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Introduction

In this article we provide a new perspectives on unstable global homotopy theory: we interpret it as the
homotopy theory of ‘spaces with an action of the universal compact Lie group’. This ‘universal compact
Lie group’ is a well known object, namely the topological monoid L = L(R∞,R∞) of linear isometric
embeddings of R∞ into itself. The category of L-spaces has been much studied, for example in [1, 3, 13, 14];
in some of these source the symbol L refers to the linear isometries operad, so the monoid we denote L is then
the monoid L(1) of unary operations. The underlying space of L is contractible, so the homotopy theory
of L-spaces with respect to ‘underlying’ weak equivalences is just another model for the homotopy theory
of spaces. However, we shift the perspective on the homotopy theory that L-spaces represent, and use a
notion global equivalences of L-spaces that is much finer than the notion of ‘underlying’ weak equivalence
that has so far been studied. When viewed through the eyes of global equivalences, one should think of L
as a ‘universal compact Lie group’ and hence of an L-space as a ‘global space’ on which all compact Lie
groups act simultaneously and in a compatible way. Such a statement is of course not literally correct: the
topological monoid L is neither compact, nor a group, much less a compact Lie group.

However, we will make the case that L has all the moral right to be thought of as the universal compact
Lie group. In fact, L contains a copy (in fact, many conjugate ones) of every compact Lie group in a
certain way: we may choose a continuous isometric linear G-action on R∞ that makes R∞ into a complete
G-universe. This action is a continuous injective group homomorphism ρ : G −→ L, and we call the images
ρ(G) of such homomorphisms completely universal subgroups of L (compare Definition 2.10 below). Because
any two complete G-universes are equivariantly isometrically isomorphic, the group ρ(G) is independent,
up to conjugacy by an invertible linear isometry, of the choice of ρ. So in this way every compact Lie group
determines a specific conjugacy class of subgroups of L, abstractly isomorphic to G.

One of the main results of this paper is a chain of two Quillen equivalences of model categories:

orbispc
Λ // LT

mapL(Q,−)

//
Φ

oo spc
Q⊗L−oo

The left most category is the category of orbispaces, i.e., the category of contravariant continuous functors
from the global orbit category Ogl to spaces. Orbispaces are equipped with a ‘pointwise’ model structure.
Moreover, LT is the category of L-spaces, i.e., spaces (compactly generated and weakly Hausdorff, as
usual), equipped with a continuous left L-action. Finally, spc is the category of orthogonal spaces, i.e.,
continuous functors to spaces from the category of inner product spaces and linear isometric embeddings.
Both orthogonal spaces and L-spaces are equipped with global model structures.

The Quillen equivalence (Λ,Φ) between L-spaces and orbispaces is then an analog of Elmendorf’s the-
orem [8] saying that the passage from G-spaces to functors on the orbit category that collects the fixed
point spaces of the various closed subgroups of G is an equivalence of homotopy theories. Indeed, the global
orbit category Ogl is the direct analog for the universal compact Lie group of the orbit category of a single
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compact Lie group: the objects of Ogl are the completely universal subgroups of L and the morphism spaces
in Ogl are defined by

Ogl(K,G) = mapL(L/K,L/G) ∼= (L(R∞G ,R∞K )/G)K .

As we explain in Theorem 2.30, the Quillen equivalence between L-spaces (with the global model structure)
and orbispaces is a special case of a generalization of Elmendorf’s theorem to a context of topological
monoids relative to certain collections of closed submonoids, compare Proposition 1.14.

We should probably justify the terminology ‘orbispaces’ for functors on the global orbit category. For
this we refer to the paper [10] of Gepner and Henriques, who compare the homotopy theories of ‘Orb-spaces’
with homotopy theories of topological stacks and of topological groupoids. The setup of [10] is relative to a
specified class of ‘allowed isotropy group’, and Gepner and Henriques then construct a topological category
whose objects are the allowed isotropy groups and such that the morphism space Orb(K,G) from a group K
to a group G has the weak homotopy type of the homotopy orbit space of G acting by conjugation on the
space of continuous homomorphisms from K to G. An orbispace, or Orb-space, is then a continuous functor
from the category Orb to spaces. Our global orbit category Ogl is such a category for the class of compact
Lie groups, whence the terminology. So a more precise, but too lengthy name would be ‘orbispaces with
compact Lie group isotropy’.

1. Model structures for equivariant spaces

In this section we establish certain ‘projective’ model structures for spaces equipped with an action of a
topological monoid. The results and methods are fairly standard, but we do not know of a reference in the
generality we need, so we provide full proofs.

Before we start, let us fix some notation and conventions. By a ‘space’ we mean a compactly generated
space in the sense of [16], i.e., a k-space (also called Kelley space) that satisfies the weak Hausdorff condi-
tion. We denote by T the category of compactly generated spaces. The ‘classical’ model structure on the
category of all topological spaces was established by Quillen in [17, II.3 Thm. 1]. We use the straightforward
adaptation of this model structure to the category of compactly generated spaces, which is described for
example in [11, Thm. 2.4.25]. In this model structure on the category T, the weak equivalences are the weak
homotopy equivalences and fibrations are the Serre fibrations. The cofibrations are the retracts of general-
ized CW-complexes, i.e., cell complexes in which cells can be attached in any order and not necessarily to
cells of lower dimensions.

We let M be a topological monoid, i.e., a compactly generated space equipped with an associative and
unital multiplication

µ : M ×M −→ M

that is continuous with respect to the compactly generated product topology. An M -space is then a
compactly generated space X equipped with an associative and unital action

α : M ×X −→ X

that is continuous with respect to the compactly generated product topology.
We let N be a submonoid of M and denote by

XN = {x ∈ X | nx = x for all n ∈ N}

the subspace of N -fixed points. For an individual element n ∈ N the n-fixed subspace {x ∈ X | nx = x} is
the preimage of the diagonal under the continuous map (Id, n ·−) : X −→ X×X, so it is a closed subspace
of X by the weak Hausdorff condition. The N -fixed points XN are then closed in X as an intersection of
closed subsets. This means that the subspace topology on XN is again compactly generated and so

(1.1) XN incl // X //// map(N,X)
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is an equalizer diagram in the category of compactly generated spaces, where the two maps on the right
are adjoint to the projection N ×X −→ X respectively the composite

N ×X incl×X−−−−−→ M ×X α−−→ X .

Definition 1.2. A submonoid N of a topological monoid M is biclosed if the following two conditions hold:

(i) the set N is closed in the topology of M , and
(ii) if m ∈M and n ∈ N satisfy mn ∈ N , then m ∈ N .

Remark 1.3. Eventually we want to define classes of weak equivalences for M -spaces by testing on the
fixed point spaces XN for collections of submonoids. For this purpose it is no loss of generality to restrict
to biclosed submonoids, as we now explain. First we observe that any intersection of biclosed submonoids
of a topological monoid is again biclosed. So an arbitrary submonoid N of M has a biclosure N̄ , defined as
the intersection of all biclosed submonoid of M that contain N , which is the smallest biclosed submonoid
of M that contains N .

We will now argue that for every M -space X the N -fixed points agree with the N̄ -fixed points:

XN = XN̄ .

The stabilizer of a point x ∈ X is the submonoid

stabM (x) = {m ∈M | mx = x} .

The stabilizer is also the preimage of {x} under the continuous map − · x : M −→ X; since singletons in
compactly generated spaces spaces are closed, the stabilizer is a closed subset of M . Moreover, if m,n ∈M
are such that n and mn stabilize x, then

mx = m(nx) = (mn)x = x ,

i.e., m ∈ stabM (x). So the point stabilizer of M -spaces are always biclosed submonoids.
More generally, for every subset S ⊆ X the stabilizer

stabM (S) = {m ∈M | mx = x for all x ∈ S}

is the intersection of the stabilizers of all points in S, so it is another biclosed submonoid of M . If N is a
submonoid of M , not necessarily biclosed, then

N ⊆ stabM (XN )

and the stabilizer monoid on the right is biclosed. So the biclosure N̄ of N is contained in stabM (XN ), and

hence XN = XN̄ .

Example 1.4. For example, every closed subgroup G of a topological monoid M is biclosed, because the
assumptions g ∈ G and mg ∈ G imply m = (mg)g−1 ∈ G.

Another example relevant to global homotopy theory is the topological monoid L = L(R∞,R∞) of linear
isometric self-embeddings of R∞. The topology on L is as the inverse limit of the spaces L(Rn,R∞),
and L(Rn,R∞) has the colimit topology as the union of the compact spaces L(Rn,Rm). If V is a finite
dimensional inner product space, then the space L(V,R∞) of linear isometric embeddings (again with the
colimit topology of the sequence map(V,Rm)) is an L-space under composition of isometries. For every
linear isometric embedding α : V −→ R∞ the stabilizer

stabL(α) = {ϕ ∈ L | ϕ ◦ α = α}

is thus a biclosed submonoid of L, compare the previous remark.
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Now we show that the functor sending an M -space X to the set of N -fixed points is representable by an
‘orbit space’ M/N . We denote by M/N a coequalizer in the category of M -spaces

(1.5) M ×N
proj //
µ′

// M
q // M/N ,

where µ′ = µ ◦ (M × incl). Since the forgetful functor creates colimits, we could equivalently take a
coequalizer in the underlying category of compactly generated spaces, and that inherits a unique M -action
that makes the projection q : M −→M/N a homomorphism of M -spaces.

Now we let K be any compactly generated space. Since product with K is a left adjoint, the diagram

M ×N ×K
proj×K //
µ′×K

// M ×K
q×K // M/N ×K .

is another coequalizer of M -spaces, where M acts trivially on K. So for every M -space X, precomposition
with q ×K is a bijection from MT(M/N ×K,X) to the equalizer of the two maps

MT(M ×K,X)
MT(proj×K,X)//
MT(µ′×K,X)

// MT(M ×N ×K,X) .

The free-forgetful adjunction and the adjunction between N × − and map(N,−) identifies this with the
set of those continuous maps f : K −→ X that are equalized by the two right maps in the equalizer
diagram (1.1). Since the inclusion of XN into X is an equalizer, we have shown altogether that evaluation
at the class of the identity element is a bijection

(1.6) MT(M/N ×K,X) −→ T(K,XN )

from the set of continuous M -maps from M/N × K to X to the set of continuous maps from K to the
N -fixed points of X.

One more time we do not lose any generality by restricting to biclosed submonoids. Indeed, the proof of
the adjunction (1.6) did not use any property of the submonoid N . Since XN = XN̄ for every M -space X,
the M -spaces M/N and M/N̄ represent the same functor, and so they are isomorphic. In other words, the
‘orbit space’ M/N only depends on the biclosure N̄ of the submonoid N .

� As we recall in [18, Prop. A.1.4 (iv)], orbit spaces of compactly generated spaces by actions of compact
topological groups behave as expected, i.e., the usual quotient topology on the orbit set is compactly

generated. One should beware that this need not be the case if we drop the compactness hypothesis or
the existence of inverses. So even for biclosed submonoids N , the ‘orbit space’ M/N may not be what one
expects at first sight. To construct M/N , one could start from the equivalence relation ∼N on M generated
by m ∼N mn for all m ∈ M and n ∈ N . If N is biclosed, then it is the equivalence class of the unit
element 1, but the other equivalence classes may still be hard to identify.

Since M is compactly generated, the quotient topology on the set M/ ∼N of equivalence classes will
automatically yield a k-space, but not necessarily a weak Hausdorff space. So in a second step one has to
apply the left adjoint to the inclusion of compactly generated spaces into k-spaces, but this step can change
the topology and may even alter the underlying set by identifying different equivalence classes.

Example 1.7. Here are two examples of particular relevance for us where we can describe an ‘orbit space’
more explicitly. If G is a compact topological group and H a closed subgroup, then the set G/H of left
cosets endowed with the quotient topology is compact, so it is a coequalizer in then sense of (1.5). So in
this situation the orbit space notation is unambiguous.

For the monoid L of linear isometric self-embeddings of R∞ and a finite dimensional inner product
space V , the L-space L(V,R∞) ought to be a quotient of L by the stabilizer of any particular linear
isometric embedding α : V −→ R∞. In fact, L(V,R∞) is transitive as an L-space in the strong sense that
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any two points are related by the action of an invertible element in L. So the stabilizers of any two points
in L(V,R∞) are conjugate in L.

Lemma 1.8. For every topological monoid M , every submonoid N and every compact space K the M -space
M/N ×K is finite with respect to sequences of closed embeddings of M -spaces.

Proof. We let

X0
f0−−→ X1

f1−−→ X2
f2−−→ . . .

be a sequence of morphisms of M -spaces that are closed embeddings of underlying spaces, and

f : M/N ×K −→ colimi≥0 Xi

a morphism of M -spaces. The composite

K
(N,−)−−−−→ M/N ×K f−−→ colimi≥0 Xi

factors through a continuous map g : K −→ Xi for some i ≥ 0 by [11, Prop. 2.4.2] (this uses that singletons
in weak Hausdorff spaces are closed). Sequential colimits of compactly generated spaces along injective
continuous maps are given by the colimits of underlying sequence of sets [ref to Appendix of Lewis’ thesis],
so the canonical map Xi −→ colimi≥0 Xi is injective. Since the map f(N,−) : K −→ colimi≥0 Xi lands
in the N -fixed points of the colimit, the factorization g lands in the N -fixed points, so it extends uniquely
to a morphism of M -spaces g̃ : M/N × K −→ Xi by the adjunction (1.6). Since morphisms out of
M/N × K are determined by their restriction to K, the morphism g̃ is the desired factorization of the
original morphism f . �

Now we let C be a collection of biclosed submonoids of M that is stable under conjugacy by invertible
elements of M . We call a morphism f : X −→ Y of M -spaces a C-equivalence (respectively C-fibration) if the
restriction fN : XN −→ Y N to N -fixed points is a weak equivalence (respectively Serre fibration) of spaces
for all submonoids N of M that belong to the collection C. A C-cofibration is a morphism with the right
lifting property with respect to all morphisms that are simultaneously C-equivalences and C-fibrations. The
resulting ‘C-projective model structure’ is well known in the case when M is a group and C is a collection
of closed subgroups, and the proof for monoids is not much different and fairly standard. However, I do
not know a reference in the monoid case, so I provide the proof.

One aspect of the proof occurs several other times in similar contexts, namely that a certain model
structure is topological. To avoid repeating the same kind of argument several times, we axiomatize it.
We consider a model category M that is also enriched, tensored and cotensored over the category T of
compactly generated spaces. We denote the tensor by ×. Given a continuous map of spaces f : A −→ B
and a morphism g : X −→ Y in M, we denote by f�g the pushout product morphism defined as

f�g = (f × Y ) ∪ (A× g) : A× Y ∪A×X B ×X −→ B × Y .

We recall that the model structure is called topological if the following two conditions hold:

• if f is a cofibration of spaces and g is a cofibration inM, then the pushout product morphism f�g
is also a cofibration;
• if in addition f or g is a weak equivalence, then so is the pushout product morphism f�g.

We denote by

Dk = {x ∈ Rk : 〈x, x〉 ≤ 1} and ∂Dk = {x ∈ Rk : 〈x, x〉 = 1}

the unit disc in Rk respectively its boundary, a sphere of dimension k − 1. In particular, D0 = {0} is a
one-point space and ∂D0 = ∅ is empty. We denote by

ik : ∂Dk −→ Dk and jk : Dk × {0} −→ Dk × [0, 1]
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the inclusions. Then {ik}k≥0 is the standard set of generating cofibrations for the Quillen model structure
on the category of spaces, and {jk}k≥0 is the standard set of generating acyclic cofibrations, compare The-
orem [11, Thm. 2.4.25]. The pushout product condition can also be stated in two different, but equivalent,
adjoint forms, compare [11, Lemma 4.2.2].

Proposition 1.9. Let M be a model category that is also enriched, tensored and cotensored over the
category T of spaces. Suppose that there is a set of objects G of M with the following properties:

(a) The acyclic fibrations are characterized by the right lifting property with respect to the morphisms of
the form ik ×K for all k ≥ 0 and K ∈ G.

(b) The fibrations are characterized by the right lifting property with respect to the morphisms of the form
jk ×K for all k ≥ 0 and K ∈ G.

Then the model structure is topological.

Proof. The hypothesis are saying that {ik × K}k≥0,K∈G is a set of generating cofibrations for the given
model structure on M, and that {jk × K}k≥0,K∈G is a set of generating acyclic cofibrations. Since the
tensor bifunctor × has an adjoint in each variable, it preserves colimits in each variable. So it suffices to
the check the pushout product properties when the maps f and g are from the sets of generating (acyclic)
cofibrations, compare [11, Cor. 4.2.5].

The set of inclusions of spheres into discs is closed under pushout product, in the sense that ik�il
is homeomorphic to ik+l. So pushout product with ik preserves the set {ik × K}k≥0,K∈K of generating
cofibrations (up to isomorphism). Similarly, the pushout product of a sphere inclusion ik with the inclusion jl
isomorphic to jk+l. So pushout product with ik preserves the set {jl×K}l≥0,K∈K of generating cofibrations;
and pushout product with jk takes the set {il×K}l≥0,K∈K of generating cofibrations to the set of generating
acyclic cofibrations. �

Proposition 1.10. Let M be a topological monoid and C a collection of biclosed submonoids of M . Then
the C-equivalences, C-cofibrations and C-fibrations form a model structure, the C-projective model structure
on the category of M -spaces. This model structure is proper, cofibrantly generated and topological.

Proof. We refer the reader to [7, 3.3] for the numbering of the model category axioms. The forgetful
functor from the category of M -spaces to the category of compactly generated spaces has a left adjoint
free functor M ×− and a right adjoint cofree functor map(M,−); so the category of M -spaces is complete
and cocomplete and all limits and colimits are created in the underlying category of compactly generated
spaces.

Model category axioms MC2 (2-out-of-3) and MC3 (closure under retracts) are clear. One half of MC4
(lifting properties) holds by the definition of C-cofibrations. The proof of the remaining axioms uses Quillen’s
small object argument, originally given in [17, II p. 3.4], and later axiomatized in various places, for example
in [7, 7.12] or [11, Thm. 2.1.14]. We recall the ‘standard’ set of generating cofibrations and generating acyclic
cofibrations. In the category of (non-equivariant) spaces, the set {ik : ∂Dk −→ Dk}k≥0 of inclusions of
spheres into discs detects Serre fibrations that are simultaneously weak equivalences. By adjointness (i.e.,
the bijection (1.6)), the set

(1.11) IC = {M/N × ik : M/N × ∂Dk −→ M/N ×Dk}k≥0,N∈C

then detects acyclic fibrations in the C-projective model structure on M -spaces. Similarly, the set of
inclusions {jk : Dk × {0} −→ Dk × [0, 1]}k≥0 detects Serre fibrations; so by adjointness, the set

(1.12) JC = {M/N × jk}k≥0,N∈C

detects fibrations in the C-projective model structure on M -spaces.
All morphisms in IC and JC are closed embeddings, and this property is preserved by coproducts, cobase

change and sequential colimits in the category of M -spaces. Lemma 1.8 guarantees that sources and targets
of all morphisms in IC and JC are finite (sometimes called ‘finitely presented’) with respect to sequences of



ORBISPACES, ORTHOGONAL SPACES, AND THE UNIVERSAL COMPACT LIE GROUP 7

closed embeddings of M -spaces. In particular, the sources of all these morphisms are finite with respect to
sequences of morphisms in IC-cell and JC-cell.

Now we can prove the factorization axiom MC5. Every morphism in IC and JC is a C-cofibration by
adjointness. Hence every IC-cofibration or JC-cofibration is a C-cofibration of M -spaces. The small object
argument applied to the set IC gives a (functorial) factorization of any morphism of M -spaces as a C-
cofibration followed by a morphism with the right lifting property with respect to IC . Since IC detects the
C-acyclic C-fibrations, this provides the factorizations as cofibrations followed by acyclic fibrations.

For the other half of the factorization axiom MC5 we apply the small object argument to the set JC ; we
obtain a (functorial) factorization of any morphism of M -spaces as a JC-cell complex followed by a morphism
with the right lifting property with respect to JC . Since JC detects the C-fibrations, it remains to show that
every JC-cell complex is a C-equivalence. To this end we observe that the morphisms in JC are inclusions
of deformation retracts internal to the category of M -spaces. This property is inherited by coproducts and
cobase changes, so every morphisms obtained by cobase changes of coproducts of morphisms in JC is a
homotopy equivalence of M -spaces, hence also a C-equivalence. We also need to pass to sequential colimits,
which is fine because JC-cell complexes are closed embeddings, and taking N -fixed points commutes with
sequential colimits over closed embeddings.

It remains to prove the other half of MC4, i.e., that every C-acyclic C-cofibration f : A −→ B has
the left lifting property with respect to C-fibrations. In other words, we need to show that the C-acyclic
C-cofibrations are contained in the JC-cofibrations. The small object argument provides a factorization

A
j−−→ W

q−−→ B

as a JC-cell complex j followed by a C-fibration q. In addition, q is a C-equivalence since f is. Since f is a
C-cofibration, a lifting in

A
j //

f

��

W

q∼
��

B

>>

B

exists. Thus f is a retract of a morphism q that has the left lifting property for C-fibrations. So f itself has
the left lifting property for C-fibrations.

Right properness of the model structure is straightforward from right properness of the model structure
on spaces, since the N -fixed point functor, for N ∈ C, preserves pullbacks and takes C-fibrations to Serre
fibrations. For left properness we consider a pushout square of M -spaces

A
i //

f

��

B

g

��
C // D

such that i is a C-cofibration and f is a C-equivalence. We let N be a submonoid in the collection C. Taking
N -fixed points preserves pushouts along C-cofibrations [justify], so the square

AN
iN //

fN

��

BN

gN

��
CN // DN

is a pushout. Since i is an h-cofibration of M -spaces, the fixed point map iN is an h-cofibration of spaces.
Since fN is a weak equivalence and the model category of spaces is left proper, the cobase change gN is a
weak equivalence. Since N was any monoid from the collection C, we conclude that g is a C-equivalence.
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The model structure is topological by Proposition 1.9. �

Now we are going to formulate a version of Elmendorf’s theorem [8] for the homotopy theory of M -
spaces relative to a collection C of biclosed submonoids. Again, this is well known for topological groups
and the proof for topological monoids is essentially the same. However, I do not know a reference of the
generalization of Elmendorf’s theorem to this context, so I provide a proof.

Construction 1.13. Associated to the collection C of submonoids of M we define the topological orbit
category OM,C as the full topological subcategory of the category of M -spaces with objects the orbits M/N
for N ∈ C. More precisely, we let C be the object set of OM,C , and for N,N ′ ∈ C the morphism space is

OM,C(N,N
′) = MT(M/N,M/N ′) ∼= (M/N ′)N ,

where the bijection on the right hand side is by evaluation at the image of the unit element in M/N . The
topology of this space is specified by the right hand side, i.e., the subspace topology of the N -fixed points
of the orbit space M/N ′. Composition is given by composition of M -maps.

For every M -space X the various fixed point subspaces assemble into a continuous functor Φ : Oop
M,C −→

T on the orbit category via

Φ(X)(N) = XN ∼= MT(M/N,X) ,

with subspace topology of X. The functoriality in N as an object of OM,C comes from bijection (1.6) and
composition of M -maps between the orbit spaces.

For every small topological category J with discrete object set the category JT of continuous functors
from J to spaces has a well-known ‘projective’ model structure (see for example [15, VI Thm. 5.2]) in
which the weak equivalence and fibrations are those natural transformations that are weak equivalences
respectively Serre fibrations at every object.

In the case of M -spaces and a collection C of biclosed submonoid the fixed point functor

Φ : MT −→ OM,CT

has a left adjoint Λ, with value at an OM,C-space F given by a coend of the functor

Λ(F ) =

∫
N∈C

M/N × F (N) ,

i.e., a coequalizer, in the category of M -spaces, of the two morphisms∐
N,N ′∈CM/N ×OM,C(N,N

′)× F (N ′) ////
∐
N∈CM/N × F (N) .

All we will need to know about the left adjoint is that for all N ∈ C it takes the representable OM,C-space
OM,C(−, N) = Φ(M/N) to M/N . Indeed, the counit εM/N : Λ(Φ(M/N)) −→ M/N induces a bijection of
morphism sets

MT(Λ(Φ(M/N), X) ∼= OM,CT(Φ(M/N),Φ(X)) = OM,CT(OM,C(−, N),Φ(X))

∼= Φ(X)(M/N) = MT(M/N,X) .

So the counit εM/N : Λ(Φ(M/N)) −→M/N is an isomorphism of M -spaces.
The projective C-model structure is defined so that the fixed point functor Φ preserves and detects weak

equivalence and fibrations. So (Λ,Φ) is a Quillen adjoint functor pair.

Proposition 1.14. Let M be a topological monoid and C a collection of biclosed submonoids of M .

(i) For every cofibrant OM,C-space F the adjunction unit F −→ Φ(ΛF ) is an isomorphism.
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(ii) The adjoint functor pair

OM,C
Λ // MT
Φ

oo

is a Quillen equivalence with respect to the C-projective model structure on M -spaces and the projective
model structure for OM,C-spaces.

Proof. (i) We let G denote the class of OM,C-spaces for which the adjunction unit is an isomorphism. We
show the following property: For every index set I, every I-indexed family Ni of monoids in C, all numbers
ni ≥ 0 and every pushout square OM,C-spaces

(1.15)

∐
i∈I OM,C(−, Ni)× ∂Dni //

��

∐
i∈I OM,C(−, Ni)×Dni

��
F // G

such that F belongs to G, the OM,C-space G also belongs to G.
As a left adjoint, Λ preserves pushout and coproducts. For every space K the functor − ×K is a left

adjoint, so it commutes with colimits and coends. So Λ also commutes with products with spaces. Thus Λ
takes the original square to a pushout square of M -spaces:∐

i∈IM/Ni × ∂Dni //

��

∐
i∈IM/Ni ×Dni

��
ΛF // ΛG

The upper horizontal morphisms in this square is a closed embedding. For every biclosed submonoid P
of M the P -fixed point functor (−)P commutes with disjoint unions, products with spaces and pushouts
along closed embeddings. So the square∐

i∈I(M/Ni)
P × ∂Dni //

��

∐
i∈I(M/Ni)

P ×Dni

��
(ΛF )P // (ΛG)P

is a pushout in the category of compactly generated spaces. Colimits and products with spaces of OM,C-
spaces are formed objectwise, so letting P run through the monoids in the collection C shows that the
square ∐

i∈I Φ(M/Ni)× ∂Dni //

��

∐
i∈I Φ(M/Ni)×Dni

��
Φ(ΛF ) // Φ(ΛG)

is a pushout in the category of OM,C-spaces. The adjunction units induce compatible maps from the original
pushout square (1.15) to this last square. Since Φ(M/Ni) = OM,C(−, Ni) and the unit ηF : F −→ Φ(ΛF )
is an isomorphism, the unit ηG : G −→ Φ(ΛG) is also an isomorphism.

(ii) The adjoint functor pair (Λ,Φ) is a Quillen pair and the right adjoint Φ preserves and detects weak
equivalences. Moreover, for every cofibrant OM,C-space F the adjunction unit ηF : F −→ Φ(Λ(F )) is an
isomorphism by (i), hence a weak equivalence. So (Λ,Φ) is a Quillen equivalence, see for example [11,
Cor. 1.3.16]. �
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2. Global model structures for L-spaces

In this section we define a global model structures on the category of L-spaces and establish a Quillen
equivalence to the model category of orbispaces, compare Theorem 2.30.

An inner product space is a finite dimensional real vector space equipped with a scalar product, i.e., a
positive definite symmetric bilinear form. We denote by L the category with objects the inner product
spaces and morphisms the linear isometric embeddings. The category L is a topological category in the
sense that the morphism spaces come with a preferred topology: if ϕ : V −→ W is one linear isometric
embedding, then the action of the orthogonal group O(W ), by postcomposition, induces a bijection

O(W )/O(ϕ⊥) ∼= L(V,W ) , A ·O(ϕ⊥) 7−→ A ◦ ϕ ,

where ϕ⊥ = W −ϕ(V ) is the orthogonal complement of the image of ϕ. We topologize L(V,W ) so that this
bijection is a homeomorphism, and this topology is independent of ϕ. If (v1, . . . , vk) is an orthonormal basis
of V , then for every linear isometric embedding ϕ : V −→W the tuple (ϕ(v1), . . . , ϕ(vk)) is an orthonormal
k-frame of W . This assignment is a homeomorphism from L(V,W ) to the Stiefel manifold of k-frames in W .

An example of an inner product spaces is the vector space Rn with the standard scalar product

〈x, y〉 =

n∑
i=1

xiyi .

In fact, every inner product space V is isometrically isomorphic to the inner product space Rn, for n the
dimension of V . So the full topological subcategory with objects the Rn is a small skeleton of L.

We start by making various topologies we use explicit and explain why certain composition and action
maps are continuous. We let V and U be real inner product spaces of countable infinite dimension, for
example V = U = R∞. A map from V to U is a linear isometric embedding if and only if its restriction
to every finite dimensional subvector space of V is a linear isometric embedding. So the set L(V,U) linear
isometric embeddings is an inverse limit of the sets L(V,U) as V runs over the poset s(V) of finite dimensional
subvector spaces of V, and we endow L(V,U) with the inverse limit topology.

Construction 2.1. We let Y be an orthogonal space. We extend the action maps

L(V,W )× Y (V ) −→ Y (W )

which are part of the structure of an orthogonal space to the situation where V and W are allowed to be
of countably infinite dimension. If W is an product spaces of countably infinite dimension, then as before
we define

Y (W) = colimW∈s(W) Y (W )

with colimit topology. If V is a finite dimensional inner product space, we define the action map

L(V,W)× Y (V ) −→ Y (W)

by sending (ϕ, y) to the image of

Y (ϕ̄)(y) ∈ Y (ϕ(V ))

under the canonical map Y (ϕ(V )) −→ Y (W), where ϕ̄ : V −→ ϕ(V ) is ϕ with different range. If V is also
of countably infinite dimension, then L(V,W) × Y (V) is the colimit of L(V,W) × Y (V ) for V ∈ s(V); so
the compatible maps

L(V,W)× Y (V )
ρVV ×Id−−−−→ L(V,W)× Y (V )

act−−→ Y (W)

assemble into an action map.

Proposition 2.2. Let U ,V and W be real inner product spaces of finite or countably infinite dimension.
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(i) Then for every orthogonal space Y the action map

L(V,W)× Y (V) −→ Y (W) , (ϕ, y) 7−→ Y (ϕ)(y)

is continuous.
(ii) The composition map

◦ : L(V,W)× L(U ,V) −→ L(U ,W)

is continuous.

Proof. (i) There is nothing to show when both V and W are finite dimensional. Now we suppose that V is
finite dimensional and W is infinite dimensional. Since −× Y (V) is a left adjoint, L(V,W)× Y (V) has the
colimit topology of L(V,W )× L(V) for W ∈ s(W). So it suffices to show that the restriction of the action
map to L(V,W )× Y (V) is continuous for each finite dimensional W inside W. But this restriction factors
as

L(V,W )× Y (V)
act−−→ Y (W ) −→ Y (W) ,

and is thus continuous.
Finally, we assume that both V and W are infinite dimensional. Since L(V,W) × − is a left adjoint,

L(V,W)× Y (V) has the colimit topology of L(V,W)× Y (V ) for V ∈ s(V). So it suffices to show that the
restriction of the action map to L(V,W)× Y (V ) is continuous for each finite dimensional V inside V. But
this restriction factors as

L(V,W)× Y (V )
ρVV ×Id−−−−→ L(V,W)× Y (V )

◦−−→ L(U ,W) ,

where ρVV is the (continuous!) restriction from V to V . This composite is continuous by the previous case.
(ii) If U is finite dimensional, then the claim is the special case of part (i) for the free orthogonal

space L(U ,−). It remains to treat the case when U is infinite dimensional. Since L(U ,W) has the inverse
limit topology, it suffices to show that the composite of the composition map with the restriction map
L(U ,W) −→ L(U,W) is continuous for each finite dimensional U inside U . But this composite factors as

L(V,W)× L(U ,V)
Id× res−−−−−→ L(V,W)× L(U,V)

◦−−→ L(U,W)

which is continuous by the previous case. �

The special case U = V = W = R∞ of the previous proposition shows that L = L(R∞,R∞) is a
topological monoid with respect to the inverse limit topology.

Definition 2.3. An L-space is a space equipped with a continuous action of the topological monoid L.

Example 2.4. Every orthogonal space Y gives rise to an L-space by evaluation at R∞. Indeed, for V =
W = R∞, Proposition 2.2 (i) precisely says that the action maps make Y (R∞) into an L-space. This
includes trivial L-spaces obtained by equipping any space with the trivial L-action.

If V is an inner product spaces of finite or countably infinite dimension. Then the space L(V,R∞)
becomes an L-space by postcomposition, by Proposition 2.2 (ii). If V is infinite dimensional, then L(V,R∞)
does not arise from an orthogonal space by evaluation at R∞.

We let V be a finite dimensional subspace of V. Then the continuous restriction map

ρ : L(V,R∞) −→ L(V,R∞) , ψ 7−→ ψ|V
is a morphism of L-spaces.

Proposition 2.5. We let V be a real inner product spaces of finite or countably infinite dimension and V
a finite dimensional subspace of V. Then the restriction map ρ : L(V,R∞) −→ L(V,R∞) is a locally trivial
fiber bundle with fiber homeomorphic to the space L(V − V,R∞).
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Proof. This is well known when V is finite dimensional, and the classical argument also works in our present
generality. For a linear isometric embedding ϕ : V −→ R∞ we denote by Uϕ the open subset of L(V,R∞)
defined as

Uϕ = {ψ ∈ L(V,R∞) : ψ(V ) ∩ ϕ(V )⊥ = 0} ,
where ϕ(V )⊥ is the orthogonal complement of the image of ϕ. We claim that the restriction map is
trivial over the open set Uϕ. To write the preimage of Uϕ as a product we need the Gram-Schmidt
orthonormalization. We choose an orthonormal basis e1, . . . , en of V and extend it to a (finite or countable)
orthonormal basis {ei}i≥1 of V. We view the Gram-Schmidt process as a continuous map

GS : Mono(V,R∞) −→ L(V,R∞)

from the space of R-linear monomorphism to the space of linear isometric embeddings. Given a linear
monomorphism f : V −→ R∞, the map GS(f) is defined on the orthogonal basis by sending ek to

(GS(f))(ek) =
ek − pk−1(ek)

|ek − pk−1(vk)|
,

where pk−1 is the orthogonal projection onto the span of f(e1), . . . , f(ek−1). We use without proof that
the Gram-Schmidt orthonormalization map is continuous [...]. We note that if f is already isometric on V ,
then GS(f) and f agree on V . We can now define a continuous map

F : Uϕ × L(V − V, ϕ(V )⊥) −→ ρ−1(Uϕ) by F (ψ, g) = GS(ψ + g) .

A continuous map in the other direction is given by

G : ρ−1(Uϕ) −→ Uϕ × L(V − V, ϕ(V )⊥) by ψ 7−→ (ρ(ψ), P ◦ ψ|V−V ) ,

where P : R∞ −→ ϕ(V )⊥ is the orthogonal projection away from ϕ(V ). �

We let V be a finite dimensional inner product space. The monoid L acts from the right on the
space L(V ⊕ R∞,R∞) by

L(V ⊕ R∞,R∞)× L −→ L(V ⊕ R∞,R∞) , (ψ, f) 7−→ ψ ◦ (V ⊕ f) .

This action commutes with the left action by postcomposition, i.e., it is through morphisms of L-spaces.
Similarly, we can define a right action of L2 by morphisms of L-spaces on L(V ⊕ R∞ ⊕ R∞,R∞) by

L(V ⊕ R∞ ⊕ R∞,R∞)× L2 −→ L(V ⊕ R∞ ⊕ R∞,R∞) , (ψ, f, g) 7−→ ψ ◦ (V ⊕ f ⊕ g) .

The next proposition says, loosely speaking, that restriction to V induces isomorphisms of L-spaces

L(V ⊕ R∞,R∞)/L ∼= L(V,R∞) ∼= L(V ⊕ R∞ ⊕ R∞,R∞)/L2 .

Proposition 2.6. Let V be a finite dimensional inner product space.

(i) The diagram

L(V ⊕ R∞,R∞)× L
act //
proj
// L(V ⊕ R∞,R∞)

ρ // L(V,R∞)

is a coequalizer diagram in the category of L-spaces.
(ii) The diagram

L(V ⊕ R∞ ⊕ R∞,R∞)× L2
act //
proj
// L(V ⊕ R∞ ⊕ R∞,R∞)

ρ // L(V,R∞)

is a coequalizer diagram in the category of L-spaces.
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Proof. (i) The restriction map ρ is a locally trivial fiber bundle by Proposition 2.5. Every fiber bundle
projection is in particular a quotient map, i.e., L(V,R∞) carries the quotient topology induced by the
surjective continuous map ρ. On the other hand, two maps ϕ,ψ ∈ L(V ⊕ R∞,R∞) agree on the first
summand V if and only if they are equivalent in the equivalence relation generated by the right L-action.
One direction is obvious. On the other hand, if ϕ|V = ψ|V , then we choose a linear isometry α : V ⊕R∞ ∼=
R∞ that agrees with ϕ and ψ on the summand V . Then α−1ϕ is the identity on V , so α−1ϕ = V ⊕ κ for a
unique element κ ∈ L. Hence

ϕ = α ◦ (α−1ϕ) = α ◦ (V ⊕ κ) ,

so ϕ is equivalent to κ; analogously, ψ is also equivalent to κ, and hence ϕ and ψ are equivalent.
We have thus shown that the quotient, in the category of all topological spaces, of the equivalence relation

coming from the L-action maps homeomorphically to L(V,R∞). Since L(V,R∞) is compactly generated
and Hausdorff, L(V,R∞) is then automatically a coequalizer of the right L-action in the category T of
compactly generated spaces. Colimits of L-spaces are created in the underlying category T, which proves
the claim.

(ii) This is roughly similar to the first part, but the identification of the equivalence relation generated by
the right L2-action is more involved. We consider the equivalence relation ∼ on the set L(V ⊕R∞⊕R∞,R∞)
generated by

ψ ∼ ψ ◦ (V ⊕ f ⊕ g)

for all f, g ∈ L. We claim that two elements are equivalent if and only if they agree on the first summand V .
One direction is clear from the definition because ψ and ψ ◦ (V ⊕ α⊕ β) agree on V .

Conversely, suppose that ψ,ψ′ ∈ L(V ⊕R∞ ⊕R∞,R∞) agree on V ; we want to show that then ψ ∼ ψ′.
The special case V = 0 is treated in [9, I Lemma 8.1], and we reduce the general case to this special case.
Since V is finite dimensional, we can choose a linear isometry κ : V ⊕ R∞ ∼= R∞ that satisfies

κ(v, 0) = ψ(v, 0, 0) = ψ′(v, 0, 0)

for all v ∈ V . Then

(κ−1ψ)(v, 0, 0) = (v, 0) = (κ−1ψ′)(v, 0, 0) ,

so

κ−1ψ = V ⊕ µ and κ−1ψ′ = V ⊕ µ′

for two linear isometric embeddings µ, µ′ ∈ L(R∞⊕R∞,R∞). By [9, I Lemma 8.1] all elements of L(R∞⊕
R∞,R∞) = L(2) are equivalent under the equivalence relation generated by ψ ∼ ψ ◦ (f ⊕ g) for f, g ∈ L; in
particular, µ and µ′ are related by a finite sequence of such elementary relations. If

µ′ = µ ◦ (f ⊕ g) ,

then

ψ′ = κ ◦ (V ⊕ µ′) = κ ◦ (V ⊕ µ) ◦ (V ⊕ f ⊕ g) = ψ ◦ (V ⊕ f ⊕ g) ,

and so ψ′ is equivalent to ψ. In general there is a finite sequence of such elementary relations connecting µ′

and µ, and this gives a finite sequence of elementary relations between ψ′ and ψ. This proves the claim.
The rest of the argument is as in part (i). Since the restriction map

ρ : L(V ⊕ R∞ ⊕ R∞,R∞) −→ L(V,R∞)

is a fiber bundle projection, it makes L(V,R∞) a quotient space of L(V ⊕ R∞ ⊕ R∞,R∞). Since the
equivalence relation induced by restriction is the same as the equivalence relation from the L2-action,
L(V,R∞) is a coequalizer, in the category T and hence also in LT, of the L2-action. �

Definition 2.7. Let G be a compact Lie group. A G-universe is an orthogonal G-representation U of
countably infinite dimension with the following two properties:

• the representation U has non-zero G-fixed points,
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• if a finite dimensional G-representation V embeds into U , then a countable infinite direct sum of
copies of V also embeds into U .

A G-universe is complete if every finite dimensional G-representation embeds into it.

A G-universe is characterized, up to equivariant isometry, by the set of irreducible G-representations
that can be embedded into it. We let Λ = {λ} be a complete set of pairwise non-isomorphic irreducible
G-representations that embed into U . The first condition says that Λ contains a trivial 1-dimensional
representation, and the second condition is equivalent to the requirement that

U ∼=
⊕
λ∈Λ

⊕
N
λ .

Moreover, U is complete if and only if Λ contains (representatives of) all irreducible G-representations. In
the following we fix, for every compact Lie group G, a complete G-universe UG.

For the following proposition and for the model structures on L-spaces we need a slight generalization
of the notion of a G-universe.

Definition 2.8. Let G be a compact Lie group. A G-preuniverse is an orthogonal G-representation U of
countably infinite dimension with the following property: if a finite dimensional G-representation V embeds
into U , then a countable infinite direct sum of copies of V also embeds into U .

The only difference between a preuniverse and a universe is that a preuniverse may have trivial fixed
points; in contrast, a G-universe always has a non-zero G-fixed point, and hence contains a copy of R∞
with trivial G-action. In the same way as universes, G-preuniverses are characterized, up to equivariant
isometry, by which irreducible G-representations can be embedded into them (but now the trivial irreducible
representation need not be among these).

Proposition 2.9. Let G and K be compact Lie groups, V a faithful G-preuniverse and UK a complete
K-universe.

(i) For every faithful finite dimensional G-subrepresentation V of V the restriction morphism

ρVV : L(V,UK) −→ L(V,UK)

is a (K ×G)-homotopy equivalence.
(ii) The (K ×G)-space L(V,UK) is a universal space for the family F(K;G) of graph subgroups.
(iii) In the special case K = G, the space L(V,UG), viewed as a G-space under the conjugation action, is

G-equivariantly contractible.

Proof. (i) We choose an exhausting nested sequence

V = V0 ⊂ V1 ⊂ V2 . . .

of finite-dimensional G-subrepresentations of V, starting with the given faithful representation. We claim
that all the restriction maps

ρn : L(Vn,UK) −→ L(Vn−1,UK)

are (K ×G)-acyclic fibrations, i.e., for every closed subgroup Γ ≤ K ×G the fixed point map

(ρn)Γ : L(Vn,UK)Γ −→ L(Vn−1,UK)Γ

is a weak equivalence and Serre fibration. Since G acts faithfully on Vn, the Γ-fixed points of source and
target are empty whenever Γ∩ (1×G) = {(1, 1)} . Otherwise Γ is the graph of continuous homomorphism
α : L −→ G with L ≤ K. So the fixed point map (ρn)Γ is the restriction map

(ρn)Γ : LL(α∗(Vn),UK) −→ LL(α∗(Vn−1),UK) .

Source and target of this map are contractible (for example by [18, Prop. I.2.4]), so the map (ρn)Γ is a weak
equivalence. But (ρn)Γ is also a locally trivial fiber bundle, hence a Serre fibration.
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Since ρn is a (K×G)-acyclic fibration and L(V,UK) is (K×G)-cofibrant, for example by [18, Prop. I.2.2
(ii)]. So we can choose a (K×G)-equivariant section sn : L(Vn−1,UK) −→ L(Vn,UK) to ρn and a homotopy

Hn : [0, 1]× L(Vn,UK) −→ L(Vn,UK)

from the identity to sn ◦pn such that pn ◦Hn : [0, 1]×L(Vn,UK) −→ L(Vn−1,UK) is the constant homotopy
from pn to itself. The maps

sn ◦ sn−1 ◦ · · · ◦ s1 : L(V,UK) −→ L(Vn,UK)

are then compatible, so they assemble into a continuous map

s∞ : L(Vn,UK) −→ limn L(Vn,UK) = L(V,UK)

to the inverse limit, and s∞ is a section to ρVV .
We claim that the composite s∞ ◦ ρVV is homotopic to the identity. To prove the claim we construct

compatible homotopies

Kn : [0, 1]× L(V,UK) −→ L(Vn,UK)

by induction on n satisfying

(i) pn ◦Kn = Kn−1,

(ii) Kn(t,−) = p
(n)
∞ , the restriction from V to Vn, for all t ∈ [0, 1

n+1 ], and

(iii) Kn(1,−) = sn ◦ sn−1 ◦ · · · s1 ◦ ρVV .

The induction starts by defining K0 as the constant homotopy from ρVV : L(V,UK) −→ L(V,UK) to itself.
Now we assume n ≥ 1 and suppose that the homotopies K0, . . . ,Kn−1 have already been constructed. We
define Kn by

Kn(t,−) =


p

(n)
∞ for t ∈ [0, 1

n+1 ],

Hn(n(n+ 1)t− n, −) ◦ p(n)
∞ for t ∈ [ 1

n+1 ,
1
n ], and

sn ◦Kn−1(t,−) for t ∈ [ 1
n , 1].

This is well-defined at the intersections of the intervals because

Hn

(
n(n+ 1)

1

n+ 1
− n, −

)
◦ p(n)
∞ = Hn(0,−) ◦ p(n)

∞ = p(n)
∞

and

Hn

(
n(n+ 1)

1

n
− n, −

)
◦ p(n)
∞ = Hn(1,−) ◦ p(n)

∞ = sn ◦ pn ◦ p(n)
∞

= sn ◦ p(n−1)
∞ = sn ◦Kn−1(1/n,−)

Then condition (i) holds because

pn ◦Kn(t,−) =


pn ◦ p(n)

∞ for t ∈ [0, 1
n+1 ],

pn ◦Hn(n(n+ 1)t− n, −) ◦ p(n)
∞ for t ∈ [ 1

n+1 ,
1
n ], and

pn ◦ sn ◦Kn−1(t,−) for t ∈ [ 1
n , 1],

=

{
p

(n−1)
∞ for t ∈ [0, 1

n ],

Kn−1(t,−) for t ∈ [ 1
n , 1],

= Kn−1(t,−) .

Now we can finish the proof. By condition (i) the homotopies Kn are compatible, so they assemble into a
continuous map K∞ : [0, 1]×L(V,UK) −→ L(V,UK). Property (ii) shows that K∞ starts with the identity
of L(V,UK) and property (iii) ensures that K∞ ends with the morphism s∞ ◦ ρVV . So s∞ is a homotopy
inverse to ρVV .
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Part (ii) follows from (i) and the fact that the target of the restriction morphism ρVV is a universal
(K ×G)-space for the family F(K;G), for example by [18, Prop. I.2.10 (i)].

(iii) We let V be a finite dimensional faithful G-subrepresentation of V. By part (i) the restriction map
ρVV : L(V,UG) −→ L(V,UG) is a (G × G)-homotopy equivalence, hence a G-homotopy equivalence for the
conjugation action on both sides. The target space L(V,UG) is G-equivariantly contractible (for example
by [18, Prop. I.2.4]), hence so is L(V,UG). �

Now we come to a key definition.

Definition 2.10. A compact subgroup G of the topological monoid L is a universal subgroup if it admits
the structure of a Lie group (necessarily unique) such that the tautological G-action makes R∞ into a G-
preuniverse. A universal subgroup is a completely universal subgroup if the tautological G-action makes R∞
into a complete G-universe.

When G is a universal subgroup of L we write R∞G for the G-preuniverse given by the tautological G-
action on R∞. The G-action on R∞G is automatically faithful. The next proposition shows that conjugacy
classes of completely universal subgroups of L biject with isomorphism classes of compact Lie groups.

Proposition 2.11. Every compact Lie group is isomorphic to a completely universal subgroup of L. Every
isomorphism between completely universal subgroups is given by conjugation by an invertible linear isometry
in L. In particular, isomorphic completely universal subgroups are conjugate in L.

Proof. Given a compact Lie group G we can choose a continuous isometric linear action of G on R∞ that
makes R∞ into a complete G-universe. Such an action is a continuous monomorphism ρ : G −→ L and the
image ρ(G) is a completely universal subgroup of L, isomorphic to G via ρ.

Now we letG,G′ ≤ L be two completely universal subgroups and α : G −→ G′ an isomorphism. Then R∞G
and α∗(R∞G′) are two complete G-universes, so there is a G-equivariant linear isometry ψ : R∞G −→ α∗(R∞G′).
This ψ is an invertible element of the monoid L and the G-equivariance means that ψ ◦ g = α(g) ◦ψ for all
g ∈ G. Hence α coincides with conjugation by ψ. �

� The topological monoid L contains many other compact Lie subgroups that are not universal sub-
groups: any continuous, faithful linear isometric action of a compact Lie group G on R∞ provides such

a compact Lie subgroup. However, with respect to this action, R∞ need not be a G-preuniverse, because
some irreducible G-representations may occur with non-zero finite multiplicity.

Definition 2.12. A morphism f : X −→ Y of L-spaces is

• a universal equivalence if for every universal subgroup G of L the induced map

fG : XG −→ Y G

is a weak homotopy equivalence;
• a strong universal equivalence if for every universal subgroup G of L, the underlying G-map of f is

a G-equivariant homotopy equivalence;
• a universal fibration if for every universal subgroup G of L the induced map fG is a Serre fibration;
• a global equivalence if for every completely universal subgroup G of L the induced map fG is a weak

homotopy equivalence.
• a strong global equivalence if for every completely universal subgroup G of L, the underlying G-map

of f is a G-equivariant homotopy equivalence.

In other words, f : X −→ Y is a strong universal equivalence (respectively strong global equivalence)
if for every universal subgroup G of L (respectively every completely universal subgroup) there is a G-
equivariant continuous map g : Y −→ X such that g ◦ f : X −→ X and f ◦ g : Y −→ Y are G-equivariantly
homotopic to the respective identity maps. However, there is no compatibility requirement on the homotopy
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inverses g and the equivariant homotopies. Clearly, the following implications hold between various kinds
of equivalences of L-spaces:

L-homotopy equivalence +3 strong universal equivalence +3

��

universal equivalence

��
strong global equivalence +3 global equivalence

��
underlying weak equivalence

Example 2.13 (Induced L-spaces). We let G be a universal subgroup of L and A a left G-space. Then we
can form the induced L-space

L ×G A = (L ×A)/(ϕg, a) ∼ (ϕ, ga) .

The functor L ×G − is left adjoint to the restriction functor from L-spaces to G-spaces.

When A is a one-point space, the previous construction specializes to the ‘orbit L-space’ L/G ∼= L×G ∗.
Because

(L/G)K = (L(R∞G ,R∞K )/G)
K
,

the following proposition shows that L/G is the incarnation, in the world of L-spaces, of the global classifying
space of the group G. So for every completely universal subgroup K of L, the underlying K-space of L/G
is a classifying space for principal G-bundles over K-spaces. In particular, the underlying non-equivariant
space of L/G is a classifying space for G.

For every finite-dimensional faithful G-representation V and every compact Lie group K the (K × G)-
space L(V,UK) is a universal space for the family F(K;G) of graph subgroups of K×G, see for example [18,
Prop. I.2.10 (i)]. We will now show that this is still true if we replace the finite-dimensional representation V
by a faithful G-universe V. The main difference between the finite-dimensional and the universe situation is
that L(V,UK) is (K×G)-cofibrant, whereas L(V,UK) is not; still L(V,UK) is (K×G)-homotopy equivalent
to a cofibrant (K ×G)-space.

Proposition 2.14. Let G be a universal subgroup of the monoid L, V a faithful G-subrepresentation of
R∞G and A a G-space. Then the restriction morphism

ρV ×G A : L ×G A = L(R∞G ,R∞)×G A −→ L(V,R∞)×G A = (LG,VA)(R∞)

is a strong universal equivalence of L-spaces.

Proof. We let K be a completely universal subgroup of the monoid L. Then ρV : L(R∞G ,R∞K ) −→ L(V,R∞K )
is a (K ×G)-homotopy equivalence by Proposition 2.9 (ii); so the map

ρV ×G A : L(R∞G ,R∞K )×G A −→ L(V,R∞K )×G A
is a K-homotopy equivalence. �

In Proposition 1.10 we established projective model structures for equivariant spaces with an action of a
topological monoid, relative to a collection of biclosed submonoids. The following proposition is the special
case for the topological monoid L and the collection Cu of universal subgroups.

Proposition 2.15 (Universal model structure). The universal equivalences and universal fibrations are
part of a proper topological closed model category structure on the category of L-spaces, the universal model
structure. The cofibrations and acyclic cofibrations are generated by the morphisms by the morphisms

ik × L/G : ∂Dk× L/G −→ Dk × L/G respectively

jk × L/G : Dk × {0}×L/G −→ Dk × [0, 1]× L/G
for all universal subgroups G of L and all k ≥ 0.
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Let us consider two universal subgroups G, Ḡ of L, a continuous homomorphism α : G −→ Ḡ and a
G-equivariant linear isometric embedding ϕ : α∗(R∞

Ḡ
) −→ R∞G . So explicitly, we have

ϕ ◦ α(g) = g ◦ ϕ

for all g ∈ G, and hence ϕ determines the homomorphism α. Then for every L-space Y the map

ϕ · − : Y −→ Y

satisfies

g · (ϕ · x) = (g · ϕ) · x = (ϕ · α(g)) · y = ϕ · (α(g) · y)

for all g ∈ G and y ∈ Y ; hence it restricts to a map

ϕ · − : Y Ḡ −→ Y G

from the Ḡ-fixed points to the G-fixed points. Any two G-equivariant linear isometric embeddings from
α∗(R∞

Ḡ
) to R∞G are homotopic through G-equivariant linear isometric embeddings, so up to homotopy, the

comparison maps between the fixed points does not depend on the choice of ϕ.

Definition 2.16. An L-space Y is injective if for every pair of universal subgroup G, Ḡ of L, every isomor-
phism α : G −→ Ḡ of Lie groups, and every G-equivariant linear isometric embedding ϕ : α∗(R∞

Ḡ
) −→ R∞G

the map

ϕ · − : Y Ḡ −→ Y G

is a weak equivalence.

Remark 2.17. If Y is an injective L-space, then for every universal subgroup G of L, the homotopy type of
the fixed point space Y G only depends on the isomorphism class of G as an abstract Lie group. Indeed, if G
and Ḡ are isomorphic universal subgroups, and if G is even completely universal, then there always exists
G-equivariant linear isometric embedding ϕ : α∗(R∞

Ḡ
) −→ R∞G because the target is a complete universe;

the G-fixed points and Ḡ-fixed points can then be compared via ϕ. If neither G nor Ḡ are completely
universal, then there exists another completely universal subgroup G′ of L that is abstractly isomorphic
to G and Ḡ, and the G-fixed points can be compared to the Ḡ-fixed points through the G′-fixed points.

The universal model structure on L-space has ‘too many homotopy types’ for our purposes, i.e., it is
not Quillen equivalent to the global model structure on orthogonal spaces. We fix this by performing a
Bousfield localization on the universal model structure, with the injective L-spaces as the local objects.

Construction 2.18. We let j : A −→ B be a morphism in a topological model category. We factor j
through the mapping cylinder as the composite

A
c(j)−−−→ Z(j) = ([0, 1]×A) ∪j B

r(j)−−−−→ B ,

where c(j) is the ‘front’ mapping cylinder inclusion and r(j) is the projection, which is a homotopy equiva-
lence. In our applications we will assume that both A and B are cofibrant, and then the morphism c(j) is
a cofibration by the pushout product property. We then define Z(j) as the set of all pushout product maps

ik�c(j) : Dk ×A ∪∂Dk×A ∂D
k × Z(j) −→ Dk × Z(j)

for k ≥ 0, where ik : ∂Dk −→ Dk is the inclusion.

Proposition 2.19. Let C be a topological model category, j : A −→ B a morphism between cofibrant objects
and f : X −→ Y a fibration. Then the following two conditions are equivalent:
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(i) The square of spaces

(2.20)

map(B,X)
map(j,X) //

map(B,f)

��

map(A,X)

map(A,f)

��
map(B, Y )

map(j,Y )
// map(A, Y )

is homotopy cartesian.
(ii) The morphism f has the right lifting property with respect to the set Z(j).

Proof. The square (2.20) maps to the square

(2.21)

map(Z(j), X)
map(c(j),X) //

map(Z(j),f)

��

map(A,X)

map(A,f)

��
map(Z(j), Y )

map(c(j),Y )
// map(A, Y )

via the map induced by r(j) : Z(j) −→ B on the left part and the identity on the right part. Since r(j) is
a homotopy equivalence, the map of squares is a weak equivalence at all four corners. So the square (2.20)
is homotopy cartesian if and only if the square (2.21) is homotopy cartesian.

Since A is cofibrant and f a fibration, map(A, f) is a Serre fibration. So the square (2.21) is homotopy
cartesian if and only if the map

(2.22) (map(Z(j), f),map(c(j), X)) : map(Z(j), X) −→ map(Z(j), Y )×map(A,Y ) map(A,X)

is a weak equivalence. Since c(j) is a cofibration and f is a fibration, the map (2.22) is always a Serre
fibration. So (2.22) is a weak equivalence if and only if it is an acyclic fibration, which is equivalent to the
right lifting property for the inclusions ik : ∂Dk −→ Dk for all k ≥ 0. By adjointness, the map (2.22) has
the right lifting property with respect to the maps ik if and only if the morphism f has the right lifting
property with respect to the set Z(j). �

The following proposition provides the necessary localization functor for the Bousfield localization.

Proposition 2.23. There is an endofunctor Q of the category of L-spaces with values in injective L-spaces
and a natural global equivalence jX : X −→ QX.

Proof. For every pair of universal subgroups G, Ḡ of L, every homomorphism α : G −→ Ḡ of Lie groups
and every G-equivariant linear isometric embedding ϕ : α∗(R∞

Ḡ
) −→ R∞G , the morphism

ϕ] : L/G −→ L/Ḡ , ψ ·G 7−→ (ψ ◦ ϕ) · Ḡ
represents the natural transformation

ϕ · − : Y Ḡ −→ Y G .

If α is an isomorphism, then the morphism ϕ] is a global equivalence by Proposition 2.14 [fix this], but it
is not a cofibration in any sense.

We factor ϕ] through the mapping cylinder as the composite

L/G cG,V−−−→ Z(ϕ]) = ([0, 1]× L/G) ∪ϕ]
L/Ḡ

rϕ]−−→ L/Ḡ ,

where cϕ]
is the ‘front’ mapping cylinder inclusion and rϕ]

is the projection, which is a homotopy equiva-
lence. We then define

K =
⋃

(G,Ḡ,ϕ)

Z(ρϕ]
)
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as the set of all pushout product maps with the inclusions ∂Dm −→ Dm, compare Construction 2.18. Here
(G, Ḡ, ϕ) runs through all triples consisting of a universal subgroups G, Ḡ ⊂ L and G-equivariant linear
isometric embeddings ϕ : α∗(R∞

Ḡ
) −→ R∞G . Proposition 2.19 (with Y a one-point L-space) shows that the

right lifting property with respect to the set K is equivalent to being injective.
Now we apply the countable small object argument with respect to the set K to the unique morphism

from a given L-space Y to the terminal L-space. A countable version (i.e., with sequential colimits) of
Quillen’s original argument which works in our case can be found in [7, Prop. 7.17]. Dwyer and Spalinski
assume that the sources of all morphisms in the set K are sequentially small, which is not the case here.
However, what is really needed is only that the sources of all morphisms in the set K are sequentially
small for cobase changes of coproducts of morphisms in K, compare the more general version of the small
object argument in [11, Thm. 2.1.14]. In our situation, all morphisms in K are h-cofibrations, hence so are
all cobase changes of coproducts, and the sources of morphisms in are small with respect to sequences of
h-cofibrations.

In any case, the small object argument produces an endofunctor Q on the category of L-spaces and a
natural transformation jY : Y −→ QY with the following properties:

(i) The object QY has the right lifting property with respect to all morphisms in K, i.e., it is injective.
(ii) The morphism jY is a sequential composite of cobase changes of coproducts of morphisms in K.

All morphisms in K are simultaneously h-cofibrations and global equivalences; the class of h-cofibrations
that are also global equivalences is closed under coproducts, cobase change and sequential composition. So
the morphism jY : Y −→ QY is an h-cofibration and a global equivalence. �

Now we have all the ingredients to localize the universal model structure into a second ‘global’ model
structure on the category of L-spaces.

Theorem 2.24 (Global model structure for L-spaces). The Cu-cofibrations and global equivalences are part
of a cofibrantly generated proper topological model structure on the category of L-spaces, the global model
structure. The fibrant objects in the global model structure are the injective L-spaces.

Proof. We construct the global model structure by applying Bousfield’s localization theorem [5, Thm. 9.3]
to the universal model structure. We use the localization functor Q given by Proposition 2.23. By the very
definition of ‘injective’, a global equivalence between injective L-spaces is already a universal equivalence.
So the Q-equivalences in the sense of [5, Thm. 9.3] are precisely the global equivalences.

Now we verify the hypotheses (A1)–(A3) of Bousfield’s theorem. The universal model structure is proper.
If f is a universal equivalence, then Qf is a global equivalence between injective L-spaces, hence a universal
equivalence. This shows (A1).

The morphism jQX is a global equivalence between injective L-spaces, hence a universal equivalence. On
the other hand, Q(jX) : QX −→ QQX is a universal equivalence since Q takes all global equivalences to
universal equivalences. So jQX and Q(jX) are also universal equivalences, and this proves axiom (A2).

In axiom (A3) we are given a pullback square

V
k //

g

��

X

f

��
W

h
// Y

of L-spaces in which f is a universal fibration such that jX : X −→ QX, jY : Y −→ QY and Qh are
universal equivalences. We have to show that then Qk is a universal equivalence. These hypothesis can be
reformulated as follows: the L-spaces X and Y are injective, f is a universal fibration and h is a global
equivalence. We have to show that then k is a global equivalence. But this is straightforward: for every
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completely universal subgroup G of L the square

V G
kG //

gG

��

XG

fG

��
WG

hG

// Y G

is a pullback, fG is a Serre fibration and hG is a weak equivalence. Since the model structure of topological
spaces is right proper, the map kG is again a weak equivalence. Hence k is a global equivalence.

This proves (A3), and thus Bousfield’s theorem applied to the universal model structures provides a
proper model structures with global equivalences as weak equivalences and with Cu-cofibrations as the
cofibrations. Bousfield’s theorem also provides the characterization of the fibrations in this global model
structure. For Y = ∗ the criterion specializes to the fact that X is fibrant if and only if it is Cu-fibrant (an
empty condition) and the morphism jX : X −→ QX is a universal equivalence. Since QX is injective, the
fibrancy is equivalent to X being injective.

The cofibrations in the global model structures are the same as the cofibrations in the universal model
structure, so the part of the pushout product property that involves only cofibrations (but not equivalences)
holds because the universal model structure is topological [fill in the rest] �

We close this section by giving rigorous meaning to the slogan that global homotopy theory of L-spaces
is the homotopy theory of ‘orbispaces with compact Lie group isotropy’. In Section 1 we establish a version
of Elmendorf’s theorem, saying that an equivariant homotopy type can be reassembled from fixed point
data; our generalization works for topological monoids relative to a collection of biclosed submonoids. The
identification of the global homotopy theory of L-spaces with the homotopy theory of orbispaces is just a
special case of this. Indeed, the global orbit category defined in the following construction is simply the
orbit category, in the sense of Construction 1.13, of the topological monoid L relative to the collection of
completely universal subgroups.

Construction 2.25 (Global orbit category). We define a topological category Ogl, the global orbit category.
The object of Ogl are all completely universal subgroups of the monoid L, and the space of morphisms
from K to G is the space

Ogl(K,G) = (L/G)
K

= (L(R∞G ,R∞K )/G)K .

Here the (K × G)-action on L is by pre- and postcomposition. Then Ogl(K,G) is the space of K-fixed
points of the G-orbit space. Composition in Ogl is induced by composition of linear isometric embeddings.
Indeed, the continuous L-action

(2.26) L × L/G −→ L/G
is compatible with fixed points: If ϕ ∈ L is a linear isometric embedding whose orbit ϕG is K-fix, then the
relation

(ψk) ◦ (ϕG) = ψ ◦ (kϕG) = ψ ◦ ϕG = ψϕG

shows that the G-orbit of ψϕ only depends on the K-orbit of ψ. So the restriction of (2.26) to L× (L/G)K

factors over a well-defined map
(L/K)× (L/G)K −→ L/G .

Finally, if the K-orbit ψK is L-fix and the G-orbit ϕG is K-fix, then the relation

l(ψϕG) = (lψ) ◦ (ϕG) = (ψk) ◦ (ϕG) = ψ ◦ (kϕG) = ψ ◦ ϕG = ψϕG

shows that the G-orbit of ψϕ is L-fix. So the composition map indeed passes to a well-defined continuous
composition map

Ogl(L,K)×Ogl(K,G) = (L/K)L × (L/G)K −→ (L/G)L = Ogl(L,G) .
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Remark 2.27. The global orbit category refines the category Rep of compact Lie groups and conjugacy
classes of continuous homomorphisms in the following sense. For all completely universal subgroups G
and K, the components π0(Ogl(K,G)) biject functorially with Rep(K,G). Indeed, by Proposition 2.9 the
(K × G)-space L(R∞G ,R∞K ) is a universal space for the family F(K;G) of graph subgroups. So the space
Ogl(K,G) = (L/G)K is a disjoint union, indexed by conjugacy classes of continuous group homomorphisms
α : K −→ G, of classifying spaces of the centralizer of the image of α, see for example [12, Prop. 5]
or [18, Prop. I.6.14 (i)]. In particular, the path component category π0(Ogl) of the global orbit category is
isomorphic to the category Rep of compact Lie groups and conjugacy classes of continuous homomorphisms.
The preferred bijection

Rep(K,G) −→ π0(Ogl(K,G))

sends the conjugacy class of α : K −→ G to the G-orbit of any K-equivariant linear isometric embedding
of the K-universe α∗(R∞G ) into the complete K-universe R∞K .

Definition 2.28. An orbispace is a continuous functor Y : Oop
gl −→ T from from the opposite of the global

orbit category to the category of spaces. We denote the category of orbispaces and natural transformations
by orbispc.

It would be somewhat more precise (but too lengthy) to speak of ‘orbispaces with compact Lie isotropy’,
but no confusion should arise because will not consider more general classes of allowed isotropy groups.

Construction 2.29. We introduce a fixed point functor

Φ : LT −→ orbispc

from the category of L-spaces to the category of orbispaces that will turn out to be a right Quillen equivalence
with respect to the projective global model structure on the left hand side. Given an L-space Y we define
the value of the orbispace Φ(Y ) at a completely universal subgroup G as the G-fixed points

Φ(Y )(G) = Y G ∼= mapL(L/G, Y ) .

The restriction of the action map L × Y −→ Y to Y G factors over a morphism of L-spaces

L/G× Y G −→ Y

(with trivial L-action on Y G). So for a second completely universal subgroup K of L, the restriction to
K-fixed points is the action map

Ogl(K,G)× Φ(Y )(G) = (L/G)K × Y G −→ Y K = Φ(Y )(K) .

As an example of this construction we note that

Φ(L/G) = Ogl(−, G) ,

i.e., the fixed points of the orbit L-space L/G form the orbispace represented by G.

As for continuous functors out of any topological category, the category of orbispaces supports a well-
known ‘projective’ model structure in which the weak equivalences (respectively fibrations) are those natural
transformations that are weak equivalences (respectively Serre fibrations) at every object, see for exam-
ple [15, VI Thm. 5.2]. By general arguments, the fixed point functor Φ just defined has a left adjoint Λ.
The following is then the special case of Proposition 1.14 for the topological monoid L with respect to the
family Cu of universal subgroups. [fix this ]

Theorem 2.30. The adjoint functor pair

orbispc
Λ // LT
Φ

oo

is a Quillen equivalence between the category of L-spaces with the global model structure and the category of
orbispaces. Moreover, for every cofibrant orbispace F the adjunction unit F −→ Φ(ΛF ) is an isomorphism.
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The Quillen equivalence is also well-behaved from a monoidal perspective. We endow the category of
orbispaces with the cartesian monoidal structure, i.e., the objectwise product of orbispaces. Since the
morphism ρX,Y : X �L Y −→ X × Y is a strong global equivalence for all orthogonal spaces X and Y , the
morphisms of orbispaces

Φ(ρX,Y ) : Φ(X �L Y ) −→ Φ(X × Y ) ∼= Φ(X)× Φ(Y )

is a weak equivalence. Moreover, this morphism makes the right adjoint into a lax symmetric comonoidal
functor.

Construction 2.31. The fixed point Quillen equivalence can be used to push any continuous and functorial
construction for spaces to L-spaces. In more detail, let us consider a continuous functor

F : T −→ T

from the category of spaces to itself. Given an L-space Y , we take its fixed point functor ΦY and postcom-
pose it with F . The result is the continuous composite functor

F ◦ (ΦY ) : Repop −→ T .

We take a cofibrant replacement (F ◦ (ΦY ))c −→ F ◦ (ΦY ) in the model category of orbispaces (which can
be done functorially by the small object argument). Then

F̄ (Y ) = Λ((F ◦ (ΦY ))c)

is an L-space. We obtain a chain of two weak equivalences of orbispaces

F ◦ (ΦY ) ←−− (F ◦ (ΦY ))c
η−−→ Φ(F̄ (Y )) ,

where η is the adjunction unit.

This shows:

Proposition 2.32. Let F : T −→ T be a continuous functor from the category of spaces to itself. Then
there is a functor F̄ from the category of L-spaces to itself and a natural chain of weak equivalences of
orbispaces

F ◦ (ΦY ) and Φ(F̄ (Y )) .

� We emphasize that the L-space F̄ (Y ) is not in general obtained by applying F to the underlying space
of Y with the induced L-action, because F need not commute with fixed points of group actions.

However, there is a natural map relating these two constructions. For every universal subgroup G of L the
map F (incl) : F (Y G) −→ F (Y ) has image in F (Y )G, and as G varies these maps define a morphism of
orbispaces

ι : F ◦ (ΦY ) −→ Φ(F (Y )) .

Precomposition with the cofibrant replacement and forming of adjoint is a morphism of L-spaces

F̄ (Y ) = Λ((F ◦ (ΦY ))c) −→ F (Y ) .

3. L-spaces and orthogonal spaces

The aim of this section is to compare the global homotopy theory of L-spaces with the global homotopy
theory of orthogonal spaces as developed by the author in Chapter I of [18]; we will show in Theorem 3.7.
that the global model structures of orthogonal spaces and of L-spaces are Quillen equivalent.

Definition 3.1. An orthogonal space is a continuous functor Y : L −→ T to the category of spaces. A
morphism of orthogonal spaces is a natural transformation. We denote by spc the category of orthogonal
spaces.
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The use of continuous functors from the category L to spaces has a long history in homotopy theory. The
systematic use of inner product spaces (as opposed to numbers) to index objects in stable homotopy theory
seems to go back to Boardman’s thesis [2]. The category L (or its extension that also contains countably
infinite dimensional inner product spaces) is denoted I by Boardman and Vogt [3], and this notation is also
used in [14]; other sources [13] use the symbol I. Accordingly, orthogonal spaces are sometimes referred to
as I -functors, I -spaces or I-spaces. Our justification for using yet another name is twofold: on the one
hand, our use of orthogonal spaces comes with a shift in emphasis, away from a focus on non-equivariant
homotopy types, and towards viewing an orthogonal space as representing compatible equivariant homotopy
types for all compact Lie groups. Secondly, we want to stress the analogy between orthogonal spaces and
orthogonal spectra, the former being an unstable global world with the latter a corresponding stable global
world.

Now we define our main new concept, the notion of ‘global equivalence’ between orthogonal spaces. We
letG be a compact Lie group. By aG-representation we mean a finite dimensional orthogonal representation,
i.e., a real inner product space equipped with a continuous G-action by linear isometries. In other words,
a G-representation consists of an inner product space V and a continuous homomorphism ρ : G −→ O(V ).
In this context, and throughout the book, we will often use without explicit mentioning that continuous
homomorphisms between Lie groups are automatically smooth. For every orthogonal space Y and every
G-representation V , the value Y (V ) inherits a G-action from the G-action on V and the functoriality of Y .
For a G-equivariant linear isometric embedding ϕ : V −→ W the induced map Y (ϕ) : Y (V ) −→ Y (W ) is
G-equivariant.

Definition 3.2. A morphism f : X −→ Y of orthogonal spaces is a global equivalence if the following condi-
tion holds: for every compact Lie group G, every G-representation V , every k ≥ 0 and all continuous maps
α : ∂Dk −→ X(V )G and β : Dk −→ Y (V )G such that β|∂Dk = f(V )G ◦ α, there is a G-representation W ,
a G-equivariant linear isometric embedding ϕ : V −→ W and a continuous map λ : Dk −→ X(W )G such
that λ|∂Dk = X(ϕ)G ◦ α and such that f(W )G ◦ λ is homotopic, relative to ∂Dk, to Y (ϕ)G ◦ β.

In other words, for every commutative square on the left

∂Dk α //

incl

��

X(V )G

f(V )G

��

∂Dk α //

incl

��

X(V )G
X(ϕ)G // X(W )G

f(W )G

��
Dk

β
// Y (V )G Dk

β
//

λ

33

Y (V )G
Y (ϕ)G

// Y (W )G

there exists the lift λ on the right hand side that makes the upper left triangle commute on the nose, and
the lower right triangle up to homotopy relative to ∂Dk. In such a situation we will often refer to the
pair (α, β) as a ‘lifting problem’ and we will say that the pair (ϕ, λ) solves the lifting problem.

Example 3.3. If X = A and Y = B are the constant orthogonal spaces with values the spaces A respec-
tively B, and f = g the constant morphism associated to a continuous map g : A −→ B, then g is a global
equivalence if and only if for every commutative square

∂Dk //

incl
��

A

g

��
Dk //

λ

99

B

there exists the lift λ that makes the upper left triangle commute, and the lower right triangle up to
homotopy relative to ∂Dk. But this is one of the equivalent ways of characterizing weak equivalences of
spaces. So g is a global equivalence if and only if g is a weak equivalence.
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Example 3.4. Every orthogonal space Y gives rise to an L-space by evaluation at R∞. Indeed, for V =
W = R∞, Proposition 2.2 precisely says that the action maps make Y (R∞) into an L-space. This includes
trivial L-spaces obtained by equipping any space with the trivial L-action.

Remark 3.5. The notion of global equivalence is meant to capture the idea that for every compact Lie
group G, some induced morphism

hocolimV f(V ) : hocolimV X(V ) −→ hocolimV Y (V )

is a G-weak equivalence, where ‘hocolimV ’ is a suitable homotopy colimit over all G-representations V along
all equivariant linear isometric embeddings. This is a useful way to think about global equivalences, and it
could be made precise by letting V run over the poset of finite dimensional subrepresentations of a complete
G-universe and using the Bousfield-Kan construction of a homotopy colimit over this poset. However, the
actual definition that we work with has the advantage that we do not have to make precise what we mean
by ‘all’ G-representations and we do not have to define or manipulate homotopy colimits.

In many examples of interest, all the structure maps of an orthogonal space Y are closed embeddings.
When this is the case, the actual colimit (over the subrepresentations of a complete universe) of the G-spaces
Y (V ) serves the purpose of a ‘homotopy colimit over all representations’, and it can be used to detect global
equivalences, compare [18, Prop. I.20].

Theorem I.5.10 of [18] establishes the global model structure on the category of orthogonal spaces in
which the weak equivalences are the global equivalences. A morphism f is a global fibration if and only
if f is a strong level fibration and for every compact Lie group G, every faithful G-representation V and
equivariant linear isometric embedding ϕ : V −→W the square of G-fixed point spaces

X(V )G

f(V )G

��

X(ϕ)G // X(W )G

f(W )G

��
Y (V )G

Y (ϕ)G
// Y (W )G

is homotopy cartesian. This global model structure is proper, topological, compactly generated and
monoidal with respect to the convolution box product of orthogonal spaces.

To compare the global model structure of L-spaces and orthogonal spaces we use the adjoint functor pair

Q⊗L − : spc // LT : mapL(Q,−)oo

introduced by Lind in [13, Sec. 8]; Lind denotes the functor Q ⊗L − by Q. The adjoint pair arises from a
continuous functor

Q : Lop −→ LT , V 7−→ L(V ⊗ R∞,R∞) .

Here L acts on L(V ⊗ R∞,R∞) by postcomposition. A linear isometric embedding ϕ : V −→ W induces
the homomorphism of L-spaces

Q(ϕ) = L(ϕ⊗ R∞,R∞) : L(W ⊗ R∞,R∞) −→ L(V ⊗ R∞,R∞) , ψ 7−→ ψ ◦ (ϕ⊗ R∞) .

Since orthogonal spaces are defined as the continuous functor from L, and since the category of L-spaces is
tensored and cotensored over spaces, any continuous functor from Lop induces an adjoint functor pair by
an enriched end-coend construction. Indeed, the value of the left adjoint on an orthogonal space Y is given
by

Q⊗L Y =

∫
V ∈I

L(V ⊗ R∞,R∞)× Y (V ) ,

the enriched coend of the continuous functor

Lop × L −→ LT , (V,W ) 7−→ L(V ⊗ R∞,R∞)× Y (W ) .
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The functor Q⊗L − has a right adjoint mapL(Q,−) whose value at an L-space Z is given by

map(Q,Z)(V ) = mapL(Q(V ), Z) ,

the mapping space of L-equivariant maps from Q(V ) to Z. The covariant functoriality in V comes from
the contravariant functoriality of Q.

The coend of contravariant functor with a representable covariant functor returns the representing object,
i.e.,

Q⊗L LV = Q(V ) = L(V ⊗ R∞,R∞) .

So the value on the free orthogonal space LG,V generated by a G-representation V comes out as

(3.6) Q⊗L LG,V = Q⊗L (LV /G) ∼= (Q⊗L LV )/G ∼= Q(V )/G = L(V ⊗ R∞,R∞)/G .

Theorem 3.7. The adjoint functor pair

spc
Q // LT

mapL(Q,−)

oo

is a Quillen equivalence with respect to the positive global model structures on orthogonal spaces and the
global model structures on L-spaces.

Proof. We let G be a compact Lie group and V a non-trivial faithful G-representation. Then V ⊗ R∞ is a
faithful G-preuniverse. So there is a universal subgroup Ḡ of L, an isomorphism of Lie groups α : G −→ Ḡ
and a G-equivariant linear isometry ϕ : V ⊗R∞ ∼= α∗(R∞

Ḡ
). This data induces an isomorphism of L-spaces

Q(V )/G = L(V ⊗ R∞,R∞)/G ∼= L(R∞Ḡ ,R
∞)/Ḡ .

Taking L-equivariant maps out of this isomorphism gives a homeomorphism(
mapL(Q,Z)(V )

)G
=
(
mapL(Q(V ), Z)

)G ∼= mapL(Q(V )/G,Z)

∼= mapL(L(R∞Ḡ ,R
∞)/Ḡ, Z) ∼= ZḠ .

This homeomorphism is natural in Z, so the functor mapL(Q,−) takes universal fibrations of L-spaces to
positive strong level fibrations of orthogonal spaces. Similarly, mapL(Q,−) takes acyclic fibrations in the
universal model structure of L-spaces to acyclic fibrations in the positive strong level model structure of
orthogonal spaces. [finish]

We have now shown that the adjoint functor pair (Q ⊗L −,mapL(Q,−)) is a Quillen pair with respect
to the two global model structures. Now we suppose that A is a flat orthogonal space and Z is an injective
L-space. Since Z is injective, the orthogonal space mapL(Q,Z) is positively static. [...] This shows that
the adjoint functor pair (Q⊗L −,mapL(Q,−)) is a Quillen equivalence. �

Remark 3.8. The adjoint functor pair ((−)(R∞), u) also shows up in Lind’s paper, again under a different
name: In Section 9, Lind defines a functor O : spc −→ LT by another enriched coend as

OY =

∫
V ∈I

Y (V )× L(V,R∞) ,

which is naturally isomorphic, as an L-space, to Y (R∞), see [13, Lemma 9.6]. Lind points out the symmetric
monoidal structure (4.4) on this functor, but there is no mentioning that the monoidal structure is strong
monoidal (i.e., that Proposition 4.5 below holds).

The functors Q⊗R − and O = (−)(R∞) are closely related: A choice of unit vector u ∈ R∞ gives rise to
a linear isometric embedding −⊗u : W −→W ⊗R∞ that is natural for linear isometric embeddings in W .
So taking enriched coends over the transformation

Y (V )× L(−⊗ u,R∞) : Y (V )× L(W ⊗ R∞,R∞) −→ Y (V )× L(W,R∞)



ORBISPACES, ORTHOGONAL SPACES, AND THE UNIVERSAL COMPACT LIE GROUP 27

provides a natural map
ξ : Q⊗L Y −→ OY = Y (R∞) .

Lind shows in [13, Lemma 9.7] that for every flat orthogonal space (i.e., cofibrant I-space in his termi-
nology) the map ξ : Q⊗L Y −→ Y (R∞) is a weak equivalence. We generalize this as follows:

Proposition 3.9. For every flat orthogonal space Y the map ξ : Q⊗L Y −→ Y (R∞) is a global equivalence
of L-spaces.

Remark 3.10 (F-global model structure of L-spaces). A global family is a class of compact Lie groups that
is closed under isomorphisms, subgroups and quotients. Our Theorem 3.7 and the non-equivariant Quillen
equivalence of [13, Thm. 9.9] are both special cases of a version with respect to a global family F . We only
indicate what goes into this, and leave the details to interested readers. The universal model structure
of L-space (see Proposition 2.15) has a straightforward version relative to the family F : A morphism
f : X −→ Y of L-spaces is an F-universal equivalence (respectively F-universal fibration) if for every
universal subgroup G of L that belongs to F the induced map

fG : XG −→ Y G

is a weak homotopy equivalence (respectively a Serre fibration). We can apply Proposition 1.10 to the
topological monoid L and the collection of those universal subgroups that belong to F ; we conclude that the
F-universal equivalences and F-universal fibrations are part of a proper topological closed model category
structure on the category of L-spaces, the F-universal model structure.

We call a morphism f : X −→ Y of L-spaces is an F-equivalence if for every completely universal
subgroup G of L that belongs to F the induced map

fG : XG −→ Y G

is a weak homotopy equivalence. In a second step we then perform the same kind of Bousfield localization
as in Theorem 2.24, using the same functor Q from Proposition 2.23, to get from the the F-universal to
the F-global model structure. The outcome is that the cofibrations of the F-universal model structure and
the F-equivalences are part of a cofibrantly generated proper topological model structure on the category
of L-spaces, the F-global model structure. Theorem 3.7 also has a relative version, with the same proof: for
every global family F , the adjoint functor pair (Q⊗L−,mapL(Q,−)) is a Quillen equivalence with respect
to the F-global model structures on orthogonal spaces and on L-spaces.

We claim that when F = 〈e〉 is the global family of trivial groups, we recover the Quillen equivalence
established by Lind in [13, Thm. 9.9]. To make the connection, we recall that orthogonal spaces are called
I-spaces in [13], and the category of I-spaces is denoted IU Moreover, our L-spaces are called L-spaces
in [13], where L stands for the monad whose underlying functor sends A to L×A; the category of L-spaces
is denoted U [L]. For the trivial global family there is no difference between 〈e〉-universal equivalences and
〈e〉-equivalences, and both specialize to the morphisms of L-spaces that are weak equivalences on underlying
non-equivariant spaces. So in this case, no Bousfield localization is necessary, and the 〈e〉-universal and
〈e〉-global model structure coincide and become the non-equivariant model structure. So for the trivial
global family we recover the Quillen equivalence established by Lind.

4. Monoidal properties

The Quillen equivalence between orthogonal spaces and L-spaces of Theorem 3.7 also has nice monoidal
properties. Indeed, the category of L-spaces can be endowed with the operadic product �L, defined as
follows. We denote by

L(2) = L(R∞ ⊕ R∞, R∞)

the space of binary operations in the linear isometries operad. It comes with a left action of L and a right
action of L2 by

L × L(2)× L2 −→ L(2) , (f, ψ, (g, h)) 7−→ f ◦ ψ ◦ (g ⊕ h) .
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Given two L-spaces X and Y we can coequalize the right L2-action on L(2) with the left L2-action on the
product X × Y and form

X �L Y = L(2)×L×L (X × Y ) .

The left L-action on L(2) by postcomposition descends to an L-action on this operadic product. Some care
has to be taken when analyzing this construction: because the monoid L is not a group, it may be hard to
figure out when two elements of L(2)×X × Y become equal in the coequalizer. The operadic product �L
is coherently associative and commutative, but it does not have a unit object. The functor Q ⊗L − from
orthogonal spaces to L-spaces is strong symmetric monoidal by Lemma 8.3 of [13].

Given two L-spaces X and Y , we define a natural L-linear map

ρX,Y : X �L Y −→ X × Y by [ϕ;x, y] 7−→ ((ϕi1) · x, (ϕi2) · y) .

Here i1, i2 : R∞ −→ R∞ ⊕ R∞ are the two direct summand embeddings. In the special case Y = ∗ this
transformation specializes to a natural L-linear map

λX : X �L ∗ −→ X defined by [ϕ;x, ∗] 7−→ (ϕi1) · x ;

the map λX is, however, is not always an isomorphism. The monoids (respectively commutative monoids)
with respect to �L are essentially A∞-monoids (respectively E∞-monoids). We refer the reader to [1, Sec. 4]
for details.

Proposition 4.1. The universal model structure and the global model structure of L-spaces both satisfy the
pushout product property with respect to the operadic box product.

Proof. The key observation is the following. We let G and K be compact Lie groups and V respectively U
faithful preuniverses of G respectively K. Then the map

L(V,R∞) �L L(U ,R∞) −→ L(V ⊕ U ,R∞) , [ϕ; ψ, κ] 7−→ ϕ ◦ (ψ ⊕ κ)

is an isomorphism of L-spaces by [9, I Lemma 5.4] (sometimes referred to as ‘Hopkins’ lemma’). The
map is also (G×K)-equivariant, and �L preserves colimits in both variables. So the map descends to an
isomorphism of L-spaces

L(V,R∞)/G�L L(U ,R∞)/K −→ L(V ⊕ U ,R∞)/(G×K)

[ϕ; ψG, κK] 7−→ (ϕ ◦ (ψ ⊕ κ))(G×K) .

On the other hand, V ⊕ U is a faithful preuniverse for the group G×K. Hence for every pair of universal
subgroups G and K of L the product

L/G�L L/K
is isomorphic to L/H where H is a universal subgroup of L isomorphic to G × K. The explicit set of
generating cofibrations for the universal model structure specified in Proposition 2.15 is thus closed under
pushout product (up to isomorphism). Similarly, any pushout product of a generating cofibration with a
generating acyclic cofibration is (isomorphic to) another generating acyclic cofibrations. This proves the
pushout product property for the universal model structure of L-spaces.

The cofibrations coincide in the universal and the global model structure, so we have also shown the part
of the pushout product property in the global model structure that involves only cofibrations. [finish] �

The next result shows that up to global equivalence, the box product of L-spaces coincides with the
categorical product. This result has a non-equivariant precursor: Blumberg, Cohen and Schlichtkrull show
in [1, Prop. 4.23] that for certain L-spaces (those that are cofibrant in the model structure of [1, Thm. 4.15]),
the morphism ρX,Y is a non-equivariant weak equivalence. The following theorem shows that a much
stronger conclusion holds without any hypothesis on X and Y .

Theorem 4.2. For all L-spaces X and Y , the morphism ρX,Y : X �L Y −→ X × Y is a strong global
equivalence. In particular, the morphism λX : X �L ∗ −→ X is a strong global equivalence.
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Proof. We let G be a universal subgroup of L. We choose a G-equivariant linear isometry

ψ : R∞G ⊕ R∞G ∼= R∞G

and define a continuous map

ψ∗ : X × Y −→ X �L Y by ψ∗(x, y) = [ψ, x, y] .

The G-equivariance means explicitly that ψ(g ⊕ g) = gψ for all g ∈ G, and so the map ψ∗ is G-equivariant
(but not L-linear).

The composite ρX,Y ◦ ψ∗ : X × Y −→ X × Y is given by

ρX,Y (ψ∗(x, y)) = ((ψi1) · x, (ψi2) · y) .

By Proposition 2.9 (iii) the space of G-equivariant linear isometric self-embeddings of R∞G is contractible,
so ψi1 can be linked to the identity of R∞G by a path of G-equivariant linear isometric self-embeddings. Such
a path induces a G-equivariant homotopy from the map (ψi1) · − : X −→ X to the identity of X; similarly,
(ψi2) · − is G-homotopic to the identity of Y . So altogether we conclude that ρX,Y ◦ ψ∗ is G-homotopic to
the identity.

To analyze the other composite we define a continuous map

H : [0, 1]× L(R∞ ⊕ R∞,R∞) −→ L(R∞ ⊕ R∞,R∞ ⊕ R∞)

by H(t, ϕ)(v, w) =
(
ϕ(v, tw), ϕ(0,

√
1− t2 · w)

)
.

Then

H(0, ϕ) = (ϕi1)⊕ (ϕi2) and H(1, ϕ) = i1ϕ .

Moreover, for every t ∈ [0, 1] the map H(t,−) equivariant for the left L-action (with diagonal action on the
target) and for the right L2-action. So we can define a homotopy of G-equivariant maps (which are not
L-linear)

K : [0, 1]× (X �L Y ) −→ X �L Y by K(t, [ϕ;x, y]) = [ψH(t, ϕ), x, y] .

Then

K(0, [ϕ;x, y]) = [ψH(0, ϕ), x, y] = [ψ((ϕi1)⊕ (ϕi2)), x, y]

= [ψ, (ϕi1) · x, (ϕi2) · y] = ψ∗(ρX,Y [ϕ;x, y])

and

K(1, [ϕ;x, y]) = [ψH(1, ϕ), x, y] = [ψi1ϕ, x, y] = (ψi1) · [ϕ, x, y] .

As in the first part of this proof, ψi1 can be linked to the identity of R∞G by a path of G-equivariant
linear isometric self-embeddings, and such a path induces another G-equivariant homotopy from the map
(ψi1) · − : X �L Y −→ X �L Y to the identity of X �L Y . So altogether we have exhibited a G-homotopy
between ψ∗ ◦ ρX,Y and the identity. Since the universal subgroup G was arbitrary, this shows that ρX,Y is
a strong global equivalence. �

The functor (−)(R∞) from orthogonal spaces to L-spaces can be made into a strong symmetric monoidal
functor. For this purpose we recall the box product of orthogonal spaces, which is a special case of Day’s
convolution product of enriched functors [6]. We define a bimorphism b : (X,Y ) −→ Z from a pair of
orthogonal spaces (X,Y ) to another orthogonal space Z as a collection of continuous maps

bV,W : X(V )× Y (W ) −→ Z(V ⊕W ),
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for all inner product spaces V and W , such that for all linear isometric embeddings ϕ : V −→ V ′ and ψ :
W −→W ′ the following square commutes:

X(V )× Y (W )
bV,W //

X(ϕ)×Y (ψ)

��

Z(V ⊕W )

Z(ϕ⊕ψ)

��
X(V ′)× Y (W ′)

bV ′,W ′
// Z(V ′ ⊕W ′)

We define a box product of X and Y as a universal example of an orthogonal space with a bimorphism
from X and Y . More precisely, a box product for X and Y is a pair (X � Y, i) consisting of an orthogonal
space X � Y and a universal bimorphism i : (X,Y ) −→ X � Y , i.e., a bimorphism such that for every
orthogonal space Z the map

(4.3) spc(X � Y,Z) −→ Bimor((X,Y ), Z) , f 7−→ fi = {f(V ⊕W ) ◦ iV,W }V,W

is bijective. Very often only the object X�Y will be referred to as the box product, but one should keep in
mind that it comes equipped with a specific, universal bimorphism. We will often refer to the bijection (4.3)
as the universal property of the box product of orthogonal spaces.

The existence of a universal bimorphism out of any pair of orthogonal spaces X and Y , and thus of a
box product X � Y , is a special case of the existence of Day type convolution products on certain functor
categories [6]; the construction is an enriched Kan extension of the ‘pointwise’ cartesian product of X and Y
along the direct sum functor ⊕ : L× L −→ L, or more explicitly an enriched coend.

Also by the general theory of convolution products, the box product X � Y is a functor in both vari-
ables and it supports a preferred symmetric monoidal structure; so there are specific natural associativity
respectively symmetry isomorphisms

(X � Y ) � Z −→ X � (Y � Z) respectively X � Y −→ Y �X

and a strict unit, i.e., such that 1 �X = X = X � 1. The upshot is that the associativity and symmetry
isomorphisms make the box product of orthogonal spaces into a symmetric monoidal product with the
terminal orthogonal space 1 as unit object. The box product of orthogonal spaces is closed symmetric
monoidal in the sense that the box product is adjoint to an internal Hom orthogonal space.

Now we make the functor (−)(R∞) from orthogonal spaces to L-spaces into a strong symmetric monoidal
functor. For this we let X and Y be two orthogonal spaces. By simultaneous colimit over V ∈ s(R∞)
and W ∈ s(R∞), the constituents iV,W : X(V )× Y (W ) −→ (X � Y )(V ⊕W ) of the universal bimorphism
give rise to a continuous map

i∞,∞ : X(R∞)× Y (R∞) −→ (X � Y )(R∞ ⊕ R∞) .

The composite

L(2)×X(R∞)× Y (R∞)
L(2)×i∞,∞−−−−−−−→ L(2)× (X � Y )(R∞ ⊕ R∞)

act−−→ (X � Y )(R∞)

is L-equivariant and coequalizes the action of L × L, so it factors over a homomorphism of L-spaces

(4.4) ψX,Y : X(R∞) �L Y (R∞) −→ (X � Y )(R∞) .

We omit the verification that the maps ψ are coherently commutative and associative.

Proposition 4.5. The map ψX,Y : X(R∞) �L Y (R∞) −→ (X � Y )(R∞) is an isomorphism of L-spaces
for all orthogonal spaces X and Y .
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Proof. We start with the special case X = L(V,−) and Y = L(W,−) of the free orthogonal spaces rep-
resented by two inner product spaces V and W . A general property of convolution products is that the
product of represented functor is again represented [ref]. In our situation, this manifests itself as follows.
The orthogonal direct sum maps

⊕ : L(V,U)× L(W,U ′) −→ L(V ⊕W,U ⊕ U ′)
form a bimorphism as U and U ′ vary over all inner product spaces. So the universal property provides a
morphisms

L(V,−) � L(W,−) −→ L(V ⊕W,−) ,

an this canonical morphism is an isomorphism of orthogonal spaces. This isomorphism turns the map ψL(V,−),L(W,−
into the morphism of L-spaces

(4.6) ψV,W : L(V,R∞) �L L(W,R∞) −→ L(V ⊕W,R∞) , [ϕ;α, β] 7−→ ϕ ◦ (α⊕ β) .

We rewrite the left hand side: we choose linear isometries

α : V ⊕ R∞ ∼= R∞ and β : W ⊕ R∞ ∼= R∞

and claim that the map

L(V ⊕ R∞ ⊕W ⊕ R∞,R∞)/L2 −→ L(V,R∞) �L L(W,R∞)(4.7)

[ψ] 7−→ [ψ ◦ (α−1 ⊕ β−1); α|V , β|W ]

is an isomorphism of L-spaces, where the right L2-action is through the two R∞-summand. Granting this
for the moment, this proves the special case because the composite

L(V ⊕ R∞ ⊕W ⊕ R∞,R∞)/L2 −→ L(V,R∞) �L L(W,R∞)
ψV,W−−−−→ L(V ⊕W,R∞)

is restriction to V ⊕W , and hence an isomorphism by Proposition 2.6 (ii) (with V ⊕W instead of V ).
A tautological isomorphism of L-spaces is given by

L(V ⊕ R∞ ⊕W ⊕ R∞,R∞)/L2 −→ (L(V ⊕ R∞,R∞)/L) � (L(W ⊕ R∞,R∞)/L)

[ψ] 7−→ [ψ ◦ (α−1 ⊕ β−1); [α], [β]]

and with explicit inverse given by

(L(V ⊕ R∞,R∞)/L) � (L(W ⊕ R∞,R∞)/L) −→ L(V ⊕ R∞ ⊕W ⊕ R∞,R∞)/L2

[ϕ; [f ], [g]] 7−→ [ϕ ◦ (f ⊕ g)] .

Moreover, the coequalizer diagram of Proposition 2.6 (i) provides an isomorphism

(L(V ⊕ R∞,R∞)/L) � (L(W ⊕ R∞,R∞)/L) ∼= L(V,R∞) � L(W,R∞) .

The composite agrees with the map (4.7), so this proves the claim.
Now we prove the general case of the proposition. As functors of X and of Y , source and target of ψX,Y

preserve colimits and products with spaces. Every orthogonal space Y is a coend of a functor with values
Y (W )× L(W,−), so the general case follows formally from the special case. �

Remark 4.8 (Global model structures for ?-modules). Since the unit transformation λX : X �L ∗ −→ X
is not always an isomorphism, certain L-spaces are distinguished. A ?-module is an L-space X for which
the morphism λX is an isomorphism. The category of ?-modules is particularly relevant because on it,
the one-point L-space is a unit object for �L (by definition); so when restricted to the full subcategory of
?-modules, the operadic product �L is symmetric monoidal.

For Y = ∗, a terminal orthogonal space, Y (R∞) is a one-point L-space and Z � Y is isomorphic to Z.
Under these identifications the map ψZ,∗ specializes to the unit transformation λZ(R∞) : Z(R∞) � ∗ −→
Z(R∞). So Proposition 4.5 in particular shows that for every orthogonal space Z, the L-space Z(R∞) is a
?-module. On the other hand, L-spaces of the form L/G for a universal subgroup G of L are not ?-modules.
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The category of ?-modules admits a (non-equivariant) model structure with weak equivalences defined
after forgetting the L-action, cf. [1, Thm. 4.16]; with this model structure the composite

M?
incl−−−→ LT

F�(∗,−)−−−−−→ LT

is a right Quillen equivalence, where F�(∗,−) is right adjoint to −�L ∗.
In his master thesis [4], Böhme constructed a monoidal model structures on the category of ?-modules

that has the global equivalences of ambient L-spaces are its weak equivalences; he also showed that with
these global model structures, L-spaces and ?-modules are Quillen equivalent, and that the global model
structure on ?-modules lifts to associative monoids (with respect to �L). This effectively provides a global
model structure on the category of A∞-monoids, i.e., algebras over the linear isometries operad (considered
as a non-symmetric operad). It remains to be seen to what extent the global model structure lifts to
commutative monoids with respect to �L (i.e., to E∞-monoids).
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