
ORTHOGONAL SPECTRA AND STABLE HOMOTOPY THEORY

STEFAN SCHWEDE

Abstract. These are course notes for the class Algebraic Topology II taught by the author at Bonn

University in the summer term 2022.

Contents

Introduction 1
1. Sequential spectra and stable homotopy groups 3
2. Orthogonal spectra 18
3. Basic examples and constructions 25
4. Ring and module spectra 29
5. Cofibration categories 40
6. The stable homotopy category 55
7. Triangulated categories 64
8. Thom spectra and bordism 78
Exercises 98
References 102

Introduction

These notes aim to develop into an introduction to the foundations of stable homotopy theory and
‘algebra’ over structured ring spectra, based on orthogonal spectra. One possible road towards ‘spectral
algebra’ is an associative and commutative smash product on a good point-set level category of spectra,
which lifts the well-known smash product pairing on the homotopy category. Between the mid 1990’s until
around 2010, this was the preferred approach, and it is the path we will take in these notes. In recent years,
the higher categorical approach pioneered by Lurie [24, 25] has become increasingly popular and versatile.
And as more and more foundations are being worked out in this language, the theory grew more and more
powerful; in the long run, I expect the higher categorical approach to prevail. Still, higher categorical theory
demands a substantial intellectual investment for learning the basic formalism, and a model based approach
should continue to have its merits.

We begin with a quick historical review and attempt at a motivation. A much more comprehensive
and detailed history and of the early days of stable homotopy theory with many more references can be
found in May’s [32]. The first construction of what is now called ‘the stable homotopy category’, including
its symmetric monoidal smash product, is due to Boardman [4, 5] (unpublished); accounts of Boardman’s
construction appear in [50], [47] and [1, Part III] (Adams devotes more than 30 pages to the construction
and formal properties of the smash product).

To illustrate the drastic simplification that occurred in the foundations in the mid-90s, let us draw an
analogy with the algebraic context. Let R be a commutative ring and imagine for a moment that the
notion of a chain complex (of R-modules) has not been discovered, but nevertheless various complicated
constructions of the unbounded derived category D(R) of the ring R exist. Moreover, constructions of
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the derived tensor product on the derived category exist, but they are complicated and the proof that the
derived tensor product is associative and commutative occupies 30 pages. In this situation, you could talk
about objects A in the derived category together with morphisms A⊗LR A −→ A, in the derived category,
which are associative and unital, and possibly commutative, again in the derived category. This notion may
be useful for some purposes, but it suffers from many defects – as one example, the category of modules
(under derived tensor product in the derived category), does not in general form a triangulated category.

Now imagine that someone proposes the definition of a chain complex of R-modules and shows that
by formally inverting the quasi-isomorphisms, one can construct the derived category. She also defines
the tensor product of chain complexes and proves that tensoring with suitably nice (i.e., homotopically
projective) complexes preserves quasi-isomorphisms. It immediately follows that the tensor product descends
to an associative and commutative product on the derived category. What is even better, now one can
suddenly consider differential graded algebras, a ‘rigidified’ version of the crude multiplication ‘up-to-chain
homotopy’. We would quickly discover that this notion is much more powerful and that differential graded
algebras arise all over the place (while chain complexes with a multiplication which is merely associative
up to chain homotopy seldom come up in nature).

Fortunately, this is not the historical course of development in homological algebra, but the development
in stable homotopy theory was, in several aspects, as indicated above. In the stable homotopy category
people could consider ring spectra ‘up to homotopy’, which are closely related to multiplicative cohomology
theories. However, the need and usefulness of ring spectra with rigidified multiplications soon became
apparent, and topologists developed different ways of dealing with them. One line of approach uses operads
for the bookkeeping of the homotopies which encode all higher forms of associativity and commutativity,
and this led to the notions of A∞- respectively E∞-ring spectra. Various notions of point-set level ring
spectra had been used (which were only later recognized as the monoids in a symmetric monoidal model
category). For example, the orthogonal ring spectra had appeared as I∗-prefunctors in [31], the functors
with smash product were introduced in [6] and symmetric ring spectra appeared as FSPs defined on spheres
in [17, 2.7].

At this point it had become clear that many technicalities could be avoided if one had a smash product
on a good point-set category of spectra which was associative and unital before passage to the homotopy
category. For a long time no such category was known, and there was even evidence that it might not
exist [23]. In retrospect, the modern spectra categories could maybe have been found earlier if Quillen’s
formalism of model categories [35] had been taken more seriously; from the model category perspective, one
should not expect an intrinsically ‘left adjoint’ construction like a smash product to have a good homotopical
behavior in general, and along with the search for a smash product, one should look for a compatible notion
of cofibrations.

In the mid-90s, several categories of spectra with nice smash products were discovered, and simultane-
ously, model categories experienced a major renaissance. Around 1993, Elmendorf, Kriz, Mandell and May
introduced the S-modules [14] and Jeff Smith gave the first talks about symmetric spectra; the details of
the model structure were later worked out and written up by Hovey, Shipley and Smith [19]. In 1995, Ly-
dakis [26] independently discovered and studied the smash product for Γ-spaces (in the sense of Segal [42]),
and a little later he developed model structures and smash product for simplicial functors [27]. Except for
the S-modules of Elmendorf, Kriz, Mandell and May, all other known models for spectra with nice smash
product have a very similar flavor; they all arise as categories of continuous (or simplicial), space-valued
functors from a symmetric monoidal indexing category, and the smash product is a convolution product
(defined as a left Kan extension), which had much earlier been studied by the category theorist Day [10].
This unifying context was made explicit by Mandell, May, Schwede and Shipley in [30], where another ex-
ample, the orthogonal spectra were first worked out in detail. The different approaches to spectra categories
with smash product have been generalized and adapted to equivariant homotopy theory [12, 28, 29] and
motivic homotopy theory [13, 20, 21].

There are already several good sources available which explain the stable homotopy category, starting
with Adams’ classic [1], and including [2, 37, 45]; these references do not focus on structured ring and
module spectra, though. The monograph [14] by Elmendorf, Kriz, Mandell and May develops this theory
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in one of the competing frameworks, the S-modules, in detail. It has had a big impact and is widely used,
for example because many standard tools can simply be quoted from that book. The theory of orthogonal
spectra is by now also highly developed, but the results are spread over many research papers. The aim of
these notes is to collect some basic facts about orthogonal spectra in one place, and use them to introduce
the stable homotopy category as a tensor triangulated category. Needless to say that the tensor triangulated
category stable homotopy category is only a shadow of the ‘true’ structure, i.e., the symmetric monoidal
stable ∞-category of spectra. . .

Prerequisites. As a general principle, I assume knowledge of basic algebraic topology and unstable
homotopy theory. On the other hand, no prior knowledge of stable homotopy theory is assumed. In
particular, the eventual plan is to define the stable homotopy category using orthogonal spectra and develop
its basic properties from scratch.

Conventions. Throughout this book, a space is a compactly generated space in the sense of [33], i.e., a
k-space (also called Kelley space) that satisfies the weak Hausdorff condition. Two extensive resources with
background material about compactly generated spaces are Section 7.9 of tom Dieck’s textbook [48] and
Appendix A of the author’s book [39]. Two other influential – but unpublished – sources about compactly
generated spaces are the Appendix A of Gaunce Lewis’s thesis [22] and Neil Strickland’s preprint [44]. We
denote the category of compactly generated spaces and continuous maps by T.

It will be convenient to define the n-sphere Sn as the one-point compactification of n-dimensional eu-
clidean space Rn, with the point at infinity as the basepoint. We will sometimes need to identify the
1-sphere with the space [0, 1]/{0, 1}, the quotient space of the unit interval with identified endpoints. The
precise identifications do not matter, but for definiteness we fix a homeomorphism now. Our preferred
homeomorphism is

t : [0, 1]/{0, 1}
∼=−−→ S1 , x 7−→ 2x− 1

x(1− x)
.

Here the understanding is that the formula describes the function on the open interval (0, 1) (which is
mapped homeomorphically to R), and that the map extends continuously to the quotient space by sending
the identified endpoints to the point at infinity in S1.

The topological spaces we consider are usually pointed, and we use the notation πn(X) for the n-th
homotopy group with respect to the distinguished basepoint, which we do not record in the notation.

Acknowledgments. I would like to thank Phil Pützstück for spotting many typos in earlier version of
the document, and for suggesting improvements of the exposition.

1. Sequential spectra and stable homotopy groups

Definition 1.1. A sequential spectrum consists of a sequence of pointed spaces Xn and based maps σn :
S1 ∧ Xn −→ X1+n for n ≥ 0. A morphism f : X −→ Y of sequential spectra consists of based maps
fn : Xn −→ Yn for n ≥ 0, which are compatible with the structure maps in the sense that f1+n ◦ σn =
σn ◦ (S1 ∧ fn) for all n ≥ 0. We denote the category of sequential spectra by SpN.

We refer to the space Xn as the n-th level of the sequential spectrum X.

Construction 1.2 (Stable homotopy groups). Primary invariants of spectra are their homotopy groups:
the k-th homotopy group of a sequential spectrum X is defined as the colimit

πk(X) = colimn πn+k(Xn)

taken over the stabilization maps defined as the composite

πn+k(Xn)
S1∧−−−−−→ π1+n+k

(
S1 ∧Xn

) (σn)∗−−−−−→ π1+n+k(X1+n) .

For large enough n, the set πn+k(Xn) has a natural abelian group structure and the stabilization maps are
homomorphisms, so the colimit πk(X) inherits a natural abelian group structure.

Example 1.3 (Sphere spectrum and suspension spectra). The sphere spectrum S is given by Sn = Sn, the
n-sphere. Then structure maps

σn : S1 ∧ Sn −→ S1+n
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are the canonical homeomorphisms.
Every pointed space K gives rise to a suspension spectrum Σ∞K with values

(Σ∞K)n = Sn ∧K .

The structure map σn : S1 ∧ Sn ∧K −→ S1+n ∧K is the smash product of the canonical homeomorphism
with K. For example, the sphere spectrum S is isomorphic to the suspension spectrum Σ∞S0. A sequential
spectrum X is isomorphic to a suspension spectrum (necessarily that of its zeroth space X0) if and only if
every structure map σn : S1 ∧Xn −→ X1+n is a homeomorphism. The homotopy group

πs
k(K) = πk (Σ∞K) = colimn πn+k(Sn ∧K)

is called the k-th stable homotopy group of K. If K is a well-pointed based space, (i.e., the inclusion of
the basepoint {k0} −→ K has the homotopy extension property in the category T of unbased spaces),
then Sn ∧K is (n − 1)-connected, see for example [48, Corollary 6.7.10]. So the groups πk(Σ∞K) vanish
in negative dimensions, i.e., the suspension spectrum Σ∞K is connective. For example, every space that
admits a CW-structure is well-pointed for every choice of basepoint.

The homotopy group πk(S) = colimn πn+k(Sn) is called the k-th stable homotopy group of spheres, or
the k-th stable stem, and will be denoted πs

k. The group πs
k is trivial for negative values of k. The degree of

a self-map of a sphere provides an isomorphism πs
0
∼= Z. For k ≥ 1, the homotopy group πs

k is finite. This
is a direct consequence of the Freudenthal’s suspension and Serre’s calculation of the homotopy groups of
spheres modulo torsion, which we recall without giving a proof.

Theorem 1.4 (Serre). Let m > n ≥ 1. Then

πm(Sn) ∼=

{
(finite group)⊕ Z if n is even and m = 2n− 1

(finite group) else.

Thus for k ≥ 1, the stable stem πs
k = πk(S) is finite.

As a concrete example, we inspect the colimit system defining πs
1, the first stable stem. Since the universal

cover of S1 is the real line, which is contractible, the theory of covering spaces shows that the groups πnS
1

are trivial for n ≥ 2. The Hopf map

η : S3 ⊆ C2\{0} proj−−→ CP1 ∼= S2

is a locally trivial fiber bundle with fiber S1, so it gives rise to a long exact sequence of homotopy groups.
Since the fiber S1 has no homotopy above dimension one, the group π3S

2 is free abelian of rank one,
generated by the class of η. Here, and throughout the book, we identify the complex projective space CP 1

with the 2-sphere S2 via the homeomorphism from S2 to CP 1 that sends (x, y) ∈ R2 to [x + iy, 1] ∈ CP 1

and the point at infinity in S2 to the line [1, 0].
By Freudenthal’s suspension theorem the suspension homomorphism − ∧ S1 : π3(S2) −→ π4(S3) is

surjective and from π4(S3) on the suspension homomorphism is an isomorphism. So the first stable stem πs
1

is cyclic, generated by the image of η, and its order equals the order of the suspension of η. On the one hand,
η itself is stably essential, since the Steenrod operation Sq2 acts non-trivially on the mod-2 cohomology of
the mapping cone of η, which is homeomorphic to CP2.

On the other hand, twice the suspension of η is null-homotopic. To see this we consider the commutative
square

(x, y)
_

��

S3 η
//

��

CP1

��

[x : y]
_

��

(x̄, ȳ) S3
η

// CP1 [x̄ : ȳ]

in which the vertical maps are induced by complex conjugation in both coordinates of C2. The left vertical
map has degree 1, so it is homotopic to the identity, whereas complex conjugation on CP1 ∼= S2 has degree
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−1. So (−1) ◦ η is homotopic to η. Thus the suspension of η is homotopic to the suspension of (−1) ◦ η,
which by the following lemma is homotopic to the negative of η ∧ S1.

Lemma 1.5. Let Y be a based space, m ≥ 0 and f : Sm −→ Sm a continuous based map of degree k. Then
for every homotopy class x ∈ πn(Sm ∧Y ) the classes (f ∧Y )∗(x) and k ·x become equal in π1+n(S1+m ∧Y )
after one suspension.

Proof. Let dk : S1 −→ S1 be any pointed map of degree k. Then the maps S1∧f, dk∧Sm : S1+m −→ S1+m

have the same degree k, hence they are based homotopic. Suppose x is represented by ϕ : Sn −→ Sm ∧ Y .
Then the suspension of (f ∧ Y )∗(x) is represented by (S1 ∧ f ∧ Y ) ◦ (S1 ∧ ϕ) which is homotopic to
(dk ∧ Sm ∧ Y ) ◦ (S1 ∧ ϕ) = (S1 ∧ ϕ) ◦ (dk ∧ Sn). Precomposition with the degree k map dk ∧ Sn of S1+n

induces multiplication by k, so the last map represents the suspension of k · x. �

� The conclusion of Lemma 1.5 does not in general hold without the extra suspension, i.e., (f ∧ Y )∗(x)
need not equal k · x in πn(Sm ∧ Y ): as we showed above, (−1) ◦ η is homotopic to η, which is not

homotopic to −η since η generates the infinite cyclic group π3(S2).

As far as we know, the stable homotopy groups of spheres don’t follow any simple pattern. Much
machinery of algebraic topology has been developed to calculate homotopy groups of spheres, both unstable
and stable, but no one expects to ever get explicit formulae for all stable homotopy groups of spheres. The
Adams spectral sequence based on mod-p cohomology and the Adams-Novikov spectral sequence based on
MU (complex cobordism) or BP (the Brown-Peterson spectrum at a fixed prime p) are the most effective
tools we have for explicit calculations as well as for discovering systematic phenomena.

Example 1.6 (Multiplication in the stable stems). The stable stems πs
∗ = π∗(S) form a graded commutative

ring which acts on homotopy groups of every other spectrum X. We denote the action simply by a ‘dot’

· : πs
k × πl(X) −→ πk+l(X) .

The definition is essentially straightforward, but there is one subtlety in showing that the product is well-
defined. We let f : Sm+k −→ Sm and g : Sn+l −→ Xn represent classes in πs

k and πl(X), respectively. We
denote by f · g the composite

Sm+k+n+l f∧g−−−−→ Sm ∧Xn
σm−−−→ Xm+n

and then define

(1.7) [f ] · [g] = (−1)kn · [f · g]

in the group πk+l(X).
We check that the multiplication is well-defined. If we replace f : Sm+k −→ Sm by its suspension

S1 ∧ f : S1+m+k −→ S1+m, then

(S1 ∧ f) · g = σ1+m ◦ (S1 ∧ f ∧ g) = σm+n ◦ (S1 ∧ σm) ◦ (S1 ∧ f ∧ g) = σm+n ◦ (S1 ∧ (f · g)) .

Since the sign in the formula (1.7) does not change, the resulting stable class is independent of the repre-
sentative f of the stable class in πs

k. Independence of the representative for πl(X) is slightly more subtle. If
we replace g : Sn+l −→ Xn by the representative σn ◦ (S1 ∧ g) : S1+n+l −→ X1+n, then f · g gets replaced
by the lower horizontal composite in the commutative diagram

S1+m+k+n+l S1∧f∧g
//

χ1,m+k∧Sn+l

��

S1+m ∧Xn

χ1,m∧Xn
��

Sm+k+1+n+l f∧S1∧g
//

f ·(σn◦(S1∧g))

55
Sm+1 ∧Xn

σm+1
// Xm+1+n
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By Lemma 1.5 the map χ1,m∧Xn induces multiplication by (−1)m on homotopy groups after one suspension.
This cancels part of the sign (−1)m+k that is the effect of precomposition with the shuffle permutation
χ1,m+k on the left. So in the colimit πk+l(X) we have

[f · (σn ◦ (S1 ∧ g))] = (−1)k · [σm+1(S1 ∧ f ∧ g)] = (−1)k · [f · g] .

Since the dimension of S1 ∧ g is one more than the dimension of g, the extra factor (−1)k makes sure that
product [f ] · [g] as defined in (1.7) is independent of the representative of the stable class [g].

Now we verify that the dot product is biadditive. We only show the relation x · (y + y′) = x · y + x · y′,
and additivity in x is similar. Suppose as before that f : Sm+k −→ Sm and g, g′ : Sn+l −→ Xn represent
classes in πs

k and πl(X), respectively. Then the sum of g and g′ in πn+l(Xn) is represented by the composite

Sn+l pinch−−−→ Sn+l∨Sn+l g∨g′−−−→ Xn .

In the square

Sm+n+k+l

pinch

��

Sm∧χn,k∧Sl
// Sm+k+n+l

f∧(g+g′)

''

pinch∧Id

��

Sm+k ∧ (Sn+l∨Sn+l)
f∧(g∨g′)

// Sm ∧Xn

Sm+n+k+l∨Sm+n+k+l

(Sm∧χn,k∧Sl)∨(Sm∧χn,k∧Sl)
// Sm+k+n+l∨Sm+k+n+l (f∧g)∨(f∧g′)

77

∼=

OO

the right part commutes on the nose and the left square commutes up to homotopy. After composing with
the iterated structure map σm : Sm∧Xn −→ Xm+n, the composite around the top of the diagram becomes
f · (g + g′), whereas the composite around the bottom represents [f ] · [g] + [f ] · [g′]. This proves additivity
of the dot product in the right variable.

If we specialize to X = S then the product provides a biadditive graded pairing · : πs
k × πs

l −→ πs
k+l of

the stable homotopy groups of spheres. We claim that for every sequential spectrum X the diagram

πs
j × πs

k × πl(X)
πs
j×·

//

·×πl(X)

��

πs
j × πk+l(X)

·
��

πs
j+k × πl(X) ·

// πj+k+l(X)

commutes, so the product on the stable stems and the action on the homotopy groups of a spectrum are
associative. After unraveling all the definitions, this associativity ultimately boils down to the equality

(−1)jm · (−1)(j+k)n = (−1)kn · (−1)j(m+n)

and commutativity of the square

Sq ∧ Sm ∧Xn

∼=∧Xn
��

Sq∧σm // Sq ∧Xm+n

σq

��

Sq+m ∧Xn
σq+m

// Xq+m+n



ORTHOGONAL SPECTRA AND STABLE HOMOTOPY THEORY 7

Finally, the multiplication in the homotopy groups of spheres is commutative in the graded sense. Indeed,
for representing maps f : Sm+k −→ Sm and g : Sn+l −→ Sn the square

Sm+k+n+l

χm+k,n+l

��

f∧g
// Sm+n

χm,n

��

Sn+l+m+k

g∧f
// Sn+m

commutes. After one suspension, the two vertical coordinate permutations induce the signs (−1)(m+k)(n+l)

and (−1)mn, respectively, on homotopy groups. So in the stable group we have

[f ] · [g] = (−1)kn · [f · g] = (−1)kl+lm · [g · f ] = (−1)kl · [g] · [f ] .

The following table gives the stable homotopy groups of spheres through dimension 8:

n 0 1 2 3 4 5 6 7 8
πs
n Z Z/2 Z/2 Z/24 0 0 Z/2 Z/240 (Z/2)2

generator ι η η2 ν ν2 σ ησ, ε

Here ν and σ are the Hopf maps which arises unstably as fiber bundles S7 −→ S4 respectively S15 −→ S8.
The element ε in the 8-stem can be defined using Toda brackets as ε = ησ+ 〈ν, η, ν〉. The table contains or
determines all multiplicative relations in this range except for η3 = 12ν. A theorem of Nishida’s [ref] says
that every homotopy element of positive dimension is nilpotent.

Example 1.8 (Smash products with and functions from spaces). For a based space K, smashing with K
and taking based mapping space from K are an adjoint functor pair

− ∧K : // : map∗(K,−) = (−)Koo

We can lift these functors to sequential spectra by applying them levelwise. More precisely, for a sequential
spectrum X we define new sequential spectra X ∧K and map∗(K,X) by

(X ∧K)n = Xn ∧K and map∗(K,X)n = map∗(K,Xn) .

The structure maps do not interact with K: the n-structure map for X ∧K is

S1 ∧ (X ∧K)n = S1 ∧Xn ∧K
σn∧K−−−−→ X1+n ∧K = (X ∧K)1+n .

The n-structure map for map∗(K,X) is the composite

S1 ∧map∗(K,Xn) −→ map∗(K,S
1 ∧Xn)

map∗(K,σn)−−−−−−−−→ map∗(K,X1+n)

where the first is an assembly map that sends x ∧ f to the map sending k ∈ K to x ∧ f(k).
Just as the functors − ∧K and map∗(K,−) are adjoint on the level of based spaces, the two functors

just introduced are an adjoint pair for sequential spectra. The adjunction unit η : X −→ map∗(K,X ∧K)
and counit ε : map∗(K,X) ∧K −→ X are defined levelwise as coevaluation and evaluation maps:

ηn : Xn −→ map∗(K,Xn ∧K) , ηn(x)(k) = x ∧ k
εn : map∗(K,Xn) ∧K −→ X , εn(f)(k) = f(k) .

An important special case of this construction is when K = S1 is a 1-sphere, i.e., the one-point compact-
ification of R. In this case we call X ∧ S1 the suspension of X, and we call ΩX = map∗(S

1, X) the loop
spectrum of X. We obtain an adjunction between −∧S1 and Ω as the special case K = S1 of the previous
adjunction.

In Proposition 1.25 we prove that stable equivalences are closed under various constructions such as
suspensions, loop, shift adjoint, wedges, and finite products.
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Definition 1.9. A morphism f : X −→ Y of sequential spectra is a stable equivalence if the induced map
πk(f) : πk(X) −→ πk(Y ) is an isomorphism for all integers k.

We will develop some of the basic properties of homotopy groups for sequential spectra. We being by
showing that looping and suspending a spectrum shifts the homotopy groups. The loop homomorphism
starts from the isomorphism

α : πn+k(ΩXn) ∼= πn+k+1(Xn)

that is defined by the same adjunction as above, i.e., the class represented by a continuous based map

f : Sn+k −→ ΩXn is sent to the class of the map f̂ : Sn+k+1 −→ Xn given by f̂(s ∧ t) = f(s)(t), where
s ∈ Sn+k and t ∈ S1. As n varies, these particular isomorphisms are compatible with stabilization maps,
so they induce an isomorphism

α : πk(ΩX)
∼=−−→ πk+1(X)

on colimits.
The maps − ∧ S1 : πn+k(Xn) −→ πn+k+1(Xn ∧ S1) given by smashing from the right with the identity

of the circle are compatible with the stabilization process for the homotopy groups of X and S1 ∧ X,
respectively, so upon passage to colimits they induce a natural map of homotopy groups

− ∧ S1 : πk(X) −→ πk+1(X ∧ S1) ,

which we call the suspension homomorphism.
As before we let η : X −→ Ω(X ∧ S1) and ε : (ΩX) ∧ S1 −→ X denote the unit respectively counit

of the adjunction. Then for every map f : Sn+k −→ ΩXn we have f̂ = εn ◦ (f ∧ S1) and for every map
g : Sn+k −→ Xn we have g ∧ S1 = η̂n ◦ g. This means that the two triangles

(1.10)

πk(ΩX)
α //

−∧S1
&&

πk+1(X) πk(X)
−∧S1

//

πk(η)
%%

πk+1(X ∧ S1)

πk+1((ΩX) ∧ S1)

πk+1(ε)

88

πk(Ω(X ∧ S1))

α

77

commute.

Proposition 1.11. Let X be a sequential spectrum.

(i) The loop and suspension homomorphisms

α : πk(ΩX) −→ πk+1(X) and − ∧S1 : πk(X) −→ πk+1(X ∧ S1)

are isomorphisms of homotopy groups.
(ii) The unit η : X −→ Ω(X∧S1) and counit ε : (ΩX)∧S1 −→ X of the adjunction are stable equivalences.
(iii) For every continuous based map h : Sm −→ Sm, the morphism of sequential spectra X∧h : X∧Sm −→

X ∧ Sm induces multiplication by the degree of h on all homotopy groups.

Proof. (i) We already argued that the loop homomorphism α on homotopy groups is bijective since it is
the colimit of compatible bijections. The case of the suspension homomorphism − ∧ S1 is slightly more
involved. We show injectivity first. Let f : Sn+k −→ Xn represent an element in the kernel of the suspension
homomorphism. By stabilizing, if necessary, we can assume that the suspension f∧S1 : Sn+k+1 −→ Xn∧S1

is nullhomotopic. Then σn◦τ◦(f∧S1) : Sn+k+1 −→ Xn+1 is also nullhomotopic, where τ : Xn∧S1 ∼= S1∧Xn

is the twist homeomorphism. The maps σn ◦τ ◦(f ∧S1) and σn(S1∧f), the stabilization of f , only differ by
a coordinate permutation of the source sphere, hence the stabilization of f is nullhomotopic. So f represents
the trivial element in πk(X), which shows that the suspension homomorphism is injective.

It remains to show that the suspension homomorphism is surjective. Let g : Sn+k+1 −→ Xn ∧ S1 be a
map which represents a class in πk+1(X ∧ S1). We consider the map f = σn ◦ τ ◦ g : Sn+k+1 −→ X1+n
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where τ is again the twist homeomorphism. We claim that (−1)n+k · (f ∧ S1) : Sn+k+1+1 −→ X1+n ∧ S1

represents the same class as g in πk+1(X ∧ S1). To see this, we contemplate the diagram:

S1+n+k+1
S1∧g

((

χ1,n+k∧S1

��

Sn+k+1+1 g∧S1

//

f∧S1
..

Xn ∧ S1 ∧ S1 τ∧S1
// S1 ∧Xn ∧ S1

σn∧S1

��

X1+n ∧ S1

The composite through the upper right is the stabilization of g, and the composite through the lower left
represents (−1)n+k ·(f ∧S1). However, the upper triangle does not commute! The failure to commutativity
are the involutions of S1+n+k+1 and S1 ∧Xn ∧ S1 which interchange the outer two sphere coordinates in
each case. This coordinate change in the source induces multiplication by −1; the coordinate change in the
target is a map of degree −1, so after a single suspension it also induces multiplication by −1 on homotopy
groups (see Lemma 1.5). Altogether this shows that the upper triangle commutes up to homotopy after
one suspension, and so the suspension map on homotopy groups is also surjective.

(ii) Since loops and suspension homomorphism are bijective and the triangles (1.10) commute, the unit
and counit of the adjunction are stable equivalences.

(iii) Because the iterated suspension homomorphism

− ∧ Sm : πk(X) −→ πk+m(X ∧ Sm)

is bijective by part (i), every class in πk+m(X ∧Sm) has a representative of the form f ∧Sm : Sn+k+m −→
Xn ∧ Sm for some continuous based map f : Sk+n −→ Xn. So

(X ∧ h)∗[f ∧ Sm] = [(Xn ∧ h) ◦ (f ∧ Sm)] = [(f ∧ Sm) ◦ (Sn+k ∧ h)] = deg(h) · [f ∧ Sm] . �

Corollary 1.12. For every morphism f : X −→ Y of sequential spectra, the following conditions are
equivalent.

(a) The morphism f : X −→ Y is a stable equivalence.
(b) The morphism Ωf : ΩX −→ ΩY is a stable equivalence.
(c) The morphism f : X ∧ S1 −→ Y ∧ S1 is a stable equivalence.

A morphism f : A ∧ S1 −→ X of sequential spectra is a stable equivalence if and only if its adjoint

f̂ : A −→ ΩX is a stable equivalence.

Proof. We only need to prove the last statement. The morphism f and its adjoint are related by f =

ε ◦ (f̂ ∧ S1) where ε : (ΩX) ∧ S1 −→ X is the counit of the adjunction. The counit is a stable equivalence
by Proposition 1.11. We conclude that the morphism f is a stable equivalence if and only if the morphism

f̂ ∧ S1 : A ∧ S1 −→ (ΩX) ∧ S1 is. Since suspension shifts homotopy groups, this happens if and only if f
is a stable equivalence. �

1.1. Mapping cone and homotopy fiber. Now we review the mapping cone and the homotopy fiber of
a map of based spaces in some detail, along with their relationships to one another and to suspension and
loop space. The (reduced) mapping cone Cf of a morphism of based spaces f : A −→ B is defined by

Cf = (A ∧ [0, 1]) ∪f B .

Here the unit interval [0, 1] is pointed by 0 ∈ [0, 1], so that A∧ [0, 1] is the reduced cone of A. The mapping
cone comes with an inclusion i : B −→ Cf and a projection p : Cf −→ A ∧ S1; the projection sends B to
the basepoint and is given on A ∧ [0, 1] by p(a ∧ x) = a ∧ t(x) where

t : [0, 1] −→ S1 is defined as t(x) =
2x− 1

x(1− x)
.
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What is relevant about the map t is not the precise formula, but that it passes to a homeomorphism between
the quotient space [0, 1]/{0, 1} and the circle S1, and that it satisfies t(1− x) = −t(x).

We observe that an iteration of the mapping cone construction yields the suspension of A, up to homotopy.

Lemma 1.13. Let f : A −→ B be any continuous based map.

(i) The collapse map

∗ ∪ p : Ci = (B ∧ [0, 1]) ∪i Cf −→ A ∧ S1

is a based homotopy equivalence.
(ii) The square

Ci

∗∪p
��

p∪∗
// B ∧ S1

B∧τ
��

A ∧ S1

f∧S1
// B ∧ S1

commutes up to natural, based homotopy, where τ is the involution of S1 given by τ(x) = −x.
(iii) Let β : Z −→ B be a continuous based map such that the composite iβ : Z −→ Cf is null-homotopic.

Then there exists a based map h : Z ∧ S1 −→ A ∧ S1 such that (f ∧ S1) ◦ h : Z ∧ S1 −→ B ∧ S1 is
homotopic to β ∧ S1.

Proof. (i) A homotopy inverse r : A ∧ S1 −→ (B ∧ [0, 1]) ∪i Cf of ∗ ∪ p is defined by the formula

r(a ∧ x) =

{
a ∧ 2x in Cf for 0 ≤ x ≤ 1/2, and

f(a) ∧ (2− 2x) in B ∧ [0, 1] for 1/2 ≤ x ≤ 1.

We give explicit based homotopies between the two composites r and ∗∪p and the respective identity maps.
The space Ci = (B ∧ [0, 1]) ∪i Cf is homeomorphic to the quotient of the disjoint union of B ∧ [0, 1] and
A∧ [0, 1] by the equivalence relation that identifies f(a)∧ 1 in B ∧ [0, 1] with a∧ 1 in A∧ [0, 1] for all a ∈ A.
So we can define a homotopy on the space Ci by gluing two compatible homotopies. The homotopy

[0, 1]× (B ∧ [0, 1]) −→ Ci , (t, b ∧ x) 7−→ b ∧ (1− t)x in B ∧ [0, 1] .

and the homotopy

[0, 1]× (A ∧ [0, 1]) −→ Ci , (t, a ∧ x) 7→

{
a ∧ (1 + t)x in Cf for 0 ≤ x ≤ 1/(1 + t), and

f(a) ∧ (2− x(1 + t)) in B ∧ [0, 1] for 1/(1 + t) ≤ x ≤ 1,

are compatible, and the combined homotopy starts at t = 0 with the identity and ends at t = 1 with the
map r ◦ (∗ ∪ p).

A homotopy from the identity of A ∧ S1 to (∗ ∪ p) ◦ r is given by

[0, 1]× (A ∧ S1) −→ A ∧ S1 , (t, a ∧ x) 7−→ a ∧ (1 + t)

which is to be interpreted as the basepoint if (1 + t)x ≥ 1.
(ii) Again we glue the desired homotopy from two pieces, namely

[0, 1]× (B ∧ [0, 1]) −→ B ∧ S1 , (t, b ∧ x) 7−→ b ∧ (1 + t− x) ,

which has to be interpreted as the basepoint if x ≤ t and

[0, 1]× (A ∧ [0, 1]) −→ B ∧ S1 , (t, a ∧ x) 7−→ f(a) ∧ (t+ x− 1)

which has to be interpreted as the basepoint if t + x ≤ 1. The two homotopies are compatible and the
combined homotopy starts with the map (B∧τ)◦ (p∪∗) for t = 0 and it ends with the map (f ∧S1)◦ (∗∪p)
for t = 1.

(iii) Let H : Z ∧ [0, 1] −→ Cf be a based null-homotopy of the composite iβ : Z −→ Cf , i.e., H(z ∧ 1) =
i(β(z)) for all z ∈ Z. The composite pAH : Z ∧ [0, 1] −→ A ∧ S1 then factors as pAH = hpZ for a unique
map h : Z ∧ S1 −→ A ∧ S1.
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To analyze (f ∧S1)◦h we compose it with the map ∗∪pZ : (Z ∧ [0, 1])∪Z×1 (Z ∧ [0, 1]) −→ Z ∧S1 which
collapses the second cone and which is a homotopy equivalence by (i). We obtain a sequence of equalities
and homotopies

(f ∧ S1) ◦ h ◦ (∗ ∪ pZ) = (f ∧ S1) ◦ (∗ ∪ pA) ◦ ((β ∧ [0, 1]) ∪H)

' (B ∧ τ) ◦ (pB ∪ ∗) ◦ ((β ∧ [0, 1]) ∪H)

= (B ∧ τ) ◦ (β ∧ S1) ◦ (pZ ∪ ∗)
= (β ∧ S1) ◦ (Z ∧ τ) ◦ (pZ ∪ ∗) ' (β ∧ S1) ◦ (∗ ∪ pZ)

Here (β ∧ [0, 1]) ∪ H : CZ ∪Z×1 CZ −→ CB ∪i Cf = C(i). The two homotopies result from part (ii)
applied to f respectively the identity of Z. Since the map ∗ ∪ pZ is a homotopy equivalence, this proves
that (f ∧ S1) ◦ h is homotopic to β ∧ S1. �

Now we can introduce mapping cones for sequential spectra. The mapping cone Cf of a morphism of
sequential spectra f : X −→ Y is define levelwise:

(1.14) (Cf)n = C(fn) = (Xn ∧ [0, 1]) ∪fn Yn ,
the reduced mapping cone of fn : Xn −→ Yn. The structure maps are induced by the structure maps of X
and Y , and they do not interact with the cone coordinate. The inclusions in : Yn −→ C(fn) and projections
pn : C(fn) −→ Xn∧S1 assemble into morphisms of sequential spectra i : Y −→ Cf and p : Cf −→ X ∧S1.

We define a connecting homomorphism δ : πk+1(Cf) −→ πk(X) as the composite

(1.15) πk+1(Cf)
p∗−−−→ πk+1(X ∧ S1)

−∧S−1

−−−−−−→ πk(X) ,

where the second map is the inverse of the suspension isomorphism − ∧ S1 : πk(X) −→ πk+1(X ∧ S1). If
we unravel all the definitions, we see that δ sends the class represented by a based map g : Sn+k+1 −→ Cfn
to (−1)n+k times the class of the composite

Sn+k+1 g−−→ Cfn
pn−−−→ Xn ∧ S1 twist−−−→ S1 ∧Xn

σn−−−→ X1+n .

Proposition 1.16. For every morphism f : X −→ Y of sequential spectra the long sequence of abelian
groups

· · · −→ πk(X)
f∗−−−→ πk(Y )

i∗−−→ πk(Cf)
δ−−→ πk−1(X) −→ · · ·

is exact.

Proof. Since homotopy groups only depend on the underlying sequential spectra and the forgetful functor
preserves all the constructions in sight, we only have to show the statement for sequential spectra.

We start with exactness at πk(Y ). The composite of f : X −→ Y and the inclusion Y −→ Cf is
levelwise the constant map at the basepoint, so it induces the trivial map on πk. It remains to show that
every element in the kernel of i∗ is in the image of f∗. Let β : Sn+k −→ Yn represent an element in the
kernel. By increasing n, if necessary, we can assume that iβ : Sn+k −→ C(fn) is null-homotopic. By
Lemma 1.13 (iii) there is a based map h : Sn+k+1 −→ Xn ∧ S1 such that (fn ∧ S1) ◦ h is homotopic to
β ∧ S1. The composite

h̃ : S1+n+k χ1,n+k−−−−−→ Sn+k+1 h−−−−→ Xn ∧ S1
τXn,S1

−−−−→ S1 ∧Xn

then has the property that (S1 ∧ fn) ◦ h̃ is homotopic to S1 ∧ β. The map σn ◦ h̃ : S1+n+k −→ X1+n

represents a homotopy class in πk(X) and we have

f∗[σn ◦ h̃] = [f1+n ◦ σn ◦ h̃] = [σn ◦ (S1 ∧ fn) ◦ h̃] = [σn ◦ (S1 ∧ β)] = [β] .

So the class represented by β is in the image of f∗ : πk(X) −→ πk(Y ).
We now deduce the exactness at πk(Cf) and πk−1(X) by comparing the mapping cone sequence for

f : X −→ Y to the mapping cone sequence for the morphism i : Y −→ Cf (shifted to the left). The
collapse map

∗ ∪ p : Ci = CY ∪i Cf −→ X ∧ S1
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is levelwise a homotopy equivalence by Lemma 1.13 (i), and thus induces an isomorphism of homotopy
groups. Now we consider the diagram

Cf
ii //

p
&&

Ci
p∪∗

//

∗∪p
��

Y ∧ S1

Y ∧τ
��

X ∧ S1

f∧S1
// Y ∧ S1

whose upper row is part of the mapping cone sequence for the morphism i : Y −→ Cf . The left triangle
commutes on the nose and the right triangle commutes up to based homotopy by Lemma 1.13 (ii). The
involution τ : S1 −→ S1 has degree −1, so the automorphism Y ∧ τ of Y ∧S1 induces multiplication by −1
on homotopy groups. We get a commutative diagram

πk(Y )
i∗ // πk(Cf)

(ii)∗
// πk(Ci)

δ //

(−∧S−1)◦(∗∪p)∗ ∼=
��

πk−1(Y )

(−1)·
��

πk(Y )
i∗

// πk(Cf)
δ

// πk−1(X)
f∗

// πk−1(Y )

(using for the right square the naturality of the suspension isomorphism). By the previous paragraph,
applied to i : Y −→ Cf instead of f , the upper row is exact at πk(Cf). Since all vertical maps are
isomorphisms, the original lower row is exact at πk(Cf). But the morphism f was arbitrary, so when
applied to i : Y −→ Cf instead of f , we obtain that the upper row is exact at πk(Ci). Since all vertical
maps are isomorphisms, the original lower row is exact at πk−1(X). This finishes the proof. �

A continuous map f : A −→ B of spaces is an h-cofibration if it has the homotopy extension property,
i.e., given a continuous map ϕ : B −→ X and a homotopy H : A × [0, 1] −→ X such that H(−, 0) = ϕf ,
there is a homotopy H̄ : B × [0, 1] −→ X such that H̄ ◦ (f × [0, 1]) = H and H̄(−, 0) = ϕ. An equivalent
condition is that the map A× [0, 1]∪f×0 B −→ B× [0, 1] has a retraction. For every h-cofibration the map
Cf −→ B/A which collapses the cone of A to a point is a based homotopy equivalence, see for example [16,
Proposition 0.17] or [48, Proposition 5.1.10] with B = ∗.

Let f : X −→ Y be a morphism of sequential spectra that is levelwise an h-cofibration. Then by the
above, the morphism c : Cf −→ Y/X that collapses the cone of X is a level equivalence, and so it induces
an isomorphism of homotopy groups. We can thus define another connecting homomorphism

(1.17) δ : πk(Y/X) −→ πk−1(X)

as the composite of the inverse of the isomorphism c∗ : πk(Cf) −→ πk(Y/X) and the connecting homomor-
phism πk(Cf) −→ πk−1(X) defined in (1.15).

Corollary 1.18. Let f : X −→ Y be a morphism of sequential spectra that is levelwise an h-cofibration
and denote by q : Y −→ Y/X the quotient map. Then the long sequence of homotopy groups

· · · −→ πk(X)
f∗−−−→ πk(Y )

q∗−−−→ πk(Y/X)
δ−−→ πk−1(X) −→ · · ·

is exact.

Now we discuss the homotopy fiber, a construction ‘dual’ to the mapping cone. The homotopy fiber of a
morphism f : A −→ B of based spaces is the fiber product

Ff = ∗ ×B B[0,1] ×B A = {(λ, a) ∈ B[0,1] ×A | λ(0) = ∗, λ(1) = f(a)} ,
i.e., the space of paths in B starting at the basepoint and equipped with a lift of the endpoint to A. As
basepoint of the homotopy fiber we take the pair consisting of the constant path at the basepoint of B and
the basepoint of A. The homotopy fiber comes with maps

ΩB
i−−→ Ff

q−−→ A ;
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the map q is the projection to the second factor and the value of the map i on a loop ω : S1 −→ B is
i(ω) = (ω ◦ t, ∗).

We can apply the homotopy fiber levelwise to a morphism f : X −→ Y of sequential spectra. The
homotopy fiber Ff is defined by

(Ff)n = F (fn) ,

the homotopy fiber of fn : Xn −→ Yn. The inclusions in : Ω(Yn) −→ (Ff)n and projections qn : (Ff)n −→
Xn assemble into morphisms of sequential spectra i : ΩY −→ Ff and p : Ff −→ X.

We define a connecting homomorphism δ : πk+1(Y ) −→ πk(Ff) as the composite

(1.19) πk+1(Y )
α−1

−−→ πk(ΩY )
i∗−−→ πk(Ff) ,

where α : πk(ΩY ) −→ π1+k(Y ) is the loop isomorphism.
We can compare the mapping cone and homotopy fiber as follows. For a map f : A −→ B of based

spaces we define a map h̄ : F (f)× [0, 1] −→ (A ∧ [0, 1]) ∪f B = Cf by

(λ, a, t) 7−→

{
a ∧ 2t for 0 ≤ t ≤ 1/2, and

λ(2− 2t) for 1/2 ≤ t ≤ 1.

We note that the two formulas match at t = 1/2 because λ(1) = f(a) = a ∧ 1 in Cf . Since h̄(λ, a, 0) and
h̄(λ, a, 1) are the basepoint of the mapping cone for all (λ, a) in Ff , the map h̄ factors over a based map

h : (Ff) ∧ S1 −→ Cf ,

which satisfies h◦ q = h̄ and is natural in f . So for a morphism f : X −→ Y of sequential spectra, the maps
h for the various levels together form a natural morphism

h : (Ff) ∧ S1 −→ Cf .

Proposition 1.20. For every morphism f : X −→ Y of sequential spectra the long sequence of abelian
groups

· · · −→ πk(Ff)
q∗−−−→ πk(X)

f∗−−−→ πk(Y )
δ−−→ πk−1(Ff) −→ · · ·

is exact and the morphism h : (Ff) ∧ S1 −→ Cf is a stable equivalence.

Proof. The long sequence is exact because it is obtained from the unstable long exact sequences for the
homotopy fiber sequences (Ff)n −→ Xn −→ Yn by passage to the colimit (which is exact).

For showing that h is a stable equivalence it suffices to show that the composite h∗◦(−∧S1) : πk(Ff) −→
πk+1(Cf) is an isomorphism. We claim that the diagram

πk+1(Y )

(−1)·

��

δ // πk(Ff)

h∗◦(−∧S1)

��

q∗ // πk(X)

πk+1(Y )
i∗

// πk+1(Cf)
δ

// πk(X)

commutes. The morphism h∗ ◦ (− ∧ S1) : πk(Ff) −→ πk+1(Cf) and the identity maps of the homotopy
groups of X and Y thus give a natural map from the long exact sequence of the homotopy fiber to the long
exact sequence of the mapping cone, with an extra sign. A sign does not affect exactness of a sequence,
and so the five lemma shows that h∗ ◦ (− ∧ S1) is an isomorphism. Hence h is a stable equivalence.

We still have to justify the commutativity of the previous diagram. For the right square this is the
definition of the connecting homomorphism, naturality of the suspension isomorphism and the fact that the
composite

(Ff) ∧ S1 h−−→ Cf
p−−→ X ∧ S1
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is homotopic to q ∧ S1 via the homotopy

[0, 1]× ((Ff) ∧ S1) −→ X ∧ S1 , (t, (λ, a) ∧ s) 7−→

{
a ∧ 2s/(2− t) for 0 ≤ s ≤ 1− t/2, and

∗ for 1− t/2 ≤ s ≤ 1,

(to be interpreted levelwise). Indeed, these facts together supply the relation

δ ◦ h∗ ◦ (− ∧ S1) = (− ∧ S−1) ◦ p∗ ◦ h∗ ◦ (− ∧ S1)

= (− ∧ S−1) ◦ (q ∧ S1)∗ ◦ (− ∧ S1)

= (− ∧ S−1) ◦ (− ∧ S1) ◦ q∗ = q∗ .

For the left square we need that the diagram

(ΩY ) ∧ S1 i∧τ //

ε

��

(Ff) ∧ S1

h

��

Y
i

// Cf

commutes up to based homotopy, where ε is the adjunction counit. One possible such homotopy is

[0, 1]× ((ΩY ) ∧ S1) −→ Cf

(t, ω ∧ x) 7−→

{
∗ for 0 ≤ x ≤ t/2, and

ω(2(1− t)/(2− x)) for t/2 ≤ x ≤ 1.

Given this, we have

h∗(δ(y) ∧ S1) = h∗(i∗(α
−1(y)) ∧ S1) = (h ◦ (i ∧ S1))∗(α

−1(y) ∧ S1)

= −(i ◦ ε)∗(α−1(y) ∧ S1) =(1.10) −i∗(y)

and this finishes the proof. �

For every Serre fibration ϕ : E −→ B of topological spaces the map c : F −→ F (ϕ) from the strict
fiber to the homotopy fiber that sends e ∈ F to (const∗, e). is a weak equivalence. We let f : X −→ Y
be a morphism of sequential spectra that is levelwise a Serre fibration; then by the above the morphism
c : F −→ F (f) from the strict fiber to the homotopy fiber of f is a level equivalence. So we can define
another connecting morphism

δ : πk(Y ) −→ πk−1(F )

as the composite of the connecting homomorphism πk(Y ) −→ πk−1(Ff) defined in (1.19) and the inverse
of the isomorphism c∗ : πk−1(Ff) −→ πk−1(F ).

Corollary 1.21. Let f : X −→ Y be a morphism of sequential spectra that is levelwise a Serre fibration;
let ι : F −→ X denote the inclusion of the fiber over the basepoint. Then the long sequence of homotopy
groups

· · · −→ πk(F )
ι∗−−→ πk(X)

f∗−−−→ πk(Y )
δ−−→ πk−1(F ) −→ · · ·

is exact.

We draw some consequences of our previous results.

Proposition 1.22. (i) For every family of sequential spectra {Xi}i∈I and every integer k the canonical
map ⊕

i∈I
πk(Xi) −→ πk

(∨
i∈I

Xi

)
is an isomorphism of abelian groups.
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(ii) For every finite indexing set I, every family {Xi}i∈I of sequential spectra and every integer k the
canonical map

πk

(∏
i∈I

Xi

)
−→

∏
i∈I

πk(Xi)

is an isomorphism of abelian groups.
(iii) For every finite family of sequential spectra the canonical morphism from the wedge to the product is

a stable equivalence.

Proof. (i) We first show the special case of two summands. If A and B are two sequential spectra, then the
wedge inclusion iA : A −→ A ∨B has a retraction. So the associated long exact homotopy group sequence
of Proposition 1.16 splits into short exact sequences

0 −→ πk(A)
(iA)∗−−−−→ πk(A ∨B)

i∗−−→ πk(C(iA)) −→ 0 .

The mapping cone C(iA) is isomorphic to (CA)∨B and thus homotopy equivalent to B. So we can replace
πk(C(iA)) by πk(B) and conclude that πk(A ∨B) splits as the sum of πk(A) and πk(B), via the canonical
map. The case of a finite indexing set I now follows by induction.

In the general case we consider the composite⊕
i∈I

πk(Xi) −→ πk

(∨
i∈I

Xi
)
−→

∏
i∈I

πk(Xi) ,

where the second map is induced by the projections to the wedge summands. This composite is the canonical
map from a direct sum to a product of abelian groups, hence injective. So the first map is injective as well.
For surjectivity we consider a continuous based map f : Sn+k −→

∨
i∈I X

i
n that represents an element in

the k-th homotopy group of
∨
i∈I X

i. Since the source of f is compact, there is a finite subset J of I such

that f has image in
∨
j∈J X

j
n, see for example [39, Proposition A.18]. Then the given class is in the image of

πk

(∨
j∈J X

j
)

; since J is finite, the class is in the image of the canonical map, by the previous paragraph.

(ii) Unstable homotopy groups commute with products, which for finite indexing sets are also sums,
which commute with filtered colimits.

(iii) This is a direct consequence of (i) and (ii). More precisely, for finite indexing set I and every integer
k the composite map ⊕

i∈I
πk(Xi) −→ πk(

∨
i∈I

Xi) −→ πk(
∏
i∈I

Xi) −→
∏
i∈I

πk(Xi)

is an isomorphism, where the first and last maps are the canonical ones. These canonical maps are isomor-
phisms by parts (i) respectively (ii), hence so is the middle map. �

Remark 1.23. The restriction to finite indexing sets in parts (ii) of the previous corollary is essential, and
it ultimately comes from the fact that infinite products do not in general commute with sequential colimits.
Here is an explicit example: we consider the spectra S≤i obtained by truncating the sphere spectrum above
level i, i.e.,

(S≤i)n =

{
Sn for n ≤ i,
∗ for n ≥ i+ 1

with structure maps as a quotient spectrum of S. Then S≤i has trivial homotopy groups for all i. The 0th
homotopy group of the product

∏
i≥1 S≤i is the colimit of the sequence of maps∏
i≥n

πn(Sn) −→
∏

i≥n+1

πn+1(Sn+1)

which first projects away from the factor indexed by i = n and then takes a product of the suspensions
homomorphisms − ∧ S1 : πn(Sn) −→ πn+1(Sn+1). The colimit is thus isomorphic to the quotient of an
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infinite product of copies of the group Z by the direct sum of the same number of copies of Z. Hence the
right hand side of the canonical map

π0

(∏
i≥1

S≤i
)
−→

∏
i≥1

π0(S≤i)

is trivial, while the left hand side is not.

Proposition 1.24. (i) Let em : Xm −→ Xm+1 be morphisms of sequential spectra that are levelwise
closed embeddings, for m ≥ 0. Let X∞ be a colimit of the sequence {em}m≥0. Then for every integer
k the canonical map

colimm≥0 πk(Xm) −→ πk(X∞)

is an isomorphism.
(ii) Let em : Xm −→ Xm+1 and fm : Y m −→ Y m+1 be morphisms of sequential spectra that are levelwise

closed embeddings, for m ≥ 0. Let ψm : Xm −→ Y m be stable equivalences that satisfy ψm+1 ◦ em =
fm ◦ ψm for all m ≥ 0. Then the induced morphism ψ∞ : X∞ −→ Y∞ between the colimits of the
sequences is a stable equivalence.

(iii) Let fm : Y m −→ Y m+1 be stable equivalences of sequential spectra that are levelwise closed embeddings,
for m ≥ 0. Then the canonical morphism f∞ : Y 0 −→ Y∞ to a colimit of the sequence {fm}m≥0 is
a stable equivalence.

Proof. (i) We let f : Sn+k −→ X∞n be a based continuous map that represents a class in πk(X∞). Since
the sphere Sn+k is compact and X∞n is a colimit of the sequence of closed embeddings Xm

n −→ Xm+1
n , the

map f factors through a continuous map

f̄ : Sn+k −→ Xm
n

for some m ≥ 0, see for example [18, Proposition 2.4.2] or [39, Proposition A.15]. The same reasoning
applies to homotopies, so the canonical map

colimm≥0 πn+k(Xm
n ) −→ πn+k(X∞n )

is bijective. Passing to colimits over n proves the claim.
Parts (ii) and (iii) are direct consequences of (i). �

As far as I can see, the suspension functor − ∧ S1 does not in general preserve weak equivalences of
spaces, hence not level equivalences of sequential spectra [give example]. However, − ∧ S1 preserves stable
equivalences.

Proposition 1.25. (i) A wedge of stable equivalences is a stable equivalence.
(ii) A finite product of stable equivalences is a stable equivalence.
(iii) Consider a commutative square of orthogonal spectra

(1.26)

A
i //

f

��

B

g

��

C
j
// D

and let h = (Cf) ∪ g : Ci −→ Cj be the map induced by f and g on mapping cones. Then if two of
the three morphisms f, g and h are stable equivalences, so is the third.

(iv) Consider a commutative square (1.26) of sequential spectra. Let e : Fi −→ Fj be the map induced by
f and g on homotopy fibers. Then if two of the three morphisms e, f and g are stable equivalences, so
is the third.

(v) Consider a commutative square (1.26) of sequential spectra for which one of the following conditions
holds:
(a) the square is a pushout and i or f is levelwise an h-cofibration.
(b) the square is a pullback and j or g is a levelwise a Serre fibration.
Then f is a stable equivalence if and only if g is.



ORTHOGONAL SPECTRA AND STABLE HOMOTOPY THEORY 17

(vi) Let K be a based space that admits a CW-structure. Then the functor −∧K preserves stable equiva-
lences of sequential spectra.

(vii) Let K be a based space that admits a finite CW-structure. Then the functor map∗(K,−) preserves
stable equivalences of sequential spectra.

Proof. Part (i) holds because the homotopy groups of a wedge are the direct sum of the homotopy groups
of the wedge summands (Proposition 1.22 (i)). Part (ii) holds because the homotopy groups of a finite
product are the product of the homotopy groups of the factors (Proposition 1.22 (ii)). Part (iii) follows
by applying the 5-lemma to the long exact sequences of the mapping cones of i and j (Proposition 1.16).
Part (iv) follows by applying the 5-lemma to the long exact sequences of the homotopy fibers of i and j
(Proposition 1.20).

(v) We start with case (a) of a pushout square. Since the square is a pushout, the morphism j : C −→ D
descends to an isomorphism j/i : C/A ∼= D/B between the two vertical quotient spectra; and the morphism
g : B −→ D descends to an isomorphism g/f : B/A ∼= D/C between the two horizontal quotient spectra.

If f is levelwise an h-cofibration, then the long exact homotopy group sequence for the quotient spectrum
C/A (Corollary 1.18) shows that f is a stable equivalence if and only of C/A has trivial homotopy groups.
Since h-cofibrations are stable under cobase change, the same is true for g: the morphism g is a stable
equivalence if and only of D/B has trivial homotopy groups. So f is a stable equivalence if and only if g is.

If i is an h-cofibration, the argument is similar, but slightly different. In this case we compare the
two long exact homotopy group sequences for the horizontal quotient spectra (Corollary 1.18). Since
g/f : B/A ∼= D/C is an isomorphism, the 5-lemma shows that f is stable equivalence if and only if g is.
The comparison map for the homotopy groups of the

The case (b) of a pullback square is strictly dual, using strict fibers instead of quotient spectra, and
Corollary 1.21 in place of Corollary 1.18.

(vi) The functor − ∧ K preserves mapping cones, so by the long exact homotopy group sequence of
Proposition 1.16 it suffices to show the following special case: let X be a sequential spectrum all of whose
homotopy groups vanish; then all homotopy groups of the spectrum X ∧K vanish, too.

We let Kn denote the n-skeleton in a CW-structure on K. We show first, by induction on n, that the
spectrum X ∧Kn has trivial homotopy groups. The induction starts with n = −1, where there is nothing
to show. For n ≥ 0 the quotient Kn/Kn−1 is homeomorphic to a wedge of n-spheres. Since homotopy
groups take wedges to sums, the suspension isomorphism allows us to rewrite the homotopy groups of
X ∧ (Kn/Kn−1) as

πk(X ∧ (Kn/Kn−1)) ∼= πk(X ∧ (
∨

I
Sn)) ∼= πk(

∨
I

(X ∧ Sn)) ∼=
⊕

I
πk−n(X) .

This group is trivial by the hypothesis on X.
The inclusion Kn−1 −→ Kn is an h-cofibration of based spaces, so the induced morphism X ∧Kn−1 −→

X ∧ Kn is an h-cofibration of sequential spectra; these morphisms are then in particular levelwise closed
embeddings, giving rise to a long exact sequence of homotopy groups (Corollary 1.18). By the previous
paragraph and the inductive hypothesis, the spectrum X ∧ Kn has vanishing homotopy groups. This
completes the inductive step.

Since K is the sequential colimit, along h-cofibrations of based spaces, of the skeleta Kn, the spectrum
X ∧K is the sequential colimit, along h-cofibrations sequential spectra, of the sequence with terms X ∧Kn.
These h-cofibrations are in particular levelwise closed embeddings, see for example [39, Proposition A.31].
So homotopy groups commute with such sequential colimits (Proposition 1.24 (i)), so also X ∧ K has
vanishing homotopy groups.

(vii) We start with a special case and let X be a sequential spectrum whose homotopy groups vanish.
We show first that then the homotopy groups of the spectrum map∗(K,X) vanish, too. We argue by
induction over the number of cells in a CW-structure of K. The induction starts when K consists only
of the basepoint, in which case map∗(K,X) is a trivial spectrum and there is nothing to show. For the
inductive step we assume that the homotopy groups of map∗(K,X) vanish and L is obtained from K by
attaching an n-cell. Then the restriction map map∗(L,X) −→ map∗(K,X) is levelwise a Serre fibration
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whose fiber is isomorphic to

map∗(L/K,X) ∼= map∗(S
n, X) ∼= ΩnX .

The homotopy groups of this spectrum are isomorphic to the shifted homotopy groups of X, and these
vanish by assumption. The long exact sequence of Corollary 1.21 and the inductive hypothesis then show
that the homotopy groups of map∗(K,X) vanish.

The functor map∗(K,−) commutes with homotopy fibers; so two applications of the long exact homotopy
group sequence of a homotopy fiber (Proposition 1.20) reduce the general case to the special case. �

2. Orthogonal spectra

Orthogonal spectra are used, at least implicitly, already in [31]; the term ‘orthogonal spectrum’ was
introduced by Mandell, May, Shipley and the author in [30], where the (non-equivariant) stable model
structure for orthogonal spectra was constructed. Before giving the formal definition we try to motivate it.
An orthogonal spectrum X assigns a based space X(V ) to every inner product space, and it keeps track of
an O(V )-action on X(V ) and of a way to stabilize by suspensions. When doing this in a coordinate-free
way, the stabilization data assigns to a linear isometric embedding ϕ : V −→W a continuous based map

ϕ? : SW−ϕ(V ) ∧X(V ) −→ X(W )

where W − ϕ(V ) is the orthogonal complement of the image of ϕ. This structure map should ‘vary
continuously with ϕ’, but this phrase has no literal meaning because the source of ϕ? depends on ϕ. The
way to make the continuous dependence rigorous is to exploit the fact that the complements W −ϕ(V ) vary
in a locally trivial way, i.e., they are the fibers of a distinguished vector bundle, the ‘orthogonal complement
bundle’, over the space of L(V,W ) of linear isometric embeddings. All the structure maps ϕ? together define
a map on the smash product of X(V ) with the Thom space of this complement bundle, and the continuity
of the dependence on ϕ is formalized by requiring continuity of that map. All these Thom spaces together
form the morphism spaces of a based topological category, and the data of an orthogonal spectrum can
conveniently be packaged as a continuous based functor on this category.

Construction 2.1. We let V and W be inner product spaces. Over the space L(V,W ) of linear isometric
embeddings sits a certain ‘orthogonal complement’ vector bundle with total space

ξ(V,W ) = { (w,ϕ) ∈W × L(V,W ) | w ⊥ ϕ(V ) } .

The structure map ξ(V,W ) −→ L(V,W ) is the projection to the second factor. The vector bundle structure
of ξ(V,W ) is as a vector subbundle of the trivial vector bundle W×L(V,W ), and the fiber over ϕ : V −→W
is the orthogonal complement W − ϕ(V ) of the image of ϕ.

We let O(V,W ) be the Thom space of the bundle ξ(V,W ), i.e., the one-point compactification of the
total space of ξ(V,W ). Up to non-canonical homeomorphism, we can describe the space O(V,W ) differently
as follows. If the dimension of W is smaller than the dimension of V , then the space L(V,W ) is empty
and O(V,W ) consists of a single point at infinity. Otherwise we can choose a linear isometric embedding
ϕ : V −→W , and then the maps

O(W )/O(W − ϕ(V )) −→ L(V,W ) , A ·O(W − ϕ(V )) 7−→ Aϕ and

O(W ) nO(W−ϕ(V )) S
W−ϕ(V ) −→ O(V,W ) , [A,w] 7−→ (Aw,Aϕ)

are homeomorphisms. Here, and in the following, we write

GnH A = (G+) ∧H A = (G+ ∧A)/ ∼

for a closed subgroup H of G and a based G-space A; the equivalence relation is gh ∧ a ∼ g ∧ ha for all
(g, h, a) ∈ G×H×A. Put yet another way: if dimV = n and dimW = n+m, then L(V,W ) is homeomorphic
to the homogeneous space O(n + m)/O(m) and O(V,W ) is homeomorphic to O(n + m) nO(m) S

m. The
vector bundle ξ(V,W ) becomes trivial upon product with the trivial bundle V , via the trivialization

ξ(V,W )× V ∼= W × L(V,W ) , ((w,ϕ), v) 7−→ (w + ϕ(v), ϕ) .
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When we pass to Thom spaces on both sides this becomes the untwisting homeomorphism:

(2.2) O(V,W ) ∧ SV ∼= SW ∧ L(V,W )+ .

The Thom spaces O(V,W ) are the morphism spaces of a based topological category. Given a third inner
product space U , the bundle map

ξ(V,W )× ξ(U, V ) −→ ξ(U,W ) , ((w,ϕ), (v, ψ)) 7−→ (w + ϕ(v), ϕψ)

covers the composition map L(V,W )× L(U, V ) −→ L(U,W ). Passage to Thom spaces gives a based map

◦ : O(V,W ) ∧O(U, V ) −→ O(U,W )

which is clearly associative, and is the composition in the category O. The identity of V is (0, IdV ) in
O(V, V ).

Definition 2.3. An orthogonal spectrum is a based continuous functor from O to the category T∗ of based
spaces. A morphism of orthogonal spectra is a natural transformation of functors. We denote the category
of orthogonal spectra by Sp.

Given two inner product spaces V and W we define a continuous based map

iV : SV −→ O(W,V ⊕W ) by v 7−→ ((v, 0), (0,−)) ,

where (0,−) : W −→ V ⊕ W is the embedding of the second summand. We define the structure map
σV,W : SV ∧X(W ) −→ X(V ⊕W ) of the orthogonal spectrum X as the composite

SV ∧X(W )
iV ∧X(W )−−−−−−→ O(W,V ⊕W ) ∧X(W )

X−−→ X(V ⊕W ) .

Often it will be convenient to use the opposite structure map

(2.4) σop
V,W : X(V ) ∧ SW −→ X(V ⊕W )

which we define as the following composite:

X(V ) ∧ SW twist−−−→ SW ∧X(V )
σW,V−−−→ X(W ⊕ V )

X(τV,W )−−−−−−→ X(V ⊕W )

Remark 2.5 (Coordinatized orthogonal spectra). Every inner product space is isometrically isomorphic to
Rn with standard inner product, for some n ≥ 0. So the topological category O has a small skeleton, and
the functor category of orthogonal spectra has ‘small’ morphism sets. Up to isomorphism, an orthogonal
spectrum X is determined by the values Xn = X(Rn), the action of O(n) on it, and the structure maps
σn : S1∧Xn −→ X1+n for n ≥ 0. This also leads to a more explicit ‘coordinatized’ description of orthogonal
spectra in a way that resembles a presentation by generators and relations. We refer to Exercise E.1 for
more details.

2.1. Constructions. We discuss various constructions which produce new orthogonal spectra from old
ones. Whenever possible, we describe the effect that a certain construction has on the homotopy groups.

Example 2.6 (Limits and colimits). In any category of continuous based functors, limits and colimits
exist, and they are defined objectwise. In particular, the category of orthogonal spectra has all limits and
colimits, and they are defined levelwise. Let us be a bit more precise and consider a functor F : J −→ Sp
from a small category J to the category of orthogonal spectra. Then we define an orthogonal spectrum
colimJ F at an inner product space V by

(colimJ F )(V ) = colimj∈J F (j)(V ) ,

the colimit in the category of pointed spaces. The structure maps ares the composite

O(V,W ) ∧ (colimj∈J F (j)(V )) ∼= colimj∈J(O(V,W ) ∧ F (j)(V ))
colimJ F (j)(V,W )−−−−−−−−−−−→ colimj∈J F (j)(W ) ;

here we exploit that smashing with any based space is a left adjoint, and thus the natural map

colimj∈J(O(V,W ) ∧ F (j)(V )) −→ O(V,W ) ∧ (colimj∈J F (V ))

is an isomorphism, whose inverse is the first map above.
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The argument for inverse limits is similar, but we have to use that structure maps

O(V,W ) ∧X(V ) −→ X(W )

of an orthogonal spectrum X can also be defined in the adjoint form, as maps

X̃(V,W ) : X(V ) −→ map∗(O(V,W ), X(W )) .

We can thus construct a limit of F : J −→ Sp by taking

(limJF )(V ) = limj∈JF (j)(V ) ,

and the structure map is adjoint to the composite

limj∈JF (W )
limJ F̂ (j)(V,W )−−−−−−−−−−→ limj∈J map∗(O(V,W ), F (j)(W )) ∼= map∗(O(V,W ), (limj∈JF (j)(W )) ;

we exploit that as a right adjoint, the functor map∗(O(V,W )−) preserves limits.

Example 2.7. We let F : T∗ −→ T∗ be any continuous endofunctor on the category of based spaces.
Then for every orthogonal spectrum X, the composite functor

O
X−−→ T∗

F−−→ T∗

is another orthogonal spectra. Similarly, we can apply F levelwise to morphisms of orthogonal spectra, so
that composition with F becomes a functor

F ◦ − : Sp −→ Sp .

Example 2.8 (Smash products with and functions from spaces). For a based space A, smashing with A
and taking based mapping space from A are an adjoint pair of continuous functors

− ∧A : // : map∗(A,−) = (−)Aoo

We can thus apply these functors levelwise to orthogonal spectra as explained in Example 2.7; for every
orthogonal spectrum X, this yields two new orthogonal spectra X ∧A and XA. More explicitly, we have

(X ∧A)(V ) = X(V ) ∧A and map∗(A,X)(V ) = map∗(A,X(V ))

for an inner product space V . The structure maps and actions of the orthogonal groups do not interact with
A: the group O(V ) acts through its action on X(V ), and the structure maps are given by the composite

SV ∧ (X ∧A)(W ) = SV ∧X(W ) ∧A σV,W∧A−−−−−→ X(V ⊕W ) ∧A = (X ∧A)(V ⊕W )

and by the composite

SV ∧map∗(A,X(W )) −→ map∗(A,S
V ∧X(W ))

map∗(A,σV,W )−−−−−−−−−→ map∗(A,X(V ⊕W ))

where the first is an assembly map that sends v ∧ f to the map sending a ∈ A to v ∧ f(a).
Just as the functors −∧A and map∗(A,−) are adjoint on the level of based spaces, the two functors just

introduced are an adjoint pair on the level of orthogonal spectra. The adjunction

(2.9) Sp(X,map∗(A, Y ))
∼=−−→ Sp(X ∧A, Y )

takes a morphism f : X −→ map∗(A, Y ) to the morphism f [ : X ∧ A −→ Y whose V th level f [(V ) :
X(V ) ∧A −→ Y (V ) is f [(V )(x ∧ a) = f(V )(x)(a).

An important special case of this construction is when A = S1 is a 1-sphere, i.e., the one-point compact-
ification of R. The suspension X ∧ S1 is defined by

(X ∧ S1)(V ) = X(V ) ∧ S1 ,

the smash product of the V th level of X with S1. The loop spectrum ΩX = map∗(S
1, X), defined by

(ΩX)(V ) = ΩX(V ) = map∗(S
1, X(V )) ,

the based mapping space from S1 to the V th level of X. We obtain an adjunction between − ∧ S1 and Ω
as the special case A = S1 of (2.9).
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We note that if X is an Ω-spectrum, then so is XA, provided we also assume that A is cofibrant (for
example a CW-complex). Indeed, under this hypothesis, the mapping space functor map∗(A,−) takes the
weak equivalence σ̃n : Xn −→ ΩXn+1 to a weak equivalence

XA
n = map∗(A,Xn)

map∗(A,σ̃n)−−−−−−−−→ map∗(A,ΩXn+1) ∼= Ω(XA
n+1) .

In Proposition 1.25 we prove that stable equivalences are closed under various constructions such as
suspensions, loop, shift adjoint, wedges, and finite products. As we hope to show later, up to stable
equivalence, every orthogonal spectrum can be replaced by an Ω-spectrum.

Clearly, every orthogonal spectrum has an underlying sequential spectrum, obtained by forgetting the
actions of the orthogonal groups. The homotopy groups of an orthogonal spectra are, by definition, the
homotopy groups of the underlying sequential spectrum.

Now we can introduce mapping cones for orthogonal spectra. In essence, we take mapping cones ‘objec-
tiwse’ as in the case of sequential spectra (1.14), and the extra structure goes along for the ride. In more
detail, the mapping cone Cf of a morphism of orthogonal spectra f : X −→ Y is defined by the pushout
square:

X
f

//

−∧1

��

Y

i

��

X ∧ [0, 1] // Cf

Because colimits and smash product with spaces in the categories of sequential and orthogonal spectra are
objectwise, this amounts to defining Cf by taking mapping cones levelwise/objectwise:

(Cf)(V ) = C(f(V )) = (X(V ) ∧ [0, 1]) ∪f(V ) Y (V ) ,

where V is any inner product space. Moreover, the orthogonal group O(V ) acts on (Cf)(V ) through the
given action on X(V ) and Y (V ) and trivially on the interval. The inclusions i(V ) : Y (V ) −→ C(f(V )) and
projections p(V ) : C(f(V )) −→ X(V ) ∧ S1 assemble into morphisms of orthogonal spectra i : Y −→ Cf
and p : Cf −→ X ∧ S1. The homotopy fiber F (f) is the fiber product

Ff = ∗ ×Y Y [0,1] ×Y X
i.e., the pullback in the cartesian square of orthogonal spectra:

Ff

��

q
// X

(∗,f)

��

Y [0,1]

(ev0,ev1)
// Y × Y

Here evi : Y [0,1] −→ Y for i = 0, 1 is the ith evaluation map which takes a path ω ∈ Y [0,1] to ω(i), i.e., the
start or endpoint. Limits and mapping objects in spectra are taken objectwise, so (Ff)(V ) = F (f(V )), the
orthogonal group O(V ) acts on (Ff)(V ) through the given action on X(V ) and Y (V ) and trivially on the
interval. The inclusions i(V ) : ΩY (V ) −→ (Ff)(V ) and projections q(V ) : (Ff)(V ) −→ X(V ) assemble
into morphisms of orthogonal spectra i : ΩY −→ Ff and p : Ff −→ X.

Construction 2.10. We define a forgetful functor

u : Sp −→ SpN

from orthogonal to sequential spectra. For an orthogonal spectrum X, we define n-level of the the sequential
spectrum uX by

(uX)n = X(Rn) ,

the value at Rn endowed with the standard inner product 〈x, y〉 =
∑n
i=1 xiyi. The n-th structure map is

σn = σR,Rn : S1 ∧Xn = SR ∧X(Rn) −→ X(R1+n) = X1+n .
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On morphisms, the forgetful functor evaluates at Rn. We will refer to uX as the underlying sequential
spectrum of X.

Definition 2.11. The homotopy groups of an orthogonal spectrum are the homotopy groups of the under-
lying sequential spectrum. A morphism f : X −→ Y of orthogonal spectra is a stable equivalence if the
induced map πk(f) : πk(X) −→ πk(Y ) is an isomorphism for all integers k.

By design, the forgetful functor u : Sp −→ SpN creates homotopy groups and preserves and detects
stable equivalences. It also commutes with all categorical construction that we considered so far, namely
limits, colimits, and smash product with − ∧K, and mapping spectra from map∗(K,−) any based space
K. This means that all structure results about homotopy groups and stable equivalence that we proved for
sequential spectra in Section 1 also apply to orthogonal spectra. In particular, the following features and
results are also apply to orthogonal spectra:

• the loop and suspension isomorphism (Proposition 1.11 (i));
• the unit η : X −→ Ω(X ∧ S1) and counit ε : (ΩX) ∧ S1 −→ X of the loop-suspension adjunction

are stable equivalences for every orthogonal spectrum X (Proposition 1.11 (ii));
• the long exact homotopy group sequence for the mapping cone of a morphism of orthogonal spectra

(Proposition 1.16);
• the long exact homotopy group sequence for the strict cofiber of a morphism of orthogonal spectra

that is levelwise an h-cofibration (Corollary 1.18);
• the long exact homotopy group sequence for the homotopy fiber of a morphism of orthogonal spectra

(Proposition 1.20);
• the long exact homotopy group sequence for the strict fiber of a morphism of orthogonal spectra

that is levelwise a Serre fibration (Corollary 1.21);
• homotopy groups takes wedges of orthogonal spectra to directs sums, and they take finite products

of orthogonal spectra to products (Proposition 1.22);
• for every finite family of orthogonal spectra, the canonical morphism from the wedge to the product

is a stable equivalence (Proposition 1.22);
• stable equivalence of orthogonal spectra are stable under colimits of sequences of morphisms that

are levelwise closed embeddings (Proposition 1.24);
• stable equivalence of orthogonal spectra are stable under arbitrary wedges, under finite products,

under cobase change along levelwise h-cofibrations, under base change with levelwise Serre fibra-
tions, under smash product with arbitrary based CW-complexes, and under maps from finite based
CW-complexes (Proposition 1.25).

Definition 2.12 (Homotopy relation). Two morphisms of orthogonal spectra f0, f1 : A −→ X are called
homotopic if there is a morphism

H : A ∧ [0, 1]+ −→ X ,

called a homotopy, such that f0 = H ◦ i0, and f1 = H ◦ i1. The morphisms ij : A −→ A∧ [0, 1]+ for j = 0, 1
are the ‘end point inclusions’ which are given levelwise by ij(a) = a ∧ j.

A homotopy between spectrum morphisms is really the same data as a collection of based homotopies
between f0(V ) and f1(V ) : A(V ) −→ X(V ) for all inner product spaces V , compatible with the O(V )-
actions and structure maps. In particular, homotopic morphisms induce the same map of homotopy groups.

Homotopies can equivalently be given in two adjoint forms. By the adjunction (2.9) a homotopy H :

A ∧ [0, 1]+ −→ X from f0 to f1 is adjoint to a morphism Ĥ : A −→ X [0,1] such that ev0 ◦Ĥ = f0 and

ev1 ◦Ĥ = f1 where evj : X [0,1] −→ X for j = 0, 1 is given levelwise by evaluation at j ∈ [0, 1]. Finally,
the homotopy H is also adjoint to a morphism of (unbased) spaces [0, 1] −→ map(A,X), i.e., a path in the
mapping space, to be discussed in Example 3.10 below. So two morphisms are homotopic if and only if
they lie in the same path component of the mapping space map(A,X).

For morphisms of orthogonal spectra, ‘homotopy’ is an equivalence relation. We denote by [A,X] the set
of homotopy classes of morphisms from A to X, i.e., the classes under the equivalence relation generated
by homotopy.
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A morphism f : A −→ B of orthogonal spectra is a homotopy equivalence if there exists a morphism
g : B −→ A such that gf and fg are homotopic to the respective identity morphisms. Hence every homotopy
equivalence of orthogonal spectra is in particular levelwise a based homotopy equivalence of based spaces.
So for morphisms of orthogonal or sequential spectra we have the implications

homotopy equivalence =⇒ level equivalence =⇒ stable equivalence.

In general, the reverse implications do not hold. However, every stable equivalence between Ω-spectra is a
level equivalence.

Example 2.13 (Shift). We let W be an inner product space and denote by

−⊕W : O −→ O

the continuous functor given on objects by orthogonal direct sum with W , and on morphism spaces by

O(U, V ) −→ O(U ⊕W,V ⊕W ) , (v, ϕ) 7−→ ((v, 0), ϕ⊕W ) .

The W th shift of an orthogonal spectrum X is the composite

(2.14) shWX = X ◦ (−⊕W ) .

In other words, the value of shW X at an inner product space V is

(shWX)(V ) = X(V ⊕W ) .

The orthogonal group O(V ) acts through the monomorphism −⊕W : O(V ) −→ O(V ⊕W ). The structure

map σshWX
U,V of shWX is the structure map σXU,V⊕W of X. As an example, the shift of a suspension spectrum

is another suspension spectrum, shW(Σ∞K) ∼= Σ∞(SW ∧K). In the special case W = R, we simply write

shX for shRX.

Since composition of functors is associative, the shift construction commutes on the nose with all con-
structions on orthogonal spectra that are given by post-composition with a continuous based functor as in
Example 2.7. This applies in particular to smashing with and taking mapping space from a based space A,
i.e.,

(shWX) ∧A = shW(X ∧A) and map∗(A, sh
WX) = shW(map∗(A,X)) .

So we can – and will – omit the parentheses in expressions such as shWX ∧A.
The shift construction is also transitive in the following sense. The values of shV(shWX) and shV⊕WX

at an inner product space U are given by

(shV(shWX))(U) = X((U ⊕ V )⊕W )

and

(shV⊕WX)(U) = X(U ⊕ (V ⊕W )) .

We use the effect of X on the associativity isomorphism

(U ⊕ V )⊕W ∼= U ⊕ (V ⊕W ) , ((u, v), w) 7−→ (u, (v, w))

to identify these two spaces; then we abuse notation and write

shV(shWX) = shV⊕WX .

The suspension and the shift of an orthogonal spectrum X are related by a natural morphism

λVX : X ∧ SV −→ shVX .

In level U , this is defined as λVX(U) = σop
U,V , the opposite structure map (2.4), i.e., the composite

X(U) ∧ SV twist−−−→ SV ∧X(U)
σV,U−−−−→ X(V ⊕ U)

X(τV,U )−−−−−→ X(U ⊕ V ) = (shVX)(U) .

In the special case V = R we abbreviate λRX to λX : X ∧ S1 −→ shX.
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The λ-maps are transitive in the sense that for another inner product space W , the morphism λV⊕WX

coincides with the two composites in the commutative diagram:

X ∧ SV⊕W
∼= // X ∧ SV ∧ SW

λW
X∧SV //

λVX∧S
W

��

shW X ∧ SV

λV
shWX
��

shVX ∧ SW
shV(λWX )

// shV(shWX) shV⊕WX

� The existence of the natural morphism λX : X ∧ S1 −→ shX is a feature of orthogonal spectra that
is not shared by sequential spectra. Indeed, while X ∧ S1 and shX make perfect sense for sequential

spectra, and while these constructions extend to endofunctors

− ∧ S1 , sh : SpN −→ SpN ,

there is no natural morphism from X ∧ S1 to shX in the context of sequential spectra. A popular mistake
is the misconception that for a sequential spectrum X, the collection of based continuous maps

(X ∧ S1)n = Xn ∧ S1 τ−−→ S1 ∧X σn−−−→ X1+n = (shX)n

were to form a morphism of sequential spectra – they do not!

Our next aim is to show that the morphism λX is in fact a stable equivalence. We let k be any integer
and we observe that

π1+k(shX) = colimn πn+1+k((shX)(Rn))

= colimn πn+1+k(X(Rn+1)) = colimn πn+k(X(Rn)) = πk(X) .

Proposition 2.15. Let X be an orthogonal spectrum.

(i) Let A ∈ O(n) be an orthogonal matrix, and let f : Sn+k −→ Xn be a continuous based map. Then

[X(A) ◦ f ] = det(A) · [f ]

in the group in πk(X).
(ii) For every integer k, the map

πk+1(X ∧ S1)
π1+k(λX)−−−−−−→ π1+k(shX) = πk(X)

is inverse to the suspension isomorphism up to the factor (−1)k.
(iii) The morphism

λX : X ∧ S1 −→ shX and its adjoint λ̃X : X −→ Ω shX ,

are stable equivalences of orthogonal spectra.

Proof. (i) We abbreviate the determinant to d = det(A) ∈ {±1}, and we write δ : S1 −→ S1 for the
onepoint compactification of multiplication by d on R; so δ is a based continuous map of degree d. Then
we contemplate the commutative diagram:

S1+n+k
S1∧(X(A)◦f)

//

δ∧Sn+k

��

S1 ∧Xn
σn //

δ∧X(A−1)

��

X1+n

X
(
d 0
0 A−1

)
��

S1+n+k

S1∧f
// S1 ∧Xn σn

// X1+n

The matrix
(
d 0
0 A−1

)
has determinant 1, so it lies in the same path component of O(1 + n) as the identity

matrix. Since O(1 + n) acts continuously on X1+n, a path in O(1 + n) between these two matrices induces
a homotopy from the map X

(
d 0
0 A−1

)
to the identity of X1+n. So the composite around the diagram
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through the upper right corner is homotopic to the stabilization of X(A) ◦ f , and it thus represents the
class [X(A) ◦ f ]. The composite around the lower left corner represents d · [f ], so this proves the claim.

(ii) The composite

πk(X)
−∧S1

−−−−→ πk+1(X ∧ S1)
πk+1(λX)−−−−−−→ πk+1(shX) = πk(X)

sends the class represented by a based continuous map f : Sn+k −→ Xn to the class of the composite

Sn+k+1 f∧S1

−−−→ Xn ∧ S1 τ−−→ S1 ∧Xn
σn−−−→ X1+n

X(χ1,n)−−−−−→ Xn+1 .

This composite equals the composite

Sn+k+1 χn+k,1−−−−→ S1+n+k S1∧f−−−→ S1 ∧Xn
σn−−−→ X1+n

X(χ1,n)−−−−−→ Xn+1 ,

which represents the class

(−1)n+k · [X(χ1,n) ◦ σn(S1 ∧ f)] =(i) (−1)n+k · det(χ1,n) ◦ [σn(S1 ∧ f)] = (−1)k · [f ] .

(iii) The suspension homomorphism −∧S1 : πk(X) −→ πk+1(X ∧S1) is an isomorphism by Proposition
1.11. So the morphism λX induces an isomorphism on all homotopy groups by part (ii), and it is thus a

stable equivalence. The adjoint λ̃X is then a stable equivalence by Corollary 1.12. �

We can now deduce various equivalent characterizations for stable equivalences. Some parts of this have
already been shown in the previous propositions, but they are repeated here for easier reference.

Proposition 2.16. For a morphism f : A −→ B of orthogonal spectra the following are equivalent:

(i) the morphism f is a stable equivalence;
(ii) the mapping cone Cf of f has trivial homotopy groups;

(iii) the suspension f ∧ S1 : A ∧ S1 −→ B ∧ S1 is a stable equivalence;
(iv) the shift sh f : shA −→ shB is a stable equivalence;
(v) the homotopy fiber F (f) of f has trivial homotopy groups;
(vi) the loop Ωf : ΩA −→ ΩB is a stable equivalence.

Proof. Conditions (i) and (ii) are equivalent by the long exact sequence of homotopy groups for a mapping
cone, see Proposition 1.16. Conditions (i), (iii) and (vi) are equivalent because the suspension and loop
constructions shift the homotopy groups, see Proposition 1.11. The natural morphism λX : X∧S1 −→ shX
is a stable equivalence by Proposition 2.15; so conditions (iii) and (iv) are equivalent. Conditions (i) and (v)
are equivalent by the long exact sequence of homotopy groups for a homotopy fiber, see Proposition 1.20. �

3. Basic examples and constructions

Before developing any more theory, we give some examples of orthogonal spectra which represent promi-
nent stable homotopy types. We discuss the sphere spectrum (Example 3.1), suspension spectra (Example
3.2), Eilenberg-Mac Lane spectra (Example 3.3), and Thom spectra (Example 3.6). It is a nice feature of
orthogonal spectra that one can explicitly write down these examples in closed form with all the required
symmetries.

Example 3.1 (Sphere spectrum). The orthogonal sphere spectrum S is given by S(V ) = SV with functo-
riality by the map

O(V,W ) ∧ SV −→ SW , (w,ϕ) ∧ v 7−→ w + ϕ(v) .

Unraveling this shows that O(V )-acts on SV as the onepoint compactification of the tautological action on
V ; and the structure maps

σV,W : SV ∧ SW −→ SV⊕W

are the canonical homeomorphisms. The sphere spectrum is isomorphic to the orthogonal spectrum O(0,−)
represented by the 0-dimensional inner product space.
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Example 3.2 (Suspension spectra). Every pointed space K gives rise to an orthogonal suspension spectrum
Σ∞K with values

(Σ∞K)(V ) = SV ∧K .

The functoriality is by the map

O(V,W ) ∧ SV ∧K −→ SW ∧K , (w,ϕ) ∧ v ∧ k 7−→ w + ϕ(v) ∧ k .
Unraveling this shows that O(V )-acts on SV ∧K as the onepoint compactification of the tautological action
on SV and trivially on K. The structure map σV,W : SV ∧SW ∧K −→ SV⊕W ∧K is the smash product of
the canonical homeomorphism with K. For example, the sphere spectrum S is isomorphic to the suspension
spectrum Σ∞S0.

Example 3.3 (Eilenberg-Mac Lane spectra). For an abelian group A, the Eilenberg-Mac Lane spectrum
HA is defined at an inner product space V by

(HA)(V ) = A[SV ] ,

the reduced A-linearization of the V -sphere. Let us review the linearization construction in some detail
before defining the rest of the structure of the Eilenberg-Mac Lane spectrum.

For a general based space K, the underlying set of the A-linearization A[K] is tensor product of A with
the reduced free abelian group generated by the points of K. In other words, points of A[K] are finite sums
of points of K with coefficients in A, modulo the relation that all A-multiples of the basepoint are zero.
The set A[K] is topologized as a quotient space of the disjoint union of the spaces An ×Kn (with discrete
topology on An), via the surjection∐

n≥0

An ×Kn −→ A[K] , (a1, . . . , an, k1, . . . , kn) 7→
n∑
i=1

ai · ki .

There is a natural map H̃n(K,A) −→ πn(A[K], 0) from the reduced singular homology groups of K with
coefficients in A to the homotopy groups of the linearization: let x =

∑
i ai · fi be a singular chain of K

with coefficients ai in A, i.e., every fi : ∇n −→ K is a continuous map from the topological n-simplex. We
use the abelian group structure of A[K] and add the maps fj pointwise and multiply by the coefficients, to
get a single map x : ∇n −→ A[K], i.e., for z ∈ ∇n we set

x(z) =
∑
i

ai · fi(z) .

If the original chain x is a cycle in the singular chain complex, then the map x sends the boundary of the
simplex to the neutral element 0 of A[K]. So x factors over a continuous based map ∇n/∂∇n −→ A[K].
After composing with a homeomorphism between the n-sphere and∇n/∂∇n this maps represents an element
in the homotopy group πn(A[K], 0). If K has the based homotopy type of a CW-complex, then the map

H̃n(K,A) −→ πn(A[K], 0) is an isomorphism [ref]. In the special case K = Sn this shows that the A[Sn]
has only one non-trivial homotopy group in dimension n, where it is isomorphic to A. In other words,
(HA)n = A[Sn] is an Eilenberg-Mac Lane space of type (A,n).

Now we return to the definition of the Eilenberg-Mac Lane spectrum HA. The functoriality of HA is by
the map

O(V,W ) ∧A[SV ] −→ A[SW ] , (w,ϕ) ∧ (
∑
i

aivi) 7−→
∑
i

ai · (w + ϕ(vi)) .

Unraveling this shows that O(V )-acts on A[SV ] through its action on SV and the functoriality of A[−].
And the structure map σV,W : SV ∧ (HA)(W ) −→ (HA)(V ⊕W ) is given by

SV ∧A[SW ] −→ A[SV⊕W ] , v ∧
(∑

i

ai · wi
)
7−→

∑
i

ai · (v ∧ wi) .

A non-trivial fact is that the adjoint structure maps

σ̃V,W : A[SW ] −→ map∗(S
V , A[SV⊕W ])
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are weak equivalences for all inner product spaces V and W . In particular, the adjoint structure maps

σ̃n : (HA)n = A[Sn] −→ map∗(S
1, A[S1+n]) = Ω((HA)1+n)

are weak equivalences. Hence all maps in the colimit system defining π0(HA) are bijective, and so the
canonical map

(3.4) A = π0(A[S0]) −→ colimn πn(A[Sn]) = π0(HA)

is bijective. This map is also additive, and hence an isomorphism of abelian groups. More is true: the
homotopy groups of the orthogonal spectrum HA are concentrated in dimension zero, i.e., the group
πk(HA) is trivial for k 6= 0.

We shall see in Example 4.14 below that the Eilenberg-Mac Lane functor H can be extended to take
rings to orthogonal ring spectra and modules to module spectra.

Eilenberg-Mac Lane spectra enjoy a special property: the n-th space (HA)n = (HA)(Rn) = A[Sn] and
the loop space of the next space (HA)n+1 are both Eilenberg-Mac Lane spaces of type (A,n), and in fact
the map σ̃n : (HA)n −→ Ω(HA)n+1 adjoint to the structure map is a weak equivalence for all n ≥ 0.
Spectra with this property play an important role in stable homotopy theory, and they deserve a special
name:

Definition 3.5. An orthogonal spectrum is an Ω-spectrum if for all n ≥ 0 the map σ̃n : Xn −→ ΩX1+n

which is adjoint to the structure map σn : S1 ∧Xn −→ X1+n is a weak homotopy equivalence.

Example 3.6 (Thom spectra). We introduce an orthogonal spectrum MO. For an inner product space V
we let L(V, V∞) be the space of linear isometric embeddings from V into V∞ =

⊕
n≥1 V , with the weak

topology as the union of the Stiefel manifold L(V, V n). With this topology, L(V, V∞) is a closed subspace
of the space map(V, V∞) of all continuous maps with the function space topology internal to the category
T, see for example [40, Proposition A.5 (ii)]. If V is non-zero, then V∞ is infinite dimensional and the
space L(V, V∞) is contractible, see for example [39, Proposition 1.2.21]. The orthogonal group O(V ) acts
freely and continuously from the right on L(V, V∞) by precomposition, and the orbit space of this action
identifies with the Grassmannian of dim(V )-planes in V∞, via the homeomorphism

L(V, V∞)/O(V ) ∼= Grdim(V )(V
∞) , ϕ ·O(V ) 7−→ ϕ(V ) .

The tautological vector bundle over the Grassmannian corresponds to the vector bundle

L(V, V∞)×O(V ) V −→ L(V, V∞)/O(V ) , [ϕ, v] 7−→ ϕ ·O(V ) .

We can thus form the Thom space of this vector bundle

MO(V ) = L(V, V∞)+ ∧O(V ) S
V .

The group O(V ) also acts continuously from the left on L(V, V∞) through its diagonal action on V∞; we
give MO(V ) the induced action, i.e.,

A · [ϕ, v] = [(A∞) ◦ ϕ, v] .

The same construction gives an orthogonal spectrum MSO by dividing out only the action of the special
orthogonal group SO(V ) of V . The Thom-Pontryagin construction provides homomorphisms ΩO

k −→
πk(MO) from the group of bordism classes of k-dimensional smooth closed manifolds to the k-th homotopy
group of the spectrum MO, and similarly for the other families of classical Lie groups. A celebrated theorem
of Thom’s [46] says that the Thom-Pontryagin map is an isomorphism. We intend to discuss these and
other examples of Thom spectra in more detail in a later chapter.

Construction 3.7 (Free orthogonal spectra). For every inner product space V , the evaluation functor

evV : Sp −→ T∗

at V has left adjoint

FV : T∗ −→ Sp .
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The value of the left adjoint at a based space K is

FVK = O(V,−) ∧K ,

the objectwise smash product of the represented functor O(V,−) : O −→ T∗ with K. The adjunction
property is an instance of the enriched Yoneda lemma.

The free orthogonal spectrum FVK comes naturally with a right action of the orthogonal group O(V )
by precomposition; we will refer to this as the ‘right action on the free coordinates’. This right O(V )-action
action is continuous and by automorphisms of orthogonal spectra. Moreover, the adjunction bijection

T∗(K,X(V )) ∼= Sp(FVK,X) , f 7−→ f̂

is natural for morphism of orthogonal spectra in X, so it is equivariant for the two natural left actions of
O(V ).

We show in the next proposition that the free orthogonal spectrum FVK generated by a based space K
in level V is stably equivalent to the V -fold loop of the suspension spectrum of K. If dim(V ) = m, this
implies an isomorphism of homotopy groups

πk(FVK)
ϕV∗−−→∼= πk(ΩV (Σ∞K)) ∼= πk+m(Σ∞K)

to the stable homotopy groups K, shifted by the dimension of V .

Proposition 3.8. Let V be an inner product space and K a based space. The morphism of orthogonal
spectra

ϕV : FVK −→ ΩV (Σ∞K)

adjoint to the based continuous map

K
η−−→ ΩV (SV ∧K) = ΩV (Σ∞K)(V )

is a stable equivalence.

Construction 3.9 (Semifree orthogonal spectra). There are somewhat ‘less free’ orthogonal spectra which
start from a pointed O(V )-space L; we want to install L in level V , and then fill in the remaining data of
an orthogonal spectrum as freely as possible. In other words, we claim that the forgetful evaluation functor

evV : Sp −→ O(V )-T∗ , X 7−→ X(V )

has a left adjoint which we denote GV ; we refer to GV L as the semifree orthogonal spectrum generated by
L in level V . (The evaluation functor evV also has a right adjoint, but we won’t use it.) The spectrum
GV L is explicitly given by

GV L = O(V,−) ∧O(V ) L .

In other words: the value of GV L at W is O(V,W ) ∧O(V ) L, the orbit space of O(V,W ) ∧ L by the
equivalence relation that equalizes the two O(V )-action on O(V,W ) and L. The ‘semifreeness’ property of
GV L is another instance of the enriched Yoneda lemma.

Example 3.10 (Mapping spaces). There is a whole space of morphisms between two orthogonal spectra.
For orthogonal spectra X and Y , every morphism f : X −→ Y consists of a family of based maps {f(V ) :
X(V ) −→ Y (V )}V indexed by inner product spaces V which satisfy some conditions. Every inner product
space is isomorphic in the category O to Rn with the standard inner product, for some n. So a morphism
f : X −→ Y is already completely determined by the family of maps {fn : Xn −→ Yn}n≥0. Said differently:
the map

Sp(X,Y ) −→
∏
n≥0

T∗(Xn, Yn)

sending f to the collection so its values at all Rn is injective. Moreover, the image of this evaluation map is a
closed subset in the product of the mapping spaces

∏
n≥0 map∗(Xn, Yn); we topologize the set of morphisms

Sp(X,Y ) of orthogonal spectra by giving it the subspace topology of the (compactly generated) product
topology. We denote this mapping space by map(X,Y ).
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For this mapping space topology, the adjunction bijection

Sp(FV , Y ) ∼= Y (V ) , f 7−→ f(V )(0, IdV )

is in fact a homeomorphism

map(FV , Y ) ∼= Y (V ) .

Furthermore, for a pointed space K and orthogonal spectra X and Y we have adjunction bijections

map∗(K,map(X,Y )) ∼= map(X ∧K,Y ) ∼= map(X,map∗(K,Y )) ,

where the first mapping space is taken in the category T∗ of compactly generated based spaces.
We have associative and unital composition maps

map(Y,Z) ∧map(X,Y ) −→ map(X,Z) .

Indeed, for orthogonal spectra of topological spaces this is just the observation that composition of mor-
phisms is continuous for the mapping space topology.

4. Ring and module spectra

Definition 4.1. An orthogonal ring spectrum is an orthogonal spectrum R equipped continuous (O(V )×
O(W ))-equivariant multiplication maps

µV,W : R(V ) ∧R(W ) −→ R(V ⊕W )

and a unit ι ∈ R(0) that satisfy the following two conditions:
(Associativity) For all inner product space U , V and W , the square

R(U) ∧R(V ) ∧R(W )
R(U)∧µV,W

//

µU,V ∧R(W )

��

R(U) ∧R(V ⊕W )

µU,V⊕W

��

R(U ⊕ V ) ∧R(W )
µU⊕V,W

// R(U ⊕ V ⊕W )

commutes.
(Structure maps) For all inner product spaces V and W , the composite

SV ∧R(W )
−∧ι∧−−−−−−→ SV ∧R(0) ∧R(W )

σV,0∧R(W )−−−−−−−→ R(V ⊕ 0) ∧R(W ) ∼= R(V ) ∧R(W )
µV,W−−−→ R(V ⊕W )

is the structure map σV,W , and the composite

R(V ) ∧ SW −∧ι∧−−−−−−→ R(V ) ∧R(0) ∧ SW
R(V )∧σop

0,W−−−−−−−→ R(V ) ∧R(0⊕W ) ∼= R(V ) ∧R(W )
µV,W−−−→ R(V ⊕W )

is the opposite structure map σop
V,W .

An orthogonal ring spectrum R is commutative if the square

R(V ) ∧R(W )

µV⊕W

��

twist // R(W ) ∧R(V )

µW,V

��

R(V ⊕W )
R(τV,W )

// R(W ⊕ V )

commutes for all inner product spaces V and W .
A morphism orthogonal ring spectra is a morphism f : R −→ S of orthogonal spectra such that

f(0)(ιR) = ιS , and f(V ⊕W ) ◦ µRV,W = µSV,W ◦ (f(V ) ∧ f(W )) for all inner product spaces V and W .
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Remark 4.2. • Special cases of the structure map conditions are that the composite

R(W )
ι∧−−−→ R(0) ∧R(W )

µV,W−−−→ R(0⊕W )

coincides with the effect of R on the isometry (0,−) : W ∼= 0⊕W , and the composite

R(V )
−∧ι−−→ R(V ) ∧R(0)

µV,0−−−→ R(V ⊕ 0)

coincides with the effect of R on the isometry (−, 0) : V ∼= V ⊕ 0, respectively.
• If the multiplication maps µV,W : R(V ) ∧ R(W ) −→ R(V ⊕W ) are commutative, then the two

structure map conditions are equivalent.
• By instances of the associativity and structure map axioms, the two composites

SV
−∧ι−−→ SV ∧R(0)

σV,0−−−→ R(V ⊕ 0)
R((v,0) 7→v)−−−−−−−→∼=

R(V )

and

SV
ι∧−−−→ R(0) ∧ SV

σop
0,V−−−→ R(0⊕ V )

R((0,v)7→v)−−−−−−−→∼=
R(V )

are equal. We will denote the common composite by ιV : SV −→ R(V ) and also call it a unit map
of the ring spectrum R.
• Since the (generalized) unit maps and the multiplication maps determine the structure maps of the

underlying orthogonal spectrum of R, one could equivalently define orthogonal ring spectra as a
collection of basedO(V )-spacesR(V ) equipped with unit maps ιV : SV −→ R(V ) and multiplication
maps µV,W : R(V )∧R(W ) −→ R(V ⊕W ) that satisfy certain relations. The possibility of describing
orthogonal ring spectra in this way is often convenient when presenting explicit examples.

Remark 4.3. We will show later that orthogonal ring spectra can also be interpreted as the monoid
objects with respect to the symmetric monoidal smash product on the category of orthogonal spectra. This
is very much analogous to the situation in classical algebra: typically, one first encounters rings as abelian
groups equipped with another binary operation that is biadditive, associative, distributive and unital. Any
typically, one realizes later that the category of rings is equivalent to the category of monoids with respect
to the tensor product of abelian groups. Similar comments apply to the modules over ring spectra that we
shall now introduce.

Definition 4.4. A left module over an orthogonal ring spectrum R is an orthogonal spectrum M equipped
with continuous (O(V )×O(W ))-equivariant action maps

αV,W : R(V ) ∧M(W ) −→ M(V ⊕W )

that satisfy the following two conditions:
(Associativity) For all inner product space U , V and W , the square

R(U) ∧R(V ) ∧M(W )
R(U)∧αV,W

//

µU,V ∧M(W )

��

R(U) ∧M(V ⊕W )

αU,V⊕W

��

R(U ⊕ V ) ∧M(W )
αU⊕V,W

// M(U ⊕ V ⊕W )

commutes.
(Unitality) For all inner product spaces V and W , the composite

SV ∧M(W )
ιV ∧−−−−−→ R(V ) ∧M(W )

αV,W−−−→ M(V ⊕W )

is the structure map σV,W .
A morphism of left R-modules is a morphism f : M −→ N of orthogonal spectra such that and f(V ⊕

W ) ◦ αMV,W = αNV,W ◦ (R(V ) ∧ f(W )) for all inner product spaces V and W . We denote the category of left
R-modules by R mod .
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The forgetful functors which associates to an orthogonal ring spectrum or module spectrum its underlying
orthogonal spectrum have left adjoints. We intend to construct the left adjoints in after introducing the
smash product of orthogonal spectra. The left adjoints associate to an orthogonal spectrum X the ‘free
R-module’ R ∧X respectively the ‘free orthogonal ring spectrum’ TX generated by X, which we will refer
to as the tensor algebra.

Construction 4.5. We let R be an orthogonal ring spectrum. The forgetful

R-mod −→ Sp

from leftR-modules to orthogonal spectra preserves and reflects limits and colimits. An abstract justification
for this is the fact – hopefully to be proved later – that the forgetful functor has both a left adjoint and a
right adjoint.

Similarly, for every based space K, the adjoint functors

Sp
−∧K

// Sp
map∗(K,−)
oo

have a preferred lift to an adjoint functor pair on the category of left R-modules. For example, if M is an
R-module, then the action maps for M ∧K are simply the maps

αM∧KV,W = αMV,W ∧K : R(V ) ∧ (M ∧K)(W ) = R(V ) ∧M(W ) ∧K
−→ M(V ⊕W ) ∧K = (M ∧K)(V ⊕W ) .

Construction 4.6 (Shifting modules). Shifting by an inner product space W lifts to an endofunctor of
the category of R-modules. Indeed, if M is an R-module, we define an R-action on the shifted orthogonal
spectrum shW M as the collection of maps

αshW M
U,V = αMU,V⊕W : R(U) ∧ (shW M)(V ) = R(U) ∧M(V ⊕W )

−→ M(U ⊕ V ⊕W ) = (shM)(U ⊕ V ) .

Construction 4.7 (Multiplication on homotopy groups). We let M be a left module over an orthogonal
ring spectrum R: We introduce a pairing

(4.8) · : πk(R)× πl(M) −→ πk+l(M)

that makes the homotopy groups of M into a graded module over the homotopy groups of R. We let
f : Sm+k −→ Rm and g : Sn+l −→ Mn represent classes in πk(R) and πl(M), respectively. We denote by
f · g the composite

Sm+k+n+l f∧g−−−−→ Rm ∧Mn
αm,n−−−→ Mm+n

and then define

[f ] · [g] = (−1)kn · [f · g]

in the group πk+l(M).

The definition is clearly a generalization of the action of the stable stems on the homotopy groups of an
orthogonal spectrum as defined in (1.7), recalling that πs

k = πk(S), and orthogonal spectra are canonically
left modules over the sphere ring spectrum S.

The multiplication maps µV,W : R(V ) ∧ R(W ) −→ R(V ⊕W ) make R into a left module over itself; so
for this R-module, the pairing specializes to an internal pairing

(4.9) · : πk(R)× πl(R) −→ πk+l(R) .

Proposition 4.10. Let R be an orthogonal ring spectrum, and let M be a left R-module.

(i) The pairing

· : πk(R)× πl(M) −→ πk+l(M)

is well-defined and biadditive.
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(ii) Let 1 ∈ π0(R) denote the homotopy class of the unit map ι : S0 −→ R0. Then for every class
y ∈ πl(M) the relation 1 · y = y holds,

(iii) The following square commutes for all integers j, k and l:

πj(R)× πk(R)× πl(M)

·×πm(M)

��

πl(R)×·
// πj(R)× πk+l(M)

·
��

πj+k(R)× πl(M) ·
// πj+k+l(M)

(iv) The pairings (4.9) make the homotopy groups of R into a graded ring with identity element 1 ∈ π0(R).
If R is commutative, then this product on π∗(R) is graded-commutative.

(v) The pairings (4.8) make the homotopy groups of M into left module over the graded ring π∗(R).
(vi) For every morphism ψ : M −→ N of left R-modules, the homomorphism of graded abelian groups

ψ∗ : π∗(M) −→ π∗(N) is π∗(R)-linear.
(vii) The collections of suspension and loop isomorphisms

− ∧ S1 : πk(M) −→ πk+1(M ∧ S1) and α : πk(ΩM) −→ πk+1(M)

are π∗(R)-linear.
(viii) Let f : M −→ N be a homomorphism of left R-modules and let Cf and Ff be the mapping cone and

homotopy fiber, respectively, of f , endowed with the natural R-action. Then the connecting homomor-
phisms

δ : πk+1(Cf) −→ πk(M) and δ : πk+1(N) −→ πk(Ff)

defined in (1.15) and (1.19), respectively, are π∗(R)-linear. Hence the long exact sequences of homotopy
groups of Propositions 1.16 and 1.20 are π∗(R)-linear.

Proof. We check that the multiplication is well-defined. The following square commutes by naturality and
the associativity and unitality properties of the multiplication and action maps:

S1 ∧Rm ∧Mn

S1∧αm,n
//

σm∧Mn

��

ι1∧Rm∧Mn

��

S1 ∧Mm+n

ι1∧Mn

��

σm+n

��

R1 ∧Rm ∧Mn

R1∧αm,n
//

µ1,m∧Mn

��

R1 ∧Rm+n

α1,m+n

��

R1+m ∧Mn α1+m,n

// M1+m+n

So if we replace f : Sm+k −→ Rm by its suspension σm ◦ (S1 ∧ f) : S1+m+k −→ R1+m, then

(σm · (S1 ∧ f)) · g = α1+m,n ◦ ((σm · (S1 ∧ f)) ∧ g)

= α1+m,n ◦ (σm ∧Mm) ◦ (S1 ∧ f ∧ g)

= σm+n ◦ (S1 ∧ αm,n(f ∧ g)) = σm+n ◦ (S1 ∧ (f · g)) .

Since the sign in the formula (1.7) does not change, the resulting stable class is independent of the repre-
sentative f of the stable class in πk(R).

Independence of the representative for πl(M) is slightly more subtle. The following diagram commutes by
the associativity and structure map conditions on the multiplication and action maps, and the equivariance
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of the action map α1+m,n:

S1 ∧Rm ∧Mn

twist∧Mn

��

σm∧Mn // R1+m ∧Mn

R(χ1,m)∧Mn

��

α1+m,n

))

Rm+1 ∧Mn

αm+1,n
))

M1+m+n

M(χ1,m⊕Rn)

��

Rm ∧ S1 ∧Mn

σop
m ∧Mn

//

Rm∧σn
//

Rm∧ι1∧Mn // Rm ∧R1 ∧Mn

µm,1∧Mn

44

Rm∧α1,n
**

Mm+1+n

Rm ∧M1+n

αm,1+n

55

If we replace g : Sn+l −→Mn by the representative σn ◦ (S1 ∧ g) : S1+n+l −→M1+n, we now obtain

f · (σn ◦ (S1 ∧ g)) = αm,1+n ◦ (f ∧ (σn ◦ (S1 ∧ g)))

= αm,1+n ◦ (Rm ∧ σn) ◦ (f ∧ S1 ∧ g)

= M(χ1,m ⊕ Rn) ◦ α1+m,n ◦ (σm ∧Mn) ◦ (twistRm,S1) ◦ (f ∧ S1 ∧ g)

= M(χ1,m ⊕ Rn) ◦ α1+m,n ◦ (σm ∧Mn) ◦ (S1 ∧ f ∧ g) ◦ (χm+k,1 ∧ Sn+l)

= M(χ1,m ⊕ Rn) ◦ (σm(S1 ∧ f) · g) ◦ (χm+k,1 ∧ Sn+l)

By Proposition 2.15 (i), the map M(χ1,m ⊕ Rn) induces multiplication by (−1)m on homotopy groups.
This cancels part of the sign (−1)m+k that is the effect of precomposition with the shuffle permutation
χm+k,1 ∧ Sn+l on the left. So in the colimit πk+l(X) we have

[f · (σn ◦ (S1 ∧ g))] = (−1)k · [σm(S1 ∧ f) · g)] = (−1)k · [f · g] .

Since the dimension of σn(S1 ∧ g) is one more than the dimension of g, the extra factor (−1)k makes sure
that product [f ] · [g] as defined in (1.7) is independent of the representative of the stable class [g].

The proof that the product is biadditive is the same as for action of the stable stems on the homotopy
groups of any sequential spectrum in Example 1.6, based on the stability of pinch maps under smashing
with a sphere.

Property (ii) is straightforward from the unitality property of the action of R on M : this requirements
says in particular that for every continuous based map g : Sn+l −→Mn; the composite

Sn+l ∼= S0 ∧ Sn+l ι∧g−−→ R0 ∧Mn
α0,n−−−→ Mn

agrees with g. So 1 · [g] = [α0,n ◦ (ι ∧ g)] = [g].
The associativity property is also fairly straightforward, and analogous to associativity of action of the

stable stems in Example 1.6. Indeed, if e : Sp+j −→ Rp, f : Sm+k −→ Rm and g : Sn+l −→ Mn represent
classes in πj(R), πk(R) and πl(M), respectively, then the diagram

Sp+j+m+k+n+l e·(f ·g)

��

(e·f)·g 66

e∧f∧g

))

e∧(f ·g)

**

(e·f)∧g
..

Rp ∧Rm ∧Mn

µp,m∧Mn

((

Rp∧αm,n
// Rp ∧Mm+n

αp,m+n
''

Rp+m ∧Mn αp+m,n

// Mp+m+n
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commutes. So

([e] · [f ]) · [g] = (−1)jm · (−1)(j+k)n · [(e · f) · g]

= (−1)kn · (−1)j(m+n) · [e · (f · g)] = [e] · ([f ] · [g]) .

(iv) Biadditivity, associativity and unitality of the pairing were established in parts (i), (ii) and (iii).
The graded-commutativity is again shown by a similar argument as for the stable stems in Example 1.6.
Indeed, we let f : Sm+k −→ Rm and g : Sn+l −→ Rn represent classes in πk(R) and πl(R). Then the
following diagram commutes:

Sm+k+n+l

χm+k,n+l

��

f∧g
// Rm ∧Rn

twist

��

µm,n
// Rm+n

R(χm,n)

��

Sn+l+m+k

g∧f
// Rn ∧Rm µn+m

// Rn+m

commutes. The coordinate permutation χm+k.n+l of Sm+k+n+l induces the sign (−1)(m+k)(n+l); and the
map R(χm,n) induces multiplication by (−1)mn on homotopy groups, by Proposition 2.15 (i). This yields
the relation

[f ] · [g] = (−1)kn · [f · g] = (−1)kl+lm · [g · f ] = (−1)kl · [g] · [f ] .

in the group πk+l(R).
(v) Biadditivity, associativity and unitality of the action of π∗(R) on π∗(M) were established in parts

(i), (ii) and (iii).
Property (vi) is almost obvious: if f : Sm+k −→ Rm and g : Sn+l −→ Mn represent classes in πk(R)

and πl(M), then

f · (ψn ◦ g) = αm,n ◦ (f ∧ (ψn ◦ g)) = αm,n ◦ (Rm ∧ ψn) ◦ (f ∧ g)

= ψm+n ◦ αm,n ◦ (f ∧ g) = ψm+n ◦ (f · g) .

Hence

[f ] · ψ∗[g] = (−1)kn · [f · (ψn ◦ g)] = (−1)kn · [ψm+n ◦ (f · g)] = ψ∗([f ] · [g])

in the group πk+l(N).
Property (vii) is also straightforward from the definitions. For the suspension homomorphisms we let

f : Sm+k −→ Rm and g : Sn+l −→Mn represent classes in πk(R) and πl(M), respectively, then

(f · g) ∧ S1 = (αm,n ◦ (f ∧ g)) ∧ S1 = (αm,n ∧ S1) ◦ (f ∧ g ∧ S1)) = f · (g ∧ S1) .

We have used that the action map αM∧S
1

m,n : Rm ∧ (M ∧ S1)n is the map αMm,n ∧ S1 : Rm ∧Mn ∧ S1. We
conclude that

([f ] · [g]) ∧ S1 = (−1)kn · [(f · g) ∧ S1] = (−1)kn · [f · (g ∧ S1)] = [f ] · ([g] ∧ S1)

in the group πk+l+1(M ∧ S1). The π∗(R)-linearity of the loop isomorphisms can be proved by similarly
explicit manipulations, or by exploiting that the loop isomorphism coincides with the composite

πk(ΩM)
−∧S1

−−−−→ πk+1((ΩM) ∧ S1)
ε∗−→ πk+1(M) .

The suspension homomorphism for ΩM is π∗(R)-linear by the above. The adjunction counit ε : (ΩM) ∧
S1 −→M is a homomorphism of R-modules, so its effect on homotopy groups is π∗(R)-linear.

(viii) The connecting homomorphism δ : πk+1(Cf) −→ πk(M) is defined as the composite of the effect
of the morphism p∗ : πk+1(Cf) −→ πk+1(M) and the inverse of the suspension homomorphism. The map
p∗ is π∗(R)-linear by part (vi); the suspension isomorphism is π∗(R)-linear by part (vii), hence its inverse is
π∗(R)-linear, too. So the connecting homomorphism for the mapping cone is π∗(R)-linear. The argument
for the connecting homomorphism of the homotopy fiber is dual. �
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4.1. Examples of ring spectra.

Example 4.11 (The orthogonal sphere ring spectrum). The orthogonal sphere spectrum S from Example
3.1 is a commutative orthogonal ring spectrum with respect to the canonical homeomorphisms µV,W :
SV ∧SW ∼= SV⊕W as multiplication maps, and the identities as unit maps ιV : SV −→ S(V ). The forgetful
functor from the category of left S-modules to the category of orthogonal spectra is an isomorphism of
categories. In this sense, S-modules ‘are’ orthogonal spectra.

Example 4.12 (Spherical monoid rings). We let M be a topological monoid. The multiplication and unit
of M induces the structure of orthogonal ring spectrum on the unreduced suspension spectrum Σ∞+ M , as
follows; The unit is the point 0 ∧ 1 ∈ S0 ∧M+, where 0 ∈ S0 = {0,∞} is the non-basepoint and 1 ∈ M is
the multiplicative unit. The multiplication map µV,W is given by the composite

(Σ∞+ M)(V ) ∧ (Σ∞+ M)(W ) = SV ∧M+ ∧ SW ∧M+

SV ∧twist∧M+−−−−−−−−−→∼=
(SV ∧ SW ) ∧ (M ×M)+

µV,W∧mult.−−−−−−−−→ SV⊕W ∧M+ = (Σ∞+ M)(V ⊕W ) .

We write SM for the resulting orthogonal ring spectrum and refer to it as the spherical monoid ring of
the topological monoid M . If the multiplication of M is commutative, then so is the one of SM . A left
SM -action on an orthogonal spectrum amounts to the same data as a continuous left action of the monoid
M by endomorphisms of orthogonal spectra.

Example 4.13 (Monoid ring spectra). We let R be an orthogonal ring spectrum R and M a topological
monoid. We define an orthogonal ring spectrum RM by RM = R ∧M+, i.e., the levelwise smash product
with M with a disjoint basepoint added. The unit map is the point ι ∧ 1 ∈ R(0) ∧M+, there 1 ∈M is the
multiplicative unit. The multiplication map µV,W is given by the composite

(R(V ) ∧M+) ∧ (R(W ) ∧M+) ∼= (R(V ) ∧R(W )) ∧ (M ×M)+
µV,W∧mult.−−−−−−−−→ R(V ⊕W ) ∧M+ .

In the special case when R = S is the sphere ring spectrum, then RM becomes the spherical monoid ring of
Example 4.12. If both R and M are commutative, then so is RM . A left RM -module amounts to the same
data as a left R-module together with a continuous left action of the monoid M by R-linear endomorphisms.

Example 4.14 (Eilenberg-MacLane ring spectra). We let A be a ring, associative and unital, but not
necessarily commutative. We let M be a left A-module. Then A and M have underlying additive abelian
groups, which have associated orthogonal Eilenberg-MacLane spectra HA and HM as introduced in Ex-
ample 3.3. The A-action on M induced an HA-action on HM as follows: for inner product spaces V and
W , the action map is given by

αV,W : (HA)(V ) ∧ (HM)(W ) = A[SV ] ∧M [SW ] −→ M [SV⊕W ] = (HM)(V ⊕W )

(
∑
i

ai · vi) ∧ (
∑
j

mi · wi) 7−→
∑
i,j

(aimj) · (vi ∧ wj) .

We also define unit maps

ιV : SV −→ A[SV ] = (HA)(V ) by ιV (v) = 1 · v .

This data makesHA into an orthogonal ring spectrum, andHM into a leftHA-module spectrum. Moreover,
if the multiplication of A is commutative, then so is the multiplication of HA. And the isomorphism (3.4)
between A and π0(HA) is a ring isomorphism, relative to which M ∼= π0(HM) is an isomorphism of left
A-modules.

Example 4.15 (Matrix ring spectra). If R is an orthogonal ring spectrum and m ≥ 1 we define the
orthogonal ring spectrum Mm(R) of (m×m)-matrices over R by

Mm(R) = map∗(m+, R ∧m+) .
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Here m+ = {0, 1, . . . ,m} with basepoint 0, and so Mm(R) is a m-fold product of a m-fold coproduct (wedge)
of copies of R. So ‘elements’ of Mm(R) are more like matrices which in each row have at most one nonzero
entry. The multiplication

µV,W : map∗(m+, R(V ) ∧m+) ∧ map∗(m+, R(W ) ∧m+) −→ map∗(m+, R(V ⊕W ) ∧m+)

sends f ∧ g to the composite

m+
f−−→ R(V ) ∧m+

R(V )∧g−−−−−−→ R(V ) ∧R(W ) ∧m+
µV,W∧m+−−−−−−−→ R(V ⊕W ) ∧m+ .

Example E.7 is devoted to constructing an isomorphism of graded rings π∗(Mm(R)) ∼= Mm(π∗(R)), i.e., the
topological matrix construction realizes the algebraic matrix construction.

Example 4.16 (Opposite ring spectrum). For every orthogonal ring spectrum R we can define the opposite
ring spectrum Rop by keeping the same spaces, orthogonal group actions and unit maps, but with new
multiplication µop

V,W on Rop given by the composite

Rop(V ) ∧Rop(W ) = R(V ) ∧R(W )
twist−−−→ R(W ) ∧R(V )

µW,V−−−→ R(W ⊕ V )
R(τW,V )−−−−−→ R(V ⊕W ) = Rop(V ⊕W ) .

By definition, an orthogonal ring spectrum R is commutative if and only if Rop = R. If we were to define
the category of right modules over R, we would find that it is isomorphic to the category of left modules
over Rop.

For example, we have (RM)op = (Rop)(Mop) for the monoid ring spectrum (Example 4.12) of a topo-
logical monoid M and its opposite, and (HA)op = H(Aop) for the Eilenberg-Mac Lane ring spectrum
(Example 4.14) of an ordinary ring A and its opposite.

By the centrality of the unit, the underlying orthogonal spectra of R and Rop are equal (not just
isomorphic), hence R and Rop have the same (not just isomorphic) and homotopy groups. The purpose of
Example E.8 is to show that

π∗(R
op) = (π∗(R))op

(again equality) as graded rings, where the right hand side is the graded-opposite ring, i.e., the graded
abelian group π∗(R) with new product x ·op y = (−1)kl · y · x for x ∈ πk(R) and y ∈ πl(R).

Example 4.17 (Thom ring spectra). In Example 3.6 we introduced the orthogonal Thom spectrum MO.
Its value at an inner product space V is

MO(V ) = L(V, V∞)+ ∧O(V ) S
V ,

the Thom space of the tautological vector bundle over the Grassmannian of dim(V )-planes over V∞. We
extend this to a commutative orthogonal ring spectrum as follows. If W is another inner product space, we
define a multiplication map

µV,W : MO(V ) ∧MO(W ) −→ MO(V ⊕W )

by

(L(V, V∞)+ ∧O(V ) S
V ) ∧ (L(W,W∞)+ ∧O(W ) S

W ) −→
L(V ⊕W, (V ⊕W )∞)+ ∧O(V⊕W ) S

V⊕W

[ϕ, v] ∧ [ψ,w] 7−→ [κV,W ◦ (ϕ⊕ ψ), v ⊕ w]

Here κV,W : V∞ ⊕W∞ ∼= (V ⊕W )∞ is the shuffling isometry

κV,W ((v1, v2, . . . ), (w1, w2, . . . )) = ((v1, w1), (v2, w2), . . . ) .

The multiplication maps are associative and commutative, and they are unital with respect to the maps

ιV = [iV ,−] : SV −→ L(V, V∞)+ ∧O(V ) S
V = MO(V )

where iV (v) = (v, 0, 0, . . . ) : V −→ V∞ is the isometric embedding as the first summand.
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Example 4.18. The Thom spectrum MO of the previous example admits a ‘periodization’, i.e., a Z-
graded commutative orthogonal ring spectrum MOP whose degree 0 component is MO, and whose degree 1
component contains a unit of dimension 1. The definition of MOP is the same as for MO, with the only
difference that we take Thom spaces over the full Grassmannian of all subspaces, of all dimensions, in V∞.
In more detail, we define

MOP (V ) =
∨
k≥0

L(Rk, V∞)+ ∧O(k) S
k .

In much the same way as for MO, this is the Thom space of the tautological vector bundle – of non-constant
rank! – ∐

k≥0

L(Rk, V∞)×O(k) Rk −→
∐
k≥0

Grk(V∞) , [ϕ, v] 7−→ ϕ(Rk) .

The structure maps, multiplication and unit maps are defined in the same way as for MO.
The orthogonal spectrum MOP is Z-graded, with m-th homogeneous summand

MOP [m](V ) = L(Rdim(V )+m, V∞)+ ∧O(dim(V )+m) S
dim(V )+m .

Then MOP [0] = MO and
MOP =

∨
m∈Z

MOP [m]

as orthogonal spectra.

We want to explain the periodicity of the ring spectrum MOP . For the following argument it will be
convenient to use a homeomorphic description of the tautological vector bundle – and hence its Thom space
– as the subspace of V∞ ×Gr(V∞) consisting of those pairs (v, L) with v ∈ L. The homeomorphism from
the previous description takes

[ϕ, x] ∈ L(Rn, V∞)×O(n) Rn

to (ϕ(x), ϕ(Rn)).
We let t ∈ π−1(MOP [−1]) be the class represented by the point

(0, {0}) ∈ Th(Gr0(R∞)) = MOP [−1](R) = (MOP [−1])1 .

We let σ ∈ π1(MOP [1]) be the class represented by the map

S2 −→ Th(Gr2(R∞)) = MOP [1](R) = (MOP [1])1 , x 7−→ (x,R2) .

Here R2 denotes the 2-dimensional subspace of R∞ spanned by the first two coordinates. As the next
proposition shows, MOP is periodic in the sense that t is a unit in the graded ring π∗(MOP ), with inverse
σ.

Theorem 4.19. (i) The relation t · σ = 1 holds in π0(MOP ).
(ii) The relation 2 = 0 holds in π0(MO). In particular, all homotopy groups of MO and MOP are

F2-vector spaces.
(iii) For every m ≥ 0, the orthogonal spectrum MOP [m] is stably equivalent to MO∧Sm; for every m ≤ 0,

the orthogonal spectrum MOP [m] is stably equivalent to Ω−m(MO).

Proof. (i) The class t · σ is represented by the composite

S2 x 7→(0,{0})∧(x,R2)−−−−−−−−−−−−→ MOP [−1](R) ∧MOP [1](R)
µR,R−−−→ MOP [0](R⊕ R)

where the first map is the smash product of the defining representatives for t and σ. Expanding the
definition of µR.R identifies this composite as the map

S2 −→ MOP [0](R⊕ R) , (x, y) 7−→ ((0, x, 0, y), (0⊕ R)⊕ (0⊕ R)) .

This differs from the representative of the unit 1 ∈ π0(MOP ) by the action of the linear isometry

R4 −→ R4 , (a, b, c, d) 7−→ (b, d, c, a) .

This isometry has determinant 1, and is this homotopic in O(4) to the identity. So the representatives of
t · σ and 1 are homotopic, and we conclude that t · σ = 1 in π0(MOP ).
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(ii) The relation 2 = 0 is now a formal consequence: let R be any commutative orthogonal ring spectrum
that has an invertible element t ∈ πk(R) in an odd degree k. The graded-commutativity of the multiplication
(Proposition 4.10 (iv)) yields t2 = −t2, and hence 2t2 = 0. Since t is invertible, multiplication with t is
injective, so 2 = 0 in π0(R). The graded multiplication in particular makes the group πl(R) into a module
over the ring π0(R), so all the groups πl(R) are F2-vector spaces.

(iii) Since the class t ∈ π−1(MOP [−1]) is invertible by part (i), multiplication by it is an isomorphism

t · − : πk+1(MOP [k+1])
∼=−−→ πk(MOP [k]) ;

the inverse is given by multiplication by σ ∈ π1(MOP [1]). We will now show that multiplication by t is
realized, in a certain precise way, by a periodicity morphism j : MOP −→ sh(MOP ): the value at an inner
product space V is the map

j(V ) : MOP (V ) −→ MOP (V ⊕ R) = sh(MOP )(V )

(x, L) 7−→ (i∞(x), i∞(L))

induced by the linear isometric embedding i∞ : V∞ −→ (V ⊕R)∞ with i : V −→ V ⊕R the embedding as
the first summand. The morphism j is even a homomorphism of left MOP -module spectra. The morphism
j is homogeneous of degree −1 in terms of the Z-grading of MOP , i.e., it restricts to a morphism of
orthogonal spectra

j : MOP [m+1] −→ sh(MOP [m])

where m is any integer.
The map j(V ) factors as the composite

MOP (V )
−∧(0,{0})−−−−−−→ MOP (V ) ∧MOP (R)

µV,R−−−→ MOP (V ⊕ R) = sh(MOP )(V ) .

Since the point (0, {0}) of MOP (R) represents the class t, this shows that the map

j∗ : πk+1(MOP [m+1]) −→ πk+1(sh(MOP [m])) = πk(MOP [m])

is multiplication by the class t. In particular, j∗ is an isomorphism, and hence j is stable equivalence from
MOP [m+1] to sh(MOP [m]). By Proposition 2.15, MOP [m+1] is then also stably equivalent to MOP [m]∧S1.
For m ≥ 0, the orthogonal spectrum MOP [m] is thus stably equivalent to MO ∧ Sm, by induction. For
m ≥ 0, the orthogonal spectrum MO is stably equivalent MOP [−m] ∧ Sm. Hence Ω−m(MO) is stably
equivalent Ω−m(MOP [−m] ∧ Sm), which is stably equivalent to MOP [−m] by Proposition 1.11. �

Example 4.20 (Complex Thom spectra). We define another Thom spectrumMU , the unitary (or complex)
analog of MO. Closely related, strictly commutative ring spectrum models for this homotopy type have
been discussed in various places, for example [31], [15, Example 5.8], [43, Appendix A] or [8, Section 8].
The Thom ring spectra MU , MSU and MSp representing unitary, special unitary or symplectic bordism
have to be handled slightly differently from real Thom spectra such as MO in the previous example. The
point is that MU and MSU are most naturally indexed on ‘even spheres’, i.e., one-point compactifications
of complex vector spaces, and MSp is most naturally indexed on spheres of dimensions divisible by 4.
However, a small variation gives MU , MSU and MSp as commutative orthogonal ring spectra, as we shall
now explain. The complex cobordism spectrum MU plays an important role in stable homotopy theory
because of its relationship to the theory of formal groups laws. There is also a periodic version MUP
of MU , a Z-graded commutative ring spectrum whose k-th summands is stably equivalent to a 2k-fold
suspension of MU .

We let VC = C ⊗R V denote the complexification of a real vector space V . If V is endowed with a
euclidean inner product, then VC inherits a hermitian inner product by the R-bilinear extension of

(λ⊗ v, µ⊗ w) = λ̄ · µ · 〈v, w〉 ,

for λ, µ ∈ C and v, w ∈ V . Given two hermitian inner product spaces U and U ′, we write LC(U,U ′) for
the space of C-linear isometric embeddings. If W and W ′ are finite dimensional, we give LC(W,W ′) the
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topology as a complex Stiefel manifold. If W ′ is infinite dimensional, we give LC(W,W ′) the resulting weak
topology.

We first consider the collection of pointed spaces MU with

MU(V ) = LC(VC, V
∞
C )+ ∧U(VC) S

VC ,

the Thom space of the complex vector bundle

LC(VC, V
∞
C )×U(VC) VC −→ GrCdim(V )(V

∞
C ) .

Here U(VC) = LC(VC, VC) is the unitary group of the hermitian inner product space VC. The O(V )-action
arises from the diagonal action on V∞C , similarly as in the case of MO above.

There are O(V )×O(W )-equivariant multiplication maps

µ̄V,W : MU(V ) ∧MU(W ) −→ MU(V ⊕W )

[ϕ, x] ∧ [ψ, y] 7−→ [κV,W (ϕ⊕ ψ), (x, y)]

where κV,W (ϕ⊕ ψ) denotes the ’conjugate’ of ϕ ⊕ ψ : VC ⊕WC −→ V∞C ⊕W∞C by the preferred C-linear
isometries

VC ⊕WC ∼= (V ⊕W )C and V∞C ⊕W∞C ∼= (V ⊕W )∞C .

There is a unit map ι0 : S0 −→MU(0), but instead of a unit maps from the sphere SV , we instead have a
unit maps

ῑV : SVC −→ MU(V ) , v 7→ (iV , iV (v)) ,

where iV : VC −→ V∞C is the embedding as the first summand. Thus we do not end up with an orthogonal

spectrum since we only get structure maps SVC ∧MU(W ) −→ MU(V ⊕W ) involving even-dimensional
spheres. In other words, MU has the structure of what could be called an ‘even ring spectrum’.

In order to get an honest orthogonal ring spectrum, we have to tweak the construction somewhat, by
‘looping with imaginary spheres’. We define

MU(V ) = map∗(S
iV ,MU(V )) ,

the iV -loop space of the previously defined Thom space MU(V ), where iV is the R-subspace of VC consisting
of the vectors i⊗ v for v ∈ V . A commutative multiplication is given by

µV,W : MU(V ) ∧MU(W ) −→ MU(V ⊕W ) , f ∧ g 7−→ f · g .

Here f : SiV −→MU(V ), g : SiW −→MU(W ), and f · g denotes the composite

Si(V⊕W ) ∼= SiV ∧ SiW f∧g−−→ MU(V ) ∧MU(W )
µ̄V,W−−−→ MU(V ⊕W ) ,

The unit maps ιV : SV −→MU(V ) are adjoint to

SV ∧ SiV ∼= SVC ῑV−→ MU(V ) .

These multiplication maps unital, associative and commutative, and make MU into a commutative orthog-
onal ring spectrum.

The homotopy groups of MU are given by

πk(MU) = colimn πn+k(map∗(S
n,MU(Rn))) ∼= colimn π2n+k(MU(Rn)) ;

by the unitary analog of Thom’s celebrated theorem, they are isomorphic to the ring of cobordism classes
of stably almost complex k-manifolds.

Essentially the same construction gives an orthogonal spectrum MSU . The symplectic bordism and
MSp can also be handled similarly, but one need to replace the field of complex numbers by the skew-field
of quaternions.
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5. Cofibration categories

We will eventually introduce the stable homotopy category as the localization of the category of or-
thogonal spectra at the class of stable equivalences. Most of the formal properties of the stable homotopy
category are shared by the derived category of any orthogonal ring spectrum, so we will develop the theory
in this generality, see Section 6 below.

If all we had was the relative category of orthogonal spectra and stable equivalences, it would be hard
to prove anything useful about its localization, the stable homotopy category. This is where some kind of
additional structure comes in handy. We will use cofibration categories. This notion was first introduced
and studied (in the dual formulation) by Brown [7] under the name ‘categories of fibrant objects’. Closely
related sets of axioms have been explored by various authors, compare Remark 5.2.

Definition 5.1. A cofibration category is a category C equipped with two classes of morphisms, called
cofibrations and weak equivalences, respectively, that satisfy the following axioms (C1)–(C4).

(C1) All isomorphisms are cofibrations and weak equivalences. Cofibrations are stable under composition.
The category C has an initial object and every morphism from an initial object is a cofibration.

(C2) Given two composable morphisms f and g in C, if two of the three morphisms f , g and gf are weak
equivalences, then so is the third.

(C3) Given a cofibration i : A −→ B and any morphism f : A −→ C, there exists a pushout square

A
f
//

��

i

��

C��

j

��

B
j
// D

in C and the morphism j is a cofibration. If additionally i is a weak equivalence, then so is j.
(C4) Every morphism in C can be factored as the composite of a cofibration followed by a weak equiva-

lence.

An acyclic cofibration is a morphism that is both a cofibration and a weak equivalence.

We will often decorate cofibrations by a tail at the arrow, as in // // ; will often denote weak equiva-

lences by a tilde over the arrow, as in
∼ // ; hence acyclic cofibrations come with a tail and a tilde, as

in // ∼ // .
We record some elementary consequences of the axioms:

• In a cofibration category a coproduct B∨C of any two objects in C exists by (C3) with A an initial
object, and the canonical morphisms from B and C to B ∨ C are cofibrations.
• If i : A −→ B and i′ : A′ −→ B′ are cofibrations, so is their coproduct i q i′ : A q A′ −→ B q B′.

Indeed, applying (C3) to the two pushout squares

A //
i //

��

��

B��

��

A′ //
i′ //

��

��

B′��

��

AqA′ //
iqA′

// B qA′ B qA′ //
Bqi′

// B qB′

shows that i q A′ and B q i′ are cofibrations, hence so is their composite, by (C1). The same
argument shows that whenever i and i′ are acyclic cofibrations, so is iq i′.

The homotopy category of a cofibration category is a localization at the class of weak equivalences, i.e., a
functor γ : C −→ Ho(C) that takes all weak equivalences to isomorphisms and is initial among such functors.
The homotopy category always exists if one is willing to pass to a larger universe. To get a locally small
homotopy category (i.e., have ‘small hom-sets’), additional assumptions are necessary; one possibility is to
assume that C has ‘enough fibrant objects’, compare Remark 5.14. We recall some basic facts about the
homotopy category of a cofibration category in Theorem 5.13.
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Remark 5.2. The above notion of cofibration category is due to K. S. Brown [7]. More precisely, Brown
introduced ‘categories of fibrant objects’, and the axioms (C1)–(C4) are equivalent to the dual of the axioms
(A)–(E) of Part I.1 in [7]. The concept of a cofibration category is a substantial generalization of Quillen’s
notion of a ‘closed model category’ [35]: from a Quillen model category one obtains a cofibration category
by restricting to the full subcategory of cofibrant objects and forgetting the class of fibrations.

Cofibration categories are closely related to ‘categories with cofibrations and weak equivalences’ in the
sense of Waldhausen [51]. In fact, a category with cofibrations and weak equivalences that also satisfies
the saturation axiom [51, 1.2] and the cylinder axiom [51, 1.6] is in particular a cofibration category as in
Definition 5.1. Further relevant references on closely related axiomatic frameworks are Baues’ monograph [3]
and Cisinski’s article [9]. Radulescu-Banu’s extensive paper [36] is the most comprehensive source for
basic results on cofibration categories and, among other things, contains a survey of the different kinds of
cofibration categories and their relationships.

A property that we will frequently use is the following gluing lemma. A proof of the gluing lemma can
be found in Lemma 1.4.1 (1) of [36].

Proposition 5.3 (Gluing lemma). Let C be a cofibration category. Consider a commutative C-diagram

A

∼
��

Boo
ioo //

∼
��

C

∼
��

A′ B′oo
i′
oo // C ′

such that i and i′ are cofibrations and all three vertical morphisms are weak equivalences. The the induced
morphism between the horizontal pushouts A ∪B C −→ A′ ∪B′ C ′ is a weak equivalence.

A special case of the gluing lemma is particularly important. Let i : A −→ B be a cofibration, and let
f : B −→ C be a weak equivalence. Applying the gluing lemma to the commutative diagram

A Boo
ioo B

f∼
��

A Boo
i

oo
f
// C

yields that the morphism g in the pushout square

B
f

∼
//

��

i

��

C��

��

A
∼
g
// A ∪B C

is a weak equivalence, too.

5.1. The homotopy relation. One key feature that makes the homotopy category of a cofibration category
more manageable that an arbitrary localization is a ‘calculus of fractions’ for morphisms in the homotopy
category. We will develop this part of the theory now.

Definition 5.4. Let A be an object of a cofibration category C. A cylinder object for A is a quadruple
(I, i0, i1, p) consisting of an object I, morphisms i0, i1 : A −→ I and a weak equivalence p : I −→ A
satisfying pi0 = pi1 = IdA and such that i0 + i1 : AqA −→ I is a cofibration.

Two morphisms f, g : A −→ Z in a cofibration category are homotopic if there exists a cylinder object
(I, i0, i1, p) for A and a morphism H : I −→ Z (the homotopy) such that f = Hi0 and g = Hi1.
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Every object has a cylinder object: axiom (C4) lets us factor the fold map Id + Id : A q A −→ A as a
cofibration i0 + i1 : AqA −→ I followed by a weak equivalence p : I −→ A.

Since the morphism p in a cylinder object is a weak equivalence, γ(p) is an isomorphism in Ho(C)
and so γ(i0) = γ(i1) since they share γ(p) as common left inverse. So if f and g are homotopic via H,
then γ(f) = γ(H)γ(i0) = γ(H)γ(i1) = γ(g). In other words: homotopic morphisms become equal in the
homotopy category. The converse is not true in general, but part (ii) of the ‘calculus of fractions’ (Theorem
5.13 ) says that the converse is true up to post-composition with a weak equivalence.

Proposition 5.5. Let A and Z be objects in a cofibration category C.

(i) ‘Homotopy’ is an equivalence relation on the set of morphisms C(A,Z).
(ii) Postcomposition with any C-morphism Z −→ Z̄ preserves the homotopy relation.
(iii) Let f, g : A −→ Z be homotopic, and let ϕ : Ā −→ A be any C-morphism. Then there is an acyclic

cofibration s : Z −→ Z ′ such that the two morphisms sfϕ, sgϕ : A −→ Z ′ are homotopic; moreover,
the homotopy can be witnessed by any cylinder object for Ā.

(iv) Let f, g : A −→ Z and τ : Ā −→ A be C-morphism such that τ is a weak equivalence. If fτ, gτ : Ā −→
Z are homotopic, then f and g are homotopic.

Proof. (i) For reflexivity we let (I, i0, i1, p) be any cylinder object for A. Then for any morphism f : A −→ Z,
the morphism fp : I −→ Z is a homotopy from f to itself.

For symmetry we let H : I −→ Z be a homotopy from f : A −→ Z to g : A −→ Z, based on some
cylinder object (I, i0, i1, p). Interchanging the roles of i0 and i1 yields another cylinder object (I, i1, i0, p)
for A. The same morphism H : I −→ Z is now a homotopy from g to f based on this new cylinder object.

As a preparation for the transitivity relation we explain how two cylinder objects (I, i0, i1, p) and
(J, j0, j1, q) for A can be glued into a third cylinder object (I ∪A J, l0, l1, r). We define I ∪A J by a
choice of pushout

A //
j0 //

��

i1
��

J��

b

��

I //
a
// I ∪A J

Such pushout exists because i1 and j0 are cofibrations. Since i1 and j0 are acyclic cofibrations, so are a
and b, by (C3). We define

l0 = ai0 and l1 = bj1 .

The universal property of the pushout provides a unique morphism r : I ∪A J −→ Z such that

ra = p and rb = q .

Then

rl0 = rai0 = pi1 = IdA ,

and similarly rl1 = IdA. Since a : I −→ I ∪A J and p : Z −→ A are weak equivalences, the 2-out-of-3 axiom
(C2) and the relation ra = p show that r is a weak equivalence.

Since the coproduct of two cofibrations is a cofibration, the pushout square

AqAqAqA //
i0+i1+j0+j1 //

Aq∇qA
��

I q J

��

AqAqA //
l0+l1/2+l1

// I ∪A J

shows that the lower horizontal morphism is a cofibration. Since embedding A q A −→ A q A q A as the
first and last summand is a cofibration, too; we conclude that l0 + l1 : A q A −→ I ∪A J is a cofibration.
This concludes the proof that the quadruple (I ∪A J, l0, l1, r) is indeed a cylinder object for A.
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For transitivity we consider three morphisms f, g, h : A −→ Z, a homotopy H : I −→ Z from f to g
based on a cylinder object (I, i0, i1, p), and a homotopy K : J −→ Z from g to h based on the cylinder
object (J, j0, j1, q). Because

Hi1 = g = Kj0 : A −→ Z ,

the universal property of the pushout provides a unique morphism H ∪K : I ∪A J −→ Z such that

(H ∪K)a = H and (H ∪K)b = K .

Then

(H ∪K)l0 = (H ∪K)ai0 = Hi0 = f ,

and similarly (H ∪K)l1 = h. In other words: H ∪K is a homotopy from f to h.
(ii) Given a homotopy H : I −→ Z between two morphisms f : A −→ Z to g : A −→ Z and any

morphism ψ : Z −→ Z̄, then ψH is a homotopy, based on the same cylinder object, from ψf to ψg. So
‘homotopy’ is stable under postcomposition.

(iii) We let (I, i0, i1, p) and (J, j0, j1, q) be cylinder objects for A and Ā, respectively. We start with a
preliminary construction that fixes the defect that cylinder objects we not assumed to be functorial. The
left vertical morphism in the commutative square

Āq Ā
i0ϕ+i1ϕ //

��

j0+j1

��

I��

p

��

J
ϕq

// A

is a cofibration; so a pushout of the initial part of the diagram exists. We apply the factorization axiom
(C4) to the morphism

(ϕq) ∪ p : J ∪ĀqĀ I −→ A ;

we obtain a cofibration and a weak equivalence

ϕ̄ ∪ t : J ∪ĀqĀ I −→ I ′ and p′ : I ′ −→ A

whose composite is (ϕq) ∪ p. We define

i′0 = ti0 : A −→ I ′ and i′1 = ti1 : A −→ I ′ ;

then the following diagram commutes:

(5.6)

Āq Ā
ϕqϕ

//
��

j0+j1

��

AqA||
i′0+i′1

||

""

i0+i1

""
J

ϕ̄
//

q ∼
��

I ′

p′
∼
""

I

∼ p
||

oot
∼

oo

Ā
ϕ

// A

We claim that the quadruple (I ′, i′0.i
′
1, p
′) is a new cylinder object for A. Because the morphisms p and p′

are weak equivalences, so is t : I −→ I ′ by 2-out-of-3. Because j0 + j1 : Ā q Ā −→ J is a cofibration, so is
the canonical morphism I −→ J ∪ĀqĀ I. Since the morphism ϕ̄ ∪ t : J ∪ĀqĀ I −→ I ′ is a cofibration by
design, we conclude that t : I −→ I ′ is a cofibration. Because i0 + i1 : AqA −→ I is a cofibration, so is

i′0 + i′1 = t ◦ (i0 + i1) : AqA −→ I ′ .

The upshot of this discussion is that we have constructed a new cylinder object (I ′, i′0.i
′
1, p
′) for A, an acyclic

cofibration t : I −→ I ′, and a morphism ϕ̄ : J −→ I ′ such that the diagram (5.6) commutes.
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Now we prove part (iii). We let H : I −→ Z be a homotopy from f : A −→ Z to g : A −→ Z, based on
the cylinder object (I, i0, i1, p). We define the acyclic cofibration s : Z −→ Z ′ by a choice of pushout:

I //
t
∼
//

H

��

I ′

κ

��

Z //
∼
s
// Z ′

Then

κϕ̄j0 = κi′0ϕ = κti0ϕ = sHi0ϕ = sfϕ ,

and similarly κϕ̄j1 = sgϕ. In other words, the morphism κϕ̄ : J −→ Z ′ is a homotopy from sfϕ to sgϕ.
(iv) Since fτ is homotopic to gτ , there is a cylinder object (J, j0, j1, q) for Ā and a homotopy H : J −→ Z

from fτ to gτ . We form a pushout

Āq Ā //
j0+j1 //

τqτ ∼
��

J

τ̄∼
��

AqA //
i0+i1

// I

The morphism i0 + i1 : AqA −→ I is then a cofibration because j0 + j1 is; and the morphism τ̄ is a weak
equivalence because τ q τ is, by the gluing lemma. The universal property of the pushout provides a unique
morphism p : I −→ A such that

pi0 = pi1 = IdA and pτ̄ = τq .

Because τ , τ̄ and q are weak equivalences, so is p, by 2-out-of-3. We conclude that (I, i0, i1, p) is a cylinder
object for A.

The relations

fτ = Hj0 and gτ = Hj1

and the universal property of the pushout provide a unique morphism K : I −→ Z such that

Ki0 = f , Ki1 = g and Kτ̄ = H .

In particular, K̄ is a homotopy from f to g. �

5.2. Localization by fractions. We can now exhibit a localization of a cofibration category at the class
of weak equivalences, by a construction that resembles the definition of fractions.

Construction 5.7. We let C be a cofibration category. We define a category Ho(C) with the same objects
as C. Morphisms in Ho(C) from A to B are equivalence classes of pairs (f, τ) consisting of C-morphisms
f : A −→ Z and τ : B −→ Z with the same target, and such that τ is an acyclic cofibration. Two such
pairs (f, τ) and (f ′, τ ′) are equivalent if there are acyclic cofibrations a : Z −→ Z̄ and b : Z ′ −→ Z̄ such
that the following diagram commutes up to homotopy:

Z��

a ∼
��

A

f

99

f ′
$$

Z̄ B
ee

∼
τ

ee

yy

∼
τ ′

yy
Z ′
OO

b ∼

OO

We write (f, τ) ≈ (f ′, τ ′) for this relation.

Proposition 5.8. The relation ≈ is an equivalence relation.
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Proof. The relation ≈ is clearly reflexive and symmetric, because the homotopy relation is reflexive and
symmetric. But we need to argue that it is also transitive.

We suppose that (f, τ) ≈ (f ′, τ ′) via two acyclic cofibrations a : Z −→ Z̄ and b : Z ′ −→ Z̄, i.e.,
such that af is homotopic to bf ′ : A −→ Z̄ ′, and aτ is homotopic to bτ ′. And we suppose that also
(f ′, τ ′) ≈ (f ′′, τ ′′) via two acyclic cofibrations a′ : Z ′ −→ Z̄ ′ and b′ : Z ′′ −→ Z̄ ′, i.e., such that a′f ′ is
homotopic to b′f ′′ : A −→ Z̄ ′, and a′τ ′ is homotopic to b′τ ′′.

Because b and a′ are acyclic cofibrations, we can choose a pushout:

Z //
a′

∼
//

��

b ∼
��

Z̄ ′��

β∼
��

Z̄ //
α

∼ // E

Moreover, the morphisms α and β are also acyclic cofibrations. The homotopy relation is compatible with
postcomposition, so

αaf ∼ αbf ′ = βa′f ′ ∼ βb′f ′′ and αaτ ∼ αbτ ′ = βa′τ ′ ∼ βb′τ ′′ .
Since the homotopy relation is transitive, the acyclic cofibrations αa : Z −→ E and βb′ : Z ′′ −→ E witness
that (f, τ) ≈ (f ′′, τ ′′). �

Construction 5.9. We continue with the definition of the category Ho(C). Morphisms in Ho(C) from A to
B are equivalence classes under the relation ≈ of pairs (f : A −→ Z, τ : B −→ Z) such that τ is an acyclic
cofibration. We write

τ\f : A −→ B

for the equivalence class of the pair (f, τ).
Now we define composition in the category Ho(C). We consider two pairs of morphisms (f, τ) and (g, σ)

that represent morphisms τ\f : A −→ B and σ\g : B −→ C in Ho(C). Because τ : B −→ Z is an acyclic
cofibration, there is a pushout in C:

(5.10)

B
g
//

��

τ ∼
��

Y��

ψ∼
��

Z
ϕ
// W

Moreover, the morphism ψ is an acyclic cofibration, too. We then define the composite by

(5.11) (σ\g) ◦ (τ\f) = (ψσ)\(ϕf) .

Theorem 5.12. Let C be a cofibration category.

(i) The composition (5.11) is well-defined and makes Ho(C) into a category.
(ii) The assignments γ(A) = A and γ(f) = Id \f define a functor γ : C −→ Ho(C).
(iii) For every acyclic cofibration τ : B −→ Z in C, the morphism γ(τ) is an isomorphism with inverse

τ\ IdZ , and the relation
τ\f = γ(τ)−1 ◦ γ(f)

holds for all C-morphisms f : A −→ Z.
(iv) The functor γ : C −→ Ho(C) takes weak equivalences to isomorphisms.
(v) The functor γ : C −→ Ho(C) is a localization of C at the class of weak equivalence.

Proof. (i) We start by observing that the composition (5.11) does not depend on the choice of pushout
(5.10). Indeed, any two choices of pushout are canonically isomorphic, and the resulting pairs (ϕf, ψσ) are
then ≈-equivalent via isomorphisms.

The equivalence relation ≈ is generated by three ’elementary’ instances:

(1) for every acyclic cofibration a : Z −→ Z̄, the pair (f, τ) is equivalent to (af, aτ);
(2) for all pairs of homotopic morphisms f, f ′ : A −→ Z, the pair (f, τ) is equivalent to (f ′, τ);
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(3) for all pairs of homotopic acyclic cofibrations τ, τ ′ : B −→ Z, the pair (f, τ) is equivalent to (f, τ ′).

So it suffices to show that pre- and postcomposition is compatible with each of these elementary relations.
We start with postcomposition by the morphism represented by a pair (g, σ), for a C-morphisms g :

B −→ Y and an acyclic cofibration σ : C −→ Y .
Relation (1): We choose two pushout squares in C:

B
g
//

��

τ ∼
��

Y��

ψ∼
��

Z��

a ∼
��

ϕ
// W��

λ∼
��

Z̄
κ
// V

The composite is then a pushout, too. So

(σ\g) ◦ ((aτ)\(af)) = (λψσ)\(κaf) = (λψσ)\(λϕf) = (ψσ)\(ϕf) = (σ\g) ◦ (τ\f) .

Relation (2): We choose a pushout (5.10). Postcomposition preserves the homotopy relation; because
f, f ′ : A −→ Z are homotopic, so are ϕf, ϕf ′ : A −→W . Hence (ϕf, ψσ) ≈ (ϕf ′, ψσ).

Relation (3): we choose three pushouts

B

g

��

// τ
∼
// Z

ϕ

��

B
g
//

��

τ ′ ∼
��

Y��

∼ ψ′

��

// ∼
ψ
// W��

α∼
��

Z
ϕ′
// W ′ //

β

∼ // V

Because τ and τ ′ are acyclic cofibrations, so are the morphisms ψ, ψ′, α and β. Postcomposition preserves
the homotopy relation; since τ and τ ′ are homotopic, we conclude that

αϕτ = αψg = βψ′g = βϕ′τ ′ ∼ βϕ′τ .

Because τ is a weak equivalence, Proposition 5.5 (iv) shows that αϕ : Z −→ V is homotopic to βϕ′.
Unfortunately, precomposition with f : A −→ Z need not preserve the homotopy relation. However,

Proposition 5.5 (iii) provides an acyclic cofibration s : V −→ V ′ such that sαϕf : A −→ V ′ is homotopic
to sβϕ′f . Moreover,

sαψσ = sβψ′σ : C −→ V ′ .

So the acyclic cofibrations sα : W −→ V ′ and sβ : W ′ −→ V ′ witness that (ϕf, ψσ) ≈ (ϕ′f, ψ′σ).

Now we turn to precomposition by the morphism represented by a pair (e, ν), for a C-morphism e : E −→
X and an acyclic cofibration ν : A −→ X.

Relation (1): We choose two pushout squares

A
f
//

��

ν ∼
��

Z
a
∼
//

��

ξ∼
��

Z̄��

ζ∼
��

X
χ
// U

µ
// V

The composite is then a pushout, too. So

((aτ)\(af)) ◦ (ν\e) = (ζaτ)\(µχe) = (µξτ)\(µχe) = (ξτ)\(χe) = (τ\f) ◦ (ν\e) .
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Relation (2): we choose three pushouts

A

f

��

// ν
∼
// X

χ

��

A
f ′
//

��

ν ∼
��

Z��

∼ ξ′

��

// ∼
ξ
// U��

α∼
��

X
χ′
// U ′ //

β

∼ // V

Because ν is an acyclic cofibration, so are the morphisms ξ, ξ′, α and β. Postcomposition preserves the
homotopy relation; since f is homotopic to f ′, we conclude that

αχν = αξf = βξ′f ∼ βξ′f ′ = βχ′ν .

Because ν is a weak equivalence, Proposition 5.5 (iv) shows that αχ : X −→ V is homotopic to βχ′.
Postcomposition preserves the homotopy relation, so also

αχe ∼ βχ′e .

Moreover,

αξτ = βξ′τ : B −→ V .

So the acyclic cofibrations α : U −→ V and β : U ′ −→ V witness that (χe, ξτ) ≈ (χ′e, ξ′τ).

Relation (3): We choose a pushout

A
f
//

��

ν ∼
��

Z��

ξ∼
��

X
χ
// U

Postcomposition preserves the homotopy relation. So if τ, τ ′ : B −→ Z are homotopic, so are ξτ, ξτ ′ : B −→
U . Hence (χe, ξτ) ≈ (χe, ξτ ′).

Now that we know that composition in Ho(C) is well-defined, we can easily check that it is associative. We
consider three pairs (e, ν), (f, τ) and (g, σ) that represent composable fractions. We choose three pushouts

B
g
//

��

τ ∼
��

Y��

∼ ψ

��

A
f
//

��

ν ∼
��

Z��

∼ ξ

��

ϕ
// W��

λ∼
��

X
χ
// U

µ
// V

Then the two composite squares are pushouts, too. So

(σ\g) ◦ ((τ\f) ◦ (ν\e)) = (σ\g) ◦ ((ξτ)\(χe)) = (λψσ)\(µχe)
= ((ψσ)\(ϕf)) ◦ (ν\e) = ((σ\g) ◦ (τ\f)) ◦ (ν\e) .

For every object A, the fraction IdA\IdA is clearly a two-sided unit for composition.
(ii) The proof that γ is indeed a functor is straightforward.
(iii) To calculate the composite (τ\ IdZ) ◦ γ(τ) = (τ\ IdZ) ◦ (IdZ \τ) we must choose a pushout of two

instances of the identity of Z; the square consisting of four instances of IdZ does the job, and it yields the
relation

(τ\ IdZ) ◦ γ(τ) = (τ\ IdZ) ◦ (IdZ \τ) = τ\τ = IdB \ IdB .
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In order to calculate the other composite, we choose a pushout

B // ∼
τ //

��

τ ∼
��

Z��

ψ1∼
��

Z //
ψ0

∼ // Z ∪B Z

Because ψ0τ = ψ1τ and τ is a weak equivalence, Proposition 5.5 (iv) shows that ψ0 and ψ1 are homotopic.
The acyclic cofibration ψ1 : Z −→ Z ∪B Z thus witnesses that (IdZ , IdZ) ≈ (ψ0, ψ1). So

γ(τ) ◦ (τ\ IdZ) = (IdZ \τ) ◦ (τ\ IdZ) = ψ1\ψ0 = IdZ \ IdZ .

(iv) We claim that every C-morphism f : A −→ B admits a factorization f = qj such that j : A −→ Z
is a cofibration and the morphism q : Z −→ B is left inverse to an acyclic cofibration r : B −→ Z. To prove
the claim we use an abstract version of the mapping cylinder factorization. We choose a cylinder object
(I, i0, i1, p) for A, and form a pushout

A
f

//
��

i1 ∼
��

B��

r∼
��

I
ϕ
// I ∪f B = Z

The universal property of the pushout provides a unique morphism q : Z −→ B such that qϕ = fp and
qr = IdB . In particular, q is left inverse to the acyclic cofibration r. We define j = ϕi0 : A −→ Z. Then

qj = qϕi0 = fpi1 = f .

Moreover, the square

AqB
IdA qf //

��

i0+i1

��

AqB��
j+r

��

I
ϕ

// I ∪f B = Z

is a pushout; so j + r : A q B −→ Z is a cofibration. Since the canonical morphism A −→ A q B is a
cofibration, too, so is the morphism j.

Now we can prove part (iv). We factor the given weak equivalence f : A −→ B as provided by the above
claim, so that f = qj, and qr = IdB for an acyclic cofibration r : B −→ Z. Because f and q are weak
equivalences, so is j; hence j is an acyclic cofibration. Thus γ(r) and γ(j) are isomorphisms by part (iii).
Because

γ(q) ◦ γ(r) = γ(qr) = IdB ,

the morphism γ(q) is an isomorphism, and inverse to γ(r). So

γ(f) = γ(q) ◦ γ(j) = γ(r)−1 ◦ γ(j) = r\j

is an isomorphism.
(v) We let F : C −→ D be any functor that takes weak equivalences to isomorphisms. We have to show

that F factors uniquely through the functor γ : C −→ Ho(C).
Claim: let f, g : A −→ B be homotopic C-morphisms. Then F (f) = F (g). Indeed, there is a cylinder

object (I, i0, i1, p) for A, and a homotopy H : I −→ B such that

Hi0 = f and Hi1 = g .

Because p is a weak equivalence, the morphism F (p) : FI −→ FA is an isomorphism. Because F (p) is an
isomorphism and

F (p) ◦ F (i0) = F (p ◦ i0) = F (IdA) = F (p ◦ i1) = F (p) ◦ F (i1) ,
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we conclude that F (i0) = F (i1). Hence

F (f) = F (H) ◦ F (i0) = F (H) ◦ F (i1) = F (g) .

Now we can prove the uniqueness property of a localization. Let G : Ho(C) −→ D be any functor such
that G ◦ γ = F . Because γ is the identity on objects, G agrees with F on objects. On morphisms we have

G(τ\f) = G(γ(τ)−1 ◦ γ(f)) = G(γ(τ))−1 ◦G(γ(f)) = F (τ)−1 ◦ F (f) .

So the effect of G on morphisms is determined by the effect of F on morphisms.
For the existence part of a localization, we define G : Ho(C) −→ D on objects by G(A) = F (A). On

morphisms, we define

G(τ\f) = F (τ)−1 ◦ F (f) .

To show that this is well-defined, we suppose that (f, τ) ≈ (f ′, τ ′). Since the equivalence relation ≈ is
generated by the three elementary instances, it suffices to check these elementary cases.

For the relation (1) we let a : Z −→ Z̄ is any acyclic cofibration. Then F (a) is an isomorphism, and
hence

F (aτ)−1 ◦ F (af) = F (τ)−1 ◦ F (a)−1 ◦ F (a) ◦ F (f) = F (τ)−1 ◦ F (f) .

Relations (2) and (3) are also fine because F takes the same value on homotopic morphisms.
Now we argue that G is indeed a functor. Clearly G(1A\1A) = IdF (A), so G preserves identities. Now

we let (f, τ) and (g, σ) represent two composable morphism τ\f : A −→ B and σ\g : B −→ C in Ho(C).
We choose a pushout square (5.10). Then

F (ϕ) ◦ F (τ) = F (ψ) ◦ F (g) .

Because τ and ψ are weak equivalences, F (τ) and F (ψ) are isomorphisms, and thus

F (ψ)−1 ◦ F (ϕ) = F (g) ◦ F (τ)−1 .

Hence

G((σ\g) ◦ (τ\f)) = G((ψσ)\(ϕf)) = F (ψσ)−1 ◦ F (ϕf)

= F (σ)−1 ◦ F (ψ)−1 ◦ F (ϕ) ◦ F (f)

= F (σ)−1 ◦ F (g) ◦ F (τ)−1 ◦ F (f) = G(σ\g) ◦G(τ\f)) . �

The specific construction of the localization γ : C −→ Ho(C) immediately implies the following corollary,
which we will refer to as a ‘calculus of fractions’ for Ho(C). The theorem states the main properties of the
localization functor without reference to the specific construction.

Theorem 5.13 (Calculus of fractions). Let C be a cofibration category and γ : C −→ Ho(C) a localization
at the class of weak equivalences. Then:

(i) Every morphism in Ho(C) is a ‘left fraction’, i.e., is of the form γ(τ)−1 ◦ γ(f), where f and τ are
C-morphisms with the same target, and τ is an acyclic cofibration.

(ii) Given two morphisms f, g : A −→ B in C, then γ(f) = γ(g) in Ho(C) if and only if there is an acyclic
cofibration s : B −→ B̄ such that sf and sg are homotopic.

Proof. Part (i) is a restatement of the relation τ\f = γ(τ)−1 ◦ γ(f).
(ii) If there is an acyclic cofibration s : B −→ B̄ with sf ∼ sg, then

γ(s) ◦ γ(f) = γ(sf) = γ(sg) = γ(s) ◦ γ(g) .

We have exploited that every functor that inverts weak equivalences takes the same value on homotopic
morphisms, compare the proof of Theorem 5.12. Because s is a weak equivalence, the morphism γ(s) is an
isomorphism, and hence γ(f) = γ(g).
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Conversely, the relation γ(f) = γ(g) means that (f, IdB) ≈ (g, IdB). So there are homotopic acyclic
cofibrations a, b : B −→ Z̄ such that af is homotopic to bg. We choose a pushout in C:

B //
b
∼
//

��

a ∼
��

Z̄��

ψ∼
��

Z̄ //
ϕ
// W

Postcomposition preserves the homotopy relation, so we conclude that

ϕa = ψb ∼ ψa .

Because a is a weak equivalence, Proposition 5.5 (iv) shows that ϕ and ψ are homotopic. Proposition 5.5
(iii) provides an acyclic cofibration t : W −→ B̄ such that

tϕaf ∼ tψaf .
Because the homotopy relation is transitive, the relations

tϕaf ∼ tψaf ∼ tψbg = tϕag

show that s = tϕa : B −→ B̄ can serve as the desired acyclic cofibration. �

Remark 5.14. On the face of it, the homotopy category of a cofibration category raises set-theoretic issues:
in general the hom-‘sets’ in Ho(C) may not be small, but rather proper classes. One way to deal with this
is to work with universes in the sense of Grothendieck; the homotopy category of a cofibration category
then always exists in a larger universe. Another way to address the set theory issues is to restrict attention
to those cofibration categories that have ‘enough fibrant objects’. An object of a cofibration category C
is fibrant if every acyclic cofibration out of it has a retraction. If the object B is fibrant, then the map
γ : C(A,B) −→ Ho(C)(A,B) given by the localization functor is surjective: an arbitrary morphism from A
to B in Ho(C) is of the form γ(s)−1γ(a) for some acyclic cofibration s : B −→ Z. Since B is fibrant, there
is a retraction r : Z −→ B with rs = IdB , and then γ(s)−1γ(a) = γ(ra). Moreover, if two C-morphisms
f, g : A −→ B become equal after applying the functor γ, then there is an acyclic cofibration s : B −→ B̄
such that sf is homotopic to sg. Composing with any retraction to s shows that f is already homotopic
to g. So the map C(A,B)/homotopy−→ Ho(C)(A,B) sending the class of f to γ(f), is bijective. We say
that the cofibration category C has enough fibrant objects if, for every object X, there is a weak equivalence
r : X −→ Z with fibrant target. For example, if C is the collection of cofibrant objects in an ambient
Quillen model category, then it has enough fibrant objects.

If r : X −→ Z is a weak equivalence with fibrant target, then for every other object A the two maps

Ho(C)(A,X)
γ(r)∗−−−→ Ho(C)(A,Z)

γ←−− C(A,Z)/homotopy

are bijective, so the morphisms Ho(C)(A,X) form a set (as opposed to a proper class). So, if C has enough
fibrant objects, then the homotopy category Ho(C) has small hom-sets (or is ‘locally small’).

Now that we have a good handle on the homotopy category of a cofibration category, we can use the
calculus of fractions to derive additional desirable properties. The homotopy category will typically have
only very few limits and colimits. But it always has finite coproducts, and general coproducts and finite
products are inherited from the cofibration category.

Proposition 5.15. Let C be a cofibration category.

(i) The localization functor γ : C −→ Ho(C) preserves finite coproducts. In particular, the homotopy
category Ho(C) has finite coproducts.

(ii) Let I be any set. Suppose that C has I-indexed coproducts, and that the classes of cofibrations and
acyclic cofibrations are closed under I-indexed coproducts. Then the localization functor γ : C −→
Ho(C) preserves I-indexed coproducts. In particular, the homotopy category Ho(C) has I-indexed
coproducts.
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Proof. (i) A cofibration category always has finite coproducts, and cofibrations and acyclic cofibrations are
closed under finite coproducts. So part (i) is a special case of part (ii).

(ii) Since the localization functor γ can be arranged to be the identity on objects, we drop γ in front of
objects to simplify the notation. Now we consider an I-indexed family {Xi}i∈I of C-objects. We denote a
coproduct of the family by

∨
i∈I Xi, and we write κj : Xj −→

∨
i∈I Xi for the universal morphisms. We

must show that for every C-object Y , the map

(5.16) Ho(C)(
∨
i∈I

Xi, Y ) −→
∏

j∈I
Ho(C)(Xj , Y ) , ψ 7−→ (ψ ◦ γ(κj))j∈I

is bijective. For surjectivity we let (ψj : Xj −→ Y ) be any I-indexed family of morphisms in Ho(C). By
the calculus of left fractions, we can write

ψj = γ(sj)
−1 ◦ γ(fj)

for some families of C-morphisms fj : Xj −→Wj and sj : Y −→Wj such that the morphisms sj are acyclic
cofibrations. We choose a coproduct of the family {Wi}i∈I and a coproduct of the constant family {Y }i∈I
of copies of Y . Then we form the C-morphisms∨

i∈I
Xi

∨
fi−−−→

∨
i∈I

Wi

∨
si←−−−
∼

∨
i∈I

Y
∇−−→ Y ,

where ∇ denotes the fold morphism. Since coproducts of acyclic cofibrations are acyclic cofibrations, the
middle morphism is an acyclic cofibration. So we can form the morphism

γ(∇) ◦ γ(
∨
si)
−1 ◦ γ(

∨
fi) :

∨
i∈I

Xi −→ Y

in the homotopy category. Then for every j ∈ J , the following diagram commutes:

Xj

κj

��

fj
// Wj

κj

��

Yoo
sj

∼
oo

κj

��∨
i∈I Xi ∨

fi

//
∨
i∈IWi

∨
i∈I Y ∇

//oo∼∨
si

oo Y

Hence

γ(∇) ◦ γ(
∨
si)
−1 ◦ γ(

∨
fi) ◦ γ(κj) = γ(∇) ◦ γ(

∨
si)
−1 ◦ γ((

∨
fi) ◦ κj)

= γ(∇) ◦ γ(
∨
si)
−1 ◦ γ(κj) ◦ γ(fj)

= γ(∇) ◦ γ(κj) ◦ γ(sj)
−1 ◦ γ(fj) = γ(sj)

−1 ◦ γ(fj) = ψj .

So the map (5.16) sends the morphism γ(∇) ◦ γ(
∨
si)
−1 ◦ γ(

∨
fi)to the original family (ψj)j∈I , and thus

the map (5.16) is surjective.
For injectivity we consider two morphisms ψ,ψ′ :

∨
i∈I Xi −→ Y in Ho(C) such that ψ◦γ(κj) = ψ′◦γ(κj)

for all j ∈ I. We start with the special case where ψ = γ(f) and ψ′ = γ(f ′) for two C-morphisms
f, f ′ :

∨
i∈I Xi −→ Y . Because

γ(fκj) = ψ ◦ γ(κj) = ψ′ ◦ γ(κj) = γ(f ′κj) ,

the calculus of left fractions provides acyclic cofibrations tj : Y −→ Ȳj such that tjfκj : Xi −→ Ȳj is
homotopic to tjf

′κj : Xj −→ Ȳj for every j ∈ I. We choose a pushout:∨
i∈I Y

∇ //

��∨
ti ∼
��

Y��

∼ t

��∨
i∈I Ȳi ∇′

// Y ′
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Since coproducts of acyclic cofibrations are acyclic cofibrations, the left vertical morphism is an acyclic
cofibration, and hence so is the right vertical morphism t : Y −→ Y ′.

For each j ∈ I, we choose a cylinder object Zj of Xj and a homotopy Hj : Zj −→ Ȳj from tjfκj to tjf
′κj .

Since coproducts preserve cofibrations and acyclic cofibrations, the coproduct
∨
i∈I Zi is a cylinder object

for
∨
i∈I Xi, where we leave the additional data of a cylinder object implicit. Moreover, the composite∨

i∈I
Zi

∨
Hi−−−→

∨
i∈I

Ȳi
∇′−−−→ Y ′

is then a homotopy from tf to tf ′. We conclude that γ(tf) = γ(tf ′) in Ho(C). Since t is a weak equivalence,
γ(t) is an isomorphism in Ho(C), and so γ(f) = γ(f ′). This proves injectivity in the special case.

Now we treat the general case, and we let ψ,ψ′ :
∨
i∈I Xi −→ Y be arbitrary morphisms in Ho(C) such

that ψ ◦γ(κj) = ψ′ ◦γ(κj) for all j ∈ I. The calculus of left fractions provides C-morphisms f :
∨
i∈I Xi −→

W , f ′ :
∨
i∈I Xi −→ W ′, s : Y −→ W and s′ : Y −→ W ′ such that s and s′ are acyclic cofibrations and

such that

ψ = γ(s)−1 ◦ γ(f) and ψ′ = γ(s′)−1 ◦ γ(f ′) .

We choose a pushout:

Y // ∼
s //

��

s′ ∼
��

W��

∼ t

��

W ′ //
∼
t′
// V

Then t and t′ are acyclic cofibrations because s and s′ are. We now obtain the relation

γ(tf) ◦ γ(κj) = γ(t) ◦ γ(s) ◦ ψ ◦ γ(κj) = γ(t′) ◦ γ(s′) ◦ ψ′ ◦ γ(κj) = γ(t′f ′) ◦ γ(κj)

for every j ∈ I. The special case treated above lets us conclude that γ(tf) = γ(t′f ′). Thus

γ(ts) ◦ ψ = γ(tf) = γ(t′f ′) = γ(t′s′) ◦ ψ′ .

Because the morphism γ(ts) = γ(t′s′) is an isomorphism, also ψ = ψ′. This completes the proof. �

Theorem 5.17. Let C be a cofibration category.

(i) The localization functor γ : C −→ Ho(C) preserves terminal objects.
(ii) Let I be any set. Suppose that C has I-indexed products, and that the class of weak equivalences is

stable under I-indexed products. Then the localization functor γ : C −→ Ho(C) preserves I-indexed
products. In particular, Ho(C) has I-indexed products.

Proof. (i) Logically speaking, part (i) is a special case of part (ii) for I = ∅. However, part (i) can easily
be proved directly, as follows. We let ∗ be a terminal object of C. We write pA : A −→ ∗ for the unique
morphism from a C-object A to ∗. By the calculus of fractions, any morphism from A to ∗ in Ho(C) is of
the form γ(s)−1 ◦ γ(f) for some C-morphism f : A −→ C and a weak equivalence s : ∗ −→ C. Because ∗ is
terminal, the unique morphism pC : C −→ ∗ is right inverse to s, and hence also a weak equivalence. Hence

γ(s)−1 ◦ γ(f) = γ(pC) ◦ γ(f) = γ(pC ◦ f) = γ(pA) .

So γ(pA) is the only element of Ho(A, ∗), and hence ∗ is also a terminal object of Ho(C).
(ii) We consider any I-indexed family {Xi}i∈I of C-objects. We let

∏
i∈I Xi denote a product of the

family, with projections pj :
∏
i∈I Xi −→ Xj . We must show that for every C-object A, the map

(5.18) Ho(C)(A,
∏
i∈I

Xi) −→
∏
j∈I

Ho(C)(A,Xj) , ψ 7−→ (γ(pj) ◦ ψ)j∈I

is bijective.
For surjectivity we consider an I-family of morphism ψj : A −→ Xj in Ho(C). The calculus of fractions

lets us write ψj = γ(sj)
−1◦γ(fj) for some C-morphisms fj : A −→ Zj and weak equivalences sj : Xj −→ Zj .
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The morphism
∏
i∈I si :

∏
i∈I Xi −→

∏
i∈I Zi is then a weak equivalence by hypothesis. We claim that the

map (5.18) takes the morphism

γ(
∏
i∈I

si)
−1 ◦ γ((fi)i∈I) : A −→

∏
i∈I

Xi

to the given family (ψi)i∈I . Indeed, the the following diagram commutes:

A
(fi)i∈I

//

fj --

∏
i∈I Zi

pj

��

∏
i∈I Xi

pj

��

∼

∏
si

oo

Zj Xj
∼
sj

oo

So

γ(pj) ◦ γ(
∏
i∈I

si)
−1 ◦ γ((fi)i∈I) = γ(sj)

−1 ◦ γ(pj) ◦ γ((fi)i∈I) = γ(sj)
−1 ◦ γ(fj) = ψj .

For injectivity we consider two morphisms ϕ,ψ : A −→
∏
i∈I Xi in Ho(C) such that

(5.19) γ(pj) ◦ ϕ = γ(pj) ◦ ψ

for all j ∈ I. We must show that then ϕ = ψ. We start with the special case where ϕ = γ(f) and ψ = γ(g)
for C-morphisms f, g : A −→

∏
i∈I Xi. Then

γ(pj ◦ f) = γ(pj) ◦ γ(f) = γ(pj) ◦ γ(g) = γ(pj ◦ g)

for all j ∈ I. The calculus of fractions provides weak equivalences sj : Xj −→ X̄j such that sjpjf : A −→ X̄j

is homotopic to sjpjg. We let

Hj : Ij −→ X̄j

be a homotopy, based on some cylinder object (Ij , ιj0, ι
j
1, p

j) for A, that witnesses sjpjf ∼ sjpjg.
Because the morphisms pj : Ij −→ A are weak equivalences, so is

∏
i∈I p

i :
∏
i∈I I

i −→
∏
i∈I A. Hence

γ(
∏
i∈I p

i) is an isomorphism. The morphisms∏
i∈I

ιi0 :
∏
i∈I

A −→
∏
i∈I

Ii and
∏
i∈I

ιi1 :
∏
i∈I

A −→
∏
i∈I

Ii

are both right inverse to
∏
i∈I p

i; so the morphisms γ(
∏
i∈I ι

i
0) and γ(

∏
i∈I ι

i
1) are both right inverse to the

isomorphism γ(
∏
i∈I p

i). Hence

γ(
∏
i∈I

ιi0) = γ(
∏
i∈I

ιi1) .

We write ∆ : A −→
∏
i∈I A for the diagonal morphism, i.e., pi ◦∆ = IdA for all i ∈ I. Then

γ(
∏

si) ◦ γ(f) = γ(
∏

(sipif)) ◦ γ(∆)

= γ(
∏

(Hi ◦ ιi0)) ◦ γ(∆)

= γ(
∏

Hi) ◦ γ(
∏

ιi0) ◦ γ(∆)

= γ(
∏

Hi) ◦ γ(
∏

ιi1) ◦ γ(∆)

= γ(
∏

(Hi ◦ ιi1)) ◦ γ(∆)

= γ(
∏

(sipig)) ◦ γ(∆) = γ(
∏

si) ◦ γ(g) .

Because the morphisms sj are all weak equivalences, their product is also a weak equivalence. Hence
γ(
∏
i∈I si) is an isomorphism, and we conclude that γ(f) = γ(g).
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Now we let ϕ,ψ : A −→
∏
i∈I Xi be arbitrary morphisms in Ho(C) that satisfy (5.19). The calculus of

fractions provides C-morphisms f : A −→ Z and g : A −→ Z ′ and acyclic cofibrations s :
∏
i∈I Xi −→ Z

and t :
∏
i∈I Xi −→ Z ′ such that

ϕ = γ(s)−1 ◦ γ(f) and ψ = γ(t)−1 ◦ γ(g) .

We choose a pushout: ∏
i∈I Xi

//
∼
s //

��

t ∼
��

Z��

∼ t̄

��

Z ′ //
∼
s̄

// V

Then s̄ and t̄ are acyclic cofibrations because s and t are. So

u = s̄t = t̄s :
∏
i∈I

Xi −→ V

is an acyclic cofibration, too. For every j ∈ I we choose a pushout:∏
i∈I Xi

//
∼
u //

pj

��

V

qj

��

Xj
// ∼

vj
// X̄j

We write

F : A −→
∏
i∈I

X̄i and G : A −→
∏
i∈I

X̄i

for the morphisms with components

p̄j ◦ F = qj t̄f : A −→ X̄j and p̄j ◦G = qj ◦ s̄g : A −→ X̄j .

Then

γ(p̄j) ◦ γ(F ) = γ(qj t̄f) = γ(qj) ◦ γ(t̄) ◦ γ(s) ◦ ϕ = γ(qj) ◦ γ(u) ◦ ϕ
= γ(vj) ◦ γ(pj) ◦ ϕ = γ(vj) ◦ γ(pj) ◦ ψ
= γ(qj) ◦ γ(u) ◦ ψ = γ(qj) ◦ γ(s̄) ◦ γ(t) ◦ ψ
= γ(qj) ◦ γ(s̄) ◦ γ(g) = γ(qj s̄g) = γ(p̄j) ◦ γ(G) .

The special case proved in the previous paragraph thus shows that γ(F ) = γ(G).
Because all the morphisms vj : Xj −→ X̄j are weak equivalences, so is their product

∏
i∈I vi :∏

i∈I Xi −→
∏
i∈I X̄i. The following diagram commutes:

A
f

//

F
55

Z��

∼t̄

��

∏
i∈I Xi

oo∼
s

oo

∏
vi∼

��

yy

u
∼

yy
V

(qj)j∈I
//
∏
i∈I X̄i

So

ϕ = γ(s)−1 ◦ γ(f) = γ(
∏
i∈I

vi)
−1 ◦ γ(F ) ,

and similarly ψ = γ(
∏
i∈I vi)

−1 ◦ γ(G). Hence ϕ = ψ, as claimed. �
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6. The stable homotopy category

In this section we introduce the stable homotopy category as the localization of the category of orthogonal
spectra at the class of stable equivalences. Most of the formal properties of the stable homotopy category
are shared by the derived category of any orthogonal ring spectrum, so we will develop the theory in this
generality. Since the category of orthogonal spectra is isomorphic to S -mod, this is always included as the
special case of the sphere ring spectrum S.

Definition 6.1. The derived category D(R) of an orthogonal ring spectrum R is the localization of the
category of R-modules at the class of stable equivalences.

We write
γ : R -mod −→ D(R)

for the localization functor. In other words, γ is initial among all functor from R -mod that take stable
equivalences to isomorphisms. We will exhibit a cofibration structure on the category of R-modules that has
the stable equivalences as its weak equivalences, see Theorem 6.8. So the theory of cofibration categories
provides a construction of D(R) via the ‘calculus of fractions’, see Theorem 5.12.

The special case of the sphere spectrum deserves explicit mentioning:

Definition 6.2. The stable homotopy category SH is the localization of the category of orthogonal spectra
at the class of stable equivalences.

While is can generally be difficult to explicitly describe morphism sets in a localization of a category
at a random class of morphisms, we can already calculate certain morphisms sets in D(R) using only the
universal property as a localization, see the following Theorem 6.4.

Construction 6.3. We let E be a sequential spectrum, and we let A be a based space. We define a set
E{A} by

E{A} = colimn [Sn ∧A,En]∗ ,

where [−,−]∗ denotes the set of based homotopy classes of based continuous maps. The colimit is taken
along the maps

[Sn ∧A,En]∗
S1∧−−−−−→ [S1 ∧ Sn ∧A,S1 ∧ En]∗

(σn)∗−−−−−→ [S1+n ∧A,E1+n]∗ .

Some comments about the construction E{A} are in order.

• The construction E{A} is covariantly functorial in the sequential spectrum E, and contravariantly
functorial in the based space A.

• For n ≥ 2, the set [Sn ∧ A,En]∗ has a natural abelian group structure by ‘pinch sum’, using any
pinch map of Sn. In other words, if f, g : Sn ∧ A −→ X represent two classes, then their sum is
represented by the composite

Sn ∧A pinch−−−→ (Sn ∨ Sn) ∧A ∼= (Sn ∨A) ∧ (Sn ∨A)
f+g−−−→ X .

The stabilization maps are homomorphisms, so the colimit E{A} inherits an abelian group structure
that is natural in E and in A.

• For A = Sk, the preferred homeomorphisms Sn ∧ Sk ∼= Sn+k let us identify [Sn ∧ Sk, En]∗ with
[Sn+k, En]∗ = πn+k(En); under these bijections, the stabilization maps coincide with the stabiliza-
tion maps that define the stable homotopy group πk(E). So in the colimit over n, we obtain a
natural isomorphism

E{Sk} ∼= πk(E) .

• Under the adjunction bijections

[Sn ∧A,En]∗ = [Sn,map∗(A,En)]∗ = πn(map∗(A,E)n)

the stabilization maps coincide with the stabilization maps that define the stable homotopy group
π0(map∗(A,E)). So we obtain another natural isomorphism

E{A} ∼= π0(map∗(A,E)) .
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Given an orthogonal ring spectrum R and a based space A, we define the tautological class

ιA ∈ (R ∧A){A}
as the class represented by the based continuous map

ι0 ∧ − : S0 ∧A −→ R(0) ∧A ,

where ι0 : S0 −→ R(0) is the unit map of the ring spectrum structure.

Theorem 6.4. Let R be an orthogonal ring spectrum, and let A be a based space that admits the structure
of a finite CW-complex.

(i) The functor
(−){A} : R -mod −→ (sets)

takes stable equivalences to bijections.
(ii) Let Φ : R -mod −→ (sets) be a functor that takes stable equivalences to bijections. Then evaluation at

the tautological ιA is a bijection

NatR -mod→(sets)((−){A},Φ) −→ Φ(R ∧A) , τ 7−→ τ(ιA) .

(iii) The pair (R ∧A, ιA) represents the functor

(−){A} : D(R) −→ (sets) , M 7−→ M{A} .

Proof. (i) If A admits the structure of a finite CW-complex, then map∗(A,−) preserves stable equivalences
by Proposition 1.25 (vii). So the functor

SpN −→ Ab , E 7−→ π0(map∗(A,E))

takes stable equivalences to isomorphisms. Because E{A} is naturally isomorphic to π0(map∗(A,E)), this
proves the first claim.

(ii) To show that the evaluation map is injective we show that every natural transformation τ :
(−){A} −→ Φ is determined by the element τR∧A(ιA). We let M be any R-module and f : Sn ∧A −→Mn

a representative for a class in M{A}. The adjoint of f is then a based continuous map f [ : A −→ ΩnMn.
There is thus a unique morphism of R-modules

f ] : R ∧A −→ Ωn shnM

such that the composite

A
ι∧−−−→ R(0) ∧A f](0)−−−→ (Ωn shnM)(0) = ΩnMn

is f [. The value of f ] at an inner product space V is the composite

R(V ) ∧A R(V )∧f[−−−−−−→ R(V ) ∧ (ΩnMn) = R(V ) ∧ (ΩnM)(Rn)
αV,Rn−−−−→ ΩnM(V ⊕ Rn) = (Ωn shnM)(V ) .

This morphism then satisfies

f ]{A}(ιA) = λ̃nM{A}[f ] in (Ωn shnM){A} ,

where λ̃nM : M −→ Ωn shnM is the stable equivalence discussed in Proposition 2.15. The diagram

(R ∧A){A}

τR∧A

��

f]{A}
// (Ωn shnM){A}

τΩn shn M

��

M{A}

τM

��

∼=

λ̃nM{A}oo

Φ(R ∧A)
Φ(f])

// Φ(Ωn shnM) Φ(M)
Φ(λ̃nM )

∼=oo

commutes and the two right horizontal maps are bijective. So

Φ(f ])(τR∧A(ιA)) = τΩn shnM (f ]{A}(ιA)) = τΩn shnM (λ̃nM{A}[f ]) = Φ(λ̃nM )(τM [f ]) .
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Since Φ(λ̃nM ) is bijective, this proves that τM [f ] is determined by the value of τ on the tautological class ιA.
It remains to construct, for every element y ∈ Φ(R ∧ A), a natural transformation τ : (−){A} −→ Φ

with τR∧A(ιA) = y. The previous paragraph dictates what to do: we represent any given class in M{A} by
a continuous based map f : Sn ∧A −→Mn. Then we set

τM [f ] = Φ(λ̃nM )−1(Φ(f ])(y)) .

We verify that the element τM [f ] is independent of the representative for the class [f ]. To this end we
need to show that τM [f ] does not change if we either replace f by a homotopic map, or if we stabilize
it. If f̄ : Sn ∧ A −→ Mn is homotopic to f , then the morphism f̄ ] is homotopic to f ] via a homotopy of
morphisms of R-modules

K : R ∧A ∧ [0, 1]+ −→ Ωn shnM .

The morphism q : R∧A∧[0, 1]+ −→ R∧A that maps [0, 1] to a single point is a homotopy equivalence, hence a
stable equivalence, of R-modules. So Φ(q) is a bijection. The two embeddings i0, i1 : R∧A −→ R∧A∧[0, 1]+
as the endpoints of the interval are right inverse to q, so Φ(q) ◦ Φ(i0) = Φ(q) ◦ Φ(i1) = Id. Since Φ(q) is
bijective, Φ(i0) = Φ(i1). Hence

Φ(f̄ ]) = Φ(K ◦ i0) = Φ(K) ◦ Φ(i0) = Φ(K) ◦ Φ(i1) = Φ(K ◦ i1) = Φ(f ]) .

This shows that τM [f ] does not change if we modify f by a homotopy.
Now we replace the representative by its stabilization σn(S1 ∧ f) : S1+n ∧ A −→ M1+n. We define a

morphism of R-modules

κ : Ωn shnM −→ Ω1+n sh1+nM

at an inner product space V as the map

κ(V ) : ΩnM(V ⊕ Rn) −→ Ω1+nM(V ⊕ R1+n)

that sends h : Sn −→M(V ⊕ Rn) to the composite

S1+n S1∧h−−−→ S1 ∧M(V ⊕ Rn)
σR,V⊕Rn−−−−−→ M(R⊕ V ⊕ Rn)

M(τR,V ⊕Rn)−−−−−−−−→ M(V ⊕ R1+n) .

We claim that the following diagram commutes:

R ∧A
f]

//

(σn(S1∧f))] ,,

Ωn shnM

κ
��

M
λ̃nMoo

λ̃1+n
M

ssΩ1+n sh1+nM

For the left part, it suffices to check commutativity at the zero inner product space and after precomposition
with ι0 ∧ − : A −→ R0 ∧ A. This amounts to the commutativity (directly visible upon inspection of all
definitions) of the triangle

A
f[

//

(σn(S1∧f))[ ,,

ΩnMn

κ(0)
��

Ω1+nM1+n

For the right part, we must verify the commutativity of the following triangles:

ΩnM(V ⊕ Rn)

κ(V )
��

M(V )
λ̃nM (V )

oo

λ̃1+n
M (V )ss

Ω1+nM(V ⊕ R1+n)
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Upon adjoint the various sphere coordinates, this becomes the commutativity of the outer part of the
following diagram:

S1 ∧M(V ) ∧ Sn twist∧Sn //

S1∧σop
V,Rn

��

σR,V ∧Sn

**

M(V ) ∧ S1 ∧ Sn

σop
V,R∧S

n

��
σop

V,R1+n

zz

S1 ∧M(V ⊕ Rn)

σR,V⊕Rn
**

M(R⊕ V ) ∧ Sn
M(τR,V )∧Sn

//

σop
R⊕V,Rn

��

M(V ⊕ R) ∧ Sn

σop
V⊕R,Rn

��

M(R⊕ V ⊕ Rn)
M(τR,V ⊕Rn)

// M(V ⊕ R1+n)

Anyhow, the commutativity of the previous diagram yields the relation

Φ(λ̃nM )−1 ◦ Φ(f ]) = Φ(λ̃1+n
M )−1 ◦ Φ(κ) ◦ Φ(f ]) = Φ(λ̃1+n

M )−1 ◦ Φ((σn(S1 ∧ f))]) ,

and hence the class τM [f ] remains unchanged upon stabilization of f .
Now we know that τM [f ] is independent of the choice of representative for the class x, and it remains

to show that τ is natural. But this is straightforward: if ψ : M −→ N is a morphism of R-modules and
f : Sn ∧ A −→Mn a representative for a class in M{A}, then ψn ◦ f : Sn ∧ A −→ Nn represents the class
ψ{A}[f ]. Moreover, the following diagram of R-modules commutes:

R ∧A
f]

//

(ψn◦f)] --

Ωn shnM

Ωn shn ψ

��

M
λ̃nMoo

ψ

��

Ωn shnN N
λ̃nN

oo

So naturality follows:

τN (ψ{A}[f ]) = (Φ(λ̃nN )−1 ◦ Φ((ψn ◦ f)]))(y)

= (Φ(λ̃nN )−1 ◦ Φ(Ωn shn ψ) ◦ Φ(f ]))(y)

= (Φ(ψ) ◦ Φ(λ̃nM )−1 ◦ Φ(f ]))(y) = Φ(ψ)(τM [f ]) .

Finally, the class ιA is represented by ι0 ∧ A : S0 ∧ A −→ R0 ∧ A, and (ι0 ∧ A)] is the identity of R ∧ A.
Hence τR∧A(ιA) = Φ(IdR∧A)(y) = y.

(iii) We will implicitly identify natural transformations between functors that invert stable equivalences
with natural transformations between the induced functors on the derived category. This is legitimate
because precomposition with γ : R -mod −→ D(R) is an isomorphism of categories from Fun(D(R), C) to
the full subcategory of Fun(R -mod, C) spanned by the functors that invert stable equivalences.

We apply part (ii) to the functor D(R)(R ∧ A,−) ◦ γ : R -mod −→ (sets). We obtain a unique natural
transformation

τ : (−){A} =⇒ D(R)(R ∧A,−) ◦ γ
such that τR∧A(ιA) = IdR∧A. On the other hand, the Yoneda lemma provides a unique natural transfor-
mation

j : D(R)(R ∧A,−) −→ (−){A}
such that jR∧A(IdR∧A) = ιA. The composite j ◦ τ then satisfies

(τ ◦ j)R∧A(IdR∧A) = τR∧A(ιA) = IdR∧A .

So again by the Yoneda lemma, τ ◦j : (−){A} =⇒ (−){A} is the identity natural transformation. Similarly,
the composite j ◦ τ satisfies

(j ◦ τ)R∧A(ιA) = jR∧A(IdR∧A) = ιA .
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So the uniqueness clause in part (i) shows that j ◦ τ : D(R)(R ∧ A,−) =⇒ D(R)(R ∧ A,−) is the identity
natural transformation. �

Example 6.5 (Representing πn). Theorem 6.4 (iii) effectively says that we can identify the morphism
group D(R)(R∧A,M) in the derived category of a ring spectrum R with the group M{A} that was defined
in concrete terms from the based space A and the spaces in the underlying sequential spectrum of M .

For A = Sk, the group M{Sk} identifies with the homotopy group πk(M), in a way that identifies the
tautological class ιSk with the class 1 ∧ Sk ∈ πk(R ∧ Sk), the image of the multiplicative unit 1 ∈ π0(R)
under the iterated suspension isomorphism −∧ Sk : π0(R) ∼= πk(R ∧ Sk). So for A = Sk, Theorem 6.4 (iii)
specializes to a bijection

D(R)(R ∧ Sk,M) ∼= πk(M) , ψ 7−→ ψ∗(1 ∧ Sk) .

In the special case R = S of the sphere ring spectrum, R∧Sk becomes the suspension spectrum Σ∞Sk. So
in this case we obtain a bijection

SH(Σ∞Sk, X) ∼= πk(X)

that is natural in the orthogonal spectrum X.

To establish further properties of SH and D(R) we will exploit that the stable equivalences of orthogonal
spectra and R-modules participate in certain cofibration structures.

Definition 6.6. A morphism of orthogonal spectra i : A −→ B is an h-cofibration if it has the following
homotopy extension property. For every morphism of orthogonal spectra ϕ : B −→ X and every homotopy
H : A∧ [0, 1]+ −→ X such that H0 = ϕi, there is a homotopy H̄ : B ∧ [0, 1]+ −→ X such that H0 = ϕ and
H̄ ◦ (i ∧ [0, 1]+) = H.

There is a universal test case for the homotopy extension problem, namely when X is the pushout:

A

i

��

(−,0)
// A ∧ [0, 1]+

H

��

B
ϕ
// B ∪i (A ∧ [0, 1]+)

So a morphism i : A −→ B is an h-cofibration if and only if the canonical morphism

B ∪i (A ∧ [0, 1]+) −→ B ∧ [0, 1]+

has a retraction. Also, the adjunction between −∧[0, 1]+ and (−)[0,1] lets us rewrite any homotopy extension
data (ϕ,H) in adjoint form as a commutative square:

A

i

��

Ĥ // X [0,1]

ev0

��

B
ϕ
// X

A solution to the homotopy extension problem is adjoint to a lifting, i.e., a morphism λ : B −→ X [0,1] such
that λi = Ĥ and ev0 ◦λ = ϕ. So a morphism i : A −→ B is an h-cofibration if and only if it has the left
lifting property with respect to the evaluation morphisms ev0 : X [0,1] −→ X for all orthogonal spectra X.

The three equivalent characterizations of h-cofibrations quickly imply various closure properties: every
class of morphisms that can be characterized by the left lifting property with respect to some other class
has the closure properties listed, see Exercise E.9.

Proposition 6.7. (i) The class of h-cofibrations of orthogonal spectra is closed under retracts, cobase
change, coproducts and sequential compositions.

(ii) For every orthogonal spectrum X, the unique morphism ∗ −→ X from the initial orthogonal spectrum
is an h-cofibration.
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(iii) Every h-cofibration of orthogonal spectra is levelwise an h-cofibration of based spaces.

Theorem 6.8. For every orthogonal ring spectrum R, the category of R-modules is a cofibration category
with respect to the morphisms that are h-cofibrations or stable equivalences of underlying orthogonal spectra,
respectively.

Proof. Most of the axioms are straightforward from the definitions. For (C1) we note that clearly, all
isomorphisms are h-cofibrations and stable equivalences; the constant functor O −→ T∗ with value a one-
point space has a unique structure of R-module that makes it an initial object. And the unique morphism
from an initial orthogonal spectrum to any other orthogonal spectrum is an h-cofibration by Proposition
6.7 (ii).

The class of stable equivalences clearly satisfies the 2-out-of-3-property (C2). The h-cofibrations are
closed under cobase change by Proposition 6.7 (i); and h-cofibrations that are simultaneously stable equiv-
alences are stable under cobase change by Proposition 1.25. So axiom (C3) holds.

Finally, a morphism X −→ Y of R-modules factors in the category R -mod as the composite of the
mapping cylinder inclusion −∧0 : X −→ X ∧ [0, 1]+∪f Y , followed by the projection X ∧ [0, 1]+∪f Y −→ Y
to the ‘end’ of the cylinder. This projection is a homotopy equivalence of orthogonal spectra, and hence a
stable equivalence. The following square is a pushout:

X qX
IdX qf //

��

(−∧0)+(−∧1)

��

X q Y��

��

X ∧ [0, 1]+ // X ∧ [0, 1]+ ∪f Y

The left vertical morphism is an h-cofibration, hence so is the right vertical morphism. Because the summand
inclusion X −→ X q Y is an h-cofibration, too, we conclude that the mapping cylinder inclusion − ∧ 0 :
X −→ X ∧ [0, 1]+ ∪f Y is an h-cofibration. This verifies the factorization axiom (C4). �

Remark 6.9. The stable equivalences of R-modules can be complemented in many different ways into a
cofibration category, i.e., there are several other choices of classes of cofibrations that also satisfy the axioms
of Definition 6.7 in conjunction with the stable equivalences. Two examples are:

• The h-cofibrations of R-modules, i.e., morphisms that have the homotopy extensions property
internal to the category R -mod.
• The cofibrations in the model category structure on R -mod from [30, Theorem 12.1].

Since the homotopy category – and also the underlying∞-category – of a cofibration category are indepen-
dent (up to equivalence) of the class of cofibrations, the choice of cofibrations is not particularly important,
and is mostly a matter of taste and convenience.

Example 6.10. We let R be an orthogonal ring spectrum, and we consider the cofibration structure on
the category of left R-modules from Theorem 6.8. For every R-module M the inclusions of the endpoints
of the interval and the unique map from [0, 1] to a one-point space induce a factorization

M ∨M i0+i1−−−→ M ∧ [0, 1]+
p−−→ M

as an h-cofibration of R-modules followed by a homotopy equivalence of R-modules.
So the ‘cylinder’ M ∧ [0, 1]+ is indeed a cylinder object in the abstract sense of Definition 5.4, and

morphisms of R-modules that are homotopic in the ‘concrete’ sense (where a homotopy is a morphism
defined on M ∧ [0, 1]+) are also homotopic in the ‘abstract’ sense (i.e., where a homotopy is a morphism
defined on a general cylinder object).
� One should beware, however, that the converse is not true: if f and g are homotopic in the abstract

sense of Definition 5.4, then there need not be a ‘classical homotopy’ defined on M ∧ [0, 1]+.

With enough of the theory of cofibration categories available from Section 5, we can fairly easily show that
the stable homotopy category, and more generally the derived category of any orthogonal ring spectrum, is
an additive category, i.e., there is a natural commutative groups structure on the homomorphism sets such
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that composition is biadditive. This definition makes it sound as if ‘additive category’ is extra structure on
a category (namely the addition on morphism sets), but in fact, ‘additive category’ is really a property of
a category (namely having finite sums which are isomorphic to products). So we present the construction
of the addition on hom-sets in this generality.

Definition 6.11. A category C is preadditive if it has a zero object, finite coproducts, and for every pair
of objects X and Y the morphisms p1 = Id +0 : X q Y −→ X and p2 = 0 + Id : X q Y −→ Y make X q Y
into a product of X and Y , where ‘0’ is the unique morphism which factors through a zero object.

In other words, we demand that for every object A the map

C(A,X q Y ) −→ C(A,X)× C(A, Y ) , f 7→ (p1f, p2f)

is a bijection.

Example 6.12. The category of abelian groups is preadditive, and so is the category of left modules over
any ring. The category of abelian monoids is preadditive.

Construction 6.13. Let C be a preadditive category. We can define a binary operation on the morphism
set C(A,X) for every pair of objects A and X. Given morphisms a, b : A −→ X we let a⊥b : A −→ X qX
be the unique morphism such that p1(a⊥b) = a and p2(a⊥b) = b. Then we define a + b : A −→ X as
∇(a⊥b) where ∇ = Id + Id : X qX −→ X is the fold morphism.

Proposition 6.14. Let C be a preadditive category.

(i) For every pair of objects A and X of C the binary operation + makes the set C(A,X) of morphisms
into an abelian monoid with the zero morphism as neutral element. Moreover, the monoid structure
is natural for all morphisms in both variables, or, equivalently, composition is biadditive.

(ii) If, moreover, the shearing morphism p1⊥∇ : X qX −→ X qX is an isomorphism, then the abelian
monoid C(A,X) has additive inverse, i.e., is an abelian group, for every object A.

(iii) Let F,G : C −→ AbMon be two functors that preserve zero objects. Suppose moreover that the functor
G preserves finite coproducts. Then every natural transformation between the underlying set-valued
functors of F and G is automatically additive.

(iv) Let G : C −→ AbMon be a functor that preserves zero objects and finite coproducts. Then for all
objects A and X of C and every element a ∈ G(A) the evaluation map

C(A,X) −→ G(X) , f 7−→ G(f)(a)

is a monoid homomorphism.

Proof. (i) The proof is lengthy, but completely formal. For the associativity of ‘+’ we consider three
morphisms a, b, c : A −→ X. Then a + (b + c) respectively (a + b) + c are the two upper and lower
composites around the commutative diagram:

X qX

∇

$$
A

a⊥b⊥c //

a⊥(b+c)
00

(a+b)⊥c
..

X qX qX

Idq∇

77

∇qId

''

X

X qX

∇

::

The commutativity is a consequence of two elementary facts: first, b⊥a = (a⊥b)τ where τ : X qX −→
X qX is the automorphism which interchanges the two factors; this follows from p1τ = p2 and p2τ = p1.
Second, the fold morphism is commutative, i.e., ∇τ = ∇ : X qX −→ X. Altogether we get

a+ b = ∇(a⊥b) = ∇τ(a⊥b) = ∇(b⊥a) = b+ a .
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As before we denote by 0 ∈ C(A,X) the unique morphism which factors through a zero object. Then we
have a⊥0 = i1a in C(A,X q X) where i1 : X −→ X q X is the embedding as the first factor. Hence
a+ 0 = ∇(a⊥0) = ∇i1a = a; by commutativity we also have 0 + a = a.

Now we verify naturality of the addition on C(A,X) in A and X. To check c(a + b) = ca + cb for
a, b : A −→ X and c : X −→ Y we consider the commutative diagram

A

a⊥b
��

a⊥b
//

ca⊥cb
++

X qX
cqc

//

∇
��

Y q Y

∇
��

X qX
∇

// X
c

// Y

in which the composite through the lower left corner is c(a+ b). We have

p1(cq c)(a⊥b) = (IdY +0)(cq c)(a⊥b) = (c+ 0)(a⊥b)
= c(IdX +0)(a⊥b) = cp1(a⊥b) = ca = p1(ca⊥cb)

and similarly for p2 instead p1. So (cq c)(a⊥b) = ca⊥cb since both sides have the same ‘projections’ to the
two summands of Y q Y . Since the composite through the upper right corner is ca + cb, we have shown
c(a+ b) = ca+ cb.

Naturality in A is even easier. For a morphism d : E −→ A we have (a⊥b)d = ad⊥bd : E −→ X q X
since both sides have the same ‘projections’ ad and bd, respectively, to the two summands of X qX. Thus
(a+ b)d = ad+ bd by the definition of ‘+’.

(ii) An arbitrary abelian monoid M has additive inverses if and only if the map

M2 −→ M2 , (x, y) 7−→ (x, x+ y)

is bijective. Indeed, the inverse of x ∈M is the second component of the preimage of (x, 0).
Every morphism f : A −→ X qX satisfies f = (p1f)⊥(p2f), and hence

(p1f) + (p2f) = ∇((p1f)⊥(p2f)) = ∇f .

So for the abelian monoid C(A,X) the square

C(A,X qX)
(p1⊥∇)◦−

//

(p1◦−,p2◦−) ∼=
��

C(A,X qX)

(p1◦−,p2◦−)∼=
��

C(A,X)2

(a,b) 7→(a,a+b)
// C(A,X)2

commutes. Moreover, both vertical maps are bijective. Since ∇⊥p1 is an isomorphism, the upper map is
bijective, hence so is the lower map, and so the monoid C(A,X) has inverses.

(iii) Let τ : F =⇒ G be any natural transformation between the underlying set-valued functors, i.e.,
the maps τX : F (X) −→ G(X) are not assumed to be additive. We write i1, i2 : X −→ X q X for the
two morphisms that exhibit X qX as a coproduct of two instances of X. Because F and G preserve zero
objects, they also preserve zero morphisms. We consider two classes x and y in F (X); we claim that

(6.15) τXqX(F (i1)(x) + F (i2)(y)) = G(i1)(τX(x)) +G(i2)(τX(y))
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in the abelian monoid G(X qX). To show this we observe that

G(p1)(τXqX(F (i1)(x) + F (i2)(y))) = τX(F (p1)(F (i1)(x) + F (i2)(y)))

= τX(F (p1i1)(x) + F (p1i2)(y)))

= τX(F (IdX)(x) + F (0)(y)) = τX(x)

= G(IdX)(τX(x)) +G(0)(τX(x))

= G(p1i1)(τX(x)) +G(p1i2)(τX(y))

= G(p1)(G(i1)(τX(x)) +G(i2)(τX(y)))

in G(X). Similarly,

G(p2)(τXqX(F (i1)(x) + F (i2)(y))) = G(p2)(G(i1)(τX(x)) +G(i2)(τX(y))) .

Since the functor G preserves coproducts, and because abelian monoids form a preadditive category, the
morphism

(G(p1), G(p2)) : G(X qX) −→ G(X)×G(X)

is bijective; so this shows the relation (6.15). The fold morphism ∇ : XqX −→ X satisfies ∇◦i1 = ∇◦i2 =
IdX . So

F (∇)(F (i1)(x) + F (i2)(y)) = F (∇ ◦ i1)(x) + F (∇ ◦ i2)(y) = x+ y .

So we can finally conclude with the desired relation:

τX(x+ y) = τX(F (∇)(F (i1)(x) + F (i2)(y)))

= G(∇)(τXqX(F (i1)(x) + F (i2)(y)))

(6.15) = G(∇)(G(i2)(τX(x)) +G(i2)(τX(y)))

= G(∇ ◦ i1)(τX(x)) +G(∇ ◦ i2)(τX(y)) = τX(x) + τX(y) .

Part (iv) is a special case of (iii), with F = C(A,−) a represented functor. �

Definition 6.16. A category C is additive if it is preadditive and for every object X of C, the shearing
morphism ∇⊥p1 : X qX −→ X qX is an isomorphism.

We let R be an orthogonal ring spectrum. We recall that γ : R -mod −→ D(R) denotes a localization
of the category of R-modules at the class of stable equivalences. Since the stable equivalences participate
in the cofibration structure of Theorem 6.8, the calculus of fractions is available to describe morphisms in
D(R).

For k ∈ Z, the functor πk : R -mod −→ Ab takes stable equivalences to isomorphisms. We abuse
notation and also write πk : D(R) −→ Ab for the unique factorization of πk through the localization functor
γ : R -mod −→ D(R).

Theorem 6.17. Let R be an orthogonal ring spectrum.

(i) The localization functor γ : R -mod −→ D(R) preserves arbitrary coproducts and finite products. In
particular, the derived category D(R) has arbitrary coproducts and finite products.

(ii) The derived category D(R) is additive.
(iii) A morphism f : M −→ N of R-modules is a stable equivalence if and only if γ(f) is an isomorphism

in D(R).

Proof. (i) The category of R-modules has arbitrary coproducts and products, and both are created on the
underlying orthogonal spectra. Moreover, stable equivalences are preserved under arbitrary coproducts and
finite products by parts (i) and (ii) of Proposition 1.25. So the localization functor preserves arbitrary
coproducts by Proposition 5.15, and it preserves finite products by Proposition 5.17.

(ii) The trivial orthogonal spectrum is a zero object in R -mod. Since the localization functor preserves
initial and terminal objects, the trivial orthogonal spectrum is also a zero object in D(R). For any pair of
R-modules M and N , the canonical morphism

M ∨N −→ M ×N
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is a stable equivalence by Proposition 1.22 (iii). The localization functor γ : R -mod −→ D(R) takes this
stable equivalence to an isomorphism in D(R). Because γ preserves finite coproducts and products, the
derived category D(R) is preadditive.

It remains to show that for every R-modules M , the morphism ∇⊥p1 : M ⊕ M −→ M ⊕ M is an
isomorphism in D(R). For every integer k the composite map

πk(M)⊕ πk(M)
(i1)∗+(i2)∗−−−−−−−→∼=

πk(M ⊕M)
πk(∇⊥p2)−−−−−−→ πk(M ⊕M)

((p1)∗,(p2)∗)−−−−−−−−→∼=
πk(M)× πk(M)

sends (x, y) to (x + y, y) where the first and last maps are the canonical ones. The composite map is an
isomorphism since πk(M) is a group, i.e., has additive inverses. Since canonical maps are isomorphisms, so
is the middle map; thus ∇⊥p1 induces isomorphisms of homotopy groups. and is thus a stable equivalence.
Hence the shearing morphism ∇⊥p1 is an isomorphism in D(R).

(iii) Since the functor πk : R -mod −→ Ab factors through the localization D(R), and since γ(f) is an
isomorphism in D(R), the morphism f induces isomorphisms on all homotopy groups. So f is a stable
equivalence. �

Now we record that suspension functor for R-modules becomes invertible at the level of the derived
category. In more detail, we recall from Proposition 2.16 that the functor−∧S1 preserves stable equivalences
of orthogonal spectra, and hence also of R-modules. So the composite functor γ◦(−∧S1) : R -mod −→ D(R)
takes stable equivalences to isomorphisms. The universal property of the localization functor γ : R -mod −→
D(R) provides a unique functor

Σ : D(R) −→ D(R)

that satisfies Σ ◦ γ = γ ◦ (− ∧ S1). In particular, Σ is given on objects by ΣX = X ∧ S1. Moreover, the
behavior on morphisms is as follows. Every morphism M −→ N in D(R) is of the form γ(τ)−1 ◦ γ(f) for
two morphisms of R-modules f : M −→ Z and τ : N −→ Z such that τ is a stable equivalence. Then
τ ∧ S1 : N ∧ S1 −→ Z ∧ S1 is a weak equivalence, too, and

Σ(γ(τ)−1 ◦ γ(f)) = γ(τ ∧ S1)−1 ◦ γ(f ∧ S1) .

Proposition 6.18. For every orthogonal ring spectrum R, the suspension functor Σ : D(R) −→ D(R) is a
self-equivalence of the derived category of R.

Proof. The loop functor Ω : R -mod −→ R -mod preserves stable equivalences by Proposition 2.16. The
universal property of the localization functor γ : R -mod −→ D(R) thus provides a unique functor

Σ−1 : D(R) −→ D(R)

that satisfies Σ−1 ◦ γ = γ ◦ Ω. The two composite constructions Ω(M ∧ S1) and (ΩM) ∧ S1 come with
natural stable equivalences

η : M −→ Ω(M ∧ S1) and ε : (ΩM) ∧ S1 −→ M,

the unit and counit of the adjunction of (−∧S1,Ω), see Proposition 1.11. Since all functors in sight descend
to the derived category, these natural stable equivalences descend to natural isomorphisms

IdD(R)
∼= Σ−1 ◦ Σ and Σ ◦ Σ−1 ∼= IdD(R)

of endofunctors on D(R). So Σ−1 is a quasi-inverse to the suspension functor Σ, which is thus an equivalence
of categories. �

7. Triangulated categories

We have seen that the stable homotopy category, and more generally the derived category of an orthogonal
ring spectrum, is an additive category with coproducts and finite products. In this section we make D(R)
into a triangulated category. The arguments apply more generally to certain classes of cofibration categories,
and we work in that generality. First we recall the definition.
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Let T be a category equipped with an endofunctor Σ : T −→ T . A triangle in T (with respect to the
functor Σ) is a triple (f, g, h) of composable morphisms in T such that the target of h is equal to Σ applied
to the source of f . We will often display a triangle in the form

A
f−−→ B

g−−→ C
h−−→ ΣA .

A morphism from a triangle (f, g, h) to a triangle (f ′, g′, h′) is a triple of morphisms a : A −→ A′, b : B −→
B′ and c : C −→ C ′ in T such that the diagram

A
f
//

a

��

B
g
//

b
��

C

c

��

h // ΣA

Σa
��

A′
f ′
// B′

g′
// C ′

h′
// ΣA′

commutes. A morphism of triangles is an isomorphism (i.e., has an inverse morphism) if and only all three
components are isomorphisms in T .

Definition 7.1. A triangulated category is an additive category T equipped with a self-equivalence
Σ : T −→ T and a collection of triangles, called distinguished triangles, which satisfy the following axioms
(T0) – (T5).

We refer to the equivalence Σ of a triangulated category as the suspension, since that is what it will be in
our main example. In algebraic contexts, this equivalence is often denoted X 7→ X[1] and called the ‘shift’.

(T0) The class of distinguished triangles is closed under isomorphism.
(T1) Every morphism f is part of a distinguished triangle (f, g, h).

(T2) For every object X the triangle 0 −→ X
Id−−→ X −→ 0 is distinguished.

(T3) [Rotation] If a triangle (f, g, h) is distinguished, then so is the triangle (g, h,−Σf).
(T4) [Completion of triangles] Given distinguished triangles (f, g, h) and (f ′, g′, h′) morphisms (a, b)

satisfying bf = f ′a, there exists a morphism c making the following diagram commute:

A
f
//

a

��

B
g
//

b
��

C

c

��

h // ΣA

Σa
��

A′
f ′
// B′

g′
// C ′

h′
// ΣA′

(T5) [Octahedral axiom] For every pair of composable morphisms f : A −→ B and f ′ : B −→ D there is
a commutative diagram

A
f
// B

f ′

��

g
// C

x

��

h // ΣA

A
f ′f

// D
g′′

//

g′

��

E
h′′
//

y

��

ΣA

Σf

��

F

h′

��

F

(Σg)◦h′
��

h′
// ΣB

ΣB
Σg
// ΣC

such that the triangles (f, g, h), (f ′, g′, h′), (f ′f, g′′, h′′) and (x, y, (Σg) ◦ h′) are distinguished.

The above formulation of the axioms appears to be weaker, at first sight, than the original axioms of
Verdier [49, II.1]; however, we show in Proposition 7.17 below that the weaker axioms imply the stronger



66 STEFAN SCHWEDE

properties: part (iii) establishes an ‘if and only if’ in the rotation axiom (T3), and part (iv) is the octahedral
axiom in its original form.

We recall that a category C is pointed if it has a zero object, i.e., an object that is simultaneously initial
and terminal; we will denote zero objects by ’∗’. In pointed categories, we will denote a coproduct of two
objects X and Y by X ∨ Y .

Definition 7.2. Let C be a pointed cofibration category. A functorial cone consists of a functor C : C −→ C
and a natural transformation ι : Id −→ C such that for all C-objects X, the morphism ιX : X −→ CX is a
cofibration, and the unique morphism CX −→ ∗ is a weak equivalence.

The main example for our purposes is the category of modules over an orthogonal ring spectrum. There,
the standard cone M∧ [0, 1] together with the ‘end point inclusion’ −∧1 : M −→M∧ [0, 1] form a functorial
cone for the cofibration structure of Theorem 6.8, compare also Example 6.10. However, there are many
other examples, see Example 7.12 or Example 7.14 below.

Construction 7.3. Let C be a pointed cofibration category with a functorial cone. Then the suspension
functor

Σ : C −→ C
is defined by

ΣX = (CX)/ιX ,

i.e., ΣX is defined as a pushout

X��

ιX

��

// ∗

��

CX
qX

// ΣX

Any morphism CX −→ CY is a weak equivalence by the 2-out-of-3 property, because the unique mor-
phisms CX −→ ∗ and CY −→ ∗ are weak equivalences. So if f : X −→ Y is a weak equivalence, then the
gluing lemma (Proposition 5.3) shows that the morphism Σf : ΣX −→ ΣY is a weak equivalence.

Because the suspension functor preserves weak equivalences, it descends to a functor on the homotopy
category Σ : Ho(C) −→ Ho(C), for which we use the same name. Indeed,the composite functor γ ◦ Σ :
C −→ Ho(C) takes weak equivalences to isomorphisms. The universal property of the localization functor
γ : C −→ Ho(C) provides a unique functor

Σ : Ho(C) −→ Ho(C)
that satisfies Σ ◦ γ = γ ◦Σ. In particular, Σ is given on objects by the previous suspension functor, and the
behavior on morphisms is as follows. Every morphism X −→ Y in Ho(C) is of the form γ(τ)−1 ◦ γ(f) for
two C-morphisms f : X −→ Z and τ : Y −→ Z such that τ is a weak equivalence. Then Στ : ΣX −→ ΣZ
is a weak equivalence, too, and

Σ(γ(τ)−1 ◦ γ(f)) = γ(Στ)−1 ◦ γ(Σf) .

Construction 7.4. We introduce the distinguished triangles in the homotopy category of a pointed cofi-
bration category with functorial cones. The elementary distinguished triangle associated to a C-morphism
ψ : X −→ Y is the sequence

X
γ(ψ)−−−−→ Y

γ(i)−−−−→ Cψ
γ(p)−−−−→ ΣX .

Here Cψ is the mapping cone of ψ, defined by a pushout square

X
ψ
//

��

ιX

��

Y��

i

��

CX // Cψ
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The third morphism is p = qX ∪ 0 : Cψ = CX ∪ψ Y −→ ΣX.
A distinguished triangle is any triangle (f, g, h) in Ho(C) which is isomorphic to an elementary distin-

guished triangle, i.e., such that there is a C-morphism ψ : X −→ Y and isomorphisms a : X −→ A,
b : Y −→ B and c : Cψ −→ C in Ho(C) that make the diagram

X
γ(ψ)

//

a ∼=
��

Y
γ(i)

//

b ∼=
��

Cψ

c∼=
��

γ(p)
// ΣX

Σa∼=
��

A
f
// B

g
// C

h
// ΣA

commute.

Construction 7.5 (Distinguished triangles from cofibrations). As we shall now explain, cofibrations are
another source of distinguished triangles. Given any cofibration j : A −→ B in C, we write B/A for any
cokernel of j, and q : B −→ B/A for the projection. This is a slight abuse of notation, because B/A depends
on the morphism j (and not just on its source and target). Applying the gluing lemma to the commutative
diagram

CA

∼
��

Aoo
ιAoo //

j
// B

∗ Aoo //
j
// B

shows that the morphism

0 ∪ q : Cj = CA ∪j B −→ B/A

is a weak equivalence. We define the connecting morphism δ(j) : B/A −→ ΣA in Ho(C) as

δ(j) = γ(p) ◦ γ(0 ∪ q)−1 : B/A −→ ΣA .

Here p = (qX ∪0) : Cj −→ ΣA is the ‘projection’ that was already considered above. The following diagram
commutes by definition:

A
γ(j)

// B
γ(i)

// Cj

γ(0∪q)∼=
��

γ(p)
// ΣA

A
γ(j)

// B
γ(q)

// B/A
δ(j)

// ΣA

The upper row is an elementary distinguished triangle and all vertical morphisms are isomorphisms. So the
lower triangle is distinguished.

Proposition 7.6. Let C be a pointed cofibration category with functorial cones. A triangle if Ho(C) is
distinguished if and only if it is isomorphic to a triangle of the form (γ(j), γ(q), δ(j)) for some cofibration
j : A −→ B.

Proof. We already showed that triangles of the form (γ(j), γ(q), δ(j)) for cofibrations j are distinguished.
For the reverse implication we consider any C-morphism ψ : X −→ Y . We choose a factorization ψ = πj
for some cofibration j : X −→ Z and some weak equivalence π : Z −→ Y . All vertical morphisms in the
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following commutative diagram are weak equivalences, either by definition of by the gluing lemma:

X
j
// Z

q
// Z/X

X
j
// Z

ij
//

π∼
��

Cj
pj
//

∼ 0∪q

OO

IdCX ∪π∼
��

ΣX

X
ψ
// Y

iψ
// Cψ

pψ
// ΣX

After applying the localization functor, we thus obtain a commutative diagram in Ho(C) in which all vertical
morphisms are isomorphisms:

X
γ(j)

// Z
γ(q)

//

γ(π)∼=
��

Z/X
δ(j)

//

γ(Id∪π)◦γ(0∪q)−1∼=
��

ΣX

X
γ(ψ)

// Y
γ(iψ)

// Cψ
γ(pψ)

// ΣX

This shows that the elementary distinguished triangle of ψ : X −→ Y is isomorphic to one of the form
(γ(j), γ(q), δ(j)). �

Proposition 7.7. Let C be a pointed cofibration category with functorial cones, and suppose that Ho(C)
is additive. Let ψ : X −→ Y be a C-morphism. Then the connecting homomorphism of the cofibration
i : Y −→ Cψ satisfies the relation

δ(i) = −Σγ(ψ) : ΣX −→ ΣY .

Proof. We start by showing that the two morphisms

qY ∪ 0 , 0 ∪ qY : CY ∪Y CY −→ ΣY

become additive inverses in the abelian monoid Ho(CY ∪Y CY,ΣY ). To this end we consider the morphism
ξ : CY ∪Y CY −→ ΣY ∨ ΣY induced by taking horizontal pushouts of the commutative diagram

CY ∨ CY Y ∨ Yoo
ιY ∨ιYoo ∇ // Y

∼
��

CY ∨ CY Y ∨ Yoo
ιY ∨ιY
oo // ∗

Then

(IdΣY +0) ◦ ξ = qY ∪ 0 and (0 + IdΣY ) ◦ ξ = 0 ∪ qY .

This means that

γ(ξ) = γ(qY ∪ 0)⊥γ(0 ∪ qY )

as morphisms in Ho(C). The following square commutes in C:

CY ∪Y CY
ξ
//

Id∪ Id

��

ΣY ∨ ΣY

∇
��

CY
qY

// ΣY

Because the cone CY is weakly equivalent to the zero object, it becomes a zero object in Ho(C). We
conclude that

γ(qY ∪ 0) + γ(0 ∪ qY ) = γ(∇) ◦ (γ(qY ∪ 0)⊥γ(0 ∪ qY )) = γ(∇) ◦ γ(ξ) = 0
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in the abelian monoid Ho(CY ∪Y CY,ΣY ). This proves that γ(qY ∪ 0) = −γ(0 ∪ qY )
Now we consider the morphism ζ : CY ∪i Cψ −→ CY ∪Y CY , induced by taking horizontal pushouts of

the commutative diagram

CY ∨ CX

Id∨C(ψ)

��

X ∨Xoo
(ιY ◦ψ)∨ιX
oo ∇ //

ψ∨ψ
��

X

ψ

��

CY ∨ CY Y ∨ Yoo
ιY ∨ιY

oo
∇

// Y

Then

(qY ∪ 0) ◦ ζ = qY ∪ 0 and (0 ∪ qY ) ◦ ζ = (Σψ) ◦ (0 ∪ p)
as C-morphisms CY ∪i Cψ −→ ΣY Thus

δ(i) = γ(qY ∪ 0) ◦ γ(0 ∪ p)−1

= γ(qY ∪ 0) ◦ γ(ζ) ◦ γ(0 ∪ p)−1

= −γ(0 ∪ qY ) ◦ γ(ζ) ◦ γ(0 ∪ p)−1

= −γ(Σψ) ◦ γ(0 ∪ p) ◦ γ(0 ∪ p)−1 = −γ(Σψ) . �

Now we can state and prove the main result of this section.

Theorem 7.8. Let C be a pointed cofibration category with functorial cones. Suppose moreover that Ho(C)
is additive, and that the suspension functor Σ : Ho(C) −→ Ho(C) is an autoequivalence of categories. Then
the suspension functor and the class of distinguished triangles make the derived category Ho(C) into a
triangulated category.

Proof. It remains to prove the axioms (T0) – (T5).

(T0) By definition, the class of distinguished triangles is closed under isomorphism.

(T1) We let f : A −→ B be a morphism in Ho(C). We appeal to the calculus of fractions (Theorem
5.13) to write f = γ(s)−1 ◦ γ(ψ) for two C-morphisms ψ : A −→ D and s : B −→ D such that s is a weak
equivalence. Then the following diagram of triangles commutes in Ho(C):

A
f

// B

γ(s) ∼=
��

γ(is)
// Cψ

γ(p)
// ΣA

A
γ(ψ)

// D
γ(i)

// Cψ
γ(p)

// ΣA

All vertical morphisms in the diagram are isomorphisms, and the lower row is an elementary distinguished
triangle. So the upper row is the desired distinguished triangle starting with f .

(T2) The identity IdX : X −→ X is a cokernel of the unique morphism 0 : ∗ −→ X. So the triangle
(0, IdX , 0) is distinguished by Construction 7.5, applied to the cofibration 0 : ∗ −→ X.

(T3 – Rotation) We let (f, g, h) be a distinguished triangle; we need to show that the triangle
(g, h,−Σf) is also distinguished. Since the class of distinguished triangles is closed under isomorphisms,
it suffices to consider the elementary distinguished triangle (γ(ψ), γ(i), γ(p)) associated to a C-morphism
ψ : X −→ Y . The morphism i : Y −→ Cψ is a cofibration, and the morphism p = qX ∪ 0 : Cψ =
CX ∪ψ Y −→ ΣX exhibits the suspension ΣX as a cokernel of i. So the triangle

Y
γ(i)−−→ Cψ

γ(p)−−−→ ΣX
δ(i)−−→ ΣY

is distinguished, as explained in Construction 7.5. By Proposition 7.7, the connecting morphism δ(i) of the
cofibration i : Y −→ Cψ is the additive inverse of the morphism Σγ(ψ) = γ(Σψ) : ΣX −→ ΣY . So the
rotated triangle (γ(i), γ(p),−Σγ(ψ)) is distinguished.
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(T4 – Completion of triangles) We are given two distinguished triangles (f, g, h) and (f ′, g′, h′) and
two morphisms a and b in Ho(C) satisfying bf = f ′a as in the diagram:

A
f
//

a

��

B

b
��

g
// C

h //

c

��

ΣA

Σa

��

A′
f ′
// B′

g′
// C ′

h′
// ΣA′

We have to extend this data to a morphism of triangles, i.e., to find a morphism c making the entire
diagram commute. If we can solve the problem for isomorphic triangles, then we can also solve it for the
original triangles. By Proposition 7.6 we can thus assume that the triangles (f, g, h) and (f ′, g′, h′) are the
distinguished triangle arising from two cofibrations j : A −→ B and j′ : A′ −→ B′ via Construction 7.5.

We start with the special case where a = γ(α) and b = γ(β) for C-morphisms α : A −→ A′ and
β : B −→ B′. Then γ(j′α) = γ(βj), so the calculus of fractions (Theorem 5.13 (ii)) provides an acyclic
cofibration s : B′ −→ B̄, a cylinder object (I, i0, i1, p) for A and a homotopy H : I −→ B̄ from Hi0 = sj′α to
Hi1 = sβj. The following diagram of cofibrations on the left commutes in C, so the diagram of distinguished
triangles on the right commutes in Ho(C) by the naturality of the connecting morphisms:

A //
j

// B A
γ(j)

// B
γ(q)

// B/A
δ(j)

// ΣA

A //
i0 //

α
��

I ∪i1 B

H∪sβ
��

∼ jp∪B

OO

A
γ(i0)

//

γ(α)
��

I ∪i1 B

γ(H∪sβ)
��

γ(jp∪B) ∼=

OO

γ(q)
// (I ∪i1 B)/A

γ((H∪sβ)/α)
��

γ((jp∪B)/A)∼=

OO

δ(i0)
// ΣA

Σγ(α)
��

A′ //
sj′

// B̄ A′
γ(sj′)

// B̄
γ(q̄)

// B̄/A′
δ(sj′)

// ΣA′

A′ //
j′

// B′

s∼

OO

A′
γ(j′)

// B′

γ(s) ∼=

OO

γ(q′)

// B′/A′

γ(s/A′)∼=

OO

δ(j′)

// ΣA′

The canonical morphism κ : B −→ I ∪i1 B is right inverse to jp ∪B : I ∪i1 B −→ B, so

γ(s)−1 ◦ γ(H ∪ sβ) ◦ γ(jp ∪B)−1 = γ(s)−1 ◦ γ(H ∪ sβ) ◦ γ(κ)

= γ(s)−1 ◦ γ(sβ) = γ(β) = b .

So the morphism

c = γ(s/A′)−1 ◦ γ((H ∪ sβ)/α) ◦ γ((jp ∪B)/A)−1 : B/A −→ B′/A′

is the desired filler.
In the general case we write a = γ(s)−1γ(α) where α : A −→ Ā and s : A′ −→ Ā are C-morphisms and

s is an acyclic cofibration. We choose a pushout

Ā //
k // Ā ∪A′ B′

A′
OO

s ∼

OO

//

j′
// B′
OO

s′∼

OO

Another application of the calculus of fractions lets us write γ(s′)b = γ(t)−1γ(β) : B −→ Ā ∪A′ B′ where
β : B −→ B̄ and t : Ā ∪A′ B′ −→ B̄ are C-morphisms, and t is an acyclic cofibration. We then have

γ(tk)γ(α) = γ(tk)γ(s)a = γ(ts′)γ(j′)a = γ(ts′)bγ(j) = γ(β)γ(j) ,
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so by the special case, applied to the cofibrations j : A −→ B and tk : Ā −→ B̄ and the morphisms
α : A −→ Ā and β : B −→ B̄, there exists a morphism c : B/A −→ B̄/Ā in Ho(C) making the diagram

A
γ(j)

//

γ(α)
��

B
γ(q)

//

γ(β)
��

B/A

c
��

δ(j)
// ΣA

Σγ(α)
��

Ā
γ(tk)

// B̄
γ(q̄)

// B̄/Ā
δ(tk)

// ΣĀ

A′
γ(j′)

//

∼=γ(s)

OO

B′
γ(q′)

//

∼=γ(ts′)

OO

B′/A′
δ(j′)

//

∼= γ(ts′/s)

OO

ΣA′

Σγ(s)∼=

OO

commute (the lower part commutes by naturality of connecting morphisms). Since s is an acyclic cofibration,
so is its cobase change s′. By the gluing lemma the weak equivalences s : A′ −→ Ā and ts′ : B′ −→ B̄
induce a weak equivalence ts′/s : B′/A′ −→ B̄/Ā on quotients and the composite

B/A
c−−−−→ B̄/Ā

γ(ts′/s)−1

−−−−−−−→ B′/A′

in Ho(C) thus solves the original problem.

(T5 - Octahedral axiom) We start with the special case where f = γ(j) and f ′ = γ(j′) for cofibrations
j : A −→ B and j′ : B −→ D. Then the composite j′j : A −→ D is a cofibration with γ(j′j) = f ′f . The
diagram

A
γ(j)

// B

γ(j′)

��

γ(qj)
// B/A

γ(j′/A)

��

δ(j)
// ΣA

A
γ(j′j)

// D
γ(qj′j)

//

γ(qj′ )

��

D/A
δ(j′j)

//

γ(D/j)
��

ΣA

Σγ(j)

��

D/B

δ(j′)

��

D/B

δ(j′/A)=(Σγ(qj))δ(j
′)

��

δ(j′)

// ΣB

ΣB
Σγ(qj)

// Σ(B/A)

then commutes by naturality of connecting morphisms. Moreover, the four triangles in question are the
distinguished triangles of the cofibrations j, j′, j′j and j′/A : B/A −→ D/A.

In the general case we write f = γ(s)−1γ(a) for C-morphisms a : A −→ B′ and s : B −→ B′, such
that s is a weak equivalence. Then a can be factored as a = pj for a cofibration j : A −→ B̄ and a weak
equivalence p : B̄ −→ B′. Altogether we then have f = ϕ ◦ γ(j) where ϕ = γ(s)−1 ◦ γ(p) : B̄ −→ B is an
isomorphism in Ho(C). We can apply the same reasoning to the morphism f ′ϕ : B̄ −→ D and write it as
f ′ ◦ϕ = ψ ◦γ(j′) for a cofibration j′ : B̄ −→ D̄ and an isomorphism ψ : D̄ −→ D in Ho(C). The special case
can then be applied to the cofibrations j : A −→ B̄ and j′ : B̄ −→ D̄. The resulting commutative diagram
that solves (T5) for (γ(j), γ(j′)) can then be translated back into a commutative diagram that solves (T5)
for (f, f ′) by conjugating with the isomorphisms ϕ : B̄ −→ B and ψ : D̄ −→ D. This completes the proof
of the octahedral axiom (T5), and hence the proof of the theorem. �

Remark 7.9. Theorem 7.8 is not best possible in the sense that the functoriality of the cone is unnecessary
and the additivity requirement for Ho(C) is redundant. Indeed, in a pointed cofibration category, we can
always choose a cone, i.e., a factorization of the unique morphism X −→ ∗ as a cofibration ι : X −→ C
followed by a weak equivalence C −→ ∗. The suspension is then again the cokernel ΣX = C/X of the
cofibration ι. While such cones might not be functorial at the level of the cofibration category, one can
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show that the suspension construction descends to an endofunctor of the homotopy category, compare
[38, Proposition A.4]. In this sense, functoriality of cones is an unnecessary assumption. Moreover, the
assumption that the suspension functor is an autoequivalence of Ho(C) already implies that Ho(C) is additive,
see [38, Proposition A.8]. In this sense, the additivity hypothesis is redundant. The reason why we require
the unnecessary assumptions in Theorem 7.8 is that they simplify the proof substantially. The reader is
invite to consult [38, Theorem A.12] for a proof that does not require functoriality of cones additivity.

Example 7.10 (Triangulated structure on D(R)). Now we specialize to the most important case for
our purposes, the pointed category of modules over an orthogonal ring spectrum R, with the cofibration
structure from Theorem 6.8. A functorial cone is given by smashing with the interval [0, 1], based at 0. We
recall that t : [0, 1] −→ S1 is the quotient map defined by t(x) = 2x−1

x(1−x) . The morphism

A ∧ t : A ∧ [0, 1] −→ A ∧ S1

witness the suspension A∧S1 as a cokernel of the ‘cone inclusion’ −∧1 : A −→ A∧ [0, 1]. So the suspension
functor associated to this functorial cone is the usual suspension.

The elementary distinguished triangle in D(R) associated to a morphism ψ : A −→ B of R-modules is
thus the sequence

A
γ(ψ)−−−−→ B

γ(i)−−−−→ Cψ
γ(p)−−−−→ ΣA .

Here Cψ = A∧ [0, 1]∪ψ B is the usual mapping cone of ψ, i : B −→ Cψ the inclusion, and p = (A∧ t)∪ 0 :
Cψ −→ A ∧ S1.

A distinguished triangle is any triangle (f, g, h) in D(R) which is isomorphic to an elementary dis-
tinguished triangle, i.e., such that there is a morphism ψ : A −→ B of R-modules and isomorphisms
a : A −→ X, b : B −→ Y and c : Cψ −→ Z in D(R) that make the diagram

A
γ(ψ)

//

a

��

B
γ(i)

//

b

��

Cψ

c

��

γ(p)
// ΣA

Σa

��

X
f
// Y

g
// Z

h
// ΣX

commute.

We showed in Theorem 6.17 (ii) that the derived category D(R) is additive, and in Proposition 6.18 that
the suspension functor Σ : D(R) −→ D(R) is a self-equivalence. So Theorem 7.8 applied, and yields:

Corollary 7.11. For every orthogonal ring spectrum R, the suspension functor and the class of distinguished
triangles make the derived category D(R) into a triangulated category.

Example 7.12 (Triangulated structure on K(A)). We let A be an additive category, and we write Ch(A)
for the category of Z-graded chain complexes in A. We write K(A) for the algebraic homotopy category,
with the same objects as Ch(A), and with chain homotopy classes of chain maps as morphisms. We call a
chain map f : A −→ B in Ch(A) a cofibration if it is dimensionwise a split monomorphism, i.e., for every
n ∈ Z there is an A-object C and an isomorphism An ⊕ C ∼= Bn that restricts to fn : An −→ Bn on the
first summand. Exercise E.10 (c) is devoted to showing that these cofibrations and the chain homotopy
equivalences form a cofibration structure on the category Ch(A). And the content of Exercise E.11 is to
check that the quotient functor π : Ch(A) −→ K(A) to the algebraic homotopy category is a localization
at the class of chain homotopy equivalence. So in this particular case, the abstract notion of homotopy
category coincides with the concrete notion.

The category Ch(A) is clearly pointed: any complex consisting only of zero objects is a zero object in
Ch(A). The usual algebraic cone provides a functorial cone in the sense of Definition 7.2: the cone CA of
a complex A is defined by

(CA)n = An ⊕An−1

with differential
dCAn (a, a′) = (dAn (a) + (−1)n · a′, dAn−1(a′)) .
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The cone CA is chain contractible, and the inclusions of the first summand define a cofibration ιA : A −→
CA, so we have exhibited a functorial cone. The projections to the second summands witness the shift A[1]
as a cokernel of the ‘cone inclusion’ ιA : A −→ CA. So the suspension functor associated to this functorial
cone is the shift functor.

The elementary distinguished triangle in K(A) associated to a chain morphism ψ : A −→ B is thus the
sequence

A
π(ψ)−−−−→ B

π(i)−−−−→ Cψ
π(p)−−−−→ A[1] .

Here Cψ = CA ∪ψ B is the algebraic mapping cone of ψ; in more explicit terms, this complex is given by

(CA)n = Bn ⊕An−1

with differential

dCψn (b, a) = (dBn (b) + (−1)n · ψn−1(a), dAn−1(a)) .

The morphism i : B −→ Cψ the inclusion as the first summands, and p : Cψ −→ A[1] is the projection to
the second summands. A distinguished triangle is any triangle (f, g, h) in K(A) which is isomorphic to an
elementary distinguished triangle.

In the previous example, already the cofibration category Ch(A) is additive, and so is the homotopy
category K(A). Moreover, since the suspension functor is the shift functor, it is already invertible at the
level of complexes, and hence also at the level of the homotopy category K(A). So Theorem 7.8 applies,
and yields:

Corollary 7.13. For every additive category A, the shift functor and the class of distinguished triangles
make the homotopy category of complexes K(A) into a triangulated category.

Example 7.14 (Triangulated structure on D(S)). We let S be an associative and unital ring. We write
Ch(S) for the category of Z-graded chain complexes of left S-modules. We recall that a chain map in Ch(S)
is a quasi-isomorphism if it induces isomorphisms of all homology groups. Exercise E.10 (d) is devoted to
showing that the cofibrations from the previous Example 7.12 (i.e., dimensionwise split monomorphisms)
and the quasi-isomorphism form another cofibration structure on the category Ch(S). We let γ : Ch(S) −→
D(S) be a localization at the class of quasi-isomorphisms; the target D(S) is called the derived category of
the ring S. Since every chain homotopy equivalence is in particular a quasi-isomorphism, this localization
factors through the quotient π : Ch(S) −→ K(S -mod) discussed in the previous example, and the resulting
functor γ̄ : K(S -mod) −→ D(S) is also a localization at the quasi-isomorphisms (or rather their images in
K(S -mod)).

The algebraic cone discussed in the previous example is also a functorial cone with respect to the quasi-
isomorphisms; the shift functor preserves quasi-isomorphisms and thus descends to an invertible functor
on D(S). The resulting distinguished triangles in the derived category D(S) can thus be described in two
equivalent ways:

• as those triangles that are isomorphic to

A
γ(ψ)−−−−→ B

γ(i)−−−−→ Cψ
γ(p)−−−−→ A[1]

form some morphism ψ : A −→ B in Ch(S);
• and as those triangles that are isomorphic to distinguished triangles in K(S -mod) under the local-

ization functor γ̄ : K(S -mod) −→ D(S).

Corollary 7.15. For every ring S, the shift functor and the class of distinguished triangles make the derived
category D(S) into a triangulated category.

In fact, the arguments leading up to Corollary 7.15 work just as well for any abelian category instead
of the special case S -mod of the category of left S-modules; however, as we have not discussed abelian
categories, we concentrated on the special case of modules above.



74 STEFAN SCHWEDE

Remark 7.16 (D(S) versus D(HS)). In Example 4.14 we associated to a ring S an Eilenberg-MacLane
ring spectrum HS. The derived category D(S) of the ring S and the derived category of the orthogonal ring
spectrum HS are in fact equivalent as triangulated categories, in such a way that the composite functor

D(S) ∼= D(HS)
πn−−−→ S -mod

is naturally isomorphic to the homology functor Hn. In this sense, homology algebra of modules over rings
is subsumed in stable homotopy theory.

We will not construct an equivalence D(S) ∼= D(HS) in this document. It can be obtained by combining
the following results in the literature. A competing framework for ring and module spectra is given by the
category of symmetric spectra of simplicial sets as developed by Hovey, Shipley and Smith [19]. In this
context, there is also an Eilenberg-MacLane symmetric ring spectrum (HS)Σ

sset, see [19, Example 1.2.5] (but
the ring Z replaced by the ring S). Theorem 5.1.6 of [41] provides a chain of Quillen equivalence of model
categories between the stable model structure on (HS)Σ

sset-modules and a certain model structure on Ch(S)
with the quasi-isomorphism as weak equivalences. By taking geometric realization levelwise we obtain an
Eilenberg-MacLane symmetric ring spectrum (HS)Σ

top of topological spaces (as opposed to simplicial sets);
the Quillen equivalence of geometric realization and singular complex extends to a Quillen equivalence
between symmetric (HS)Σ

sset-modules in simplicial sets and symmetric (HS)Σ
top-modules in spaces, although

I do not have an explicit reference for this fact. The symmetric ring spectrum (HS)Σ
top is also isomorphic to

the underlying symmetric spectrum of the orthogonal ring spectrum HS. So [30, Corollary 0.6] shows that
the forgetful functor is a right Quillen equivalence between orthogonal HS-modules and symmetric modules
over (HS)Σ

top. Quillen equivalences of model cateories in particular induce equivalence of the localizations
at the respective classes of weak equivalences. So the chain of Quillen equivalences sketched above yields
the desired equivalence between D(S) and D(HS).

Proposition 7.17. Let T be a triangulated category. Then the following properties hold.

(i) For every distinguished triangle (f, g, h) and every object X of T , the two sequences of abelian groups

T (ΣA,X)
T (h,X)−−−−−→ T (C,X)

T (g,X)−−−−−→ T (B,X)
T (f,X)−−−−−→ T (A,X)

and

T (X,A)
T (X,f)−−−−−→ T (X,B)

T (X,g)−−−−→ T (X,C)
T (X,h)−−−−−→ T (X,ΣA)

are exact.
(ii) Let (a, b, c) be a morphism of distinguished triangles. If two out of the three morphisms are isomor-

phisms, then so is the third.
(iii) Let (f, g, h) be a triangle such that the triangle (g, h,−Σf) is distinguished. Then the triangle (f, g, h)

is distinguished.
(iv) Let (f1, g1, h1), (f2, g2, h2) and (f3, g3, h3) be three distinguished triangles such that f1 and f2 are

composable and f3 = f2f1. Then there exist morphisms x̄ and ȳ such that (x̄, ȳ, (Σg1) ◦ h2) is a
distinguished triangle and the following diagram commutes:

A
f1 // B

f2

��

g1 // C̄

x̄
��

h1 // ΣA

A
f3

// D
g3

//

g2

��

Ē
h3

//

ȳ

��

ΣA

Σf1

��

F̄

h2

��

F̄

(Σg1)◦h2
��

h2

// ΣB

ΣB
Σg1

// ΣC

(v) For every distinguished triangle (f, g, h) the following three conditions are equivalent:
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• The morphism f : A −→ B has a retraction, i.e., there is a morphism r such that rf = IdA.
• The morphism g : B −→ C has a section, i.e., there is a morphism s such that gs = IdC .
• The morphism h : C −→ ΣA is zero.

(vi) Let (f, g, h) be a distinguished triangle and s : C −→ B a morphism such that gs = IdC . Then the
morphisms f : A −→ B and s : C −→ B make B into a coproduct of A and C.

(vii) Let I be a set and let (fi, gi, hi) be a distinguished triangle for every i ∈ I. Then the triangles⊕
I
Ai

⊕fi−−−−→
⊕

I
Bi

⊕gi−−−−→
⊕

I
Ci

κ◦(⊕hi)−−−−−−→ Σ(
⊕

I
Ai)

and ∏
I
Ai

∏
fi−−−−→

∏
I
Bi

∏
gi−−−−→

∏
I
Ci

κ−1◦(
∏
hi)−−−−−−−−−→ Σ(

∏
I
Ai)

are distinguished, whenever the respective coproducts and products exist. Here κ :
⊕

I ΣAi −→
Σ(
⊕

I Ai) and κ : Σ(
∏
I Ai) −→

∏
I ΣAi are the canonical isomorphisms.

(viii) Let A⊕B be a coproduct of two objects A and B of T with respect to the morphisms iA : A −→ A⊕B
and iB : B −→ A⊕B. Then the triangle

A
iA−−−→ A⊕B pB−−−→ B

0−−→ ΣA

is distinguished, where pB is the morphism determined by pBiA = 0 and pBiB = IdB.

Proof. We start by showing that for every distinguished triangle (f, g, h) the composite gf is zero. Indeed,
by (T4) applied to the pair (Id, f) there is a (necessarily unique) morphism from any zero object to C such
that the diagram

A
Id // A //

f

��

0

��

// ΣA

A
f
// B

g
// C

h
// ΣA

commutes, so gf = 0 (the upper row is distinguished by (T2) and (T3)).
(i) Since gf = 0 the image of T (g,X) is contained in the kernel of T (f,X). Conversely, let ψ : B −→ X

be a morphism in the kernel of T (f,X), i.e., such that ψf = 0. Applying (T4) to the pair (0, ψ) gives a
morphism ϕ : C −→ X such that the diagram

A
f
//

��

B
g
//

ψ

��

C

ϕ

��

h // ΣA

��

0 // X
Id
// X // 0

commutes (the lower row is distinguished by (T1)). So the first sequence is exact at T (B,X). Applying
this to the triangle (g, h,−Σf) (which is distinguished by (T3)), we deduce that the first sequence is also
exact at T (X,C).

The argument for the other sequence is similar, but slightly more involved and depends on the assumption
that the functor Σ is fully faithful. Since gf = 0, the image of T (X, f) is contained in the kernel of T (X, g).
Conversely, let ψ : X −→ B be a morphism in the kernel of T (X, g), i.e., such that gψ = 0. Applying (T4)
to the pair (ψ, 0) gives a morphism ϕ̄ : ΣX −→ ΣA such that the diagram

X //

ψ

��

0 //

��

ΣX

ϕ̄

��

− Id
// ΣX

Σψ

��

B
g
// C

h
// ΣA

−Σf
// ΣB

commutes (both rows are distinguished by (T1) and (T2)). Since shifting is full, there exists a morphism
ϕ : X −→ A such that ϕ̄ = Σϕ, and hence Σ(fϕ) = (Σf)(Σϕ) = Σψ. Since shifting is faithful we have
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fϕ = ψ, so ψ is in the image of T (X, f). Altogether, the first sequence is exact at T (X,B). If we apply
this to the triangle (g, h,−Σf) (which is distinguished by (T3)), we deduce that the first sequence is also
exact at T (X,C).

(ii) We first treat the case where a and b are isomorphisms. If X is any object of T we have a commutative
diagram

T (X,A)
f∗ //

a∗

��

T (X,B)
g∗ //

b∗

��

T (X,C)
h∗ //

c∗

��

T (X,ΣA)
(−Σf)∗

//

(Σa)∗

��

T (X,ΣB)

(Σb)∗

��

T (X,A′)
f ′∗

// T (X,B′)
g′∗

// T (X,C ′)
h′∗

// T (X,ΣA′)
(−Σ(f ′))∗

// T (X,ΣB′)

where we write f∗ for T (X, f), etc. The top row is exact by part (i) applied to the distinguished triangles
(f, g, h) and (g, h,−Σf). Similarly, the bottom row is exact. Since a and b (and hence Σa and Σb) are
isomorphisms, all vertical maps except possibly the middle one are isomorphisms of abelian groups. So the
five lemma says that c∗ is an isomorphism. Since this holds for all objects X, the morphism c : C −→ C ′

is an isomorphism.
If b and c are isomorphisms, we apply the previous argument to the triple (b, c,Σa). This is a morphism

from the distinguished (by (T3)) triangle (g, h,−Σf) to the distinguished triangle (g′, h′,−Σf ′). By the
above, Σa is an isomorphism, hence so is a since shifting is an equivalence of categories. The third case is
similar.

(iii) If the triangle (g, h,−Σf) is distinguished, then so is (−Σf,−Σg,−Σh) by two applications of (T3).
Axiom (T1) provides a distinguished triangle

A
f−−→ B

ḡ−−→ C̄
h̄−−→ ΣA

and by three applications of (T3), the triangle (−Σf,−Σḡ,−Σh̄) is distinguished. By (T4) there is a
morphism c̄ : ΣC −→ ΣC̄ such that the diagram

ΣA
−Σf

// ΣB
−Σg

// ΣC

c̄
��

−Σh
// Σ2A

ΣA
−Σf

// ΣB
−Σḡ

// ΣC̄
−Σh̄

// Σ2A

commutes. By part (ii), c is an isomorphism. Since suspension is an equivalence of categories, we have
c̄ = Σc for a unique isomorphism c : C −→ C̄. Then (IdA, IdB , c) is an isomorphism from the triangle
(f, g, h) to the distinguished triangle (f, ḡ, h̄). So the triangle (f, g, h) is itself distinguished.

(iv) Axiom (T5) provides a commutative diagram

A
f1 // B

f2

��

g
// C

x

��

h // ΣA

A
f3

// D
g′′

//

g′

��

E
h′′
//

y

��

ΣA

Σf1

��

F

h′

��

F

(Σg)◦h′
��

h′
// ΣB

ΣB
Σg
// ΣC

such that the triangles (f1, g, h), (f2, g
′, h′), (f3, g

′′, h′′) and (x, y, (Σg) ◦ h′) are distinguished. By (T4)
there is a morphism ϕ : C̄ −→ C that makes (IdA, IdB , ϕ) a morphism of triangles from (f1, g1, h1) to
(f1, g, h); this morphism is an isomorphism by part (ii). Similarly, there is an morphism ψ : F̄ −→ F such
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that (IdB , IdD, ψ) an isomorphism of triangles from (f2, g2, h2) to (f2, g
′, h′). Finally, there is an morphism

ν : Ē −→ E such that (IdA, IdD, ν) an isomorphism of triangles from (f3, g3, h3) to (f3, g
′′, h′′). If we set

x̄ = ν−1xϕ : C̄ −→ Ē and ȳ = ψ−1yν : Ē −→ F̄ ,

then the desired diagram commutes. Moreover, the triple (ϕ, ν, ψ) is an isomorphism from the triangle
(x̄, ȳ, (Σg1)h2) to the triangle (x, y, (Σg)h′). Since the latter triangle is distinguished, so is the former.

(v) By part (i), the composite of two adjacent morphism in any distinguished triangle is zero. So if s is
a section to g, then h = hgs = 0. Similarly, if r is a retraction to f , then h = (−Σr)(−Σf)h = 0 because
the triangle (g, h,−Σf) is distinguished. Conversely, if h = 0, then the sequence

T (C,B)
T (C,g)−−−−→ T (C,C) −−−→ 0

is exact by part (i), and any preimage of the identity of C is a section to g. Similarly, the sequence

T (ΣB,ΣA)
T (−Σf,ΣA)−−−−−−−−→ T (ΣA,ΣA) −−−→ 0

is exact because the triangle (g, h,−Σf) is distinguished. So there is a morphism r̄ : ΣB −→ ΣA such
that −r̄ ◦ Σf = IdΣA. Since Σ is full, there is a morphism r : B −→ A such that Σr = −r̄, hence
Σ(rf) = (Σr)(Σf) = IdΣA. Since Σ is faithful, r is a retraction to f .

(vi) Since s is a section to g, the morphism T (g,X) is injective. By part (v) the morphism f has a
retraction, so T (f,X) is surjective. The first exact sequence of part (i) thus becomes a short exact sequence
of abelian groups

0 −→ T (C,X)
T (g,X)−−−−−→ T (B,X)

T (f,X)−−−−−→ T (A,X) −→ 0 .

Because T (s,X) is a section to the first map, the map (T (f,X), T (s,X)) : T (B,X) −→ T (A,X)×T (C,X)
is bijective, i.e., the morphisms f and s make B a coproduct of A and B.

(vii) We choose a distinguished triangle:⊕
I
Ai

⊕fi−−−→
⊕

I
Bi

g−−−−→ C
h−−−−→ Σ(

⊕
I
Ai) .

We apply axiom (T3) to the canonical morphisms κj : Aj −→
⊕

IAi and κ′j : Bj −→
⊕

IBi and obtain
morphisms ϕj : Cj −→ C such that the diagrams

Aj
fj

//

κj

��

Bj
gj
//

κ′j
��

Cj

ϕj

��

hj
// ΣAj

Σκj

��⊕
IAi ⊕fi

//
⊕

IBi g
// C

h
// Σ(
⊕

IAi)

commute. We claim that then the morphisms ϕi : Ci −→ C make C into a coproduct of the objects Ci.
For this we observe that the diagram

T (Σ(
⊕

IBi), X)
−(Σ⊕fi)∗

//

((Σκi)∗)

��

T (Σ(
⊕

IAi), X)
h∗ //

((Σκ′i)∗)

��

T (C,X)
g∗ //

((ϕi)∗)

��

T (
⊕

IBi, X)
(⊕fi)∗

//

((κ′i)∗)

��

T (
⊕

IAi, X)

((κi)∗)

��∏
IT (ΣBi, X)

−
∏

Σ(fi)∗

//
∏
IT (ΣAi, X) ∏

(hi)∗

//
∏
IT (Ci, X) ∏

(gi)∗

//
∏
IT (Bi, X) ∏

(fi)∗

//
∏
IT (Ai, X)

commutes by construction of the morphisms ϕi. The top row is exact by part (i), the bottom row is exact
as a product of exact sequences. The four outer vertical maps are isomorphisms by the universal property
of coproducts, so the middle vertical map is an isomorphism by the 5-lemma. This shows that C is a
coproduct of the Ci’s in a way that makes g = ⊕gi :

⊕
IBi −→ C and h = κ ◦ (⊕hi) : C −→ Σ(

⊕
IAi).

The statement about products of triangles can be proved in an analogous fashion. Alternatively, one
can reduce to the first case by exploiting that products in T are coproducts in the opposite category T op,
which is triangulated with respect to the opposite triangulation (compare Exercise E.14).
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(viii) This the special case of part (vii) for the two exact triangles

A
IdA−−→ A −→ 0 −→ ΣA and 0 −→ B

IdB−−→ B −→ 0

whose sum is the triangle in question, which is thus distinguished. �

Example 7.18 (Shift preserves distinguished triangles). The shift functor sh : R -mod −→ R -mod of
Example 2.13 and Construction 4.6 preserves stable equivalences, see Proposition 2.16. So the shift functor
descends to a functor on the derived category

sh : D(R) −→ D(R)

for which we use the same name. Moreover, shifting commutes with smashing with a based space on the
nose, i.e., (shX)∧A = sh(X ∧A); so we can (and will) leave out parentheses in such expressions. Since the
suspension functor on D(R) is induced by smashing with S1, the shift functor commutes with the suspension
functor, again on the nose, both on the point-set level and also on the level of the derived category. We
will now argue that shifting also preserves distinguished triangles on the nose.

Proposition 7.19. Let R be an orthogonal ring spectrum. For every distinguished triangle (f, g, h) in
D(R), the triangle

shA
sh f−−−−→ shB

sh g−−−→ shC
shh−−−−→ shA ∧ S1

is also distinguished.

Proof. We may assume without loss of generality that (f, g, h) is the elementary distinguished triangle
(γ(ψ), γ(i), γ(p)) of some morphism of orthogonal spectra ψ : A −→ B. The shift functor sh : R -mod −→
R -mod on the level of orthogonal spectra commutes on the nose with suspension and mapping cones, i.e.,
sh(A ∧ S1) = (shA) ∧ S1, sh(Cψ) = C(shψ), and similarly for the morphisms that participate in the
mapping cone sequences. So the elementary distinguished triangle

shA
γ(shψ)−−−−−−→ shB

γ(sh i)−−−−−→ shC
γ(sh p)−−−−−→ shA ∧ S1

associated to the shifted morphism shψ : shA −→ shB is equal to the triangle (sh γ(f), sh γ(g), sh γ(h)).
So the latter triangle is distinguished, which proves the claim. �

The previous proposition can be rephrased as saying that the shift functor sh : SH −→ SH is an exact
functor of triangulated categories if we equip it with the identity isomorphism sh ◦(−∧S1) = (−∧S1) ◦ sh.

8. Thom spectra and bordism

In Example 4.17 we introduced the commutative orthogonal ring spectrum MO; as the terms of this
spectrum are Thom spaces of universal vector bundles, it is referred to as a Thom spectrum. In this section
we sketch a proof of Thom’s celebrated theorem [46] that the so-called Thom-Pontryagin construction defines
an isomorphism of homology theories from the geometrically defined bordism theory to the homology theory
represented by MO is an isomorphism.

8.1. Homology theories from spectra. We write T∗ for the category of based spaces, i.e., compactly
generated spaces equipped with a distinguished basepoint. Morphisms in T∗ are all based continuous maps.

Definition 8.1. A generalized homology theory {Ek, ∂} consists of the following data:

• a functor

Ek : T∗ −→ (abelian groups)

for every integer k;
• a natural transformation ∂ : Ek+1(Cf) −→ Ek(A) for every integer k, where f : A −→ B is a based

continuous map, and Cf = A ∧ [0, 1] ∪f B is the reduced mapping cone of f .

This data has to satisfy the following axioms:
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• (Additivity) For every family {Ai}i∈I of based spaces the canonical map⊕
i∈I

Ek(Ai) −→ Ek(
∨
i∈I

Ai)

is an isomorphism.
• (Homotopy invariance) If f, g : A −→ B are based homotopic, then Ek(f) = Ek(g) : Ek(A) −→
Ek(B).
• (Exactness) For every continuous based map f : A −→ B, the sequence

· · · −→ Ek+1(Cf)
∂−−→ Ek(A)

Ek(f)−−−−→ Ek(B)
Ek(i)−−−→ Ek(Cf) −→ · · ·

of E-homology groups is exact.

Example 8.2 (Generalized homology from a spectrum). We let E be a sequential spectrum, and k an
integer. We define the E-homology of a based space A as

Ek(A) = πk(E ∧A) .

The functors Ek form a generalized homology theory with respect to the connecting homomorphism (1.15)
of the long exact homotopy group sequence

∂ : Ek+1(Cf) −→ Ek(A) ,

i.e., the composite of the map

Ek+1(Cf)
πk+1(E∧p)−−−−−−−→ πk+1(E ∧A ∧ S1)

and the inverse of the suspension isomorphism πk(E ∧A+) ∼= πk+1(E ∧A+ ∧ S1). The additivity property
is Proposition 1.22 (i), combined with the fact that E ∧ − takes wedges of based spaces to coproducts of
spectra. Homotopy invariance is the homotopy invariance of stable homotopy groups. And exactness is a
special case of Proposition 1.16.

Remark 8.3. Every generalized homology theory has the following additional properties.

(a) The additivity property for X = Y = {∗} one-point spaces shows that the canonical map and the fact
that the wedge of X and Y is another one-point spaces shows that the addition homomorphism

Ek(∗)⊕ Ek(∗) −→ Ek(∗)

is an isomorphism. But this forces Ek = 0 to be the trivial group.
(b) Every based homotopy equivalence f : X −→ Y induces an isomorphism Ek(f) : Ek(X) −→ Ek(Y ).
(c) The previous two items show that Ek(X) = 0 whenever X is contractible to its basepoint.
(d) Because Ek(∗) = 0, the long exact sequence for the E-homology of the unique map tA : A −→ ∗

specializes to isomorphisms

∂ : Ek+1(CtA)
∼=−−→ Ek(A) .

The ’projection’ p : CtA −→ A ∧ S1 is a homeomorphism, so we obtain a suspension isomorphism

Ek+1(p) ◦ ∂−1 : Ek(A)
∼=−−→ Ek+1(A ∧ S1) .

(e) Let (B,A) be a pair of spaces with the homotopy extension property. Then the quotient map 0∪ IdB :
A ∧ [0, 1] ∪A B = C(incl) −→ B/A is a based homotopy equivalence; so it induces an isomorphism
Ek(C(incl)) ∼= Ek(B/A). The long exact sequence of the inclusion can thus be turned into an exact
sequence

· · · −→ Ek+1(B/A)
δ−−→ Ek(A)

Ek(incl)−−−−−→ Ek(B)
Ek(proj)−−−−−→ Ek(B/A) −→ · · · ,

where

δ = ∂ ◦ Ek+1(0 ∪ IdB)−1 .
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Remark 8.4 (Relative and unreduced theories). We let {Ek, ∂} be a generalized homology theory.
For an unbased space X, we define the unreduced E-homology by

E+
k (X) = Ek(X+) ,

i.e., the original theory of X with a disjoint basepoint added. Because the functor (−)+ : T −→ T∗ takes
disjoint unions to wedges, the additivity property in the unreduced version becomes the statement that for
every family {Xi}i∈I of unbased spaces the canonical map⊕

i∈I
E+
k (Xi) −→ E+

k (
∐
i∈I

Xi)

is an isomorphism.
For a pair (X,Y ) of unbased spaces, we write

CY ∪Y X = Y × [0, 1] ∪Y×1 X/ ∼

for the unreduced mapping cone of the inclusion. Here the equivalence relation identifies (1, y) with y ∈ X
for all y ∈ Y , and it collapses Y × 0 to a point. We take the cone point – the equivalence class of Y × 0 –
as the basepoint. We then define the relative E-homology by

Ek(X,Y ) = Ek(CY ∪Y X) .

The based space CY ∪Y X is homeomorphic to the reduced mapping cone of the based inclusion ι : Y+ −→
X+, where we added disjoint basepoints to X and Y . So the long exact sequence for ι is an exact sequence

· · · −→ Ek+1(X,Y )
∂−−→ E+

k (Y )
Ek(incl)−−−−−→ E+

k (X) −→ Ek(X,Y ) −→ · · ·

If Y = {x0} is a single point, then CY ∪Y X deformation retracts onto X; for if X is pointed by x0, then

Ek(X, {x0}) ∼= Ek(X) .

The original functors can be recovered from the unreduced theory as follows. The inclusion i : X −→ C()

Proposition 8.5. Let {Ek, ∂} be a generalized homology theory. Let teliXi be the mapping telescope of a
sequence of continuous maps

X0
f0−−−→ X1

f1−−−→ X2
f2−−−→ . . . .

Then the canonical maps jm : Xm −→ teliXi provide an isomorphism

colimm≥0 E
+
k (Xm)

∼=−−→ E+
k (teli≥0Xi) .

Proof. The mapping telescope participates in a pushout square∐
i≥0Xi × {0, 1} //

incl

��

∐
i≥0Xi

j

��∐
i≥0Xi × [0, 1] // teliXi

For x ∈ Xi, the upper vertical map sends (x, 0) to x, and it sends (x, 1) to fi(x). The two vertical maps have
the homotopy extension property, so we obtain a long exact sequence involving the E-homology of

∐
i≥0Xi,

of teliXi, and of the cokernel of the h-cofibration j. This cokernel is homeomorphic to
∨
i≥0(Xi)+ ∧ S1, so

the sequence becomes an exact sequence

· · · −→ Ek+1(
∨
i≥0

(Xi)+ ∧ S1)
∂−−→ E+

k (qi≥0Xi) −→ E+
k (teliXi) −→ Ek(

∨
i≥0

(Xi)+ ∧ S1) −→ · · ·
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Additivity and the suspension isomorphism provide isomorphisms⊕
i≥0

E+
k (Xi)

∼=−−→ E+
k (qi≥0Xi) and

⊕
i≥0

E+
k (Xi)

∼=−−→
⊕
i≥0

Ek+1((Xi)+ ∧ S1)
∼=−−→ Ek+1(

∨
i≥0

(Xi)+ ∧ S1) .

These isomorphism turn to exact sequence into another exact sequence

· · · −→
⊕
i≥0

E+
k (Xi)

∆−−→
⊕
i≥0

E+
k (Xi) −→ E+

k (teliXi) −→
⊕
i≥0

E+
k−1(Xi) −→ · · ·

We omit the verification that the morphism ∆ is given by

∆(x) = x− (fi)∗(x)

for all x ∈ E+
k (Xi). Since this map is injective, the sequence provides an isomorphism

coker

Id−f∗ :
⊕
i≥0

E+
k (Xi) −→

⊕
i≥0

E+
k (Xi)

 ∼= E+
k (teliXi) .

The cokernel is a presentation of the colimit of the sequence of abelian groups

Ek(X0)
Ek(f0)−−−−−→ Ek(X1)

Ek(f1)−−−−−→ Ek(X2)
Ek(f2)−−−−−→ . . . .

This proves the claim. �

If X is a CW-complex with skeleta Xn, then the maps teli≥0Xi −→ X that collapses the intervals in
the mapping telescope is a homotopy equivalence. So Proposition 8.5 yields:

Corollary 8.6. Let {Ek, ∂} be a generalized homology theory. Let X be a CW-complex with skeleta Xm.
Then the inclusions Xm −→ X provide an isomorphism

colimm≥0 E
+
k (Xm)

∼=−−→ E+
k (X) .

As we discussed in Example 8.2, a sequential is enough to represent a generalized homology theory. If
the sequential spectrum is underlying an orthogonal ring spectrum E, then we obtain additional structure
in the form of ‘external products’

(8.7) × : Ek(A)× El(B) −→ Ek+l(A ∧B) ,

where A and B are two based spaces. This pairing is a generalization of the homotopy group pairing (4.8),
and defined similarly, as follows. We let f : Sm+k −→ Em ∧ A and g : Sn+l −→ En ∧ B represent classes
in Ek(A) = πk(E ∧A) and El(B) = πl(E ∧B), respectively. We denote by f · g the composite

Sm+k+n+l f∧g−−−−→ Em ∧A ∧ En ∧B
r∧a∧s∧b7→r∧s∧a∧b−−−−−−−−−−−−−→ Em ∧ En ∧A ∧B

αm,n∧A∧B−−−−−−−→ Em+n(A ∧B)

and then define

[f ] · [g] = (−1)kn · [f · g]

in the group πk+l(E ∧A ∧B) = Ek+l(A ∧B).
For A = S0 we can use the unique natural isomorphisms E ∧S0 ∼= E and S0 ∧B ∼= B to identify Ek(S0)

with πk(E), and Ek(S0 ∧B) with Ek(B).

Proposition 8.8. If E is an orthogonal ring spectrum, then the pairings (8.7) are associative, unital and
graded-commutative. They make the E-homology groups E∗(B) = {Ek(B)}k∈Z into a graded module over
the graded ring π∗(E).
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8.2. Bordism. Now we recall bordism groups and their relationship to the homology theory defined by
the Thom spectrum MO. In Construction 8.27 we introduce the Thom-Pontryagin map, which is an
isomorphism from bordism to MO-homology.

Definition 8.9. A singular manifold over a space X is a pair (M,h) consisting of a closed smooth manifold
M and a continuous map h : M −→ X. Two singular manifolds (M,h) and (M ′, h′) are bordant if there
is a triple (B,H,ψ) consisting of a compact smooth manifold B, a continuous map H : B −→ X and an
equivariant diffeomorphism

ψ : M ∪M ′ ∼= ∂B

such that (H ◦ ψ)|M = h and to (H ◦ ψ)|M ′ = h′.

Bordism of singular manifolds over X is an equivalence relation. Reflexivity and symmetry are straight-
forward; transitivity is established by gluing two bordisms along a common piece of the boundary. To get
a smooth structure on the glued bordism that is compatible with the action one needs smooth collars.

We denote by Nn(X) the set of bordism classes of n-dimensional singular manifolds over X. This set
becomes an abelian group under disjoint union. Every element x of Nn(X) satisfies 2x = 0: for every closed
smooth manifold M , the manifold M× [0, 1] bounds a disjoint union of two copies of M . The groups Nn(X)
are covariantly functorial in continuous maps, by post-composition.

Proposition 8.10. (i) Let ϕ,ϕ′ : X −→ Y be homotopic continuous maps. Then ϕ∗ = ϕ′∗ as homomor-
phisms from Nn(X) to Nn(Y ).

(ii) For every weak equivalence ϕ : X −→ Y the induced homomorphism ϕ∗ : Nn(X) −→ Nn(Y ) is an
isomorphism.

(iii) Let {Xi}i∈I be a family of spaces. Then the canonical map⊕
i∈I
Nn(Xi) −→ Nn

(∐
i∈I

Xi

)
is an isomorphism.

Proof. (i) We let H : X × [0, 1] −→ Y be a homotopy from ϕ to ϕ′ and (M,h) a singular manifold over X.
Then (M×[0, 1], H◦(h×[0, 1]), ψ) is a bordism from (M,ϕh) to (M,ϕ′h), where ψ : M∪M −→ ∂(M×[0, 1])
identifies one copy of M with M × {0} and the other copy with M × {1}. So ϕ∗[M,h] = [M,ϕ ◦ h] =
[M,ϕ′ ◦ h] = ϕ′∗[M,h].

(ii) For surjectivity of ϕ∗ we consider any singular manifold (M, g) over Y . Every smooth manifold M
admits a triangulation, and hence also the structure of a CW-complex, compare [52]. Since ϕ is a weak
equivalence there exists a continuous map h : M −→ X such that ϕh is equivariantly homotopic to g. Part
(i) then shows that ϕ∗[M,h] = (ϕh)∗[M, IdM ] = g∗[M, IdM ] = [M, g].

The argument for injectivity is similar. We consider a singular manifold (M,h) over X that represents
an element in the kernel of ϕ∗. There is then a null-bordism (B,H,ψ) of (M,ϕh). Again there is a CW-
structure on B for which the boundary is a subcomplex. Since ϕ is a weak equivalence, there exists a
continuous map H ′ : B −→ X such that H ′ ◦ ψ = h. The triple (B,H ′, ψ) thus witnesses that [M,h] = 0.
Since ϕ∗ is a group homomorphism, it is injective.

Property (iii) holds because compact manifolds only have finitely many connected components, so all
continuous reference maps from singular manifolds or bordisms have image in a finite union. �

Now we state the key exactness property of bordism in the form of a Mayer-Vietoris sequence. The
definition of the boundary map needs the existence of separating functions as provided by the following
lemma.

Lemma 8.11. Let M be a compact smooth manifold, C and C ′ two disjoint, closed subsets of M , and

s : ∂M −→ R
a smooth map such that

C ∩ ∂M ⊆ s−1(0) and C ′ ∩ ∂M ⊆ s−1(1) .

Then there exists a smooth extension r : M −→ R of s such that C ⊆ r−1(0) and C ′ ⊆ r−1(1).
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Proof. Since M is compact, hence normal, the Tietze extension theorem provides a continuous map r0 :
M −→ R that extends s and satisfies C ⊆ r−1

0 (0) and C ′ ⊆ r−1
0 (1). By smooth approximation, we can

then find a smooth map r : M −→ R that coincides with r1 on C ∪C ′ ∪ ∂M ; this is the desired separating
function. �

Construction 8.12 (Bordism boundary map). We define a boundary homomorphism for a Mayer-Vietoris
sequence. We let X be a space and A,B ⊂ X open subsets with X = A ∪B. Then a homomorphism

∂ : Nn(X) −→ Nn−1(A ∩B)

is defined as follows.
We let (M,h) be a singular manifold that represents a class in Nn(X). The sets h−1(X − A) and

h−1(X − B) are disjoint closed subsets of M ; we let r : M −→ R be a separating function as provided by
Lemma 8.11, i.e., such that h−1(X − A) ⊆ r−1(0) and h−1(X − B) ⊆ r−1(1). We let t ∈ (0, 1) be any
regular value of r. Then

Mt = r−1(t)

is a smooth closed submanifold of M of dimension n− 1 (possibly empty), and ht = h|Mt
lands in A ∩ B;

so (Mt, ht) is a singular manifold over A ∩B.

Proposition 8.13. In the situation above, the bordism class [Mt, ht] is independent of the choice of regular
value t, of the choice of separating function and of the representative for the given class in Nn(X). The
resulting map

∂ : Nn(X) −→ Nn−1(A ∩B) , [M,h] 7−→ [Mt, ht]

is a group homomorphism.

Proof. We let t < t′ be two regular values in (0, 1) of the separating function r. Then

(r−1[t, t′], h|r−1[t,t′], incl)

is a bordism from (r−1(t), h|r−1(t)) to (r−1(t′), h|r−1(t′)), so the bordism class does not depend on the regular
value.

Now we let (M,h) and (N, g) be two singular manifolds over X in the same bordism class, and we let
(B,H,ψ) be a bordism from (M,h) to (N, g). We let r : M −→ R and r̄ : N −→ R be two separating
functions. Lemma 8.11 lets us extend this data to a smooth separating function

Ψ : B −→ R

such that Ψ ◦ ψ|M = r, Ψ ◦ ψ|N = r̄,

H−1(X −A) ⊆ Ψ−1(0) and H−1(X −B) ⊆ Ψ−1(1) .

We choose a simultaneous regular value t ∈ (0, 1) for Ψ, r and r̄. Then

(Ψ−1(t), H|Ψ−1(t), ψ|r−1(t)∪r̄−1(t))

is a bordism from (r−1(t), h|r−1(t)) to (r̄−1(t), g|r̄−1(t)). This shows at the same time that the bordism
class is independent of the choice of separating function and of the choice of representing singular manifold.
Additivity of the resulting boundary map is then clear: a separating function for a disjoint union can be
taken as the union of separating functions for each summand. �

Now we formulate the property that makes bordism a homology theory. A proof of the following propo-
sition can for example be found in [48, Proposition 21.1.7].

Proposition 8.14. Let X be a space and A,B ⊂ X open subsets with X = A ∪B. Let iA : A ∩B −→ A,
iB : A ∩ B −→ B, jA : A −→ X and jB : B −→ X denote the inclusions. Then the following sequence of
abelian groups is exact:

. . . −→ Nn(A ∩B)
(iA∗ ,i

B
∗ )−−−−−→ Nn(A)⊕Nn(B)

(
jA∗
−jB∗

)
−−−−→ Nn(X)

∂−−→ Nn−1(A ∩B) −→ . . .
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We define the reduced bordism group of a based space X as

Ñn(X) = coker (Nn(∗) −→ Nn(X)) ,

the cokernel of the homomorphism induced by the basepoint inclusion. If (M,h) is a singular manifold over

X, then we use the notation [[M,h]] for the class it represents in the reduced bordism group Ñn(X). The
unique map u : X −→ ∗ is retraction to the basepoint inclusion, so the map

(proj, u∗) : Nn(X) −→ Ñn(X)⊕Nn(∗)

is an isomorphism. On the other hand, if we add a disjoint basepoint to an unbased space Y , then the
composite

Nn(Y )
incl∗−−−→ Nn(Y+)

proj−−→ Ñn(Y+)

is an isomorphism.

Remark 8.15. In much of the classical literature, the reduced bordism group Ñn(X) of a based space
(X,x0) is defined differently, namely as the group Nn(X,x0) of bordism classes of pairs (M,h) where M
is a compact smooth manifold with boundary, and h : M −→ X is a continuous map with h(∂M) = {x0}.
In this context, a bordism from (M,h) to (M ′, h′) is a triple (B,H,ψ) consisting of a compact smooth
(n + 1)-manifold B, a continuous map H : B −→ X, a decomposition ψ : M ∪M ′ ∪ V ∼= ∂B as regularly
embedded submanifolds such that

V ∩M = ∂M , V ∩M ′ = ∂M ′ , ∂V = ∂M q ∂M ′ ,

(H ◦ ψ)|M = h and (H ◦ ψ)|M ′ = h′ and H(V ) = {x0}.
The comparison map

Ñn(X) −→ Nn(X,x0)

sends the class of [[M,h]] to the class of (M,h); this is well defined because pairs (M,h) with closed M
and h constant to x0 represent the trivial class in Nn(X,x0) of bordism classes of pairs (M,h). Indeed, as
a witness we may take B = M × [0, 1], define H : M × [0, 1] by H(x, t) = h(x) and use the decomposition
ψ : MqV ∼= ∂(B× [0, 1]) with V = M×{1}. Then H(ψ(V )) = {x0} because we assumed that h is constant
at x0.

For injectivity we consider a singular manifold (M,h) with M closed that represents the trivial class
in Nn(X,x0). We let (B,H,ψ) be a bordism that witnesses this. Because M is are closed, ψ identifies
the boundary ∂B with the disjoint union M q V So we can also interpret (B,H,ψ) as bordism between

the singular manifolds (M,h) and (V, (H ◦ ψ)|V ), and hence [[M,h]] = [[V, (H ◦ ψ)|V ]] in Ñn(X). Because

H(ψ(V )) = {x0}, the class [[V, (H ◦ ψ)|V ]] in trivial in the cokernel Ñn(X).
For surjectivity we consider any pair (M,h) representing a class in Nn(X,x0). We let DM = M ∪∂M M

denote the double of M , and we define h̄ : DM −→ X as the continuous map that restricts to h on the first
copy of M , and that sends the second copy of M to the basepoint x0. Then (M,h) is bordant to (DM, h̄),
so the class [M,h] is the image of [[DM, h̄]].

Construction 8.16. We consider a continuous map f : X −→ Y and let

Cf = CX ∪f Y = (X × [0, 1] ∪f Y )/X × {0}

denote its unreduced mapping cone. The two open sets

A = X × [0, 1)/X × {0} and B = X × (0, 1] ∪f Y

are G-invariant and together cover the mapping cone. The intersection A∩B is homeomorphic to X×(0, 1),
so the open covering has an associated boundary homomorphism

∂ : Nn(Cf) −→ Nn−1(X × (0, 1))

as in Construction 8.12. We take the cone point as the basepoint of Cf ; this is contained in the subset A, so
the map ι : N∗(∗) −→ N∗(Cf) induced by the basepoint inclusion factors through jA∗ : Nn(A) −→ Nn(Cf),
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and the composite ∂ ◦ ι is trivial by exactness of the excision sequence. The boundary map thus factors
over the reduced bordism group. We define a ‘reduced boundary map’ ∂̄ as the composite

Ñn(Cf)
∂−−→ Nn−1(X × (0, 1))

proj∗−−−→ Nn−1(X) .

Proposition 8.17. For every continuous map f : X −→ Y , the following sequence of abelian groups is
exact:

. . . −→ Nn(X)
f∗−−−→ Nn(Y )

i∗−−→ Ñn(Cf)
∂̄−−→ Nn−1(X) −→ . . .

Proof. We use the open covering of the mapping cone Cf as in the definition of the boundary map. In the
diagram

X
f

//

x 7→(x,1/2)

��

Y
i //

i

��

Cf

A ∩B
incl

// B
incl

// Cf

the right square commutes and the left square commutes up to homotopy. Moreover, all vertical maps are
homotopy equivalences, so they induce isomorphisms in bordism, by Proposition 8.10. So the resulting
diagram of bordism groups commutes:

Nn(X)
f∗ //

∼=
��

Nn(Y )
i∗ //

∼= i∗

��

Nn(Cf)

Nn(A ∩B) // Nn(B) // Nn(Cf)

Moreover, all vertical maps in this diagram are isomorphisms, so we can substitute Nn(X) and Nn(Y ) into
the long exact excision sequence of Proposition 8.14. Since A is contractible to the cone point, we can also
replace the corresponding summand by the coefficient group, and the result is an exact sequence

. . . −→ Nn(X)
(f∗,u∗)−−−−−−→ Nn(Y )⊕Nn(∗) −→ Nn(Cf)

∂−−→ Nn−1(X) −→ . . .

The sequence then remains exact if we divide out the summand Nn(∗) and replace the absolute bordism

group of Cf by the reduced group Ñn(Cf). �

If f : A −→ B is an h-cofibration of spaces, then the projection q : Cf −→ B/A from the mapping

cone to the quotient is a based homotopy equivalence. So we can substitute Ñ∗(B/A) into the long exact
mapping cone sequence of Proposition 8.17 and obtain a long exact sequence of abelian groups:

. . . −→ Nn(A)
f∗−−−→ Nn(B)

q∗−−→ Ñn(B/A) −→ Nn−1(A) −→ . . .

The bordism groups come with natural products, given by the biadditive maps

× : Nm(X) × Nn(Y ) −→ Nm+n(X × Y ) , [M,h]× [N, g] = [M ×N,h× g] .

These products are suitably associative, commutative and unital. The product pairing descends to a pairing
on reduced bordism groups if the spaces X and Y are based. Indeed, the composite

Nm(X)⊗Nn(Y )
×−−→ Nm+n(X × Y )

q∗−−→ Nm+n(X ∧ Y )
proj−−→ Ñm+n(X ∧ Y )

annihilates the image of Nm(∗)⊗Nn(Y ) and the image of Nm(X)⊗Nn(∗), where q : X × Y −→ X ∧ Y is
the quotient map; so the composite factors uniquely over a homomorphism

∧ : Ñm(X) ⊗ Ñn(Y ) −→ Ñm+n(X ∧ Y ) .

We shall now recall the suspension isomorphism in bordism. We define

d = [[S1, IdS1 ]] ∈ Ñ1(S1) ,

the reduced bordism class of the identity of S1; here S1 is given the standard smooth structure, with atlas
given by the inclusion R −→ S1 = R ∪ {∞} and the open embedding R −→ S1 sending x to 1/x.
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Proposition 8.18. For every based CW-complex X, the exterior product map

− ∧ d : Ñn(X) −→ Ñn+1(X ∧ S1)

is an isomorphism. For every continuous map f : X −→ Y between based spaces, the homomorphism

p∗ : Ñn+1(Cf) −→ Ñn+1(X ∧ S1) agrees with the composite

Ñn+1(Cf)
∂̄−−→ Ñn(X)

−∧d−−−−→ Ñn+1(X ∧ S1) .

Proof. We apply Proposition 8.17 to the map f : X −→ ∗ to a one-point space. The cone of this map is

X� = X × [0, 1]/ ∼ ,

the unreduced suspension of X, where X × {0} and X × {1} are collapsed to one point each. The map
f∗ : N∗(X) −→ N∗(∗) is a split epimorphism. So the long exact sequence provided by Proposition 8.17
reduces to a short exact sequence:

0 −→ Ñn+1(X�)
∂̄−−→ Nn(X)

f∗−−−→ Nn(∗) −→ 0

Since X is cofibrant in the based sense, the projection

ψ : X� −→ X ∧ S1 , q[x, s] = x ∧ 2s− 1

s(1− s)
that collapses {x0} × [0, 1] is a homotopy equivalence.

Then the composite

Ñn+1(X ∧ S1)
ψ−1
∗−−−−→∼= Ñn+1(X�)

∂̄−−→ Nn(X)
proj−−→ Ñn(X)

is an isomorphism. We claim that the relation

proj(∂̄(ψ−1
∗ (x ∧ d))) = x

holds for all classes x ∈ Ñn(X). Since proj ◦ ∂̄ ◦ ψ−1
∗ is an isomorphism, so is smash product with the class

d.
This relation, in turn, is a consequence of the geometric origin of the class d, the product in bordism

and the boundary map. In more detail, we suppose that x = [[M,h]] for a singular manifold (M,h) over
X. We define a continuous map H : M × S1 −→ X� by

H(m, z) =

{
[h(m), (z + 1)/2] for z ∈ [−1, 1], and

[x0, (z
−1 + 1)/2] for z ∈ S1 \ (−1, 1).

Then the following square commutes up to homotopy:

M × S1 H //

h×S1

��

X�

ψ

��

X × S1
q
// X ∧ S1

Hence
ψ∗[[M × S1, H]] = [[M × S1, q ◦ (h× S1)]] = [[M,h]] ∧ d ,

and thus
∂̄(ψ−1

∗ ([[M,h]] ∧ d)) = ∂̄[[M × S1, H]] .

To calculate this geometric boundary we use the smooth separating function

r : M × S1 −→ [0, 1] , r(m, z) =

{
(z + 1)/2 for z ∈ [−1, 1], and

(z−1 + 1)/2 for z ∈ S1 \ (−1, 1).
.

Then 1/2 is a regular value of this separating function, and the preimage over this regular value is r−1(1/2) =
M × {0,∞}, two disjoint copies of M . The function H takes the copy M × {∞} to the basepoint of X,
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so this copy does not contribute to the reduced bordism group. The restriction of H to the other copy
M × {0} is the original map h, so we obtain

∂̄[M × S1, H] = [[M × {0,∞}, H|M×{0,∞}]] ≡ [[M,h]]

in the reduced bordism group of X. �

Now we work our way towards the Thom-Pontryagin construction that assigns to every bordism class
over a space X a homology class in MO∗(X+). We break the construction up into two steps, and we first
discuss the fundamental class, a basic invariant associated with a closed smooth manifold.

Construction 8.19. It will be convenient to slightly modify the definition of MO, given in Example 3.6.
We introduce a sequential spectrum MO′ by MO′0 = ∗, and

MO′n = Th(Grn(R∞)) ,

the Thom space of the tautological n-plane bundle over the Grassmannian of n-planes in R∞, for n ≥ 1.
The structure map

σn : S1 ∧MO′n −→ MO′1+n is given by σn(x ∧ (v, L)) = ((x, v),R⊕ L) ;

here x ∈ R, v ∈ L ⊂ R∞.
We observe that MO′ is stably equivalent to the underlying sequential spectrum of the commutative

orthogonal ring spectrum MO defined in Example 4.17. The reader should beware that MO′ does not
extend to an orthogonal ring spectrum in any natural way, so the multiplicative structure gets lost on the
way from MO to MO′.

Any linear monomorphism α : V −→ W between euclidean inner product spaces, possibly infinite
dimensional, induces a continuous based map of Thom spaces

α∗ : Th(Grn(V )) −→ Th(Grn(W )) , α∗(v, L) = (α(v), α(L)) .

For n ≥ 1, we define a linear isometric embedding

ψn : R∞ −→ (Rn)∞ by(8.20)

ψn(x1, x2, x3, . . . ) = ((x1, x2, . . . , xn), (0, . . . , 0, xn+1), (0, . . . , 0, xn+2), (0, . . . , 0, xn+3), . . . ) .

The main point about this definition is that the following diagram of linear isometric embeddings commutes:

R⊕ R∞

R⊕ψn

��

(x,(y1,y2,... )) 7→(x,y1,y2,... )
// R∞

ψ1+n

��

R⊕ (Rn)∞
(x,(v1,v2,v3,... ))7→((x,v1),(0,v2),(0,v3),... )

// (R1+n)∞

The upper horizontal isometry is implicitly used in the definition of the structure map of MO′; and the
lower horizontal isometry is implicitly used in the definition of the structure map of MO. So the following
diagram of Thom spaces commutes:

S1 ∧MO′n

S1∧(ψn)∗
��

S1 ∧ Th(Grn(R∞))

S1∧ψn∗
��

σn // S1 ∧ Th(Gr1+n(R∞))

ψ1+n
∗
��

MO′1+n

ψ1+n
∗
��

S1 ∧MO(Rn) S1 ∧ Th(Grn((Rn)∞))
σn
// S1 ∧ Th(Gr1+n((R1+n)∞)) MO(R1+n)

The upshot is that the based continuous maps ψn∗ : MO′n −→MO(Rn) for a morphism of sequential spectra
ψ : MO′ −→ u(MO).

We claim that moreover, ψn∗ is a based homotopy equivalence for every n ≥ 1. Indeed, the space
L(R∞, (Rn)∞) of linear isometric embeddings is contractible; so there is a path through linear isometric
embeddings from ψn to a linear isometric isomorphism κ : R∞ ∼= (Rn)∞. Any such path induces a
homotopy between ψn∗ and the homeomorphism κ∗. So ψn∗ is based homotopic to a homeomorphism, it is
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a based homotopy equivalence. So for every based space A, the map ψn∗ : MO′n ∧ A −→MO(Rn) ∧ A is a
based homotopy equivalence, and the morphism ψ ∧ A : MO′ ∧ A −→ u(MO) ∧ A = u(MO ∧ A) induces
isomorphism of homotopy groups

(8.21) MO′k(A) ∼= MOk(A) .

Construction 8.22 (Thom-Pontryagin construction). To every smooth compact manifold M of dimension
k, possibly with boundary, we associate a fundamental class

〈M〉 ∈ MO′k(M/∂M) = πk(MO′ ∧ (M/∂M)) .

This class records the homotopical information in the stable normal bundle of M , and it is the geometric
input for the Thom-Pontryagin map to MO-homology.

For the construction we choose a smooth embedding i : M −→ Rn+k, for some n ≥ 0. We use the
standard inner product on Rn+k to define the normal bundle ν of the embedding by

ν = {(v,m) ∈ Rn+k ×M : v ⊥ (Di)(TmM)} ;

in other words: the fiber of this normal bundle over a point m ∈M is the orthogonal complement in Rn+k

of the image of the tangent space TmM . By multiplying with a suitably large scalar, if necessary, we can
assume that the embedding is wide in the sense that the exponential map

D(ν) −→ Rn+k , (v,m) 7−→ v + i(m)

is injective on the unit disc bundle of the normal bundle, and hence a closed embedding. The image of
this map is a tubular neighborhood of radius 1 around i(M). The boundary of D(ν) is the union of the
unit sphere bundle S(ν) and the restriction D(ν|∂M ) of the unit disc bundle to the boundary of M . So

the exponential map restricts to an open embedding on the open unit disc bundle D̊(ν|M\∂M ) over the
complement M \ ∂M of the boundary. It thus determines a Thom-Pontryagin collapse map

c(i) : Sn+k −→ Th(Grn(Rn+k)) ∧ (M/∂M)

as follows: every point outside of D̊(ν|M\∂M ) is sent to the basepoint, and a point v + i(m), for (v,m) ∈
D̊(ν|M\∂M ), is sent to

c(i)(v + i(m)) =

(
v

1− |v|
, ((Di)(TmM))⊥

)
∧m .

Here and below, the Thom space is always taken for the tautological vector bundle over the respective
Grassmannian. Now we let 〈M〉 denote the class of the composite

Sn+k c(i)−−−→ Th(Grn(Rn+k)) ∧ (M/∂M)

κn+k
∗ ∧(M/∂M)−−−−−−−−−−→ Th(Grn(R∞)) ∧ (M/∂M) = MO′n ∧ (M/∂M) ,

where the second map is induced by the ‘standard’ linear isometric embedding

κn+k : Rn+k −→ R∞ , (x1, . . . , xn+k) 7−→ (x1, . . . , xn+k, 0, 0, . . . ) .

Proposition 8.23. The fundamental class 〈M〉 in MO′k(M/∂M) associated to the smooth compact k-
manifold M is independent of the choice of wide embedding i : M −→ Rn+k.

Proof. If we enlarge the embedding i : M −→ Rn+k by the linear isometric embedding α : Rn+k −→ R1+n+k

with α(v) = (0, v), then the collapse map c(αi) associated with the composite embedding α ◦ i : M −→
R1+n+k is homotopic to the composite

S1+n+k S1∧c(i)−−−−−→ S1 ∧ Th(Grn(Rn+k)) ∧ (M/∂M)
σkn∧(M/∂)−−−−−−−→ Th(Gr1+n(R1+n+k)) ∧ (M/∂M) ,

where

σkn : S1 ∧ Th(Grn(Rn+k)) −→ Th(Gr1+n((R1+n+k)) is defined by x ∧ (v, L) = ((x, v),R⊕ L) .
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Moreover, the following square commutes:

S1 ∧ Th(Grn(Rn+k))
S1∧κn+k

∗ //

σkn
��

S1 ∧ Th(Grn(R∞)) S1 ∧MO′n

σn

��

Th(Gr1+n(R1+n+k))
κ1+n+k
∗

// Th(Gr1+n(R∞)) MO′1+n

So the stabilization of (κn+k
∗ ∧(M/∂))◦c(i) : Sn+k −→MO′n∧(M/∂) is homotopic to (κ1+n+k

∗ ∧(M/∂M))◦
c(αi) : S1+n+k −→MO′1+n ∧ (M/∂); thus the classes in MO′k(M/∂) arising from i and α ◦ i coincide.

Now we consider two different wide embeddings i : M −→ Rn+k and j : M −→ Rn̄+k. By working with
the maximum of n and n̄ and appealing to the previous paragraph, we can assume without loss of generality
that n̄ = n. The map

M × [0, 1] −→ Rn+k ⊕ Rn+k , (m, t) 7−→ (t · i(m), (1− t) · i(m))

is a smooth isotopy through wide embeddings between i into the second summand and i into the first
summand. This isotopy induces a homotopy between the two collapse maps. Similarly, the map

M × [0, 1] −→ Rn+k ⊕ Rn+k , (m, t) 7−→ (t · i(m), (1− t) · j(m))

is a smooth isotopy through wide embeddings between j into the second summand and i into the first
summand. This isotopy induces a homotopy between the two collapse maps. So altogether the collapse
maps based on i and j become homotopic after composition with the embedding Rn+d −→ Rn+d ⊕ Rn+d

as the second summand. By the first paragraph, the class 〈M〉 does not depend on the smooth embedding
i. �

Example 8.24. We claim that the image of the fundamental class 〈S1〉 ∈ MO1(S1
+) under the reduction

map q : S1
+ −→ S1 that identifies the additional basepoint with the ‘intrinsic’ basepoint ∞ satisfies the

relation

(8.25) q∗〈S1〉 = 1 ∧ S1

in the group MO1(S1).
One possible wide smooth embedding of S1 into an inner product space is the embedding

j : S1 −→ C = R2 , j(x) =
ix− 1

ix+ 1

into the complex numbers, where the symbol ’i’ refers to the imaginary unit in C; this map is sometimes
called the ‘Cayley transform’, and it maps S1 onto the unit sphere S(C). The class q∗〈S1〉 is then represented
by the composite

S2 c(j)−−−→ Th(Gr1(R2)) ∧ S1
+

κ2
∗∧q−−−→ Th(Gr1(R∞)) ∧ S1 .

The Hurewicz theorem lets us calculate the homotopy group that is home to this composite:

π2(Th(Gr1(R∞)) ∧ S1) ∼= π2(RP∞ ∧ S1) ∼= H2(RP∞ ∧ S1;Z) ∼= H1(RP∞;Z) ∼= Z/2 .

To finish the argument, one would now have to argue that the previous composite represents the generator
of this group.

Now we show that the fundamental class is compatible with disjoint unions and taking boundaries. For
part (ii) of the following proposition we exploit that for every smooth compact manifold M , the inclusion of
the boundary ∂M −→M has the homotopy extension property. One way to see this is exploit that M can
be triangulated in such a way that ∂M is a subcomplex. In particular, the pair (M,∂M) admits a relative
CW-structure. Alternatively, we can appeal to the existence of collars.

Proposition 8.26. Let M and N be smooth compact k-manifolds.
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(i) Let i1 : M −→ M ∪N and i2 : N −→ M ∪N denote the inclusions into a disjoint union. Then the
relation

〈M ∪N〉 = i1∗〈M〉 + i2∗〈N〉
holds in the group MO′k((M ∪N)/(∂M ∪ ∂N)).

(ii) The relation

δ〈M〉 = 〈∂M〉
holds, where

δ : MO′k(M/(∂M)) −→ MO′k−1((∂M)+)

is the connecting homomorphism (1.17) of the inclusion ∂M −→M .

Proof. (i) We let p1 : (M ∪N)/(∂M ∪ ∂N) −→ M/∂M and p2 : (M ∪N)/(∂M ∪ ∂N) −→ N/∂N denote
the two projections, i.e., p1 takes N to the collapsed boundary, and p2 takes M to the collapsed boundary.
We choose any wide smooth embedding i : M ∪N −→ Rn+k and observe that the composite

Sn+k c(i)−−→ Th(Grn(Rn+k)) ∧ (M ∪N)/(∂M ∪ ∂N)
Id∧p1

−−−−→ Th(Grn(Rn+k)) ∧ (M/∂M)

is on the nose the collapse map for M based on the restriction of the embedding i to M . We then obtain

p1
∗〈M ∪N〉 = 〈M〉 = p1

∗(i
1
∗〈M〉+ i2∗〈N〉) ;

the second relation uses that p1◦i1 is the identity, p2◦i1 is the trivial map and p1
∗ is additive. The analogous

argument shows that p2
∗〈M ∪ N〉 = p2

∗(i
1
∗〈M〉 + i2∗〈N〉). Since homotopy groups are additive on wedges,

the map

(p1
∗, p

2
∗) : πk(MO′ ∧ (M ∪N)/(∂M ∪ ∂N)) −→ πk(MO′ ∧ (M/∂M))× πk(MO′ ∧ (N/∂N))

is bijective, and this proves the claim.
(ii) By definition, the connecting homomorphism (1.17) is the composite of three maps

MO′k(M/(∂M))
(0∪IdM )∗←−−−−−−∼=

MO′k(C(∂M)∪∂M M))
p∗−−−→ MO′k((∂M)+ ∧S1)

−∧S1

←−−−−−∼= MO′k−1((∂M)+) .

We choose a collar, i.e., a smooth embedding c : ∂M × [0, 2] −→ M such that c(−, 0) : ∂M −→ M is the
inclusion and the image of ∂M× [0, 2) is an open neighborhood of the boundary inside M . The collar allows
us to identify M with the mapping cylinder of the inclusion ι : ∂M −→ M . More precisely, we define a
continuous map

ζ : M −→ ∂M × [0, 1] ∪∂M×1 M

by

ζ(m) =


(x, t) if m = c(x, t) for (x, t) ∈ ∂M × [0, 1],

c(x, 2(t− 1)) if m = c(x, t) for (x, t) ∈ ∂M × [1, 2],

m if m ∈M \ c(M × [0, 2)).

The map ζ is a continuous bijection between compact Hausdorff spaces, and hence a homeomorphism. The
map ζ identifies the boundary of M with the ‘start’ ∂M × {0} of the cylinder; it factors through a based
homeomorphism

ζ̄ : M/∂M
∼=−−→ C(∂M) ∪∂M×1 M = Cι

to the unreduced mapping cone of the inclusion. The composite (0∪IdM )◦ ζ̄ : Cι −→ Cι is based homotopic
to the identity, by interpolating through the collar coordinate. The effects of the maps (0 ∪ IdM ) ◦ ζ̄ :
Cι −→ M/∂ and ζ̄ : M/∂M −→ Cι on MO′-homology are thus inverse to each other. So the connecting
homomorphism equals

MO′k(M/(∂M))
(pζ̄)∗−−−−→ MO′k((∂M)+ ∧ S1)

−∧S1

←−−−−−∼= MO′k−1((∂M)+) .
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The map pζ̄ : M/(∂M) −→ (∂M)+ ∧ S1 is explicitly given by

(pζ̄)(m) =

{
x ∧ 2t−1

t(1−t) if m = c(x, t) for (x, t) ∈ ∂M × [0, 1],

∗ if m ∈M \ c(M × [0, 1)).

Now we choose a wide smooth embedding

i : ∂M −→ Rn+k .

Then we choose a wide smooth embedding

j : M −→ Rn+k+1

that ‘coincides with i×R near the boundary’, with respect to the chosen collar. More precisely, we arrange
j so that

j(c(x, t)) = (j(x), t)

for all (x, t) ∈ ∂M × [0, 1].
Because the embedding j is the product of i with the identity on the collar, the following square commutes

up to based homotopy:

Sn+k+1
c(j)

//

c(i)∧S1

��

Th(Grn(Rn+k+1)) ∧ (M/∂M)+

Id∧(pζ̄)

��

Th(Grn(Rn+k)) ∧ (∂M)+ ∧ S1

α∗∧Id
// Th(Grn(Rn+k+1)) ∧ (∂M)+ ∧ S1

where α : Rn+k −→ Rn+k+1 is α(x) = (x, 0). This witnesses the relation

(pζ̄)∗〈M〉 = 〈∂M〉 ∧ S1

in the group πk+1(MO ∧ (∂M)+ ∧ S1). The desired relation follows:

〈∂M〉 = (pζ̄)∗〈M〉 ∧ S−1 = δ〈M〉 . �

Construction 8.27. The Thom-Pontryagin construction defines a natural transformation of homology
theories

Θ = Θ(X) : Ñ∗(X) −→ MO′∗(X) ,

as we now recall. We let (M,h) be a k-dimensional singular manifold over a based space X. The way we
have set things up, all the geometry is already encoded in the fundamental class 〈M〉 ∈ MOk(M+); the
rest is a formal procedure, by simply pushing the class forward and use the functoriality of MO′∗(−):

Θ[M,h] = h∗〈M〉 ∈ MO′k(X) .

Proposition 8.28. The class Θ[M,h] in MOk(X) only depends on the bordism class of the singular
manifold (M,h).

Proof. We let (M,h) be a singular manifold that is null-bordant. We choose a null-bordism (B,H : B −→
X,ψ : M ∼= ∂B), so that H|∂B ◦ ψ = h. We write ι : ∂B −→ B for the inclusion. Then

h∗〈M〉 = (H ◦ ι ◦ ψ)∗〈M〉 = H∗(ι∗〈∂B〉) = H∗(ι∗(δ〈B〉)) = 0 .

The third equation is Proposition 8.26 (ii); the last equation exploits that the connecting homomorphism
δ : MO′k+1(B/∂B) −→ MO′k((∂B)+) and the map ι∗a : MO′k((∂B)+) −→ MO′k(B+) occur back-to-back
in an exact sequence, so their composite is the zero homomorphism. Since the fundamental class is additive
on disjoint unions (Proposition 8.26 (i)), Θ[M,h] only depends on the bordism class of (M,h). �

Theorem 8.29. (i) The Thom-Pontryagin map Θ : Ñk(X) −→MOk(X) is additive.
(ii) The Thom-Pontryagin map is compatible with the boundary maps in the mapping cone sequences in

bordism and MO-homology, i.e., Θ is a transformation of homology theories.
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Proof. Part (i) is a direct consequence of the additivity of the fundamental classes established in Proposition
8.26 (i). We let (M,h) and (N, g) be two singular k-manifolds over X. The sum [M,h]+[N, g] is represented
by the singular k-manifold (M qN,h+ g). So

Θ([M,h] + [N, g]) = Θ[M qN,h+ g] = (h+ g)∗〈M qN〉
= (h+ g)∗(i

1
∗〈M〉+ i2∗〈N〉) = ((h+ g)i1)∗〈M〉+ ((h+ g)i2)∗〈N〉

= h∗〈M〉+ g∗〈N〉 = Θ[M,h] + Θ[N, g] .

(ii) We let f : X −→ Y be a continuous map. Compatibility of the Thom-Pontryagin construction with
the boundary homomorphism amounts to the commutativity of the following square:

Ñk+1(Cf)
p∗ //

Θ

��

Ñk+1(X+ ∧ S1)
(−∧d)−1

∼=
//

Θ

��

Nk(X)

Θ

��

MOk+1(Cf)
p∗

// MOk+1(X+ ∧ S1)
(−∧S1)−1

∼= // MOk(X+)

Here p : Cf −→ X+ ∧ S1 is the projection. Indeed, the upper composite agrees with the boundary map in
bordism by Proposition 8.18; the lower composite is the homotopy theoretic boundary map by the definition
in (1.15) and the fact that the suspension isomorphism in MO-homology is exterior multiplication with the
class 1 ∧ S1 ∈MO1(S1).

The Thom-Pontryagin construction is natural for continuous maps, so it remains to show the commu-
tativity of the right square above. Assuming multiplicativity of the Thom-Pontryagin construction – see
Proposition 8.31 below – the relation (8.25) gives

Θ(x ∧ d) = Θ(x) ∧Θ(d) = Θ(x) ∧ (1 ∧ S1) = Θ(x) ∧ S1

for all x ∈ Ñk(X). �

The following is Thom’s celebrated theorem [46, Theorem IV.8]:

Theorem 8.30. For every space X and k ≥ 0, the Thom-Pontryagin map

Θ(X) : Nk(X) −→ MO′k(X+)

is an isomorphism.

Proof. We start with the special case where X = ∗ is a one-point space. Then the reference map to X is
no information, so the group Nk(∗) becomes the bordism group Nk of smooth closed k-manifolds. So we
must show that the Thom-Pontryagin map

Θ : Nk −→ πk(MO′)

is an isomorphism. This is a classical argument using basic tool from differential topology; we review the
argument for surjectivity.

We consider a based continuous map f : Sn+k −→ MO′n = Th(Grn(R∞)) that represents a class
in πk(MO′). Since the sphere Sn+k is compact, the map f has image in Th(Grn(V )) for some finite-
dimensional linear subspace V of R∞.

Because Grn(V ) is compact, the Thom space of the tautological n-plane bundle over Grn(V ) is the
onepoint compactification of the total space. So Th(Grn(V )) has a preferred smooth structure away from
the basepoint at ∞, and the zero section of the tautological bundle defines a smooth embedding

s : Grn(V ) −→ Th(Grn(V )) , L 7−→ (0, L) .

We choose a based homotopy from f to another map g : Sn+k −→ Th(Grn(V )) that is smooth (away from
the basepoints) and transverse to the zero section. The zero section has codimension n, so

M = g−1(s(Grn(V )))
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is a smooth closed submanifold of Sn+k of codimension n that misses the basepoint at ∞. In other words,
M is a smooth closed k-manifold inside Sn+k \ {∞} = Rn+k; if we use the inclusion M −→ Rn+k to
calculate the class Θ[M ], the representing map will be homotopic to g, and hence Θ[M ] = [g] = [f ] is the
class in πk(MO) we started with. This proves surjectivity of the Thom-Pontryagin map.

Assuming now that the map Θ : Nk −→ πk(MO′) is an isomorphism for all integers k, we can complete
the argument by formal reasoning. Source and target of Θ are homology theories in X. So cell induction
proves the claim when X is a CW-complex. Both functors Nk and πk(MO′ ∧ (−)+) take weak equivalences
of spaces to isomorphisms; so by CW-approximation, the claim follows for all spaces X. �

The sequential spectrum MO′ is stably equivalent to the commutative orthogonal ring spectrum MO
discussed in Example 4.17. As we explained in (8.21), the homology theories represented by MO′ and MO
are naturally isomorphic. In the rest of the discussion, we use the isomorphism (8.21) to identify these
two homology theories. In particular, we now view the Thom-Pontryagin construction as taking values in
MOk(X) (as opposed to MO′k(X)). Because MO underlies an orthogonal ring spectrum, the homology
theory MO∗, which comes with exterior products as explained in Proposition 8.8. We now explain that the
Thom-Pontryagin construction is also multiplicative.

Proposition 8.31. Let M and N be smooth closed manifolds of dimension k and l, respectively.

(i) The relation

〈M ×N〉 = 〈M〉 × 〈N〉

holds in the group MOk+l(M ×N).

(ii) The Thom-Pontryagin map is multiplicative, i.e., for all classes x ∈ Ñk(X) and y ∈ Ñl(Y ), the
relation

Θ(x ∧ y) = Θ(x) ∧Θ(y)

holds in MOk+l(X ∧ Y ).

Proof. (i) We choose wide smooth embeddings

i : M −→ Rm+k and j : N −→ Rn+l .

The product map

i× j : M ×N −→ Rm+k+n+l

is then another wide smooth embedding that we use for the Thom-Pontryagin construction of M ×N . The
normal bundle of i× j is the exterior direct sum of the normal bundles of i and j. The unit disc D(V ⊕W )
of the direct sum is contained in the product D(V ) ×D(W ) of the unit discs, so the exponential tubular
neighborhood for i × j is contained in the product of the exponential tubular neighborhoods for i and j.
The collapse map

Sm+k+n+l c(i×j)−−−−−→ Th(Grm+n(Rm+k+n+l)) ∧ (M ×N)+

is homotopic to the composite

Sm+k ∧ Sn+l c(i)∧c(j)−−−−−−→ (Th(Grm(Rm+k) ∧M+) ∧ (Th(Grn(Rn+l)) ∧N+)

shuffle−−−−→ Th(Grm(Rm+k) ∧ Th(Grn(Rn+l)) ∧ (M ×N)+

µk,lm,n∧(M×N)+−−−−−−−−−−−→ Th(Grm+n(Rm+k+n+l)) ∧ (M ×N)+ ;

here

µk,lm,n : Th(Grm(Rm+k) ∧ Th(Grn(Rn+l)) −→ Th(Grm+n(Rm+k+n+l))

is defined by (v, L) ∧ (w,K) 7−→ ((v, w), L⊕K) .
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The following diagram commutes up to homotopy through linear isometric embeddings, simply because the
Stiefel manifold L(Rm+k ⊕ Rn+l, (Rm+n)∞) is contractible:

Rm+k ⊕ Rn+l

κm+k⊕κn+l

��

µk,lm,n
// Th(Grm+n(Rm+k+n+l))

κm+k+n+l
∗
��

R∞ ⊕ R∞

ψm⊕ψn

��

R∞

ψm+n

��

(Rm)∞ ⊕ (Rn)∞
κRm,Rn

// (Rm+n)∞

Here ψn : R∞ −→ (Rn)∞ was defined in (8.20) for the purposes of comparing MO′ and MO. The
multiplicativity now follows from the fact that the following diagram of induced maps of Thom spaces
commutes up to based homotopy:

Th(Grm(Rm+k) ∧ Th(Grn(Rn+l))

κm+k
∗ ∧κn+l

∗
��

µk,lm,n
// Th(Grm+n(Rm+k+n+l))

κm+k+n+l
∗
��

Th(Grm(R∞)) ∧ Th(Grn(R∞))

ψm∗ ∧ψ
n
∗
��

Th(Grm+n(R∞))

ψm+n
∗
��

Th(Grm((Rm)∞)) ∧ Th(Grn((Rn)∞)) Th(Grm+n((Rm+n)∞))

MOm ∧MOn µm,n
// MOm+n

Part (ii) is a formal consequence of the multiplicativity of the fundamental classes. We consider singular
manifolds (M,h : M −→ X) and (N, g : N −→ Y ). The class [[M,h]] ∧ [[N, g]] is then represented by the
singular manifold (M ×N, q ◦ (h× g)), where q : X × Y −→ X ∧ Y is the quotient map. Then

Θ[[M ×N, q ◦ (h× g)]] = (q ◦ (h× g))∗〈M ×N〉
= (q ◦ (h× g))∗(〈M〉 × 〈N〉)
= q∗(h∗〈M〉 × g∗〈N〉)
= h∗〈M〉 ∧ g∗〈N〉 = Θ[[M,h]] ∧Θ[[N, g]] .

in the group MOk+l(X ∧ Y ). The second equation is Proposition 8.26 (ii). �

Construction 8.32 (The orientation). Every closed k-manifold M has a fundamental homology class

[M ] ∈ Hk(M ;F2)

that is uniquely characterized by the property that for every point x ∈ M , the image of [M ] in the local
homology groups Hk(M,M \{x};F2) is non-zero. We obtain a natural transformation of homology theories
from bordism to mod-2 singular homology by

Nk(X) −→ Hk(X;F2) , [M,h] 7−→ h∗[M ] .

This is well-defined on bordism classes because whenever M is the boundary of a compact (k+ 1)-manifold
W , then the fundamental class [M ] is the image of the fundamental class [W ] ∈ Hk+1(W,M ;F2) under the
connecting homomorphism ∂ : Hk+1(W,M ;F2) −→ Hk(M ;F2) of the pair (W,M). Hence the class [M ] is
in the kernel of the homomorphism Hk(M ;F2) −→ Hk(W ;F2) induced by the inclusion M −→ W . Thom
showed in [46, Théorème III.2] that the map from bordism to mod-2 homology is surjective.
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We have seen in Theorem 8.30 that bordism is represented by the Thom spectrum MO. Moreover,
singular homology with coefficients in an abelian group A is represented by the Eilenberg-MacLane spectrum
HA. One can show that there is a unique non-zero morphism

ω : MO −→ HF2

is the stable homotopy category SH, sometimes called the orientation of MO; and this morphism represents
the natural transformation that evaluates at the fundamental class.

Now we turn to explicit calculation of the unoriented bordism ring N∗.

Example 8.33. A 0-dimensional closed manifold is a finite set. Bordism between 0-dimensional manifold
are finite disjoint unions of closed intervals. Since an interval connects two points, two 0-dimensional closed
manifolds are bordant if and only their cardinalities have the same parities. In other words, the map

N0

∼=−−→ Z/2 , [M ] 7−→ |M | mod 2

is an isomorphism.
A 1-dimensional smooth closed manifold is a finite disjoint union of circles. A circle is the boundary of

a 2-disc, so every 1-dimensional smooth closed manifold is null-bordant. Hence the bordism group N1 is
trivial.

The cardinality of a finite set is also its Euler characteristic. We observe that the Euler characteristic
modulo 2 is in fact a bordism invariant in all even dimensions.

Proposition 8.34. Let k ∈ N be even.

(i) The boundary of every compact (k + 1)-manifold has an even Euler characteristic.
(ii) The Euler characteristic modulo 2 is a bordism invariant of smooth closed k-manifolds.

Proof. (i) We let B be a compact (k + 1)-dimensional manifold with boundary ∂B. Then the double
DB = B ∪∂B B is a closed (k + 1)-manifold. Since k + 1 is odd, Poincaré duality implies that χ(DB) = 0.
Additivity of Euler characteristic shows that

2 · χ(B)− χ(∂B) = χ(DB) = 0 .

So the boundary ∂B has an even Euler characteristic, as claimed.
(ii) If M and N are closed k-manifolds and M qN ∼= ∂B for some compact (k + 1)-manifold B, then

χ(M) + χ(N) = χ(∂B)

is even by part (i). �

Example 8.35 (Real projective spaces). For every even k ≥ 2, the real projective k-space RP k has Euler
characteristic 1, so it represents a non-trivial element of the bordism group Nk by Proposition 8.34.

For every odd k ≥ 1, the real projective k-space RP k bounds a smooth closed (k + 1)-manifold. Such
a manifold can be described fairly explicit, based on the fact that RP k admits a free involution, i.e., a
diffeomorphism τ : RP k −→ RP k without fixed points such that τ2 = Id. For this purpose we write
k = 2l − 1 and take RP k as the quotient of the unit sphere S(Cl) in Cl by the antipodal action. The free
involution is then given by

τ [λ1, . . . , λl] = [iλ1, . . . , iλl] ,

where i ∈ C is the imaginary unit.
Now we let τ : M −→ M be any free involution of some smooth closed k-manifold M . Then M × [0, 1]

is a smooth (k + 1)-manifold with boundary M × {0, 1}. Because τ is free, the smooth involution

M × [0, 1] −→ M × [0, 1] , (x, t) 7−→ (τx, 1− t)

is also free. So the quotient space

B = M × [0, 1]/(x, t) ∼ (τx, 1− t)
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inherits the structure of a smooth (k + 1)-manifold, and the composite

M
(−,0)−−−→ M × [0, 1]

proj−−→ B

is a diffeomorphism from M to the boundary of B.

The Euler characteristic module 2 in an example of a Stiefel-Whitney number in the sense of the following
definition. We will show next that Stiefel-Whitney numbers provide more bordism invariants, and that these
can be used to distinguish, for example, the bordism classes of RP 2 × RP 2 and RP 4.

Construction 8.36 (Stiefel-Whitney numbers). Now we let M be a smooth closed k-manifold. We write

wi(M) = wi(τM ) ∈ Hi(M ;F2)

for the i-th Stiefel-Whitney class of the tangent bundle of M . We write

[M ] ∈ Hk(M ;F2)

for the fundamental class of M .
We consider natural numbers r1, r2 . . . , rk ≥ 0 such that

r1 + 2r2 + · · ·+ krk = k .

The Stiefel-Whitney number of a smooth closed k-manifold M associated to (r1, . . . , rk) is

(w1(M)r1 · w2(M)r2 · . . . · wk(M)rk) ∩ [M ] ∈ Z/2 ,

the cap product of the characteristic class

(8.37) w1(M)r1 · w2(M)r2 · · · · · wk(M)rk ∈ Hk(M ;F2)

with the fundamental class of M .
If the k-manifold M is connected, then the top cohomology group Hk(M ;F2) is 1-dimensional, and then

the Stiefel-Whitney number associated to (r1, . . . , rk) is 1 if and only if the characteristic class (8.37) is
non-zero.

Example 8.38. The sequence (0, . . . , 0, 1) defines a Stiefel-Whitney number for smooth closed k-manifolds
M . And in fact,

wk(M) ∩ [M ] ≡ χ(M) mod 2 ,

the Euler characteristic modulo 2.

Proposition 8.39. Then the Stiefel-Whitney number associated to any sequence of natural numbers is a
bordism invariant of smooth closed k-manifolds.

Proof. Homology and cohomology take finite disjoint unions to products, and the fundamental classes and
characteristic classes of a disjoint union is the product of the fundamental and characteristic classes of the
summands. So the Stiefel-Whitney number associated to (r1, . . . , rk) is additive on disjoint unions. So it
suffices to show that all Stiefel-Whitney numbers of boundaries of (k + 1)-manifolds vanish.

We let B be a smooth compact (k+1)-manifold. The restriction of the tangent bundle τB to the boundary
∂B is isomorphic to the sum of τ∂B and a trivial line bundle. Stiefel-Whitney classes do not change upon
addition of trivial bundles, so

wi(∂B) = wi(τB |∂B) = ι∗(wi(B))

in Hi(∂B;F2), where ι : ∂B −→ B is the inclusion. So

(w1(∂B)r1 · w2(∂B)r2 · . . . · wk(∂B)rk) ∩ [∂B] = ι∗(w1(B)r1 · w2(B)r2 · . . . · wk(B)rk) ∩ [∂B]

= (w1(B)r1 · w2(B)r2 · . . . · wk(B)rk) ∩ ι∗[∂B] = 0 .

The last relation uses that ι∗[∂B] = 0 in Hk(B;F2) because ∂B is a boundary in B. �

Thom [46, Corollaire IV.11] also showed a converse to the previous Proposition 8.39: two smooth closed
k-manifolds all of whose Stiefel-Whitney numbers agree are already bordant.



ORTHOGONAL SPECTRA AND STABLE HOMOTOPY THEORY 97

Example 8.40 (Stiefel-Whitney classes of real projective spaces). We revisit the Stiefel-Whitney numbers
of the real projective spaces. To this end recall that tangent bundle of RP k satisfies the relation

τRPk ⊕ R ∼= γk ⊕ · · · ⊕ γk︸ ︷︷ ︸
k+1

,

see for example [34, Theorem 4.5]. Here γk is the tautological line bundle over RP k, with total space

{(x, L) ∈ Rk+1 × RP k : x ∈ L} .

We also recall that the cohomology algebra of RP k is given by

H∗(RP k;F2) = F2[a]/(ak+1) ,

a truncated polynomial algebra generated by the non-zero class a ∈ H1(RP k;F2), which is also the first
Stiefel-Whitney class of tautological line bundle, i.e.,

a = w1(γk) .

We conclude that

wtotal(RP k) = wtotal(τRPk ⊕ R) = wtotal(γ
k+1
k ) = (wtotal(γk))k+1 = (1 + a)k+1 .

Comparing the summand of degree i yields

wi(RP k) =

(
k + 1

i

)
· ai ∈ Hi(RP k;F2) .

For example,

wtotal(RP 1) = 1 ,

wtotal(RP 2) = 1 + a+ a2 ,

wtotal(RP 3) = 1 ,

wtotal(RP 4) = 1 + a+ a4 .

For odd numbers k, the projective space RP k bounds a (k+ 1)-manifold, compare Example 8.35. Hence all
Stiefel-Whitney numbers must vanish.

Let us use this calculate all Stiefel-Whitney numbers of RP 4. The degree 4 Stiefel-Whitney numbers are
indexed by the sequences (4, 0, 0, 0), (2, 1, 0, 0), (0, 2, 0, 0), (1, 0, 1, 0) and (0, 0, 0, 1); or equivalently by the
monomials in Stiefel-Whitney classes w4

1, w
2
1w2, w

2
2, w1w3 and w4. Since w2(RP 4) and w3(RP 4) are trivial,

the Stiefel-Whitney numbers of RP 4 associated to the monomials w2
1w2, w

2
2 and w1w3 are zero. Since

w1(RP 4)4 = w4(RP 4) = a4 ,

the Stiefel-Whitney numbers of RP 4 associated to w4
1 and w4 are 1.

Example 8.41. We can now show that the bordism classes of RP 2×RP 2 and RP 4 are linearly independent
in N4. We already identified the Stiefel-Whitney numbers of RP 4 in the previous example. To calculate
the Stiefel-Whitney numbers of RP 2 × R2, we recall that

H∗(RP 2 × RP 2;F2) = F2[b, c]/(b3, c3)

by the Künneth theorem, where b, c ∈ H1(RP 2 × RP 2;F2) are the restriction of the generator a ∈
H1(RP 2;F2) along the projections to the two factors. The tangent bundle of a product is the product
of the tangent bundles, and the total Stiefel-Whitney classes of an exterior product is the exterior product
of total Stiefel-Whitney classes. So we obtain

wtotal(RP 2 × RP 2) = wtotal(τRP 2 × τRP 2) = (1 + b+ b2) · (1 + c+ c2) .
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Comparing the summand of the same degree yields

w1(RP 2 × RP 2) = b+ c

w2(RP 2 × RP 2) = b2 + bc+ c2

w3(RP 2 × RP 2) = b2c+ bc2

w4(RP 2 × RP 2) = b2c2 .

This yields that the Stiefel-Whitney numbers associated to w4
1, w

2
1w2 and w1w3 are 0, and the Stiefel-

Whitney numbers associated to w2
2 and w4 are 1. Comparing Stiefel-Whitney numbers shows that RP 2 ×

RP 2 and RP 4 are linearly independent in N4, as claimed.

Thom showed in [46, Théorème IV.12] that the ring N∗ is a polynomial algebra over F2 on classes xk
for all k ≥ 1 with k 6= 2j − 1 for any j ≥ 0; and he showed that for even k, the classes of the projective
spaces [RP k] ∈ Nk can be taken as polynomial generators; in particular, these classes are algebraically
independent in the bordism ring N∗. Explicit manifolds that represent the odd dimensional polynomial
generators were first constructed by Dold [11], and are therefore called the Dold manifolds.

Exercises

Exercise E.1 (Coordinatized orthogonal spectra). A coordinatized orthogonal spectrum consists of the
following data:

• a sequence of based spaces Xn for n ≥ 0,
• a based continuous left O(n)-action on Xn for each n ≥ 0,
• based maps σn : S1 ∧Xn −→ X1+n for n ≥ 0.

This data is subject to the following condition: for all m,n ≥ 0, the iterated structure map Sm ∧Xn −→
Xm+n defined as the composition

Sm ∧Xn
Sm−1∧σn // Sm−1 ∧X1+n

Sm−2∧σ1+n
// · · ·

σm−1+n
// Xm+n

is (O(m)×O(n))-equivariant. Here the orthogonal group O(m) acts on Sm as the one-point compactification
of the tautological action on Rm, and O(m)×O(n) acts on the target by restriction, along orthogonal sum,
of the O(m+ n)-action.

A morphism f : X −→ Y of coordinatized orthogonal spectra consists of O(n)-equivariant based maps
fn : Xn −→ Yn for n ≥ 0, which are compatible with the structure maps in the sense that fn+1 ◦ σn =
σn ◦ (S1 ∧ fn) for all n ≥ 0.

Let X be a coordinatized orthogonal spectrum.

(a) Let W be an inner product space of dimension n. We define a based space

X[(W ) = (L(Rn,W )+ ∧Xn) / ∼ ,

the quotient space of L(Rn,W )+ ∧Xn by the equivalence relation

(ϕ ◦A) ∧ x ∼ ϕ ∧ (A · x)

for all linear isometries ϕ : Rn ∼= W and all A ∈ O(n) and x ∈ Xn. Show that X[(W ) is
homeomorphic to Xn.

(b) Let U be another inner product space of the same dimension as W . Show that the continuous map

L(U,W )+ ∧ L(Rn, U)+ ∧Xn −→ L(Rn,W ) ∧Xn

ψ ∧ ϕ ∧ x 7−→ (ψ ◦ ϕ) ∧ x

factors through a continuous map

X[(U,W ) : L(U,W )+ ∧X[(U) −→ X[(W ) .
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(c) Let V be another inner product space of dimension m, and let ψ : Rm ∼= V be a linear isometry.
Show that the continuous map

SV ∧ L(Rn,W )+ ∧Xn −→ L(Rm+n, V ⊕W )+ ∧Xm+n

v ∧ ϕ ∧ x 7−→ (ψ ⊕ ϕ) ∧ σm(ψ−1(v) ∧ x)

factors through a continuous map

σV,W : SV ∧X[(W ) −→ X[(V ⊕W )

that is independent of the choice of ψ.
(d) Show that there is a unique orthogonal spectrum X[ whose values are the spaces X[(W ) from (a),

whose functoriality in isometries is as in (b), and whose structure maps are as in (c).
(e) Extend the assignment X 7→ X[ to functor

(−)[ : Spcoord −→ Sp .
(f) A forgetful functor

Sp −→ Spcoord

is defined on objects by (UX)n = X(Rn), where Rn is endowed with the standard inner product
〈x, y〉 =

∑n
i=1 xiyi. The structure map is

σn = σR,Rn : S1 ∧Xn = SR ∧X(Rn) −→ X(R1+n) = X1+n .

On morphisms, the forgetful functor evaluates at Rn. Show that the forgetful functor is an equiva-
lence of categories by exhibiting natural isomorphisms U(X[) ∼= X and Y ∼= (UY )[.

Exercise E.2. Find a family {Xi}i∈I of orthogonal spectra for which the natural map

π0

(∏
i∈I
Xi
)
−→

∏
i∈I

π0(Xi)

is not surjective.

Exercise E.3. We recall that the m-th stable homotopy group πs
m(K) of a based space K is defined as

the colimit of the sequence of abelian groups

πm(K)
S1∧−−−−−→ π1+m(S1 ∧K)

−∧S1

−−−−→ π2+m(S2 ∧K)
S1∧−−−−−→ · · · .

Smashing with the identity of S1 from the right provides an isomorphism −∧S1 : πs
m(K) −→ πs

m+1(K∧S1),
a special case of the suspension isomorphism (see Proposition 1.11) for the suspension spectrum of K.

Show that the homotopy groups of an orthogonal spectrum X can also be calculated from the system of
stable as opposed to unstable homotopy groups of the individual spaces Xn: exhibit πk(X) as a colimit of
the sequence

πs
k+n(Xn)

−∧S1

−−−−→ πs
k+n+1(Xn ∧ S1)

(σop
Rn,R)∗

−−−−−→ πs
k+n(Xn+1) .

Exercise E.4. Exhibit a left adjoint and a right adjoint to the shift functor shV : Sp −→ Sp for orthogonal
spectra, introduced in Example 2.13

Exercise E.5. Define orthogonal ring spectra via ιV : SV −→ R(V ) and multiplication maps µV,W :
R(V ) ∧R(W ) −→ R(V ⊕W ), requiring associativity, unit and centrality.

Exercise E.6. Let M be a monoid and A a ring. The monoid ring A[M ] is the A-linearization of the
underlying set of M , endowed with the multiplication by the A-bilinear extension of the multiplication of
M :

(
∑

i
ai ·mi) · (

∑
j
a′j ·m′j) =

∑
i,j

(ai · a′j) · (mi ·m′j) .

This construction extends degreewise from rings to graded rings.
Now we let R be an orthogonal ring spectrum, and we endow the M with the discrete topology. Exhibit

an isomorphism of graded rings
π∗(R)[M ] ∼= π∗(RM) ,
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where RM is the monoid ring spectrum introduced in Example 4.13.

Exercise E.7. Let A = {Ak}k∈Z be a graded ring, and m ≥ 1. We define the graded matrix ring Mm(A)
by taking (m × m)-matrices degreewise: the abelian group (Mm(A))k is the group of (m × m)-matrices
with entries in Ak, and the multiplication maps (Mm(A))k× (Mm(A))l −→ (Mm(A))k+l are defined by the
usual matrix multiplication, using the multiplication of the graded ring A.

Let R be an orthogonal ring spectrum. Exhibit an isomorphism of graded rings

π∗(Mm(R)) ∼= Mm(π∗(R)) ,

where Mm(R) is the (m×m)-matrix ring spectrum introduced in Example 4.15.

Exercise E.8. Let A = {Ak}k∈Z be a graded ring. The graded-opposite ring Aop has the same underlying
graded abelian group as A, but the multiplication in Aop is defined by

x ·op y = (−1)kl · y · x ,
where x ∈ Ak, y ∈ Al and the right hand side is the multiplication in A.

Let R be an orthogonal ring spectrum. Show that π∗(R
op) = (π∗(R))op.

Exercise E.9. We let i : A −→ B and p : X −→ Y be morphisms in a category C. Then i has the left
lifting property with respect to p if the following holds: for all morphisms α : A −→ X and β : B −→ Y
such that pα = βi, there is a morphism λ : B −→ X such that λi = α and pλ = β:

A
α //

i

��

X

p

��

B

λ

>>

β
// Y

For a class E of C-morphisms, we denote by E⊥ the class of all C-morphisms that have the left lifting
property with respect to all morphisms in E . Show that the class E⊥ has the following closure properties:

(a) The class E⊥ is closed under composition: for all composable morphisms i : A −→ B and j : B −→ C
in E⊥, the composite ji belongs to E⊥.

(b) The class E⊥ is closed under cobase change: for every pushout square in C

A

i

��

// C

j

��

B // D

such that i ∈ E⊥, the morphism j belongs to E⊥.
(c) The class E⊥ is closed under retracts: for every commutative diagram in C

C
s //

j

��

A
r //

i

��

C

j

��

D
t
// B

u
// C

such that rs = IdC and ut = IdD, if i belongs to E⊥, then so does j.
(d) The class E⊥ is closed under sequential composition: for every sequence of morphisms in E⊥

A0 −→ A1 −→ A2 −→ . . .

that has a colimit in C, the canonical morphism A0 −→ colimnAn belongs to E⊥.

Exercise E.10. Show that the following classes of cofibrations and weak equivalences define cofibration
structures on the respective categories.

(a) The category of compactly generated spaces with respect to the h-cofibrations and the weak homo-
topy equivalences.
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(b) The category of simplicial sets with respect to the monomorphisms (i.e., morphisms that are di-
mensionwise injective) and the weak equivalences.

(c) The category of Z-graded chain complexes in an additive category A, with respect to the chain
maps that are dimensionwise split monomorphisms, and the chain homotopy equivalences.

(d) For a ring S, the category of Z-graded chain complexes of S-modules with respect to the chain
maps that are dimensionwise split monomorphisms, and the quasi-isomorphisms.

(e) For a ring S, the category of S-modules with respect to monomorphism of S-modules and the
op-stable equivalences. Here a morphism f : M −→ N of S-modules is an op-stable equivalence if
there exists a morphism g : N −→ M of S-modules such that the morphism gf − IdM : M −→ M
and fg − IdN : N −→ N each factor through an injective S-module.

In each example, find a class of morphisms E such that the respective cofibrations are characterized by the
left lifting property with respect to all morphisms in E .

Exercise E.11. Let A be an additive category. We consider the cofibration structure on the category
Ch(A) of Z-graded chain complexes in A from Exercise E.10 (c).

(a) Show that two chains maps are homotopic in this cofibration structure if and only if they are chain
homotopic.

(b) We define a category K(A) with objects all Z-graded chain complexes in A, and with morphisms
the chain homotopy classes of chain maps. Show that the quotient functor from Ch(A) −→ K(A)
is a localization at the class of chain homotopy equivalence.

Exercise E.12. Let E be an orthogonal Ω-spectrum, i.e., the adjoint σ̃n : En −→ Ω(E1+n) of the structure
map is a weak homotopy equivalence for every n ≥ 0. Show that for every based CW-complex A (not
necessarily finite), the map

[A,E0] −→ SH(Σ∞A,E)

that sends a continuous based map A −→ E0 to the image of the adjoint Σ∞A −→ E under the localization
functor is an isomorphism of abelian groups. (Hint: induction over a CW-structure on A)

Exercise E.13. Let T be a triangulated category. We call a triangle (f, g, h) in T anti-distinguished
if the triangle (−f,−g,−h) is distinguished in the original triangulation of T . Show that the class of
anti-distinguished triangles is also a triangulation of T (with respect to the same suspension functor).

Exercise E.14. Let T be a triangulated category and Σ−1 : T −→ T a quasi-inverse to the suspension
functor, i.e., a functor endowed with a natural isomorphism ψA : A ∼= Σ(Σ−1A). We call a triangle

A
f−−→ B

g−−→ C
h−−→ Σ−1A

in the opposite category T op op-distinguished if the triangle

Σ−1A
h−−→ C

g−−→ B
ψA◦f−−−−−→ Σ(Σ−1A)

is distinguished in the original triangulation of T . Show that the opposite category T op is a triangulated cat-
egory with respect to the functor Σ−1 : T op −→ T op as suspension functor and the class of op-distinguished
triangles.

Exercise E.15. Let T be a triangulated category and fn : Xn −→ Xn+1 a sequence of composable
morphism for n ≥ 0. Let (X̄, ϕn) and (X̄ ′, ϕ′n) be two homotopy colimits of the sequence (Xn, fn). Construct
an isomorphism ψ : X̄ −→ X̄ ′ satisfying ψϕn = ϕ′n and commuting with the connecting morphisms to the
suspension of

⊕
n≥0Xn. To what is extent it the isomorphism ψ unique?

Exercise E.16. Let T be a triangulated category with countable sums. Let X be any object of T and
e : X −→ X an idempotent endomorphism. Show that e splits in the following sense: there are objects
eX and (1 − e)X and an isomorphism between X and the sum eX ⊕ (1 − e)X under which e : X −→ X

corresponds to the endomorphism

(
1 0
0 0

)
of eX ⊕ (1− e)X. (Hint: use that homotopy colimits exist in T

and construct eX as the homotopy colimit of the sequence of e’s).
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Exercise E.17. Let f : X −→ Y and g : Y −→ Z be morphisms in a triangulated category T such that
the composite gf : X −→ Z zero and the group [ΣX,Z] is trivial. Show that there is at most one morphism
h : Z −→ ΣX such that (f, g, h) is a distinguished triangle.

Exercise E.18. Let ψ : X −→ Y be a morphism of orthogonal spectra that is levelwise a Serre fibration.
Let ι : F −→ X denote the inclusion of the strict fiber of ψ.

(a) Show that the morphism l : F ∧ S1 −→ Cψ induced by the pullback square

F
ι //

��

X

ψ

��

∗ // Y

on the vertical mapping cones is a stable equivalence.
(b) As before we let i : Y −→ Cψ denote the inclusion into the mapping cone. Show the triangle

F
γ(ι)−−−−−−→ X

γ(ψ)−−−−−−→ Y
−γ(l)−1◦γ(i)−−−−−−−−→ ΣF

is distinguished in the stable homotopy category.

Exercise E.19. Let X be any space. Show that the homomorphism

Nk(X) −→ Hk(X;F2) , [M,h] 7−→ h∗[M ]

that evaluates a singular manifold at the mod-2 fundamental class is an isomorphism for k = 0, and
surjective for k = 1.
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[47] M Tierney, Categorical constructions in stable homotopy theory. A seminar given at the ETH, Zürich, in 1967. Lecture
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