 7.21 (Kan complexes). We can extend the triangle of equivalences of category from the
beginning of this section to a square by adding yet another category that is equivalent to the other
three:

Ho(TopCW)

inclusion
��

sset[weak eq−1]
|−|oo

Top[weak eq−1]
S

// Ho(ssetKan)

inclusion

OO
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Here the lower right corner is the homotopy category of Kan complexes. This notion goes back to
Dan Kan [3, Definition 1.1] under name of ‘extension condition’ for simplicial sets; simplicial sets
with the extension condition are nowadays also called Kan complexes. For example, the singular
complex S(A) of every space A is a Kan complex, and so is the nerve of every groupoid. In
particular, for every simplicial set X, the adjunction unit ηX : X −→ S|X| is a natural weak
equivalence to a Kan complex.

The key facts about Kan complexes needed for this equivalence are:

• For morphisms from an arbitrary simplicial set to a Kan complex, ‘elementary homotopy’
is symmetric and transitive, and hence an equivalence relation. The category Ho(ssetKan)
has as objects the Kan complexes, and as morphisms the homotopy classes of morphisms
of simplicial sets.
• If X is any simplicial set and Y a Kan complex, then geometric realization induces a

bijection
[X,Y ]sset −→ [|X|, |Y |]Top , [f ] 7−→ [|f |]

from the set of simplicial homotopy classes of morphisms of simplicial sets to the set
of homotopy classes of continuous maps. This can be viewed as a version of ‘simplicial
approximation’.
• For every CW-complex A and every space B, the singular complex functor induces a

bijection
[A,B]Top −→ [S(A),S(B)]sset , [f ] 7−→ [S(f)]

from the set of homotopy classes of continuous maps to the set of simplicial homotopy
classes of morphism of simplicial sets.
• Kan complexes yield an intrinsic characterization of weak equivalences of simplicial sets,

i.e., one that does not refer to topological spaces and geometric realization. Indeed, a
morphism f : X −→ Y of simplicial sets is a weak equivalence in the sense of Definition
7.4 if and only if for every Kan complex K, the induced map

f∗ : Homsset(Y,K)/homotopy −→ Homsset(X,K)/homotopy

of simplicial homotopy classes of morphisms is bijective. Showing that these two definitions
of weak equivalences coincide is, however, not all that easy.
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