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Abstract
We establish natural splittings for the values of global
Mackey functors at orthogonal, unitary and symplec-
tic groups. In particular, the restriction homomor-
phisms between the orthogonal, unitary and symplec-
tic groups of adjacent dimensions are naturally split epi-
morphisms. The interest in the splitting comes from
equivariant stable homotopy theory. The equivariant sta-
ble homotopy groups of every global spectrum form a
global Mackey functor, so the splittings imply that cer-
tain long exact homotopy group sequences separate into
short exact sequences. For the real and complex global
Thom spectra𝐌𝐎 and𝐌𝐔, the splittings imply the reg-
ularity of various Euler classes related to the tautological
representations of 𝑂(𝑛) and 𝑈(𝑛).

MSC ( 2020 )
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INTRODUCTION

The purpose of this paper is to establish a splitting result for the values of global Mackey functors
at orthogonal, unitary and symplectic groups. As a corollary, we derive regularity properties of
equivariant Euler classes related to the tautological representations of 𝑂(𝑛) and 𝑈(𝑛). For this
introduction, I will concentrate on the unitary case, where the splitting includes the following
statement:
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Theorem. For every global functor 𝐹 and every 𝑛 ⩾ 1, the restriction homomorphism

res𝑈(𝑛)
𝑈(𝑛−1)

∶ 𝐹(𝑈(𝑛)) ⟶ 𝐹(𝑈(𝑛 − 1))

is a naturally split epimorphism.

The group𝐹(𝑈(𝑛)) then naturally splits as the direct sum of the kernels of the restriction homo-
morphisms res𝑈(𝑘)

𝑈(𝑘−1)
∶ 𝐹(𝑈(𝑘))⟶ 𝐹(𝑈(𝑘 − 1)) for 𝑘 = 0,… , 𝑛, by induction. The above theo-

rem is included in Theorem 1.4, where we exhibit a specific natural splitting. Besides the orthog-
onal, unitary and symplectic groups, the splitting also has an analog for symmetric groups, see
Remark 1.5; this case is a direct generalization of Dold’s arguments [7] from group cohomology to
global functors. The splittings do not have analogs for alternating, special orthogonal and special
unitary groups, see Section 4.
The interest in the splitting comes from equivariant stable homotopy theory. Indeed, for every

global equivariant spectrum 𝑋, that is, an object of the global stable homotopy category [18,
Section 4], the collection of equivariant homotopy groups 𝜋𝐺∗ (𝑋) naturally forms a ℤ-graded
global functor as 𝐺 varies over all compact Lie groups. Hence the restriction homomorphism
res𝑈(𝑛)

𝑈(𝑛−1)
∶ 𝜋𝑈(𝑛)∗ (𝑋)⟶ 𝜋𝑈(𝑛−1)∗ (𝑋) is a naturally split epimorphism. This is a genuinely global

phenomenon: As we illustrate in Example 1.7, this restriction homomorphism is not surjective for
general 𝑈(𝑛)-spectra.
An interesting special case is the global Thom spectrum𝐌𝐔 defined in [18, Example 6.1.53].

For every compact Lie group 𝐺, the underlying 𝐺-homotopy type of𝐌𝐔 is that of tom Dieck’s
homotopical equivariant bordism [22]. This equivariant version of the complex bordism spectrum
has been the object of much study, as it is related to equivariant bordism of stably almost com-
plex manifolds [15, 22], equivariant complex-oriented cohomology theories [4, 9] and equivariant
formal groups laws [3, 9, 10]. Our second main result is as follows:

Theorem. For all 𝑘1, … , 𝑘𝑚 ⩾ 1, the Euler class of the tautological representation of 𝑈(𝑘1) ×⋯ ×

𝑈(𝑘𝑚) on ℂ𝑘1+⋯+𝑘𝑚 is a non zero-divisor in the graded ring𝐌𝐔∗
𝑈(𝑘1)×⋯×𝑈(𝑘𝑚)

.

This result will be proved in Corollary 3.3. As we explain in Section 3, the regularity property is
a relatively direct consequence of the surjectivity of the restriction homomorphisms res𝑈(𝑛)

𝑈(𝑛−1)
∶

𝐌𝐔∗
𝑈(𝑛)

⟶𝐌𝐔∗
𝑈(𝑛−1)

. For 𝑛 = 1 and 𝑛 = 2, the surjectivity of the restriction homomorphisms,
and hence the regularity of the Euler classes, were previously known and have a more direct
proof. Indeed, the standard embeddings 𝑈(0)⟶ 𝑈(1) and 𝑈(1)⟶ 𝑈(2) admit retractions by
continuous group homomorphisms; inflation along such a retraction then provides a splitting
to the restriction homomorphism. For 𝑛 ⩾ 3, however, the embedding 𝑈(𝑛 − 1)⟶ 𝑈(𝑛) does
not admit such a retraction, and the splitting only exists after passage to unreduced suspension
spectra of the global classifying spaces. To the best of the author’s knowledge, ours is the first
general regularity result for unitary groups of arbitrary rank.
Many of the major structural results about equivariant homotopical bordism are so far only

known for abelian compact Lie groups, and regularity properties of Euler classes play an impor-
tant role. Examples of such results include the following:

∙ For abelian compact Lie groups, the ring𝐌𝐔∗
𝐺
is a freemodule over the non-equivariant homo-

topy ring𝐌𝐔∗ and concentrated in even degrees [6, Theorem 5.3], [14].
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∙ The𝑀𝑈-cohomology of the non-equivariant classifying space of an abelian compact Lie group
is the completion of𝐌𝐔∗

𝐺
at the augmentation ideal [5, Theorem 1.1], [15].

∙ For abelian compact Lie groups, 𝐌𝐔∗
𝐺
carries the universal 𝐺-equivariant formal group law

[10, Theorem A].
∙ The collection of rings 𝐌𝐔∗

𝐺
for all abelian compact Lie groups carries the universal global

formal group [10, Theorem C].

I hope that our regularity results might be useful to understand if and how the above results
generalize from abelian compact Lie groups to general compact Lie groups.
Our splittings for global functors translate directly into stable global splittings of the global clas-

sifying spaces 𝐵gl𝑂(𝑛), 𝐵gl𝑈(𝑛) and 𝐵gl𝑆𝑝(𝑛) of the orthogonal, unitary and symplectic groups,
see Corollary 2.5. On underlying non-equivariant homotopy types, the stable splittings of 𝐵𝑈(𝑛)
and 𝐵𝑆𝑝(𝑛) are due to Snaith, see [19, Theorem 4.2], [20, Theorem 2.2] and the stable splitting of
𝐵𝑂(𝑛) was constructed by Mitchell and Priddy [16, Theorem 4.1]. If 𝐺 is a compact Lie group, we
can apply the forgetful functor from the global to the genuine 𝐺-equivariant stable homotopy cat-
egory, compare [18, Theorem 4.5.24]. We obtain 𝐺-equivariant stable splittings of the classifying
𝐺-spaces for 𝐺-equivariant real, complex and quaternionic vector bundles; as far as I know, these
splittings are new.

1 THE SPLITTING

In this section we formulate and prove our first main result, Theorem 1.4, the natural splitting of
the values of a global functor at orthogonal, unitary and symplectic groups. We recall that a global
functor in the sense of [18,Definition 4.2.2] is an additive functor from the global Burnside category
of [18, Construction 4.2.1] to the category of abelian groups. Inmore explicit terms, a global functor
specifies values on all compact Lie groups, restriction homomorphisms along continuous group
homomorphisms and transfers along inclusions of closed subgroups; these data have to satisfy
a short list of explicit relations that can be found after Theorem 4.2.6 of [18]. The data of such a
global functor are equivalent to that of a ‘functor with regular Mackey structure’ in the sense of
Symonds [21, section 3, p. 177].
The proof of our splitting in Theorem 1.4 is inspired by Dold’s elegant proof [7] of Nakaoka’s

splitting [17] of the cohomology of symmetric groups.We generalize Dold’s strategy in three ways:

∙ from symmetric groups to orthogonal, unitary and symplectic groups;
∙ from the non-equivariant to the global context and
∙ from group cohomology to general global functors.

The proof of our splittings relies on the full global structure, as the splitting maps involve restric-
tion, inflation and transfers.
We let 𝕂 be one of the real division algebras ℝ,ℂ or ℍ. We denote by 𝐺(𝑛) the compact Lie

group of (𝑛 × 𝑛)-matrices 𝐴 over 𝕂 that satisfy 𝐴 ⋅ �̄�𝑡 = �̄�𝑡 ⋅ 𝐴 = 𝐸𝑛, where �̄�𝑡 is the conjugate
transpose matrix (for 𝕂 = ℝ, conjugation is the identity). So 𝐺(𝑛) is the orthogonal group 𝑂(𝑛)
for 𝕂 = ℝ, it is the unitary group 𝑈(𝑛) for 𝕂 = ℂ, and it is the symplectic group 𝑆𝑝(𝑛) for 𝕂 = ℍ.
We let 𝐹 be a global functor. We write

𝑖𝑛 ∶ 𝐺(𝑛 − 1) ⟶ 𝐺(𝑛) , 𝐴 ⟼

(
𝐴 0

0 1

)



SPLITTINGS OF GLOBAL MACKEY FUNCTORS AND REGULARITY OF EQUIVARIANT EULER CLASSES 261

for the standard embedding. This continuous monomorphism induces a restriction operation 𝑖∗𝑛,
which is a morphism from 𝐺(𝑛) to 𝐺(𝑛 − 1) in the global Burnside category. The global functor
sends it to a restriction homomorphism

𝐹(𝑖∗𝑛) ∶ 𝐹(𝐺(𝑛)) ⟶ 𝐹(𝐺(𝑛 − 1)).

We write

tr𝑚,𝑛 ∶ 𝐹(𝐺(𝑚) × 𝐺(𝑛)) ⟶ 𝐹(𝐺(𝑚 + 𝑛))

for the transfer homomorphism associated to the continuous monomorphism

𝜇𝑚,𝑛 ∶ 𝐺(𝑚) × 𝐺(𝑛) ⟶ 𝐺(𝑚 + 𝑛), (𝐴, 𝐵) ⟼

(
𝐴 0

0 𝐵

)
.

We recall the double coset formula for the subgroups𝐺(𝑛 − 1) and𝐺(𝑘) × 𝐺(𝑛 − 𝑘) inside𝐺(𝑛).
The following result ought to be well-known to experts: In the unitary situation, the second sum-
mand in the following double coset formula actually vanishes, and similar double coset formulae
were established in [8, Example IV.9] and [21, Lemma 4.2].

Proposition 1.1. Let 𝕂 be one of the real division algebras ℝ,ℂ or ℍ, and let 𝐹 be a global functor.
Then for every 1 ⩽ 𝑘 ⩽ 𝑛 − 1, the relation

𝐹(𝑖∗𝑛) ◦ tr𝑘,𝑛−𝑘 = tr𝑘,𝑛−𝑘−1 ◦𝐹((𝐺(𝑘) × 𝑖𝑛−𝑘)
∗) − trΔ ◦𝐹((𝑖𝑘 × 𝑖𝑛−𝑘)

∗)

+ tr𝑘−1,𝑛−𝑘 ◦𝐹((𝑖𝑘 × 𝐺(𝑛 − 𝑘))∗)

holds as homomorphisms 𝐹(𝐺(𝑘) × 𝐺(𝑛 − 𝑘))⟶ 𝐹(𝐺(𝑛 − 1)), where trΔ denotes the transfer
along the closed embedding

Δ ∶ 𝐺(𝑘 − 1) × 𝐺(𝑛 − 𝑘 − 1) ⟶ 𝐺(𝑛 − 1), (𝐴, 𝐵) ⟼
⎛⎜⎜⎝
𝐴 0 0

0 1 0

0 0 𝐵

⎞⎟⎟⎠ .
Proof. We write 𝐺(𝑛 − 1, ♯) for the image of the embedding 𝑖𝑛 ∶ 𝐺(𝑛 − 1)⟶ 𝐺(𝑛), and we write
𝐺(𝑘, 𝑛 − 𝑘) for the closed subgroup of those blockmatrices of𝐺(𝑛) of the form

(
𝐴 0
0 𝐵

)
for (𝐴, 𝐵) ∈

𝐺(𝑘) × 𝐺(𝑛 − 𝑘). The double coset space 𝐺(𝑛 − 1, ♯)∖𝐺(𝑛)∕𝐺(𝑘, 𝑛 − 𝑘) is a closed interval; more
precisely, the map

[0, 𝜋] ⟶ 𝐺(𝑛 − 1, ♯)∖𝐺(𝑛)∕𝐺(𝑘, 𝑛 − 𝑘) , 𝑡 ↦ 𝐺(𝑛 − 1, ♯) ⋅ 𝛾(𝑡) ⋅ 𝐺(𝑘, 𝑛 − 𝑘)

with

𝛾(𝑡) =

⎛⎜⎜⎜⎜⎝

𝐸𝑘−1 0 0 0

0 cos(𝑡) 0 − sin(𝑡)

0 0 𝐸𝑛−𝑘−1 0

0 sin(𝑡) 0 cos(𝑡)

⎞⎟⎟⎟⎟⎠
is a homeomorphism.
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For 𝑡 = 0, the stabilizer of the right coset 𝛾(0) ⋅ 𝐺(𝑘, 𝑛 − 𝑘) under the left 𝐺(𝑛 − 1, ♯)-action is
the subgroup 𝐺(𝑘, 𝑛 − 𝑘 − 1, ♯) consisting of all matrices of the form

⎛⎜⎜⎝
𝐴 0 0

0 𝐵 0

0 0 1

⎞⎟⎟⎠
with (𝐴, 𝐵) ∈ 𝐺(𝑘) × 𝐺(𝑛 − 𝑘 − 1). For 𝑡 = 𝜋, the left stabilizer of the right coset 𝛾(𝜋) ⋅ 𝐺(𝑘, 𝑛 − 𝑘)

is the subgroup 𝐺(𝑘 − 1, ♯, 𝑛 − 𝑘) consisting of all matrices of the form

⎛⎜⎜⎝
𝐴 0 0

0 1 0

0 0 𝐵

⎞⎟⎟⎠
with (𝐴, 𝐵) ∈ 𝐺(𝑘 − 1) × 𝐺(𝑛 − 𝑘). For 𝑡 ∈ (0, 𝜋), the left stabilizer of the right coset 𝛾(𝑡) ⋅
𝐺(𝑘, 𝑛 − 𝑘) is the subgroup

𝐺(𝑘 − 1, ♯, 𝑛 − 𝑘 − 1, ♯) = 𝐺(𝑘, 𝑛 − 𝑘 − 1, ♯) ∩ 𝐺(𝑘 − 1, ♯, 𝑛 − 𝑘).

This shows that the orbit-type decomposition is as {0} ∪ (0, 𝜋) ∪ {𝜋}.
The double coset formula [12, IV section 6], [18, Theorem 3.4.9] thus has three summands. The

first summand indexed by 𝛾(0) = 𝐸𝑛 contributes

tr𝐺(𝑛−1,♯)
𝐺(𝑘,𝑛−𝑘−1,♯)

◦ res𝐺(𝑘,𝑛−𝑘)
𝐺(𝑘,𝑛−𝑘−1,♯)

.

Under the identification of 𝐺(𝑘) × 𝐺(𝑛 − 𝑘 − 1) with 𝐺(𝑘, 𝑛 − 𝑘 − 1, ♯), this becomes the term

tr𝑘,𝑛−𝑘−1 ◦𝐹((𝐺(𝑘) × 𝑖𝑛−𝑘)
∗).

The summand indexed by (0, 𝜋) occurs with coefficient −1, the internal Euler characteristic of
the open interval. For 𝑡 ∈ (0, 𝜋), the matrix 𝛾(𝑡) centralizes the subgroup 𝐺(𝑘 − 1, ♯, 𝑛 − 𝑘 − 1, ♯);
so in every global functor, the corresponding conjugation homomorphism 𝑐∗

𝛾(𝑡)
is the identity. The

second contribution to the double coset formula is thus

− tr𝐺(𝑛−1,♯)
𝐺(𝑘−1,♯,𝑛−𝑘−1,♯)

◦ res𝐺(𝑘,𝑛−𝑘)
𝐺(𝑘−1,♯,𝑛−𝑘−1,♯)

.

In the notation of the theorem, this becomes the term− trΔ ◦𝐹((𝑖𝑘 × 𝑖𝑛−𝑘)
∗). The third summand

indexed by 𝛾(𝜋) contributes

tr𝐺(𝑛−1,♯)
𝐺(𝑘−1,𝑛−𝑘,♯)

◦ 𝑐∗
𝛾(𝜋)

◦ res𝐺(𝑘,𝑛−𝑘)
𝐺(𝑘−1,♯,𝑛−𝑘)

.

The following square of group homomorphisms commutes:
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So under the identification of 𝐺(𝑘 − 1) × 𝐺(𝑛 − 𝑘) with 𝐺(𝑘 − 1, 𝑛 − 𝑘, ♯), the third summand
becomes the term tr𝑘−1,𝑛−𝑘 ◦𝐹((𝑖𝑘 × 𝐺(𝑛 − 𝑘))∗). □

Remark 1.2. In the unitary and symplectic case, that is, when the skew field is ℂ or ℍ, the trans-
fer trΔ ∶ 𝐹(𝐺(𝑘 − 1) × 𝐺(𝑛 − 𝑘 − 1))⟶ 𝐹(𝐺(𝑛 − 1)) that occurs in the double coset formula of
Proposition 1.1 is actually zero. Indeed, the image of the embedding Δ ∶ 𝐺(𝑘 − 1) × 𝐺(𝑛 − 𝑘 −

1)⟶ 𝐺(𝑛 − 1) is centralized by the subgroup of matrices of the form

⎛⎜⎜⎝
𝐸𝑘−1 0 0

0 𝜆 0

0 0 𝐸𝑛−𝑘−1

⎞⎟⎟⎠ ,
a group isomorphic to 𝐺(1). Since the groups 𝑈(1) and 𝑆𝑝(1) have positive dimension, the Weyl
group of the image of Δ has positive dimension. The transfer trΔ is thus trivial. In the case of
the orthogonal groups, the second summand in the double coset formula of Proposition 1.1 is
generically non-zero.

Construction 1.3. As before we let 𝐹 be a global functor in the sense of [18, Definition 4.2.2]. We
now formulate the splittings of 𝐹(𝑂(𝑛)), 𝐹(𝑈(𝑛)) and 𝐹(𝑆𝑝(𝑛)). We write

𝐹(𝑂; 𝑘) = ker(𝐹(𝑖∗
𝑘
) ∶ 𝐹(𝑂(𝑘))⟶ 𝐹(𝑂(𝑘 − 1))) ,

𝐹(𝑈; 𝑘) = ker(𝐹(𝑖∗
𝑘
) ∶ 𝐹(𝑈(𝑘))⟶ 𝐹(𝑈(𝑘 − 1))) and

𝐹(𝑆𝑝; 𝑘) = ker(𝐹(𝑖∗
𝑘
) ∶ 𝐹(𝑆𝑝(𝑘))⟶ 𝐹(𝑆𝑝(𝑘 − 1)))

for the kernels of the restriction homomorphism along 𝑖𝑘. For 𝑘 = 0, we interpret this as𝐹(𝑂; 0) =
𝐹(𝑈; 0) = 𝐹(𝑆𝑝; 0) = 𝐹(𝑒), the value of 𝐹 at the trivial group. For 0 ⩽ 𝑘 ⩽ 𝑛, we write

𝑝∗
𝑘,𝑛−𝑘

∶ 𝐹(𝑂(𝑘)) ⟶ 𝐹(𝑂(𝑘) × 𝑂(𝑛 − 𝑘))

for the inflation homomorphism associated to the projection to the first factor.We define a natural
homomorphism

𝜓𝑘,𝑛 ∶ 𝐹(𝑂; 𝑘) ⟶ 𝐹(𝑂(𝑛))

as the following composite:

𝐹(𝑂; 𝑘)
inclusion
<<<<<<<<→ 𝐹(𝑂(𝑘))

𝑝∗
𝑘,𝑛−𝑘

<<<<<<<→ 𝐹(𝑂(𝑘) × 𝑂(𝑛 − 𝑘))
tr𝑘,𝑛−𝑘
<<<<<<→ 𝐹(𝑂(𝑛)) ,

and similarly for

𝜓𝑘,𝑛 ∶ 𝐹(𝑈; 𝑘) ⟶ 𝐹(𝑈(𝑛)) and 𝜓𝑘,𝑛 ∶ 𝐹(𝑆𝑝; 𝑘) ⟶ 𝐹(𝑆𝑝(𝑛)) .

Because the group𝑂(0) is trivial, themap 𝜓0,𝑛 specializes to inflation along the unique homomor-
phism 𝑂(𝑛)⟶ 𝑂(0), and 𝜓𝑛,𝑛 is the inclusion 𝐹(𝑂; 𝑛)⟶ 𝐹(𝑂(𝑛)).



264 SCHWEDE

Theorem 1.4. For every global functor 𝐹, and every 𝑛 ⩾ 1, the maps

∑
𝜓𝑘,𝑛 ∶

𝑛⨁
𝑘=0

𝐹(𝑂; 𝑘) ⟶ 𝐹(𝑂(𝑛)) ,

∑
𝜓𝑘,𝑛 ∶

𝑛⨁
𝑘=0

𝐹(𝑈; 𝑘) ⟶ 𝐹(𝑈(𝑛)) and

∑
𝜓𝑘,𝑛 ∶

𝑛⨁
𝑘=0

𝐹(𝑆𝑝; 𝑘) ⟶ 𝐹(𝑆𝑝(𝑛))

are isomorphisms of abelian groups, and the restriction homomorphisms

𝐹(𝑖∗𝑛)∶ 𝐹(𝑂(𝑛))⟶ 𝐹(𝑂(𝑛 − 1)) ,

𝐹(𝑖∗𝑛)∶ 𝐹(𝑈(𝑛))⟶ 𝐹(𝑈(𝑛 − 1)) and

𝐹(𝑖∗𝑛)∶ 𝐹(𝑆𝑝(𝑛))⟶ 𝐹(𝑆𝑝(𝑛 − 1))

are naturally split epimorphism.

Proof. We give the argument in the orthogonal case; the unitary and symplectic cases are analo-
gous. We suppose that 1 ⩽ 𝑘 ⩽ 𝑛 − 1. We precompose the double coset formula of Proposition 1.1
with the homomorphism 𝑝∗

𝑘,𝑛−𝑘
◦ incl ∶ 𝐹(𝑂; 𝑘)⟶ 𝐹(𝑂(𝑘) × 𝑂(𝑛 − 𝑘)). We observe that the last

two of the three summands on the right-hand side compose trivially. Indeed,

trΔ ◦𝐹((𝑖𝑘 × 𝑖𝑛−𝑘)
∗) ◦𝑝∗

𝑘,𝑛−𝑘
◦ incl = trΔ ◦𝑝∗

𝑘−1,𝑛−𝑘−1
◦𝐹(𝑖∗

𝑘
) ◦ incl = 0

and

tr𝑘−1,𝑛−𝑘 ◦𝐹((𝑖𝑘 × 𝑂(𝑛 − 𝑘))∗) ◦𝑝∗
𝑘,𝑛−𝑘

◦ incl = tr𝑘−1,𝑛−𝑘 ◦𝑝∗
𝑘−1,𝑛−𝑘

◦𝐹(𝑖∗
𝑘
) ◦ incl = 0 .

So the double coset formula implies the relation

𝐹(𝑖∗𝑛) ◦𝜓𝑘,𝑛 = 𝐹(𝑖∗𝑛) ◦ tr𝑘,𝑛−𝑘 ◦𝑝∗
𝑘,𝑛−𝑘

◦ incl

= tr𝑘,𝑛−𝑘−1 ◦𝐹((𝑂(𝑘) × 𝑖𝑛−𝑘)
∗) ◦𝑝∗

𝑘,𝑛−𝑘
◦ incl

= tr𝑘,𝑛−𝑘−1 ◦𝑝∗
𝑘,𝑛−𝑘−1

◦ incl = 𝜓𝑘,𝑛−1 .

This final relation also holds for 𝑘 = 0 by direct inspection, that is, 𝐹(𝑖∗𝑛) ◦𝜓0,𝑛 = 𝜓0,𝑛−1.
Now we can prove the claim by induction on 𝑛. The induction starts with 𝑛 = 0, where there is

nothing to show. For 𝑛 ⩾ 1 we obtain a commutative diagram
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The upper row is exact by definition, and the lower row is exact at 𝐹(𝑂; 𝑛) and 𝐹(𝑂(𝑛)), also by
definition. The right vertical map is an isomorphism by the inductive hypothesis; so the restric-
tion map 𝐹(𝑖∗𝑛) ∶ 𝐹(𝑂(𝑛))⟶ 𝐹(𝑂(𝑛 − 1)) is in fact surjective, and the lower row is also exact.
Since both rows are exact and the right vertical map is an isomorphism, the middle map is an
isomorphism, too, and 𝐹(𝑖∗𝑛) is a naturally split epimorphism. □

Remark 1.5 (Splitting for symmetric groups). The splittings of Theorem 1.4 have an analog for
symmetric groups as well. This case is a direct generalization of Dold’s arguments [7] from group
cohomology to global functors. The argument for symmetric groups is significantly simpler than
for orthogonal, unitary and symplectic groups because the analog of the double coset formula
in Proposition 1.1 is easier to derive. Indeed, the relevant double coset space Σ𝑛−1∖Σ𝑛∕Σ𝑘,𝑛−𝑘 is
discrete with two points, there is no need for an analysis of the orbit-type stratification, and the
relevant double coset formula is

res
Σ𝑛
Σ𝑛−1

◦ tr
Σ𝑛
Σ𝑘,𝑛−𝑘

= tr
Σ𝑛−1
Σ𝑘,𝑛−𝑘−1

◦ res
Σ𝑘,𝑛−𝑘
Σ𝑘,𝑛−𝑘−1

+ tr
Σ𝑛−1
Σ𝑘−1,𝑛−𝑘

◦ 𝑐∗
(𝑘,𝑛)

◦ res
Σ𝑘,𝑛−𝑘

(Σ𝑘−1,𝑛−𝑘)
(𝑘,𝑛)

.

Here Σ𝑛 is the 𝑛-th symmetric group, and we write Σ𝑘,𝑛−𝑘 for its subgroup consisting of those
permutations that leave the subsets {1, … , 𝑘} and {𝑘 + 1,… , 𝑛} invariant. We abuse notation by
identifying Σ𝑛−1 with the subgroup of Σ𝑛 of permutations that fix the last element 𝑛; finally (𝑘, 𝑛)
is the transposition that interchanges 𝑘 and 𝑛. With this double coset formula at hand, the same
argument as in the proof of Theorem 1.4 shows that for every global functor 𝐹 and every 𝑛 ⩾ 1,
the analogously defined map

∑
𝜓𝑘,𝑛 ∶

𝑛⨁
𝑘=0

𝐹(Σ; 𝑘) ⟶ 𝐹(Σ𝑛) (1.6)

is an isomorphism, and the restriction homomorphism 𝐹(𝑖∗𝑛) ∶ 𝐹(Σ𝑛)⟶ 𝐹(Σ𝑛−1) is a naturally
split epimorphism.
In the case of symmetric groups, it suffices to consider a  𝑖𝑛-global functor, that is, the analog

of a global functor defined only on finite groups. These  𝑖𝑛-global functors have been studied
under different names in the algebraic literature, for example, as ‘inflation functors’ in [23, p.271],
or as ‘global (∅,∞)-Mackey functors’ in [13]. The 𝑖𝑛-global functors are a special case of themore
general class of ‘biset functors’ [1].We refer the reader to [18, Remark 4.2.16] formore details on the
comparison. I would not be surprised if the splitting (1.6) was already known, possibly in different
language, and published somewhere in the algebraic literature on the subject. However, I am not
aware of a reference.

Equivariant stable homotopy theory provides examples of global functors. Indeed, for every
global equivariant spectrum 𝑋, that is, an object of the global stable homotopy category [18, sec-
tion 4], and every integer 𝑚, the collection of 𝑚-th equivariant stable homotopy groups 𝜋𝐺𝑚(𝑋)
naturally forms a global functor as 𝐺 varies over all compact Lie groups. Moreover, the preferred
t-structure on the global stable homotopy category shows that every global functor arises in this
way, see [18, Theorem 4.4.9]. The splittings of Theorem 1.4 show that for every global equivariant
spectrum 𝑋, the restriction homomorphism res𝑂(𝑛)

𝑂(𝑛−1)
∶ 𝜋𝑂(𝑛)∗ (𝑋)⟶ 𝜋𝑂(𝑛−1)∗ (𝑋) is a naturally

split epimorphism, and for every 0 ⩽ 𝑘 ⩽ 𝑛 the graded abelian group 𝜋𝑂(𝑘)∗ (𝑋) is a natural direct
summand of 𝜋𝑂(𝑛)∗ (𝑋). And the analogous statements hold for unitary and symplectic groups.
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Example 1.7. The surjectivity of the restriction homomorphism res𝑂(𝑛)
𝑂(𝑛−1)

∶ 𝜋𝑂(𝑛)∗ (𝑋)⟶

𝜋𝑂(𝑛−1)∗ (𝑋) is a special feature of global stable homotopy types, and it does not hold for general gen-
uine 𝑂(𝑛)-spectra. An easy example for 𝑂(1) ≅ Σ2 is given by the Eilenberg–MacLane spectrum
𝐻𝑀 for the Σ2-Mackey functor 𝑀 with 𝑀(Σ2∕𝑒) = ℤ∕2 and 𝑀(Σ2∕Σ2) = 0. The Σ2-equivariant
stable homotopy groups of𝐻𝑀 vanish, while the 0-th non-equivariant stable homotopy group of
𝐻𝑀 is non-trivial. In particular, restriction from Σ2 to Σ1, or from 𝑂(1) to 𝑂(0), is not surjective.
A different kind of example for unitary groups is the unreduced suspension spectrumof the free

and transitive 𝑈(1)-space. The Wirthmüller isomorphism shows that the group 𝜋𝑈(1)
0

(Σ∞+ 𝑈(1))

vanishes. The group 𝜋𝑒
0
(Σ∞+ 𝑈(1)) is isomorphic to ℤ, so restriction from 𝑈(1) to 𝑈(0) is not sur-

jective on 0-th equivariant homotopy groups.

2 STABLE SPLITTINGS OF GLOBAL CLASSIFYING SPACES

Snaith has shown that the unreduced suspension spectra of the classifying spaces 𝐵𝑈(𝑛) and
𝐵𝑆𝑝(𝑛) stably split into wedges of certain Thom spaces, see [19, Theorem 4.2] and [20, Theorem
2.2]. Mitchell and Priddy obtained such splittings by a different method in [16, Theorem 4.1], and
their proof also applies to stably split the classifying spaces 𝐵𝑂(𝑛) and 𝐵Σ𝑛 of the orthogonal and
the symmetric groups. Corollary 2.5 below is a global refinement of this splitting, referring to the
unreduced suspension spectra of the global classifying spaces 𝐵gl𝑂(𝑛), 𝐵gl𝑈(𝑛) and 𝐵gl𝑆𝑝(𝑛) as
defined in [18, Definition 1.1.27]. The splitting takes place in the global stable homotopy category
, that is, the localization of the category of orthogonal spectra at the class of global equiva-
lences [18, Definition 4.1.3]. The global stable homotopy category is a compactly generated tensor
triangulated category, see [18, Section 4.4].

Construction 2.1 (Global classifying spaces). In the model of [18], unstable global homotopy
types are represented by orthogonal spaces. Orthogonal spaces are continuous functors to spaces
from the category 𝐋 of finite-dimensional inner product spaces and linear isometric embeddings,
compare [18, Definition 1.1.1]. The category𝐋 is also denotedI or  by other authors, and orthog-
onal spaces are also known as I -functors,I -spaces or -spaces.
An important example is the global classifying space of a compact Lie group𝐺, see [18,Definition

1.1.27]. The construction involves a choice of faithful 𝐺-representation 𝑉, and then

𝐵gl𝐺 = 𝐋(𝑉,−)∕𝐺

is the orthogonal 𝐺-orbit space of the represented orthogonal space. The unstable global homo-
topy type of 𝐵gl𝐺 is independent of the choice of faithful representation, and 𝐵gl𝐺 ‘globally repre-
sents’ principal 𝐺-bundles over equivariant spaces, see [18, Proposition 1.1.30]. In particular, the
underlying non-equivariant homotopy type of 𝐵gl𝐺 is a classifying space for the Lie group 𝐺.
Every orthogonal space has an unreduced suspension spectrum, compare [18, Construction

4.1.7]. The suspension spectrum of 𝐵gl𝐺 comes with a preferred 𝐺-equivariant homotopy class

𝑒𝐺 ∈ 𝜋𝐺0 (Σ
∞
+ 𝐵gl𝐺) ,

the stable tautological class, defined in [18, (4.1.12)]. By [18, Theorem 4.4.3], the pair (Σ∞+ 𝐵gl𝐺, 𝑒𝐺)
represents the functor 𝜋𝐺

0
∶  ⟶ 𝑏.
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Proposition 2.2. Let 𝑖 ∶ 𝐿⟶ 𝐾 be a continuous homomorphismbetween compact Lie groups such
that for every global functor 𝐹, the restriction homomorphism 𝐹(𝑖∗) ∶ 𝐹(𝐾)⟶ 𝐹(𝐿) is surjective.

(i) The morphism 𝑖∗ ∶ 𝐾 ⟶ 𝐿 has a section in the global Burnside category.
(ii) The morphism Σ∞+ 𝑖 ∶ Σ

∞
+ 𝐵gl𝐿⟶ Σ∞+ 𝐵gl𝐾 has a retraction in the global stable homotopy cat-

egory.
(iii) For every compact Lie group 𝐺 and every global functor 𝐹, the restriction homomorphism

𝐹((𝐺 × 𝑖)∗) ∶ 𝐹(𝐺 × 𝐾)⟶ 𝐹(𝐺 × 𝐿) is a naturally split epimorphism.

Proof.

(i) Global functors are defined as additive functors from the global Burnside category 𝐀 to the
category of abelian groups. For the represented global functor𝐀(𝐿,−), the hypothesis shows
that the restriction homomorphism

𝑖∗ ◦− ∶ 𝐀(𝐿, 𝐾) ⟶ 𝐀(𝐿, 𝐿)

is surjective. Any preimage of the identity is a section to 𝑖∗.
(ii) We let 𝜎 ∈ 𝐀(𝐿, 𝐾) be a section to 𝑖∗ as provided by part (i). The representability property

of the pair (Σ∞+ 𝐵gl𝐾, 𝑒𝐾) provides a unique morphism 𝜌 ∶ Σ∞+ 𝐵gl𝐾 ⟶ Σ∞+ 𝐵gl𝐿 in  such
that

𝜋𝐾0 (𝜌)(𝑒𝐾) = 𝜎(𝑒𝐿)

in the group 𝜋𝐾
0
(Σ∞+ 𝐵gl𝐿). Then

𝜋𝐿0 (𝜌 ◦Σ
∞
+ 𝐵gl𝑖)(𝑒𝐿) = 𝜋𝐿0 (𝜌)(𝑖

∗(𝑒𝐾)) = 𝑖∗(𝜋𝐾0 (𝜌)(𝑒𝐾)) = 𝑖∗(𝜎(𝑒𝐿)) = 𝑒𝐿 .

The representability property of the pair (Σ∞+ 𝐵gl𝐿, 𝑒𝐿) thus shows that 𝜌 ◦Σ
∞
+ 𝐵gl𝑖 is the iden-

tity of Σ∞+ 𝐵gl𝐿. So 𝜌 is the desired retraction.
(iii) The global Burnside category admits a biadditive symmetric monoidal structure that is given

by the product of Lie groups on objects, see [18, Theorem 4.2.15]. Moreover,𝐺 × 𝑖∗ = (𝐺 × 𝑖)∗

by (4.2.14) of [18]. Part (i) provides a section 𝜎 ∶ 𝐿⟶ 𝐾 to 𝑖∗ in the global Burnside category
𝐀. So the morphism

𝐺 × 𝜎 ∶ 𝐺 × 𝐿 ⟶ 𝐺 × 𝐾

is a section to (𝐺 × 𝑖)∗. Hence for every global functor 𝐹, the homomorphism 𝐹(𝐺 × 𝜎) is a
section to 𝐹((𝐺 × 𝑖)∗). □

Theorem 1.4 and Proposition 2.2 together show that the global classifying space of 𝑂(𝑛 − 1)

is globally stably a direct summand of the global classifying space of 𝑂(𝑛), and similarly for the
unitary and symplectic groups. The next corollary refines this splitting and also identifies the
summands as the suspension spectra of a global Thom spaces.

Construction 2.3 (Global Thom spaces). We let 𝜈𝑛,ℝ denote the tautological real 𝑂(𝑛)-
representation on ℝ𝑛. For every 𝑛 ⩾ 0, we define a based orthogonal space𝑀(𝑛,ℝ) by

𝑀(𝑛,ℝ)(𝑉) = 𝐋(𝜈𝑛,ℝ, 𝑉)+ ∧𝑂(𝑛) 𝑆
𝜈𝑛,ℝ .
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So 𝑀(𝑛,ℝ) is the global Thom space over 𝐵gl𝑂(𝑛) of the global vector bundle associated to the
tautological real𝑂(𝑛)-representation.Wewill show in Corollary 2.4 that the suspension spectrum
of𝑀(𝑛,ℝ) represents the kernel of the restriction homomorphism from 𝑂(𝑛) to 𝑂(𝑛 − 1).
The inclusion 𝑆0 ⟶ 𝑆𝜈𝑛,ℝ of the 𝑂(𝑛)-fixed points induces a morphism of based orthogonal

spaces

𝑗 ∶ 𝐵gl𝑂(𝑛)+ = 𝐋(𝜈𝑛,ℝ, −)+ ∧𝑂(𝑛) 𝑆
0 ⟶ 𝐋(𝜈𝑛,ℝ, −)+ ∧𝑂(𝑛) 𝑆

𝜈𝑛,ℝ = 𝑀(𝑛, ℝ) .

We pass to suspension spectra to obtain a morphism of orthogonal spectra

Σ∞𝑗 ∶ Σ∞+ 𝐵gl𝑂(𝑛) ⟶ Σ∞𝑀(𝑛,ℝ) .

We write

𝑤𝑛,ℝ = 𝜋𝑂(𝑛)
0

(Σ∞𝑗)(𝑒𝑂(𝑛)) ∈ 𝜋𝑂(𝑛)
0

(Σ∞𝑀(𝑛, ℝ))

for the image of the stable tautological class 𝑒𝑂(𝑛) ∈ 𝜋𝑂(𝑛)
0

(Σ∞+ 𝐵gl𝑂(𝑛)).
Similarly, we define based orthogonal spaces𝑀(𝑛, ℂ) and𝑀(𝑛, ℍ) by

𝑀(𝑛, ℂ)(𝑉) = 𝐋ℂ(𝜈𝑛,ℂ, ℂ ⊗ℝ 𝑉)+ ∧𝑈(𝑛) 𝑆
𝜈𝑛,ℂ and

𝑀(𝑛, ℍ)(𝑉) = 𝐋ℍ(𝜈𝑛,ℍ, ℍ ⊗ℝ 𝑉)+ ∧𝑆𝑝(𝑛) 𝑆
𝜈𝑛,ℍ .

Here 𝜈𝑛,ℂ is the tautological complex 𝑈(𝑛)-representation on ℂ𝑛, and 𝜈𝑛,ℍ is the tautological
quaternionic 𝑆𝑝(𝑛)-representation on ℍ𝑛, and 𝐋ℂ(−,−) and 𝐋ℍ(−,−) denote the spaces of ℂ-
linear andℍ-linear isometric embeddings, respectively. The analogous construction as for𝑀(𝑛,ℝ)

provides us with classes

𝑤𝑛,ℂ ∈ 𝜋𝑈(𝑛)
0

(Σ∞𝑀(𝑛, ℂ)) and 𝑤𝑛,ℍ ∈ 𝜋
𝑆𝑝(𝑛)
0

(Σ∞𝑀(𝑛, ℍ)) .

Corollary 2.4. The pair (Σ∞𝑀(𝑛, ℝ), 𝑤𝑛,ℝ) represents the functor

ker
(
res𝑂(𝑛)

𝑂(𝑛−1)
∶ 𝜋𝑂(𝑛)

0
⟶ 𝜋𝑂(𝑛−1)

0

)
∶  ⟶ 𝑏 .

The pair (Σ∞𝑀(𝑛, ℂ), 𝑤𝑛,ℂ) represents the functor

ker
(
res𝑈(𝑛)

𝑈(𝑛−1)
∶ 𝜋𝑈(𝑛)

0
⟶ 𝜋𝑈(𝑛−1)

0

)
∶  ⟶ 𝑏 .

The pair (Σ∞𝑀(𝑛, ℍ), 𝑤𝑛,ℍ) represents the functor

ker
(
res

𝑆𝑝(𝑛)

𝑆𝑝(𝑛−1)
∶ 𝜋

𝑆𝑝(𝑛)
0

⟶ 𝜋
𝑆𝑝(𝑛−1)
0

)
∶  ⟶ 𝑏 .

Proof. We give the argument in the orthogonal case; the unitary and symplectic cases are analo-
gous. We apply the functor Σ∞𝐋(𝜈𝑛,ℝ, −)+ ∧𝑂(𝑛) − from the category of based 𝑂(𝑛)-spaces to the
category of orthogonal spectra to the mapping cone sequence

𝑂(𝑛)∕𝑂(𝑛 − 1)+ ⟶ 𝑆0 ⟶ 𝑆𝜈𝑛,ℝ ⟶ 𝑂(𝑛)∕𝑂(𝑛 − 1)+ ∧ 𝑆
1 .
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The result is a mapping cone sequence of orthogonal spectra

Σ∞+ 𝐵gl𝑂(𝑛 − 1)
Σ∞+ 𝐵gl𝑖𝑛
<<<<<<<→ Σ∞+ 𝐵gl𝑂(𝑛)

Σ∞𝑗
<<<<→ Σ∞𝑀(𝑛,ℝ) ⟶ Σ∞+ 𝐵gl𝑂(𝑛 − 1) ∧ 𝑆1 .

Mapping cone sequences of orthogonal spectra define distinguished triangles in the global sta-
ble homotopy category; taking morphism groups �−, 𝐸� in  to an orthogonal spectrum 𝐸

turns the distinguished triangle into a long exact sequence of abelian groups. The orthogonal
spectra Σ∞+ 𝐵gl𝑂(𝑛 − 1) and Σ∞+ 𝐵gl𝑂(𝑛) represent the functors 𝜋

𝑂(𝑛−1)
0

and 𝜋𝑂(𝑛)
0

, respectively,
by [18, Theorem 4.4.3], and the morphism Σ∞+ 𝐵gl𝑖𝑛 represents the restriction homomorphism
res𝑂(𝑛)

𝑂(𝑛−1)
∶ 𝜋𝑂(𝑛)

0
(𝐸)⟶ 𝜋𝑂(𝑛−1)

0
(𝐸). Since the equivariant homotopy groups of 𝐸 are part of a

global functor, the restriction homomorphism is surjective by Theorem 1.4. So the long exact
sequence decomposes into short exact sequences

0 ⟶ �Σ∞𝑀(𝑛,ℝ), 𝐸�
𝑓↦𝑓∗(𝑤𝑛,ℝ)
<<<<<<<<<<<→ 𝜋𝑂(𝑛)

0
(𝐸)

res𝑂(𝑛)
𝑂(𝑛−1)

<<<<<<<<→ 𝜋𝑂(𝑛−1)
0

(𝐸) ⟶ 0 .

This proves the claim. □

For the homotopy group global functor 𝜋0(Σ
∞
+ 𝐵gl𝑂(𝑛)), Theorem 1.4 specializes to a splitting

∑
𝜓𝑘,𝑛 ∶

𝑛⨁
𝑘=0

ker

(
res𝑂(𝑘)

𝑂(𝑘−1)
∶ 𝜋𝑂(𝑘)

0
(Σ∞+ 𝐵gl𝑂(𝑛))⟶ 𝜋𝑂(𝑘−1)

0
(Σ∞+ 𝐵gl𝑂(𝑛))

)
≅
<<<→ 𝜋𝑂(𝑛)

0
(Σ∞+ 𝐵gl𝑂(𝑛)) .

So there is a unique collection of classes 𝑠𝑘 ∈ 𝜋𝑂(𝑘)
0

(Σ∞+ 𝐵gl𝑂(𝑛)) such that res
𝑂(𝑘)
𝑂(𝑘−1)

(𝑠𝑘) = 0 for all
𝑘 = 0,… , 𝑛 and

𝑛∑
𝑘=0

𝜓𝑘,𝑛(𝑠𝑘) = 𝑒𝑂(𝑛) .

Corollary 2.4 provides a unique morphism Ψ𝑘,𝑛 ∶ Σ
∞𝑀(𝑘, ℝ)⟶ Σ∞+ 𝐵gl𝑂(𝑛) in the global stable

homotopy category such that

𝜋𝑂(𝑘)
0

(Ψ𝑘,𝑛)(𝑤𝑘,ℝ) = 𝑠𝑘 .

The analogous unitary and symplectic arguments provide morphisms Ψ𝑘,𝑛 ∶ Σ∞𝑀(𝑘, ℂ)⟶

Σ∞+ 𝐵gl𝑈(𝑛) and Ψ𝑘,𝑛 ∶ Σ
∞𝑀(𝑘, ℍ)⟶ Σ∞+ 𝐵gl𝑆𝑝(𝑛) in .

Corollary 2.5. For every 𝑛 ⩾ 0, the morphisms⋁
Ψ𝑘,𝑛 ∶

⋁
𝑘=0,…,𝑛

Σ∞𝑀(𝑘, ℝ) ⟶ Σ∞+ 𝐵gl𝑂(𝑛) ,

⋁
Ψ𝑘,𝑛 ∶

⋁
𝑘=0,…,𝑛

Σ∞𝑀(𝑘, ℂ) ⟶ Σ∞+ 𝐵gl𝑈(𝑛) and

⋁
Ψ𝑘,𝑛 ∶

⋁
𝑘=0,…,𝑛

Σ∞𝑀(𝑘, ℍ) ⟶ Σ∞+ 𝐵gl𝑆𝑝(𝑛)

are isomorphisms in the global stable homotopy category.
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Proof. We give the argument in the orthogonal case; the unitary and symplectic cases are analo-
gous. The composite homomorphism

�Σ∞+ 𝐵gl𝑂(𝑛), 𝐸�
�
⋁
Ψ𝑘,𝑛,𝐸�

<<<<<<<<<<→ �
⋁

𝑘=0,…,𝑛

Σ∞𝑀(𝑘, ℝ), 𝐸�

eval at 𝑤𝑘,ℝ

<<<<<<<<<<→
⨁

𝑘=0,…,𝑛

ker
(
res𝑂(𝑘)

𝑂(𝑘−1)
∶ 𝜋𝑂(𝑘)

0
(𝐸)⟶ 𝜋𝑂(𝑘−1)

0
(𝐸)

) ∑
𝜓𝑘,𝑛

<<<<<<→ 𝜋𝑂(𝑛)
0

(𝐸)

is evaluation at the stable tautological class 𝑒𝑂(𝑛), and hence an isomorphism by [18, Theorem
4.4.3]. In this composite, the second map is an isomorphism by Corollary 2.4, and the third map
is an isomorphism by Theorem 1.4. So the map �

⋁
Ψ𝑘,𝑛, 𝐸� is an isomorphism. Because 𝐸 is an

arbitrary object of the global stable homotopy category, this proves the claim. □

If we apply the forgetful functor

𝑈 ∶  ⟶ 

from the global stable homotopy category to the non-equivariant stable homotopy category to
Corollary 2.5, we obtain the stable splittings due to Snaith [19, Theorem 4.2], [20, Theorem 2.2]
and Mitchell-Priddy [16, Theorem 4.1]. If 𝐺 is a compact Lie group, we can apply the forgetful
functor [18, Theorem 4.5.23]

𝑈𝐺 ∶  ⟶ 𝐺-

from the global stable homotopy category to the genuine 𝐺-equivariant stable homotopy cate-
gory. This forgetful functor turns the splittings of 𝐵gl𝑂(𝑛), 𝐵gl𝑈(𝑛) and 𝐵gl𝑆𝑝(𝑛) of Corollary 2.5
into𝐺-equivariant stable splittings of the classifying𝐺-spaces for𝐺-equivariant real, complex and
quaternionic vector bundles. To the best of my knowledge, these 𝐺-equivariant stable splittings
have not been observed before.

3 REGULARITY OF EULER CLASSES

In this section we apply our splitting results to derive the regularity of certain equivariant Euler
classes of the global Thom spectra𝐌𝐔 and𝐌𝐎, see Corollaries 3.2–3.5.
As we already mentioned, the equivariant homotopy groups of a global spectrum (that is, an

object of the global stable homotopy category, represented by an orthogonal spectrum) form a
graded global functor. If the global spectrum 𝐸 is a global homotopy ring spectrum (that is, a
monoid in the global stable homotopy category under the globally derived smash product), the
equivariant homotopy groups form graded rings, and for all compact Lie groups 𝐺 and 𝐾, the
groups 𝜋𝐺×𝐾∗ (𝐸) are naturally a gradedmodule over the graded ring 𝜋𝐺∗ (𝐸), via inflation along the
projection 𝐺 × 𝐾 ⟶ 𝐺.
In the next corollary, we continue to write 𝜈𝑛,ℝ, 𝜈𝑛,ℂ and 𝜈𝑛,ℍ for the tautological representation

of 𝑂(𝑛), 𝑈(𝑛) and 𝑆𝑝(𝑛) on ℝ𝑛, ℂ𝑛 and ℍ𝑛, respectively. We write 𝑎𝑛,ℝ for the Euler class of 𝜈𝑛,ℝ,
that is, the element of 𝜋𝑂(𝑛)

0
(Σ∞𝑆𝜈𝑛,ℝ) represented by the fixed point inclusion 𝑆0 ⟶ 𝑆𝜈𝑛,ℝ , and

similarly for 𝑎𝑛,ℂ and 𝑎𝑛,ℍ.
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Corollary 3.1. For every orthogonal spectrum 𝐸, every compact Lie group 𝐺 and every 𝑛 ⩾ 1, the
sequences of graded abelian groups

0 ⟶ 𝜋𝐺×𝑂(𝑛)∗+𝜈𝑛,ℝ
(𝐸)

−⋅𝑎𝑛,ℝ
<<<<<<→ 𝜋𝐺×𝑂(𝑛)∗ (𝐸)

res𝐺×𝑂(𝑛)
𝐺×𝑂(𝑛−1)

<<<<<<<<<<→ 𝜋𝐺×𝑂(𝑛−1)∗ (𝐸) ⟶ 0

0 ⟶ 𝜋𝐺×𝑈(𝑛)∗+𝜈𝑛,ℂ
(𝐸)

−⋅𝑎𝑛,ℂ
<<<<<<→ 𝜋𝐺×𝑈(𝑛)∗ (𝐸)

res𝐺×𝑈(𝑛)
𝐺×𝑈(𝑛−1)

<<<<<<<<<<→ 𝜋𝐺×𝑈(𝑛−1)∗ (𝐸) ⟶ 0

and

0 ⟶ 𝜋
𝐺×𝑆𝑝(𝑛)
∗+𝜈𝑛,ℍ

(𝐸)
−⋅𝑎𝑛,ℍ
<<<<<<→ 𝜋

𝐺×𝑆𝑝(𝑛)
∗ (𝐸)

res
𝐺×𝑆𝑝(𝑛)

𝐺×𝑆𝑝(𝑛−1)
<<<<<<<<<<<→ 𝜋

𝐺×𝑆𝑝(𝑛−1)
∗ (𝐸) ⟶ 0

are split exact. If 𝐸 is a global homotopy ring spectrum, then the splittings can be chosen as homo-
morphisms of graded 𝜋𝐺∗ (𝐸)-modules.

Proof. Asusual, we prove the orthogonal case, and the unitary and symplectic cases are analogous.
The cofiber sequence of based 𝑂(𝑛)-spaces

𝑂(𝑛)∕𝑂(𝑛 − 1)+ ⟶ 𝑆0
incl
<<<→ 𝑆𝜈𝑛,ℝ ⟶ 𝑆1 ∧ 𝑂(𝑛)∕𝑂(𝑛 − 1)+

becomes a cofiber sequence of (𝐺 × 𝑂(𝑛))-spaces by letting 𝐺 act trivially. It induces a long exact
sequence in (𝐺 × 𝑂(𝑛))-equivariant 𝐸-cohomology that we can interpret as a long exact sequence
of 𝑅𝑂-graded equivariant homotopy groups:

… ⟶ 𝜋𝐺×𝑂(𝑛−1)
∗+1

(𝐸)
𝜕
<<→ 𝜋𝐺×𝑂(𝑛)∗+𝜈𝑛,ℝ

(𝐸)
−⋅𝑎𝑛,ℝ
<<<<<<→ 𝜋𝐺×𝑂(𝑛)∗ (𝐸)

res𝐺×𝑂(𝑛)
𝐺×𝑂(𝑛−1)

<<<<<<<<<<→ 𝜋𝐺×𝑂(𝑛−1)∗ (𝐸) ⟶ …

The restriction homomorphism res𝐺×𝑂(𝑛)
𝐺×𝑂(𝑛−1)

is split surjective by Theorem 1.4 and Proposition 2.2,
so the long exact sequence decomposes into short exact sequences. □

We let𝐌𝐔 denote the global Thom ring spectrum defined in [18, Example 6.1.53]. For every
compact Lie group 𝐺, the underlying 𝐺-homotopy type of𝐌𝐔 is that of tom Dieck’s homotopi-
cal equivariant bordism [22]. For abelian compact Lie groups, the equivariant cohomology theory
represented by𝐌𝐔 is the universal complex-oriented equivariant cohomology theory [4, Theo-
rem 1.2]. On the family of all abelian compact Lie groups, the equivariant homotopy groups of
𝐌𝐔 carry the universal global group law [10, Theorem C].
Since the global theory 𝐌𝐔 is complex-oriented, every unitary representation 𝑊 of a com-

pact Lie group 𝐺 has a Euler class 𝑒𝐺,𝑊 ∈ 𝐌𝐔2𝑛
𝐺
, where 𝑛 = dimℂ(𝑊); by definition, 𝑒𝐺,𝑊 is the

restriction of the Thom class

𝜎𝐺,𝑊 ∈ 𝐌𝐔
2𝑛

𝐺 (𝑆
𝑊)

along the inclusion 𝑆0 ⟶ 𝑆𝑊 .
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Corollary 3.2. For every compact Lie group 𝐺, every character 𝜒 ∶ 𝐺 ⟶𝑈(1) and every 𝑛 ⩾
1, the Euler class of the (𝐺 × 𝑈(𝑛))-representation 𝜒 ⊗ 𝜈𝑛,ℂ is a non zero-divisor in the graded-
commutative ring𝐌𝐔∗

𝐺×𝑈(𝑛)
.

Proof. We start with the special case where 𝜒 is the trivial character. Then the representation in
question is 𝑝∗(𝜈𝑛,ℂ), the restriction of the tautological 𝑈(𝑛)-representation along the projection
𝐺 × 𝑈(𝑛)⟶ 𝑈(𝑛). The equivariant Thom isomorphism identifies the group 𝜋𝐺×𝑈(𝑛)

𝑘+𝑝∗(𝜈𝑛,ℂ)
(𝐌𝐔) =

𝐌𝐔
0

𝐺×𝑈(𝑛)(𝑆
𝑘+𝑝∗(𝜈𝑛,ℂ)) with the group𝐌𝐔−𝑘−2𝑛

𝐺×𝑈(𝑛)
, in a way that takes multiplication by the class

𝑎𝑛,ℂ to multiplication by the Euler class of the representation 𝑝∗(𝜈𝑛,ℂ). Corollary 3.1 thus shows
that the Euler class of 𝑝∗(𝜈𝑛,ℂ) is a non zero-divisor.
In the general case, the map

𝜓 ∶ 𝐺 × 𝑈(𝑛) ⟶ 𝐺 ×𝑈(𝑛) , 𝜓(g , 𝐴) = (g , 𝜒(g) ⋅ 𝐴)

is an isomorphism of Lie groups, and 𝜒 ⊗ 𝜈𝑛,ℂ is the restriction of the representation 𝑝∗(𝜈𝑛,ℂ)
along 𝜓. Restriction along 𝜓 is an isomorphism of graded rings

𝜓∗ ∶ 𝐌𝐔∗
𝐺×𝑈(𝑛)

⟶ 𝐌𝐔∗
𝐺×𝑈(𝑛)

that sends the Euler class of 𝑝∗(𝜈𝑛,ℂ) to the Euler class of 𝜓∗(𝑝∗(𝜈𝑛,ℂ)) = 𝜒 ⊗ 𝜈𝑛,ℂ. Since the Euler
class of 𝑝∗(𝜈𝑛,ℂ) is a non zero-divisor by the first part, the Euler class of 𝜒 ⊗ 𝜈𝑛,ℂ is a non zero-
divisor, too. □

The special case 𝐺 = 𝑒 of Corollary 3.2 shows that the Euler class of the tautological complex
𝑈(𝑛)-representation 𝜈𝑛,ℂ is a non zero-divisor in the ring𝐌𝐔∗

𝑈(𝑛)
. The following corollary gener-

alizes this:

Corollary 3.3. For all 𝑘1, … , 𝑘𝑚 ⩾ 1 with 𝑘1 +⋯ + 𝑘𝑚 = 𝑛, the Euler class of the tautological
representation of the group 𝑈(𝑘1) ×⋯ × 𝑈(𝑘𝑚) on ℂ𝑛 is a non zero-divisor in the graded ring
𝐌𝐔∗

𝑈(𝑘1)×⋯×𝑈(𝑘𝑚)
.

Proof. The tautological representation of 𝑈(𝑘1) ×⋯ × 𝑈(𝑘𝑚) splits as a direct sum

𝑝∗1(𝜈𝑘1,ℂ) ⊕⋯⊕ 𝑝∗𝑚(𝜈𝑘𝑚,ℂ) ,

where 𝑝𝑖 ∶ 𝑈(𝑘1) ×⋯ × 𝑈(𝑘𝑚)⟶ 𝑈(𝑘𝑖) is the projection to the 𝑖-th factor. The Euler class of a
direct sum is the product of the Euler classes, so

𝑒𝑈(𝑘1)×⋯×𝑈(𝑘𝑚),𝜈𝑛,ℂ
= 𝑝∗1(𝜈𝑘1,ℂ) ⋅ … ⋅ 𝑝∗𝑚(𝜈𝑘𝑚,ℂ) .

Each factor is a non zero-divisor by Corollary 3.2, hence so is the product. □

Corollaries 3.2 and 3.3 work more generally for all globally complex-oriented homotopy-
commutative global homotopy-ring spectra, that is, commutative monoids, under derived smash
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product, in the global stable homotopy category that come equipped with coherent and natural
Thom isomorphisms for equivariant complex vector bundles.
We let 𝐌𝐎 denote the global Thom ring spectrum defined in [18, Example 6.1.7]. For every

compact Lie group 𝐺, the underlying 𝐺-homotopy type of𝐌𝐎 is the real analog of tom Dieck’s
homotopical equivariant bordism [22]. By a theorem of Bröcker and Hook [2, Theorem 4.1], the
𝐺-equivariant homology theory represented by𝐌𝐎 is stable equivariant bordism. Restricted to
elementary abelian 2-groups, the equivariant homotopy groups of𝐌𝐎 carry the universal global
2-torsion group law [10, Theorem D].
Since the global theory𝐌𝐎 is real-oriented, every orthogonal representation 𝑉 of a compact

Lie group 𝐺 has a Euler class 𝑒𝐺,𝑉 ∈ 𝐌𝐎𝑛
𝐺
, where 𝑛 = dimℝ(𝑉). The analogous arguments as in

the complex case in Corollaries 3.2 and 3.3 prove the following real counterparts:

Corollary 3.4. For every compact Lie group 𝐺, every continuous homomorphism 𝜒 ∶ 𝐺 ⟶ 𝑂(1)

and every 𝑛 ⩾ 1, the Euler class of the (𝐺 × 𝑂(𝑛))-representation 𝜒 ⊗ 𝜈𝑛,ℝ is a non zero-divisor in
the graded-commutative ring𝐌𝐎∗

𝐺×𝑂(𝑛)
.

Corollary 3.5. For all 𝑘1, … , 𝑘𝑚 ⩾ 1 with 𝑘1 +⋯ + 𝑘𝑚 = 𝑛, the Euler class of the tautological
representation of the group 𝑂(𝑘1) ×⋯ × 𝑂(𝑘𝑚) on ℝ𝑛 is a non zero-divisor in the graded ring
𝐌𝐎∗

𝑂(𝑘1)×⋯×𝑂(𝑘𝑚)
.

Corollaries 3.4 and 3.5 work more generally for all globally real-oriented homotopy-
commutative global homotopy-ring spectra, that is, commutative monoids, under derived smash
product, in the global stable homotopy category that come equipped with coherent and natural
Thom isomorphisms for equivariant real vector bundles.

4 ALTERNATING, SPECIAL ORTHOGONAL AND SPECIAL
UNITARY GROUPS

The families of alternating groups, special orthogonal groups and special unitary groups have the
same kind of structure as the symmetric, orthogonal, unitary and symplectic groups; so onemight
wonder about the existence of splittings for the values of global functors at 𝐴𝑛, 𝑆𝑂(𝑛) and 𝑆𝑈(𝑛).
In this section we complete the picture by showing that the restriction homomorphisms between
adjacent groups in these families do not split naturally, except in some low-dimensional cases and
for half of the special orthogonal groups.
In [11], Dold’s method is adapted to obtain non-equivariant stable splittings of the classifying

spaces of alternating, special orthogonal and special unitary groups after localizing at specific
primes. Since these are not integral splittings and they do not involve adjacent groups from the
respective family, the results are coarser than those of Dold, Snaith and Mitchell-Priddy for Σ𝑛,
𝑂(𝑛), 𝑈(𝑛) and 𝑆𝑝(𝑛).

Example 4.1 (Alternating groups). The standard embeddings 𝑖3 ∶ 𝑒 = 𝐴2 ⟶ 𝐴3 and 𝑖4 ∶ 𝐴3 ⟶
𝐴4 admit unique retractions by group homomorphisms; so for every global functor 𝐹, the restric-
tion homomorphisms 𝐹(𝑖∗

3
) ∶ 𝐹(𝐴3)⟶ 𝐹(𝐴2) and 𝐹(𝑖∗4 ) ∶ 𝐹(𝐴4)⟶ 𝐹(𝐴3) are naturally split

by the corresponding inflation homomorphisms.
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For 𝑛 ⩾ 5, the restriction homomorphism 𝐹(𝑖∗𝑛) is not in general surjective. For 𝑛 ⩾ 5 and 𝑛 ≠

6, 8, the complex representation ring global functor [18, Example 4.2.8 (iv)] is a witness. Indeed,
for such 𝑛, there are non-conjugate elements of 𝐴𝑛−1 that become conjugate in 𝐴𝑛. There is thus
a complex representation of 𝐴𝑛−1 whose character takes different values on these elements, and
the class of this representation cannot be in the image of the restriction homomorphism res

𝐴𝑛
𝐴𝑛−1

∶

𝑅𝑈(𝐴𝑛)⟶ 𝑅𝑈(𝐴𝑛−1).
The two remaining cases can be settled by group cohomology with mod-2 and mod-3 coeffi-

cients: the map 𝑖∗
6
∶ 𝐻3(𝐴6, 𝔽2)⟶ 𝐻3(𝐴5, 𝔽2) is not surjective, and the map 𝑖∗8 ∶ 𝐻

2(𝐴8, 𝔽3)⟶

𝐻2(𝐴7, 𝔽3) is not surjective.

Example 4.2 (Special orthogonal groups). For the special orthogonal groups, Theorem 1.4 implies
a natural splitting in half of the cases, ultimately because the group 𝑂(2𝑚 − 1) is isomorphic
to {±1} × 𝑆𝑂(2𝑚 − 1). Indeed, the continuous homomorphism 𝑟 ∶ 𝑂(2𝑚 − 1)⟶ 𝑆𝑂(2𝑚 − 1)

defined by 𝑟(𝐴) = det(𝐴) ⋅ 𝐴 is a retraction to the inclusion. So for every global functor𝐹, inflation
along 𝑟 is a natural section to restriction from 𝐹(𝑂(2𝑚 − 1)) to 𝐹(𝑆𝑂(2𝑚 − 1)). In combination
with Theorem 1.4, this shows that restriction from 𝐹(𝑂(2𝑚)) to 𝐹(𝑆𝑂(2𝑚 − 1)) is naturally split;
hence also the restriction homomorphism

𝐹(𝑖∗2𝑚)∶ 𝐹(𝑆𝑂(2𝑚))⟶ 𝐹(𝑆𝑂(2𝑚 − 1))

is a naturally split epimorphism. Because 𝐹(𝑖∗
2𝑚
) is surjective, the restriction homomorphism

𝐹(𝑖∗2𝑚 ◦ 𝑖∗2𝑚+1)∶ 𝐹(𝑆𝑂(2𝑚 + 1))⟶ 𝐹(𝑆𝑂(2𝑚 − 1))

is also surjective, and hence a naturally split epimorphism by Proposition 2.2. The group
𝐹(𝑆𝑂(2𝑚 + 1)) then naturally splits as

𝐹(𝑆𝑂(2𝑚 + 1)) ≅
⨁

𝑘=0,…,𝑚

ker
(
res𝑆𝑂(2𝑘+1)

𝑆𝑂(2𝑘−1)
∶ 𝐹(𝑆𝑂(2𝑘 + 1))⟶ 𝐹(𝑆𝑂(2𝑘 − 1))

)
,

with the interpretation that the summand for 𝑘 = 0 is the value at the trivial group 𝑆𝑂(1). The
underlying non-equivariant stable splitting of𝐵𝑆𝑂(2𝑚 + 1) goes back to Snaith [19, Theorem 4.3].
In the case of opposite parities, the map 𝐵𝑖2𝑚+1 ∶ 𝐵𝑆𝑂(2𝑚)⟶ 𝐵𝑆𝑂(2𝑚 + 1) induced by the

standard embedding is not even stably split in the non-equivariant sense. So its global analog can-
not split in the global stable homotopy category, either, and the corresponding restriction homo-
morphism for global functors are not generally surjective, compare Proposition 2.2. To see this,
we recall that the mod-2 cohomology of 𝐵𝑆𝑂(𝑘) is a polynomial algebra on the Stiefel–Whitney
classes 𝑤2,… ,𝑤𝑘, and for 𝑘 = 2𝑚 + 1, the relation 𝑆𝑞1(𝑤2𝑚) = 𝑤2𝑚+1 holds. Since 𝑤2𝑚+1 is in
the kernel of the restriction homomorphism

res𝑆𝑂(2𝑚+1)
𝑆𝑂(2𝑚)

∶ 𝐻∗(𝐵𝑆𝑂(2𝑚 + 1), 𝔽2) ⟶ 𝐻∗(𝐵𝑆𝑂(2𝑚), 𝔽2) ,

but𝑤2𝑚 restricts non-trivially, this restriction does not admit a section that is linear over themod-2
Steenrod algebra.
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Example 4.3 (Special unitary groups). As the group 𝑆𝑈(1) is trivial, the standard embedding 𝑖2 ∶
𝑆𝑈(1)⟶ 𝑆𝑈(2) has a retraction by a continuous homomorphism, and for every global functor
𝐹, the corresponding restriction homomorphism 𝐹(𝑖∗

3
) ∶ 𝐹(𝑆𝑈(2))⟶ 𝐹(𝑆𝑈(1)) is a naturally

split epimorphism.
For 𝑛 ⩾ 3, restriction homomorphism 𝐹(𝑖∗𝑛) ∶ 𝐹(𝑆𝑈(𝑛))⟶ 𝐹(𝑆𝑈(𝑛 − 1)) is not in general

surjective. For 𝑛 = 3, the relation 𝑆𝑞2(𝑐2) = 𝑐3 in 𝐻∗(𝐵𝑆𝑈(3), 𝔽2) shows that the map 𝐵𝑖3 ∶

𝐵𝑆𝑈(2)⟶ 𝐵𝑆𝑈(3) is not even stably split in the non-equivariant sense; here 𝑐𝑘 is the mod-2
reduction of the 𝑘-th Chern class. For 𝑛 ⩾ 4, the Burnside ring global functor 𝔸 = 𝐀(𝑒, −) [18,
Example 4.2.8 (i)] is a witness that there is no natural splitting, that is, the map

res𝑆𝑈(𝑛)
𝑆𝑈(𝑛−1)

∶ 𝔸(𝑆𝑈(𝑛)) ⟶ 𝔸(𝑆𝑈(𝑛 − 1))

is not surjective. A specific element that is not in the image can be obtained as follows. The
reduced natural representation of the alternating group 𝐴𝑛 is the (𝑛 − 1)-dimensional complex
vector space

{(𝑥1, … , 𝑥𝑛) ∈ ℂ𝑛 ∶ 𝑥1 +⋯ + 𝑥𝑛 = 0}

with𝐴𝑛-action by permutation of coordinates. This action is faithful and by isometries of determi-
nant 1. A choice of orthonormal basis identifies𝐴𝑛 with a subgroup of 𝑆𝑈(𝑛 − 1), well-defined up
to conjugacy. For 𝑛 ⩾ 4, the Weyl group of 𝐴𝑛 in 𝑆𝑈(𝑛 − 1) is finite, and the transfer tr𝑆𝑈(𝑛−1)

𝐴𝑛
(1)

is an element of infinite order in 𝔸(𝑆𝑈(𝑛 − 1)) that is not the restriction of any class in𝔸(𝑆𝑈(𝑛)).
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