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The purpose of this paper is to show that various convolution products are fully

homotopical, meaning that they preserve weak equivalences in both variables without

any cofibrancy hypothesis. We establish this property for diagrams of simplicial sets

indexed by the category of finite sets and injections and for tame M-simplicial sets, with

M the monoid of injective self-maps of the positive natural numbers. We also show that a

certain convolution product studied by Nikolaus and the 1st author is fully homotopical.

This implies that every presentably symmetric monoidal ∞-category can be represented

by a symmetric monoidal model category with a fully homotopical monoidal product.

1 Introduction

The convolution product of functors between symmetric monoidal categories was

introduced by the category theorist Brian Day [2]. It made a prominent appearance

in homotopy theory when Jeff Smith and Manos Lydakis simultaneously and indepen-

dently introduced the smash products of symmetric spectra [8] and the smash product of

�-spaces [15], respectively. Since then, convolution products have become an essential

ingredient in the homotopy theory toolkit and many more examples were introduced

and studied in the context of stable homotopy theory [14, 17], unstable homotopy theory

[11, 26, 27], equivariant homotopy theory [3, 16], motivic homotopy theory [4, 9], and

∞-category theory [7], to name just a few.
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Homotopy Invariance of Convolution Products 6247

In order for convolution products to be homotopically meaningful, they must

“interact nicely” with some relevant notion of weak equivalence (except in the ∞-

categorical case, where this is an intrinsic feature). In typical situations, homotopi-

cally useful convolution products come with compatible closed model structures. The

compatibility then includes the “pushout product property”, which implies that the

convolution product is homotopy invariant when all objects involved are cofibrant.

This cofibrancy requirement for the homotopy invariance often leads to cofibrancy

hypotheses in applications. The proof of the homotopy invariance for cofibrant objects

typically proceeds by a cellular reduction argument to free or representable objects.

Given the history of the subject, one would not expect convolution products to be

fully homotopical, that is, to preserve the relevant weak equivalences in both variables

without any cofibrancy hypothesis. Nevertheless, there are already two non-obvious

instances of full homotopy invariance. On the one hand, the box product of orthogonal

spaces (also known as I -functors, I -spaces or I-spaces) is fully homotopical [23,

Theorem 1.3.2]. On the other hand, the operadic product of L-spaces, that is, spaces

with a continuous action of the topological monoid L of linear self-isometries of R∞, is

fully homotopical [24, Theorem 1.21]. In both cases, the weak equivalences can be chosen

to be the global equivalences, and the proofs make essential use of explicit homotopies

that are not available for more discrete or combinatorial index categories.

The purpose of the present paper is to show that there are more interesting

instances of fully homotopical convolution products.

I-spaces

Let I be the category with objects the finite sets m = {1, . . . , m} and with morphisms

the injections. An I-space is a covariant functor from I to simplicial sets. We say that a

map of I-spaces f : X → Y is an I-equivalence if the induced map of homotopy colimits

fhI : XhI → YhI is a weak equivalence. The category of I-spaces sSetI has a Day type

convolution product �, with X � Y defined as the left Kan extension of the object-wise

cartesian product (m, n) �→ X(m) × Y(n) along the concatenation − � − : I × I → I.

The interest in I-spaces comes from the fact that homotopy types of E∞ spaces can be

represented by commutative I-space monoids, that is, by commutative monoids with

respect to �, and that many interesting E∞ spaces arise from explicit commutative I-

space monoids (see, e.g., [26, §1.1]).

Our 1st main result states that � is fully homotopical.

Theorem 1.1. Let X be an I-space. Then the functor X � − preserves I-equivalences.
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6248 S. Sagave and S. Schwede

This can be viewed as a discrete analog of [23, Theorem 1.3.2]. The homotopy

invariance of the �-product of I-spaces was previously established by Schlichtkrull and

the 1st author under the additional hypothesis that one of the factors is flat cofibrant,

see [26, Proposition 8.2]. With Theorem 1.1, several flatness hypotheses required in

[27] turn out to be unnecessary. For example, [27, Propositions 2.20, 2.23, 2.27, 4.2,

4.8, Lemma 2.25, Corollaries 2.29 and 4.3] hold without the flatness hypotheses and

[27, Theorem 1.2 and Lemma 4.12] hold without the cofibrancy hypothesis on the

commutative I-space monoid.

Tame M-spaces

Let M be the monoid of injective self-maps of the set of positive natural numbers. A

tame M-set is a set with an M-action that satisfies a certain local finiteness condition

(see Definition 2.2). Actions of M were studied by the 2nd author in [22] where it was

shown that the homotopy groups of symmetric spectra admit tame M-actions that for

example detect semistability.

A tame M-space is a simplicial set with an M-action that is tame in every

simplicial degree. The resulting category sSetM
tame also has a convolution product � that

is analogous to the operadic product of L-spaces. We say that a map f : X → Y of tame

M-spaces is an M-equivalence if it induces a weak equivalence fhM : XhM → YhM of

homotopy colimits (which are given by bar constructions).

Our 2nd main result states that � is fully homotopical.

Theorem 1.2. Let X be a tame M-space. Then the functor X � − preserves M-

equivalences between tame M-spaces.

This theorem can be viewed as a discrete analog of [24, Theorem 1.21] and we use

it to prove Theorem 1.1. It is also interesting in itself: we show that the category of tame

M-spaces is equivalent to the reflective subcategory of the category of I-spaces given by

the flat I-spaces. This implies that tame M-spaces and M-equivalences provide a model

for the homotopy theory of spaces, and that E∞ spaces can be represented by strictly

commutative monoids in (sSetM
tame,�). We also show that commutative �-monoids of

tame M-spaces can be described as algebras over an injection operad, see Theorem A.13.

Presentably symmetric monoidal ∞-categories

We now leave the framework of specific multiplicative models for the homotopy theory

of spaces studied so far and consider general homotopy theories with a symmetric
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Homotopy Invariance of Convolution Products 6249

monoidal product. One convenient way to encode these are the symmetric monoidal

∞-categories introduced by Lurie [13]. More precisely, we shall consider presentably

symmetric monoidal ∞-categories. By definition, these are presentable ∞-categories

with a symmetric monoidal structure that preserves colimits separately in each

variable.

When passing to underlying ∞-categories, combinatorial symmetric monoidal

model categories give rise to presentably symmetric monoidal ∞-categories [13, Exam-

ple 4.1.3.6 and Proposition 4.1.3.10]. Nikolaus and the 1st author showed in [18] that

conversely, every presentably symmetric monoidal ∞-category C is represented by a

combinatorial symmetric monoidal model category M. By construction, M is a left

Bousfield localization of a certain contravariant I-model structure on an over category

sSetI/N with N a commutative I-simplicial set. Here both N and the localization depend

on C. The symmetric monoidal product of M is induced by the �-product on sSetI and

the multiplication of N and can therefore also be viewed as a convolution product.

Combining some of the results about the interaction of I-spaces and tame M-spaces

used to prove Theorems 1.1 and 1.2 with an analysis of the contravariant I-model

structure, we show that the convolution product on M is fully homotopical and thus

provide the following stronger variant of [18, Theorem 1.1].

Theorem 1.3. Every presentably symmetric monoidal ∞-category is represented by

a simplicial, combinatorial and left proper symmetric monoidal model category with a

fully homotopical monoidal product.

The authors view this theorem as a surprising result since point-set level models

for multiplicative homotopy theories tend to be not fully homotopical (or to be not

known to have this property). It leads to symmetric monoidal model categories which

one may not have expected to exist. For example, applying the theorem to the ∞-category

of spectra provides a symmetric monoidal model for the stable homotopy category with

a fully homotopical smash product. To the authors’ knowledge, none of the common

symmetric monoidal models for the stable homotopy category such as [6, 8, 14, 17]

is known to have this property (see also the questions below). As another example,

Theorem 1.3 implies that the homotopy theory underlying the derived category of a

commutative ring k admits a fully homotopical model. The existence of non-trivial Tor-

terms shows that in general, this fails badly for the usual tensor product of chain

complexes of k-modules. As a last example, applying Theorem 1.3 to the presentably

symmetric monoidal ∞-category of ∞-operads constructed by Lurie [13, Chapter 2.2.5]
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6250 S. Sagave and S. Schwede

leads to a fully homotopical model for the category of topological operads with the

Boardman–Vogt tensor product.

The model category provided by [18, Theorem 1.1] also has the desirable feature

that it lifts to operad algebras over simplicial operads and that weak equivalences

of operads induce Quillen equivalences between categories of operad algebras [18,

Theorem 2.5]. This implies that like for positive model structures on diagram spectra or

diagram spaces, E∞ objects can be represented by strictly commutative ones. Together

with the full homotopy invariance, this model thus provides a setup where homotopical

algebra is particularly simple.

Open questions

The above discussion and the close connection between I-spaces and symmetric spectra

lead to the following question.

Question 1.4. Is the smash product of symmetric spectra of simplicial sets fully

homotopical for the stable equivalences?

At the time of this writing, and to the best of the authors’ knowledge, this

question is open, and the authors would like to see this being sorted out. Analogously,

one can consider symmetric spectra of topological spaces, or the orthogonal case:

Question 1.5. Is the smash product of orthogonal spectra fully homotopical for the

stable equivalences?

Affirmative answers to these questions would make numerous cofibrancy

assumptions in applications of symmetric or orthogonal spectra superfluous and

thereby lead to substantial simplifications.

Organization

Section 2 provides combinatorial results about tame M-sets that are used in the rest

of the paper. In Section 3 we study the homotopy theory of tame M-spaces and prove

Theorem 1.2. Section 4 is about homotopical properties of the �-product of I-spaces

and contains the proof of Theorem 1.1. In Section 5 we identify tame M-spaces with

flat I-spaces and construct model structures on these categories. Section 6 discusses

contravariant model structures and provides the proof of Theorem 1.3. In Appendix A

we identify commutative �-monoids in tame M-sets with tame algebras over the
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Homotopy Invariance of Convolution Products 6251

injection operad, and we supply an alternative characterization of the �-product of tame

M-spaces as an operadic product.

Conventions

In this paper we follow a common abuse of language in that the term I-space means a

functor from the injection category I to the category of simplicial sets (as opposed to

a functor to some category of topological spaces). Similarly, an M-space is a simplicial

set with an action of the injection monoid M. The use of simplicial sets is essential

for several of our arguments, and we can offer no new insight about the convolution

products of I-topological spaces and M-topological spaces.

2 The Structure of Tame M-sets

In this section we discuss tame M-sets, that is, sets equipped with an action of the

injection monoid that satisfy a certain local finiteness condition. The main result is

Theorem 2.11, which says that every tame M-set W decomposes as a disjoint union

of M-subsets arising in a specific way from certain �m-sets associated with W. The

arguments of this section are combinatorial in nature, but they crucially enter into the

homotopical analysis in the subsequent sections.

Definition 2.1. The injection monoid M is the monoid of injective self-maps of

the set ω = {1, 2, 3, . . . } of positive natural numbers with monoid structure given by

composition. An M-set is a set with a left M-action.

Definition 2.2. An element x of an M-set W is supported on a subset A of ω if the

following condition holds: for every injection f ∈ M that fixes A elementwise, the

relation fx = x holds. An M-set W is tame if every element is supported on some finite

subset of ω.

We write SetM for the category of M-sets and M-equivariant maps, and we

denote by SetM
tame the full subcategory of tame M-sets.

Clearly, if x is supported on A and A ⊆ B ⊆ ω, then x is supported on B. Every

element is supported on all of ω. An element is supported on the empty set if and only

if it is fixed by M.

Proposition 2.3. Let x be an element of an M-set W. If x is supported on two finite

subsets A and B of ω, then x is supported on the intersection A ∩ B.
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6252 S. Sagave and S. Schwede

Proof. We let f ∈ M be an injection that fixes A ∩ B elementwise. We let m be

the maximum of the finite set A ∪ B ∪ f (A) and define σ ∈ M as the involution that

interchanges j with j + m for all j ∈ B − A, that is,

σ(j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

j + m for j ∈ B − A,

j − m for j ∈ (B − A) + m, and

j for j �∈ (B − A) ∪ ((B − A) + m).

In particular, the map σ fixes the set A elementwise. Since A and f (A) are both disjoint

from B + m, we can choose a bijection γ ∈ M such that

γ (j) =
⎧⎨
⎩

f (j) if j ∈ A, and

j for j ∈ B + m.

Then f can be written as the composition

f = σ(σγ σ)(σγ −1f ).

In this decomposition the factors σ and σγ −1f fix A pointwise, and the factor σγ σ fixes

B pointwise. So

σx = (σγ σ)x = (σγ −1f )x = x

because x is supported on A and on B. This gives

fx = σ(σγ σ)(σγ −1f )x = x.

Since f was any injection fixing A ∩ B elementwise, the element x is supported on A ∩ B.

�

Definition 2.4. Let x be an element of an M-set. The support of x is the intersection of

all finite subsets of ω on which x is supported.

We write supp(x) for the support of x and agree that supp(x) = ω if x is

not finitely supported. Proposition 2.3 then shows that x is supported on its support

supp(x). It is important that in Definition 2.4 the intersection is only over finite

supporting subsets. Indeed every object is supported on the set ω − {j} for every j ∈ ω
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(because the only injection that fixes ω − {j} elementwise is the identity). So without the

finiteness condition the intersection in Definition 2.4 would always be empty.

Proposition 2.5. Let W be an M-set and x ∈ W.

(i) If the injections f , g ∈ M agree on supp(x), then fx = gx.

(ii) For every injection f ∈ M, the relation

supp(fx) ⊆ f (supp(x))

holds. If x is finitely supported, then supp(fx) = f (supp(x)), and fx is also

finitely supported.

Proof. (i) If x is not finitely supported, then supp(x) = ω, so f = g and there is nothing

to show. If x is finitely supported, we can choose a bijection h ∈ M that agrees with

f and g on supp(x). Then h−1f and h−1g fix the support of x elementwise and hence

(h−1f )x = x = (h−1g)x. Thus,

fx = h((h−1f )x) = hx = h((h−1g)x) = gx.

(ii) We let g ∈ M be an injection that fixes f (supp(x)) elementwise. Then gf agrees

with f on supp(x), so

g(fx) = (gf )x = fx

by part (i). We have thus shown that fx is supported on f (supp(x)).

If x is finitely supported, then f (supp(x)) is finite, and this proves that fx is

finitely supported and supp(fx) ⊆ f (supp(x)). For the reverse inclusion we choose h ∈ M

such that hf fixes supp(x) elementwise; then (hf )x = x. Applying the argument to h and

fx (instead of f and x) gives

supp(x) = supp((hf )x) = supp(h(fx)) ⊆ h(supp(fx))

and thus

f (supp(x)) ⊆ f (h(supp(fx))) = (fh)(supp(fx)) = supp(fx).

The last equation uses that fh is the identity on the set f (supp(x)), hence also the

identity on the subset supp(fx). This proves the desired relation when x is finitely

supported. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/8/6246/5698247 by U
LB Bonn user on 24 April 2021



6254 S. Sagave and S. Schwede

As for any monoid, the category of M-sets is complete and cocomplete, and limits

and colimits are created on underlying sets. Proposition 2.5 (ii) shows that for every M-

set W, the subset

Wτ = {x ∈ W | x has finite support}

is closed under the M-action, and hence a tame M-subset of W. A morphism u : V → W

of M-sets preserves supports in the sense of the containment relation

supp(ux) ⊆ supp(x)

for all x ∈ V. In particular, M-linear maps send finitely supported elements to finitely

supported elements. So if the M-action on V is tame, then every M-linear map f : V → W

has image in Wτ . This shows part (i) of the following lemma whose other parts are then

formal consequences.

Lemma 2.6.

(i) The functor

(−)τ : SetM → SetM
tame, W �−→ Wτ

is right adjoint to the inclusion, with the inclusion Wτ → W being the counit

of the adjunction.

(ii) The category of tame M-sets is cocomplete, and the forgetful functor to sets

preserves colimits.

(iii) The category of tame M-sets is complete, and limits can be calculated by

applying the functor (−)τ to limits in the category of M-sets.

Our next aim is to prove that every tame M-set is a disjoint union of M-sets of

the form Im ×�m
Am for varying m ≥ 0 and �m-sets Am.

Proposition 2.7. Let W be a tame M-set and f ∈ M. Then the action of f is an injective

map W → W, and its image consists precisely of those elements that are supported on

the set f (ω).

Proof. For injectivity we consider any x, y ∈ W with fx = fy. Since f is injective and

x and y are finitely supported, we can choose h ∈ M such that hf is the identity on the

support of x and the support of y. Then x = hfx = hfy = y.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/8/6246/5698247 by U
LB Bonn user on 24 April 2021



Homotopy Invariance of Convolution Products 6255

It remains to identify the image of the action of f . For all x ∈ W we have

supp(fx) ⊆ f (supp(x)) ⊆ f (ω)

so fx is supported on f (ω). Now suppose that z ∈ W is supported on f (ω). Then f restricts

to a bijection from f −1(supp(z)) to supp(z). We choose a bijection g ∈ M such that fg is

the identity on supp(z). Then fgz = z, and hence z is in the image of the action of f . �

Proposition 2.7 can fail for non-tame M-sets. An example is given by letting f ∈M

act on the set {0, 1} as the identity if the image of f has finite complement, and setting

f (0) = f (1) = 0 if its image has infinite complement.

Definition 2.8. Given a set A, we write IA for the M-set of injective maps from A to ω,

where the monoid M acts by postcomposition.

Example 2.9. The M-set I∅ has only one element, so the M-action is necessarily trivial.

If A is finite and non-empty, then IA is countably infinite and the M-action is non-

trivial, but tame: the support of an injection α : A → ω is its image α(A).

If A is a finite subset of ω, then the M-set IA represents the functor of taking

elements with support in A: the inclusion ιA : A → ω is supported on A, and for every

M-set W, the evaluation map

HomM(IA, W)
∼=−→ {x ∈ W : supp(x) ⊆ A}, ϕ �−→ ϕ(ιA)

is bijective.

When A = m = {1, . . . , m}, we write Im = Im. The M-set Im comes with a

commuting right action of the symmetric group �m by precomposition. So we can—and

will—view Im as a �m-object in the category of tame M-sets. If K is any left �m-set, we

can form the tame M-set Im ×�m
K by coequalizing the two �m-actions on the product

Im × K. This construction yields a functor

Im ×�m
− : Set�m → SetM

tame.

Now we prove that every tame M-set is a disjoint union of M-sets that arise from

the functors Im ×�m
− for varying m ≥ 0. For an M-set W and m ≥ 0, we write

sm(W) = {x ∈ W supp(x) = m}
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6256 S. Sagave and S. Schwede

for the subset of elements whose support is the set m = {1, . . . , m}. This is a �m-

invariant subset of W by Proposition 2.5 (ii). For example, s0(W) is the set of M-fixed

elements. We alert the reader that the �m-sets sm(W) are not functors in W: a morphism

f : V → W of M-sets may decrease the support, and hence it need not take sm(V)

to sm(W).

We define a morphism of M-sets

ψW
m : Im ×�m

sm(W) → W by [α, x] �−→ α̃x (2.10)

where α̃ ∈ M is any injection that extends α : m → ω. This assignment is well-defined

by Proposition 2.5 (i).

Theorem 2.11. For every tame M-set W, the morphisms ψW
m assemble into an

isomorphism of M-sets

∐
m≥0

Im ×�m
sm(W)

∼=−→ W.

Proof. We write

Cm(W) = {x ∈ W |supp(x)| = m}

for the subset of elements whose support has cardinality m. This is an M-invariant

subset by Proposition 2.5 (ii). Since the M-action on W is tame, W is the disjoint union

of the M-subsets Cm(W) for m ≥ 0. The image of ψW
m is contained in Cm(W), so it remains

to show that the morphism

ψW
m : Im ×�m

sm(W) → Cm(W)

is an isomorphism for every m ≥ 0.

For surjectivity we consider any element x ∈ Cm(W). Since the support of x

has cardinality m, we can choose a bijection h ∈ M such that h(supp(x)) = {1, . . . , m}.
Then supp(hx) = h(supp(x)) = {1, . . . , m} by Proposition 2.5 (ii), so hx belongs to sm(W).

Moreover,

ψW
m [h−1|{1,...,m}, hx] = h−1(hx) = x

so the map ψW
m is surjective.
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Homotopy Invariance of Convolution Products 6257

For injectivity we consider f , g ∈ Im and x, y ∈ sm(W) such that ψW
m [f , x] =

ψW
m [g, y]. Then

supp(ψW
m [f , x]) = f (supp(x)) = f ({1, . . . , m})

and similarly supp(ψW
m [g, y]) = g({1, . . . , m}). So the class ψW

m [f , x] = ψW
m [g, y] is

supported on the intersection of f ({1, . . . , m}) and g({1, . . . , m}). Since the support of

ψW
m [f , x] has cardinality m, we conclude that f ({1, . . . , m}) = g({1, . . . , m}). There is thus

a unique element σ ∈ �m such that g = f σ . We extend σ to an element σ̃ ∈ M by fixing

all numbers greater than m.

We choose a bijection h ∈ M that extends f ; then hσ̃ extends f σ = g. Hence,

x = h−1(hx) = h−1ψW
m [f , x] = h−1ψW

m [g, y] = h−1hσ̃y = σ̃y.

So we conclude that

[f , x] = [f , σ̃y] = [f σ , y] = [g, y].

This proves that the map ψW
m is injective, hence bijective. �

We now define the box product of M-sets.

Definition 2.12. Let X and Y be M-sets. The box product X � Y is the subset of the

product consisting of those pairs (x, y) ∈ X × Y such that supp(x) ∩ supp(y) = ∅.

As we explain in Proposition A.17, the box product of M-sets is closely related

to an operadic product.

Proposition 2.13. Let X and Y be M-sets.

(i) The box product X � Y is an M-invariant subset of X × Y.

(ii) If X and Y are tame, then so is X � Y.

Proof. (i) For all (x, y) ∈ X × Y and all f ∈ M we have

supp(fx) ∩ supp(fy) ⊆ f (supp(x)) ∩ f (supp(y)) = f (supp(x) ∩ supp(y)).

So the pair f (x, y) = (fx, fy) belongs to X � Y whenever (x, y) does. Part (ii) follows from

the relation suppX×Y(x, y) = suppX(x) ∪ suppY(y). �
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6258 S. Sagave and S. Schwede

The associativity, symmetry and unit isomorphisms of the cartesian product of

M-sets clearly restrict to the box product; for example, the associativity isomorphism

is given by

(X � Y) � Z
∼=−→ X � (Y � Z), ((x, y), z) �−→ (x, (y, z)).

Hence, they inherit the coherence conditions required for a symmetric monoidal

product. We thus conclude the following:

Proposition 2.14. The box product is a symmetric monoidal structure on the category

of M-sets with respect to the associativity, symmetry and unit isomorphisms inherited

from the cartesian product. The box product restricts to a symmetric monoidal structure

on the category of tame M-sets. Every one-element M-set is a unit object for the box

product.

Example 2.15. The tame M-set Im of injective maps from m = {1, . . . , m} to ω was

discussed in Example 2.9. We define a morphism of M-sets

Im+n → Im × In, f �−→ (fi1, fi2)

where i1 : m → m + n is the inclusion and i2 : n → m + n sends i to m+i. This morphism

is injective and its image consists precisely of those pairs (α, β) such that

supp(α) ∩ supp(β) = α(m) ∩ β(n) = ∅.

So the map restricts to an isomorphism of M-sets

ρ : Im+n
∼=−→ Im � In.

Lemma 2.16. Let X and Y be tame M-sets. There is a bijection of sets X � Y → X × Y

that is natural for M-equivariant maps in Y.

Proof. We write Y[A] for the subset of elements of Y that are supported on ω − A. By

definition, the underlying set of X � Y is the disjoint union, over x ∈ X, of the sets

{x} × Y[supp(x)]

and this decomposition is natural for M-equivariant morphisms in Y. We let f ∈ M be

any injection with f (ω) = ω − supp(x). Then the action of f is a bijection from Y onto
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the subset Y[supp(x)], by Proposition 2.7. So the underlying set of X � Y bijects with the

underlying set of X × Y. �

We warn the reader that the bijection between X � Y and X × Y constructed in

the previous lemma is in general neither M-equivariant nor natural in X.

Corollary 2.17. If X is a tame M-set, then X �− : SetM
tame → SetM

tame preserves colimits.

3 Homotopy Theory of M-spaces

In this section we introduce two notions of equivalence for M-spaces, the weak

equivalences and the M-equivalences, and we show that the box product of M-spaces

is fully homotopical for both kinds of equivalences.

Definition 3.1.

(i) An M-space is a simplicial set equipped with a left action of the injection

monoid M. We write sSetM for the category of M-spaces.

(ii) An M-space is tame if for every simplicial dimension k, the M-set of k-

simplices is tame. We write sSetM
tame for the full subcategory of sSetM whose

objects are the tame M-spaces.

Definition 3.2. A morphism f : X → Y of M-spaces is

(i) a weak equivalence if it is a weak equivalence of underlying simplicial sets

after forgetting the M-action, and

(ii) an M-equivalence if the induced morphism on homotopy colimits (bar

constructions) fhM : XhM → YhM is a weak equivalence of simplicial sets.

The weak equivalences of M-spaces are analogous to the π∗-isomorphisms of

symmetric spectra, or the N -equivalences of I-spaces. The M-equivalences are the more

important class of equivalences since the homotopy theory represented by tame M-

spaces relative to M-equivalences is the homotopy theory of spaces (see Corollary 5.11

below). Dropping the tameness assumption, a result by Dugger [5, Theorem 5.2] implies

that the M-equivalences are the weak equivalence in a model structure on sSetM that

is Quillen equivalent to spaces. This uses that the classifying space of M is weakly

contractible [22, Lemma 5.2].

Every weak equivalence of M-spaces induces a weak equivalence on homotopy

M-orbits; hence weak equivalences are in particular M-equivalences. The converse is

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/8/6246/5698247 by U
LB Bonn user on 24 April 2021



6260 S. Sagave and S. Schwede

not true: for every injective map α : m → n, the induced restriction morphism

α∗ : In → Im, f �−→ f ◦ α

is an M-equivalence because the M-homotopy orbits of source and target are weakly

contractible, by the following Example 3.3. However, for m �= n, the morphism is not a

weak equivalence.

Example 3.3. The M-set Im of injective maps m → ω was discussed in Example 2.9.

We claim that the simplicial set (Im)hM is weakly contractible. To this end we observe

that (Im)hM is the nerve of the translation category Tm whose object set is Im, and where

morphisms from f to g are all h ∈ M such that hf = g. Given any two f , g ∈ Im, we can

choose a bijection h ∈ M such that hf = g, and then h is an isomorphism from f to g in

Tm. Since all objects of the category Tm are isomorphic, its nerve is weakly equivalent

to the classifying space of the endomorphism monoid of any of its objects. All these

endomorphism monoids are isomorphic to the injection monoid M, so we conclude that

the simplicial set (Im)hM
∼= N(Tm) is weakly equivalent to the classifying space of the

injection monoid M. The classifying space of M is weakly contractible by [22, Lemma

5.2], hence so is the simplicial set (Im)hM .

If X and Y are M-spaces, their box product X � Y is given by the levelwise box

product of M-sets, introduced in Definition 2.12. The next results show that the box

product with any tame M-space preserves weak equivalences and M-equivalences.

Theorem 3.4. For every tame M-space X, the functor X � − preserves weak equiva-

lences between tame M-spaces.

Proof. We start with the special case where X is a tame M-set (as opposed to an M-

space). For an M-space Y, Lemma 2.16 implies that X�Y is isomorphic to the underlying

simplicial set of X×Y with the isomorphism being natural in Y. So X�− preserves weak

equivalences between tame M-spaces because X × − does.

Now we treat the general case. The box product is formed dimensionwise in the

simplicial direction, and realization (i.e., diagonal) of bisimplicial sets preserves weak

equivalences. So the general case follows from the special case of M-sets. �

Since X � Y was defined as an M-invariant subspace of the product X × Y, the

two projections restrict to morphisms of M-spaces

p1 : X � Y → X and p2 : X � Y → Y.
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Theorem 3.5. For all tame M-spaces X and Y, the morphism

(p1
hM , p2

hM) : (X � Y)hM → XhM × YhM

is a weak equivalence of simplicial sets.

Proof. We start with the special case where X = Im/H and Y = In/K for some m, n ≥ 0,

for some subgroup H of �m, and some subgroup K of �n. By Example 2.15, the box

product Im � In is isomorphic to Im+n. Hence, by Example 3.3, source and target of the

(H × K)-equivariant morphism

(p1
hM , p2

hM) : (Im � In)hM → (Im)hM × (In)hM

are weakly contractible. The actions of H on (Im)hM and of K on (In)hM are free.

Similarly, the isomorphism (Im � In)hM
∼= (Im+n)hM provided by Example 2.15 shows

that the action of H × K on (Im � In)hM is free. Any equivariant map between free

(H × K)-spaces that is a weak equivalence of underlying simplicial sets induces a weak

equivalence on orbit spaces. So the morphism

(p1
hM , p2

hM)/(H × K) : (Im � In)hM/(H × K) → (Im)hM/H × (In)hM/K

is a weak equivalence of simplicial sets. The claim now follows because the box

product preserves colimits in each variable by Corollary 2.17, and because the canonical

morphism

((Im)hM)/H → (Im/H)hM

is an isomorphism of simplicial sets.

Now we assume that X and Y are M-sets. Then X is isomorphic to a disjoint

union of M-sets of the form Im ×�m
Am, for varying m ≥ 0 and �m-sets Am, by Theorem

2.11. The �m-set A, in turn, is isomorphic to a disjoint union of �m-sets of the form

�m/H, for varying subgroups H of �m. The box product of M-spaces and the cartesian

product of simplicial sets distribute over disjoint unions, and homotopy orbits preserve

disjoint unions. So source and target of the morphism under consideration decompose

as disjoint unions of M-sets considered in the previous paragraph. Weak equivalences

of simplicial sets are stable under disjoint unions, so this reduces the case of M-sets to

the case of the previous paragraph.
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Now we treat the general case. All relevant construction commute with realiza-

tion of simplicial objects in M-spaces (i.e., diagonal of simplicial sets). So the general

case follows from the special case of M-sets because realization of bisimplicial sets is

homotopical. �

This result implies Theorem 1.2 from the Introduction:

Proof of Theorem 1.2. Since the product of simplicial sets preserves weak equiv-

alences in both variables, it follows from Theorem 3.5 that the �-product is fully

homotopical with respect to the M-equivalences. �

Remark 3.6. The cartesian product of M-spaces, with diagonal M-action, is not

homotopical for M-equivalences. For example, the unique morphism I1 → ∗ to the

terminal M-space is an M-equivalence by Example 3.3. However, the product I1 × I1

is the disjoint union of I1 � I1 (which is isomorphic to I2) and the diagonal (which is

isomorphic to I1). So (I1 × I1)hM consists of two weakly contractible components, and

the projection to the 1st factor

I1 × I1 → I1

is not an M-equivalence.

We call a tame M-space X semistable if the canonical map X → XhM is a weak

equivalence of simplicial sets. This notion is analogous to semistability of symmetric

spectra (see [8, §5.6] and [22, §4]) and I-spaces (see [27, §2.5]). For semistable tame

M-spaces X and Y, one can show that the inclusion X � Y → X × Y is both a weak

equivalence and an M-equivalence. Hence, the product of semistable tame M-spaces is

fully homotopical for M-equivalences.

Example 3.7 (Homotopy infinite symmetric product). We review an interesting class of

tame M-spaces due to Schlichtkrull [21]. Schlichtkrull’s paper is written for topological

spaces, but we work with simplicial sets instead. We let X be a based simplicial set,

with basepoint denoted by ∗. We define X∞ as the simplicial subset of Xω consisting, in

each simplicial dimension, of those functions α : ω → X such that α(i) = ∗ for almost all

i ∈ ω. The injection monoid M acts on X∞ by

(f α)(j) =
⎧⎨
⎩

α(i) if f (i) = j, and

∗ if j �∈ f (ω).
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So informally speaking, one can think of f α as the composite α◦f −1, with the caveat that

f need not be invertible. An element α ∈ X∞ is supported on the finite set ω − α−1(∗),

so the M-action on X∞ is tame. Schlichtkrull’s main result about this construction is

that for connected X, the M-homotopy orbit space X∞
hM is weakly equivalent to Q(X), the

underlying infinite loop space of the suspension spectrum of X, see [21, Theorem 1.2].

In other words, X∞ is a model for Q(X) in the world of tame M-spaces.

The M-space X∞ has additional structure: it is a commutative monoid for the

box product of M-spaces. Indeed, a multiplication

μX : X∞ � X∞ → X∞

is given by

μX(α, β)(i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α(i) if α(i) �= ∗, and

β(i) if β(i) �= ∗, and

∗ if α(i) = β(i) = ∗.

This assignment makes sense because whenever α and β have disjoint support, then

for all i ∈ ω, at least one of the elements α(i) and β(i) must be the basepoint of X. The

multiplication map μX is clearly associative and commutative, and the constant map

to the basepoint of X is a neutral element. With this additional structure, X∞ has the

following universal property. We let M act on ω+ ∧ X by f (i, x) = (f (i), x). Then X∞ is

the free commutative �-monoid, in the category of based tame M-spaces, generated by

the tame M-space ω+ ∧ X. This universal property, or direct inspection, shows that the

functor

sSet∗ → sSetM
tame, X �−→ X∞

from based simplicial sets takes coproducts to box products (which are coproducts in

the category of commutative �-monoids). More precisely, for all based simplicial sets X

and Y, the composite map

X∞ � Y∞ i∞X �i∞Y−−−−→ (X ∨ Y)∞ � (X ∨ Y)∞ μX∨Y−−−→ (X ∨ Y)∞

is an isomorphism of tame M-spaces, where iX : X → X ∨ Y and iY : Y → X ∨ Y are the

inclusions. The analogous statement for I-spaces is [21, Lemma 3.1].
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4 The Box Product of I-spaces

In this section we prove that the box product of I-spaces is fully homotopical for the

classes of I-equivalences and N -equivalences. Our strategy is to reduce each of these

claims to the corresponding one for the box product of tame M-spaces. The key tool is a

certain functor from I-spaces to tame M-spaces that matches the box products and the

relevant notions of equivalences.

We let I denote the category whose objects are the sets m = {1, . . . , m} for

m ≥ 0, with 0 being the empty set. Morphisms in I are all injective maps. The

category I is thus a skeleton of the category of finite sets and injections. (Other

authors denote this category by I or FI, and some use the letter I for the orthogonal

counterpart.)

Definition 4.1. An I-space is a functor from the category I to the category of

simplicial sets. A morphism of I-spaces is a natural transformation of functors, and

we write sSetI for the category of I-spaces.

We denote by N the non-full subcategory of I containing all objects, but only

the inclusions as morphisms. In other words, N is the category associated with the

partially ordered set (N, ≤).

Construction 4.2 (From I-spaces to tame M-spaces). We let X be an I-space. We write

X(ω) = colimNX

for the colimit of X formed over the non-full subcategory N . We observe that the

simplicial set X(ω) supports a natural action by the injection monoid M, defined as

follows. We let [x] ∈ X(ω) be represented by x ∈ X(m), and we let f ∈ M be an injection.

We set n = max(f (m)) and write f̃ : m → n for the restriction of f . Then we get a well-

defined M-action by setting

f [x] = [X(f̃ )(x)].

Moreover, x is supported on m, and so this M-action is tame.

In Construction 5.5 below we will exhibit this construction as a left adjoint

functor (−)(ω) : SetI → SetM
tame. To analyze its homotopical properties, we use the

following notions.
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Definition 4.3. A morphism f : X → Y of I-spaces is

• an N -isomorphism if the induced map f (ω) : X(ω) → Y(ω) on colimits over N
is an isomorphism,

• an N -equivalence if f (ω) is a weak equivalence of underlying simplicial sets,

and

• an I-equivalence if the induced map fhI : XhI → YhI on Bousfield-Kan

homotopy colimits [1, Chapter XII] is a weak equivalence of simplicial sets.

Remark 4.4. The above definition of N -equivalences is not the same as the one given

in [27, § 2.5], where the homotopy colimit over N is used instead of the categorical

colimit. However, sequential colimits of simplicial sets are fully homotopical for

weak equivalences. (One way to see this is that sequential colimits of acyclic Kan

fibrations are again acyclic Kan fibrations by a lifting argument, and that therefore

cofibrant replacements in the projective model structure on sSetN are mapped to weak

equivalences by colimN ; compare also Lemma 6.3.) This implies that for every functor

X : N → sSet, the canonical morphism

hocolimNX → colimNX

is a weak equivalence, compare [1, Chapter XII, 3.5]. So the two definitions of N -

equivalences of I-spaces are equivalent.

We recall that the homotopy colimit of an I-space X is related to the homotopy

colimit of the M-space X(ω) by a chain of three natural weak equivalences; this

observation is due to Jeff Smith and recorded in [25, Proposition 2.2.9]. We let Iω

denote the category whose objects are the sets m = {1, . . . , m} for m ≥ 0, and the set

ω = {1, 2, 3, . . . }. Morphisms in Iω are all injective maps. The restriction functor

sSetIω → sSetI

has a left adjoint

sSetI → sSetIω , X �−→ X̃

given by left Kan extension. Since I is a full subcategory of Iω and the canonical functor

N → I/ω is homotopy cofinal, we can take X̃ = X on the subcategory I, and

X̃(ω) = X(ω) = colimNX.
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The inclusion j : M → Iω of categories is homotopy cofinal. Writing LhX for the

homotopy left Kan extension of X along I → Iω, this implies that the canonical

morphism

((LhX)(ω))hM = hocolimM(LhX ◦ j) → hocolimIω
LhX

is another weak equivalence of simplicial sets, see the dual version of [1, Chapter XI,

9.2]. Because sequential colimits of simplicial sets are fully homotopical, the natural

morphism from the homotopy Kan extension of X at ω to the (categorical) Kan extension

at ω is a weak equivalence. So we obtain a chain of natural weak equivalences

XhI
∼←− (LhX)hIω

∼←− ((LhX)(ω))hM
∼−→ X(ω)hM . (4.5)

This chain of equivalences proves the 2nd item of the following proposition. The 1st

item is a restatement of definitions.

Proposition 4.6.

(i) A morphism f : X → Y of I-spaces is an N -equivalence if and only if the

morphism f (ω) : X(ω) → Y(ω) is a weak equivalence of M-spaces.

(ii) A morphism f : X → Y of I-spaces is an I-equivalence if and only if the

morphism f (ω) : X(ω) → Y(ω) is an M-equivalence of M-spaces.

The category I supports a permutative structure

− � − : I × I → I

by concatenation of finite sets. On objects, it is given by m � n = m + n. The

concatenation of two morphisms α : m → k and β : n → l is given by

(α � β)(i) =
⎧⎨
⎩

α(i) for 1 ≤ i ≤ m, and

β(i − m) + k for m + 1 ≤ i ≤ m + n.

The box product X � Y of two I-spaces X and Y is the convolution product for the

concatenation monoidal structure, that is, the left Kan extension of the functor

I × I → sSet, (m, n) �−→ X(m) × Y(n)

along − � − : I × I → I.
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The box product of I-spaces comes with two “projections”, that is, morphisms

of I-spaces

q1 : X � Y → X and q2 : X � Y → Y.

The morphism q1 corresponds, via the universal property of the box product, to the

bimorphism given by the composite

X(m) × Y(n)
project−−−−→ X(m)

X(i1)−−−→ X(m � n),

for m, n ≥ 0, where i1 : m → m � n is the inclusion. The morphism q2 corresponds, via

the universal property of the box product, to the bimorphism given by the composite

X(m) × Y(n)
project−−−−→ Y(n)

Y(i2)−−−→ Y(m � n),

where i2 : n → m � n sends i to m + i.

We introduced the box product of M-spaces in Definition 2.12 as the M-invariant

subspace of disjointly supported pairs inside the product. The image of the morphism

of M-spaces

(q1(ω), q2(ω)) : (X � Y)(ω) → X(ω) × Y(ω)

lands in the subspace X(ω) � Y(ω), and we write

τX,Y : (X � Y)(ω) → X(ω) � Y(ω)

for the restriction of (q1(ω), q2(ω)) to this image. The next proposition says that the

transformation τ is a strong symmetric monoidal structure on the functor

(−)(ω) : sSetI → sSetM
tame.

Proposition 4.7. For all I-spaces X and Y, the morphism τX,Y : (X�Y)(ω) → X(ω)�Y(ω)

is an isomorphism of M-spaces.

Proof. All structure is sight is defined dimensionwise in the simplicial direction,

so it suffices to prove the claim for I-sets (as opposed to I-spaces). Both sides of

the transformation τ preserve colimits in each variable, which reduces the claim to
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representable I-sets. The convolution product of represented functors is represented,

that is,

I(m, −) � I(n, −) ∼= I(m � n, −),

and I(m, −)(ω) is isomorphic to the M-set Im discussed in Example 2.9. So the case of

represented functors is taken care of by Example 2.15. �

The next statement in particular contains Theorem 1.1 from the introduction.

Theorem 4.8. For every I-space X, the functor X � − preserves N -equivalences and

I-equivalences of I-spaces.

Proof. We let f : Y → Z be a morphism of I-spaces that is an N -equivalence

or I-equivalence, respectively. Then by Proposition 4.6, the morphism of tame M-

spaces f (ω) : Y(ω) → Z(ω) is a weak equivalence or M-equivalence, respectively. So the

morphism

X(ω) � f (ω) : X(ω) � Y(ω) → X(ω) � Z(ω)

is a weak equivalence by Theorem 3.4, or an M-equivalence by Theorem 1.2, respectively.

By the isomorphism of Proposition 4.7, this means that

(X � f )(ω) : (X � Y)(ω) → (X � Z)(ω)

is a weak equivalence or an M-equivalence, respectively. Another application of Propo-

sition 4.6 proves the claim. �

The next statement generalizes [27, Corollary 2.29].

Corollary 4.9. The morphism (q1
hI , q2

hI) : (X � Y)hI → XhI × YhI is a weak equivalence

of simplicial sets for all I-spaces X and Y.

Proof. Using the previous theorem, this follows from [27, Corollary 2.29] by arguing

with a flat cofibrant replacement of X. Alternatively, one can use the chain of weak

equivalences (4.5) to reduce this to a statement about tame M-spaces and then argue

with Proposition 4.7 and Theorem 3.5 to directly verify the claim. �
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5 Flat I-spaces and Tame M-spaces

In this section we show that the functor colimN = (−)(ω) : sSetI → sSetM from

Construction 4.2 is a left adjoint, and that it identifies a certain full subcategory of

f lat I-sets with the category of tame M-sets. We will then use this adjunction for the

homotopical analysis of flat I-spaces and tame M-spaces.

Flat I-sets

The following definition singles out a particular class of ‘flat’ I-sets. The I-spaces

previously called “flat” are precisely the ones that are dimensionwise flat as I-sets,

see Remark 5.2.

Definition 5.1. An I-set X is f lat if the following two conditions hold:

(i) For every morphism α : m → n in I, the map X(α) : X(m) → X(n) is injective.

(ii) The functor X sends pullback squares in I to pullback squares of sets.

Remark 5.2. The terminology just introduced is consistent with the usage of the

adjective “flat” in the context of I-spaces—despite the fact that the definitions look

very different at 1st sight. We recall from [26, Definition 3.9] that an I-space X is f lat if

for every n in I, the latching morphism

νX
n : LnX = (

colimm→n∈∂(I/n)X(m)
) → X(n) (5.3)

is a monomorphism of simplicial sets; here ∂(I/n) denotes the full subcategory

of the over-category (I/n) on the objects that are non-isomorphisms. The flatness

criterion established in [26, Proposition 3.11] precisely says that an I-space is flat

if and only if the I-set of q-simplices is flat in the sense of Definition 5.1 for every

q ≥ 0.

The flat I-spaces are relevant for us because they are the cofibrant objects

of a f lat I-model structure on sSetI with weak equivalences the I-equivalences [26,

Proposition 3.10].

The following combinatorial property amounts to the fact that every monomor-

phism between flat I-spaces is automatically a flat cofibration in the sense of [26,

Definition 3.9], a fact that does seem to have been noticed before.
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Proposition 5.4. Let i : X → Y be a monomorphism between flat I-sets. Then for every

n ≥ 0, the induced map

νY
n ∪ i(n) : LnY ∪LnX X(n) → Y(n)

is injective.

Proof. The argument in the proof of [26, Proposition 3.11] shows that the latching

maps νX
n and νY

n are injections. We claim that for every n ≥ 0, the commutative square

of sets

is a pullback. Since i(n) is also injective, this implies that the pushout of the punctured

square injects into Y(n). Elements in the latching set LnY are equivalence classes of

pairs (α, y), where α : n − 1 → n is an injection and y ∈ Y(n − 1). For the pullback

property we consider an element x ∈ X(n) such that

νY
n [α, y] = α∗(y) = i(n)(x)

holds in Y(n). We let β, β ′ : n → n + 1 be the two injections that satisfy β ◦ α = β ′ ◦ α and

that differ on the unique element that is not in the image of α. Then

i(n + 1)(β∗(x)) = β∗(i(n)(x)) = β∗(α∗(y))

= β ′∗(α∗(y)) = β ′∗(i(n)(x)) = i(n + 1)(β ′∗(x)).

Because i is a monomorphism, we conclude that β∗(x) = β ′∗(x). The following square is

a pullback because X is flat:
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So there is an element z ∈ X(n − 1) such that α∗(z) = x; equivalently, x is the image of

[α, z] under the latching map νX
n : LnX → X(n). Now we also get

νY
n ((Lni)[α, z]) = i(n)(νX

n [α, z]) = i(n)(x) = νY
n [α, y].

Since Y is flat, its latching map νY
n is injective, and we conclude that (Lni)[α, z] = [α, y]

in LnY. This completes the proof of the pullback property, and hence the proof of the

proposition. �

Construction 5.5 (From M-sets to I-sets). We let W be an M-set and m ≥ 0. We write

Wm = {x ∈ W | supp(x) ⊆ m}

for the set of elements that are supported on m = {1, . . . , m}. Given an injection α : m →
n, we choose an extension α̃ ∈ M, that is, such that α̃(i) = α(i) for 1 ≤ i ≤ m. We define

α∗ : Wm → Wn

by α∗(x) = α̃x, and this is independent of the choice of extension by Proposition 2.5 (i).

These assignments are functorial in α, that is, the entire data defines an I-set W•. The

inclusions Wm ⊆ W induce a natural morphism εW : (W•)(ω) → W of M-sets.

If X is an I-set, we write X� = X(ω)•. The canonical map X(m) → X(ω)

takes values in X(ω)m; for varying m, these maps provide a natural transformation

ηX : X → X(ω)• = X� of I-sets.

Proposition 5.6.

(i) The morphisms ηX : X → X� and εW : (W•)(ω) → W are the unit and counit of

an adjunction

(ii) The adjunction counit εW is injective, and εW is surjective if and only if W is

tame.

(iii) The adjunction unit ηX : X → X� is an N -isomorphism.

(iv) The adjunction unit ηX : X → X� is an isomorphism if and only if X is flat.
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6272 S. Sagave and S. Schwede

(v) The restrictions of (−)(ω) and (−)• are an adjoint equivalence of categories

between the full subcategories of flat I-sets and tame M-sets.

Proof. Parts (i) and (ii) are straightforward, and we omit their proofs.

(iii) The composite of ηX(ω) : X(ω) → (X(ω)•)(ω) with the adjunction counit

εX(ω) : (X(ω)•)(ω) → X(ω) is the identity. Since the M-action on X(ω) is tame, the counit

εX(ω) is an isomorphism by (ii). So the morphism ηX(ω) is an isomorphism.

(iv) We suppose first that ηX is an isomorphism. Then every morphism α : m → n

in I induces an injection α∗ : Wm → Wn by Proposition 2.7. Moreover, Proposition 2.3

shows that W• preserves pullbacks. So the I-set W• is flat.

For the converse we suppose that X is flat. Then the maps X(ιmk ) : X(k) → X(m)

are injective, where ιmk : k → m is the inclusion. So the canonical map X(k) → colimNX =
X(ω) is injective, hence so is its restriction ηX(k) : X(k) → X(ω)k.

For surjectivity we consider any element of X(ω)k, that is, an element of X(ω)

that is supported on k. We choose a representative x ∈ X(m) of minimal dimension, that

is, with m ≥ 0 chosen as small as possible. We must show that m ≤ k. We argue by

contradiction and suppose that m > k. We let d ∈ M be the injection defined by

d(i) =
⎧⎨
⎩

i for i < m, and

i + 1 for i ≥ m.

Then d [x] = [x] because d is the identity on k and [x] is supported on k. This means that

the elements

X(ιm+1
m )(x) and X(d|m)(x) ∈ X(m + 1)

represent the same element in the colimit X(ω). Since the canonical map from X(m + 1)

to X(ω) is injective, we conclude that X(ιm+1
m )(x) = X(d|m)(x). Since X is flat, the

following square is a pullback:
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So there is an element y ∈ X(m − 1) such that X(ιmm−1)(y) = x. This contradicts the

minimality of m, so we have shown that m ≤ k.

Part (v) is a formal consequence of the other statements: part (iii) implies that

the restricted functor (−)• : SetM
tame → SetI is fully faithful, and part (iv) identifies its

essential image as the flat I-sets. �

Homotopy theory of flat I-spaces and tame M-spaces

In Proposition 5.6 we have exhibited flat I-sets as a reflective subcategory inside

all I-sets, equivalent to the category of tame M-sets. Restricting to tame M-spaces

and applying the relevant constructions in every simplicial degree provides an adjoint

functor pair:

For an I-space X, we write

X� = (X(ω))•
for the composite endofunctor of sSetI . By Proposition 5.6, these constructions enjoy

the following properties:

Corollary 5.7.

(i) The adjunction counit εW : (W•)(ω) → W is an isomorphism.

(ii) The adjunction unit ηX : X → X� is an N -isomorphism.

(iii) The adjunction unit ηX : X → X� is an isomorphism if and only if X is flat.

(iv) The restrictions of (−)(ω) and (−)• are equivalence of categories

between the full subcategories of flat I-spaces and tame M-spaces.

Remark 5.8. Properties (ii) and (iii) in the corollary in particular say that X� is a

“flat replacement” of X, in the sense that the adjunction unit ηX : X → X� is an N -

isomorphism, and hence an I-equivalence, with a flat target. This should be contrasted

with cofibrant replacement in the flat model structure on I-spaces, which provides an

I-equivalence (even a level equivalence) from a flat I-space to X.

Remark 5.9. Corollary 5.7 (ii) and the strong monoidality of (−)(ω) established in

Proposition 4.7 also lead to an alternative proof of Theorem 1.1: they imply that for
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6274 S. Sagave and S. Schwede

every pair of I-spaces X, Y, there is a natural N -isomorphism X � Y → X� � Y with

X� a flat. The homotopy invariance of � then follows from [26, Proposition 8.2], which

implies that X� � − preserves I-equivalences.

A relatively formal consequence of this setup is that the absolute and positive

flat I-model structures on sSetI [26, Proposition 3.10] restrict to model structures on

the full subcategory sSetIflat of flat I-spaces. The f lat I-fibrations are defined in [26,

Definition 3.9] as the morphisms of I-spaces with the right lifting property against the

class of flat I-cofibrations that are also I-equivalences. In [26, Section 6.11], the flat

I-fibrations are identified in more explicit terms.

Theorem 5.10.

(i) The classes of I-equivalences, monomorphisms and flat I-fibrations form

the f lat I-model structure on the category sSetIflat of flat I-spaces.

(ii) The classes of I-equivalences, monomorphisms that are also isomorphisms

at 0, and positive flat I-fibrations the positive flat I-model structure on the

category sSetIflat of flat I-spaces.

(iii) The flat and positive flat I-model structures on sSetI are cofibrantly

generated, proper and simplicial.

(iv) The inclusion sSetIflat → sSetI is the right Quillen functor in a Quillen

equivalence between the flat I-model structures.

Proof. (i) Being a reflective subcategory of sSetI , the category sSetIflat is complete

with limits created by the inclusion and colimits created by applying (−)� to the

corresponding colimits in sSetI (see, e.g., [20, Proposition 4.5.15]). Factorizations and the

2-out-of-3, retract and lifting properties are inherited from sSetI . The same holds for

the simplicial structure, properness and the generating (acyclic) cofibrations claimed

in part (iii). Proposition 5.4 shows that every monomorphism between flat I-spaces is

already a flat cofibration. So the restriction of flat cofibrations to sSetIflat indeed yields

the class of monomorphisms. The proof of part (ii) is very similar to that of part (i), and

we omit the details.

(iv) The Quillen equivalence statement is a direct consequence of the fact that

the adjunction unit X → X� is always an N -isomorphism, and hence an I-equivalence,

by Proposition 5.6 (i). �

Analogously, the absolute and positive projective I-model structures and the

level model structures studied in [26, § 3] carry over to sSetIflat.
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Corollary 5.11.

(i) The classes of M-equivalences and monomorphisms are part of a cofibrantly

generated, proper and simplicial model structure on the category sSetM
tame of

tame M-spaces.

(ii) The classes of M-equivalences and monomorphisms that are also isomor-

phisms on M-fixed points are part of a cofibrantly generated, proper and

simplicial model structure on the category sSetM
tame of tame M-spaces.

Proof. For parts (i) and (ii) we transport the two model structures of Theorem 5.10

along the equivalence of categories between flat I-spaces and tame M-spaces provided

by Proposition 5.6 (v). We note that Proposition 4.6 (ii) identifies the weak equivalences

as the M-equivalences. �

Remark 5.12. The results we proved about the homotopy theory of tame M-spaces

imply that the two model structures of Corollary 5.11 are Quillen equivalent to the

Kan–Quillen model structure on the category of simplicial sets. For easier reference,

we spell out an explicit chain of two Quillen equivalences. Proposition 6.23 of [26]

shows that the colimit functor colimI : sSetI → sSet is a left Quillen equivalence for the

projective model I-model structure on the category of I-spaces of [26, Propositions 3.2].

The projective and flat I-model structures on sSetI have the same weak equivalences

and nested classes of cofibrations, so they are Quillen equivalent. The flat I-model

structures on sSetI and on its full subcategory sSetIflat are Quillen equivalent by

Theorem 5.10 (iv). And the model structure on sSetM
tame matches the model structure

on sSetIflat, by design. If we combine all this, we arrive at a chain of two Quillen

equivalences, with left adjoints depicted on top:

The middle term has the projective I-model structure, and simplicial sets carry the

Kan–Quillen model structure.

The following theorem states that the positive model structure from Corollary

5.11 lifts to commutative monoids.

Theorem 5.13. The category Com(sSetM
tame,�) of commutative �-monoids in tame M-

spaces admits a positive model structure with weak equivalences the M-equivalences.

It is Quillen equivalent to the category of E∞ spaces.
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6276 S. Sagave and S. Schwede

Since the functor (−)(ω) : sSetIflat → sSetM
tame is a strong symmetric monoidal

equivalence of categories, it induces an equivalence on the categories of commu-

tative monoids. Thus, the theorem also gives a positive flat I-model structure on

the category of commutative monoids in (sSetI ,�) whose underlying I-spaces are

flat.

Proof of Theorem 5.13. The category Com(sSetM
tame,�) is complete because the

underlying category sSetM
tame is, and limits in commutative monoids are created in

the underlying category. Using [19, Proposition 2.3.5], cocompleteness follows because

sSetM
tame is cocomplete by Lemma 2.6 (or the argument in the proof of Corollary 5.11) and

� preserves colimits in each variable by Corollary 2.17.

The model structure now arises by restricting the flat I-model structure

on commutative I-space monoids from [26, Proposition 3.15(i)] to the category of

underlying flat commutative I-space monoids and transporting it along the equivalence

of categories to Com(sSetM
tame,�). The only non-obvious part is to get the factorizations.

For this, it is sufficient to check that positive cofibrations in commutative I-space

monoids with underlying flat domain are absolute flat cofibrations of I-spaces. This is

a slightly stronger statement than [26, Proposition 12.5] and follows from the argument

in the proof of [26, Lemma 12.17].

For the Quillen equivalence statement, we first note that since (−)(ω) is strong

symmetric monoidal by Proposition 4.7, its right adjoint (−)• is lax symmetric monoidal,

and so the composite (−)� is also lax symmetric monoidal. Hence, (−)� also induces a left

adjoint Com(sSetI) → Com(sSetIflat) with right adjoint the inclusion. This adjunction

is a Quillen equivalence with respect to the positive flat model structure since the

underlying I-spaces of cofibrant commutative I-space monoids are flat. The claim

follows since Com(sSetI) is Quillen equivalent to E∞ spaces by [26, Theorem 3.6 and

Proposition 9.8(ii)]. �

6 Presentably Symmetric Monoidal ∞-categories

The aim of this section is to prove Theorem 1.3 from the introduction. The strategy of

proof is to generalize the alternative approach to Theorem 1.1 outlined in Remark 5.9.

We let N be a commutative I-space monoid. We write sSetI/N for the category of

I-spaces augmented over N. This over category sSetI/N inherits a symmetric monoidal

convolution product given by

(X → N) � (Y → N) = (X � Y → N � N → N)
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where the last map is the multiplication of N. Since (−)(ω) : sSetI → sSetM
tame is strong

symmetric monoidal by Proposition 4.7, it induces a strong symmetric monoidal functor

sSetI/N → sSetM
tame/N(ω).

Corollary 6.1. For every object X → N in sSetI/N, the endofunctor (X → N) � − of

sSetI/N preserves N -isomorphisms.

Proof. The map obtained by applying (−)(ω) to the product of X → N with an N -

isomorphism Y → Y ′ over N is isomorphic to X(ω) � (Y(ω) → Y ′(ω)). �

Contravariant model structures

If S is a simplicial set, the over category sSet/S admits a contravariant model

structure [12, § 2.1.4]. It is characterized by the property that its cofibrations are the

monomorphisms and its fibrant objects are the morphisms K → S with the right lifting

property against {�n
i ⊆ �n | 0 < i ≤ n}.

We shall now consider I-diagrams in sSet/S, and again call a morphism in

(sSet/S)I an N -isomorphism if it induces an isomorphism when passing to the colimit

of the underlying N -diagram. Moreover, we say that a map is a contravariant I-

equivalence if the homotopy colimit over I formed with respect the contravariant model

structure sends it to a contravariant weak equivalence in sSet/S. Since the covariant

model structure is simplicial by the dual of [12, Proposition 2.1.4.8], one may model this

homotopy colimit by implementing the Bousfield–Kan formula.

Lemma 6.2. The N -isomorphisms in (sSet/S)I are contravariant I-equivalences.

Proof. Implementing the 1st two equivalences in (4.5) for the contravariant model

structure shows that hocolimN -equivalences are I-equivalences. Thus, it is sufficient

to verify that the canonical map hocolimNX → colimNX is a contravariant weak

equivalence. For this it is in turn sufficient to show that if f : X → Y is a map of N -

diagrams in sSet/S with each f (m) a contravariant weak equivalence, then colimN f

is a contravariant weak equivalence. To see this, we factor f in the projective level

model structure induced by the contravariant model structure as an acyclic cofibration

h followed by an acyclic fibration g. Since colimN is left Quillen with respect to

the projective level model structure, colimNh is a contravariant acyclic cofibration.

Since the contravariant cofibrations coincide with the cofibrations of the over category

model structure induced by the Kan model structure on sSet, the acyclic fibrations in
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the contravariant model structure are the maps that are acyclic Kan fibrations when

forgetting the projection to S. Since acyclic Kan fibrations are characterized by having

the right lifting property with respect to the set {∂�n ⊆ �n | n ≥ 0} and ∂�n and �n are

finite, it follows that colimN g is an acyclic Kan fibration when forgetting the projection

to S. This shows that colimN f is a contravariant weak equivalence because it is the

composite of a contravariant acyclic cofibration colimNh and an acyclic Kan fibration

colimN g. �

Now we let Z be an I-diagram of simplicial sets, and we consider the over

category sSetI/Z. This category admits a positive contravariant I-model structure

introduced in [18, Proposition 3.10]. It is defined as a left Bousfield localization of a

positive contravariant level model structure, where maps X → Y in sSetI/Z are weak

equivalences or fibrations if the maps X(n) → Y(n) are weak equivalences or fibrations

in the contravariant model structure on sSet/Z(n) for all n in I with n ≥ 1. The reason

for considering the positive contravariant I-model structure is that it can be used to

give a symmetric monoidal model for the contravariant model structure on simplicial

sets over a symmetric monoidal ∞-category, see [18, Theorem 3.15].

The positive contravariant I-model structure is somewhat difficult to work with

since we are not aware of an intrinsic characterization of its weak equivalences. To

identify the resulting homotopy category, we recall from [10, Theorem 3.1] that there is

a positive Joyal I-model structure on sSetI whose weak equivalences are the maps that

induce weak equivalences in the Joyal model structure when forming the homotopy

colimit with respect to the Joyal model structure. The key property of the positive

contravariant I-model structure is now that when Z is fibrant in the positive Joyal I-

model structure, then a zig-zag of Joyal I-equivalences between positive fibrant objects

relating Z to a constant I-diagram on a simplicial set S induces a zig-zag of Quillen

equivalences between sSetI/Z with the positive contravariant I-model structure and

sSet/S with the contravariant model structure [18, Lemma 3.11 and Corollary 3.14].

Lemma 6.3. If Z is an object of sSetI that is fibrant in the positive Joyal I-model

structure, then an N -isomorphism in sSetI/Z is also a weak equivalence in the positive

contravariant I-model structure.

Proof. We let Zc → Z be a cofibrant replacement of Z in the positive Joyal I-model

structure on sSetI . Then we can assume Zc → Z to be a positive level fibration so that

Zc → Z is an acyclic Kan fibration in positive degrees. Moreover, we write S = colimIZc
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and consider the adjunction unit Zc → constIS. The latter map is a Joyal I-equivalence

by [10, Corollary 2.4] and thus a positive Joyal level equivalence since both Zc and

constIS are homotopy constant in positive degrees with respect to the Joyal model

structure.

Given an object X → Z in sSetI/Z, we get a composite of acyclic Kan fibrations

where the 1st map is a positive I-cofibrant replacement in sSetI/Zc and the 2nd map is

the base change of Zc → Z along X → Z. It follows that X is weakly equivalent to image of

(X×Zc Z)c under (Zc → Z)! : sSetI/Zc → sSetI/Z. Since both (Zc → Z)! and (Zc → constIS)!

are Quillen equivalences [18, Proposition 3.10], we deduce that a map f : X → X ′ in

sSetI/Z is a weak equivalence in the positive contravariant I-model structure if and

only if the image of (f ×Zc Z)c under (Zc → constIS)! is.

Now assume that f is an N -isomorphism. Since colimN commutes with pull-

backs and sends maps that are acyclic Kan fibrations in positive levels to acyclic Kan

fibrations, the image of f ×Zc Z under (Zc → constIS)! is an N -isomorphism that is

weakly equivalent in sSetI/constIS to the image of (f ×Zc Z)c under (Zc → constIS)!.

This reduces the claim to showing that an N -isomorphism over a constant base is a

positive contravariant I-equivalence. In this case, the proof of [18, Proposition 3.13]

shows that weak equivalences in the positive contravariant I-model structure coincide

with the hocolimI-equivalences on I-diagrams in sSet/S. Thus, the claim follows from

Lemma 6.2. �

Proposition 6.4. Let N be a commutative I-simplicial set that is fibrant in the positive

Joyal I-model structure on sSetI , and whose underlying I-simplicial set is flat. Then

the �-product on sSetI/N is homotopy invariant with respect to the positive Joyal I-

model structure.

Proof. Because the flat I-simplicial sets are reflective in I-simplicial sets and the

underlying I-simplicial set of N is flat, every morphism f : X → N factors as f = f̄ ◦ ηX

for a unique morphism f̄ : X� → N, where ηX : X → X� is the adjunction unit. Then ηX is

a morphism in sSetI/N from f : X → N to f̄ : X� → N.

Corollary 6.1 and Lemma 6.3 show that ηX : (f : X → N) → (f̄ : X� → N) induces

a weak equivalence ηX � (Y → N) in the positive contravariant I-model structure for

every object Y → N in sSetI/N. So it is sufficient to show that (X → N) � − preserves

weak equivalences in the positive contravariant I-model structure when X is flat.
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To see this, we first consider the case where X is of the form X = K × I(k, −)/H,

where K is a simplicial set, k is an object of I, and H ⊆ �k is a subgroup. Since the

�k-action on

((K × I(k, −)) � Y)(m) ∼= K × colimk�l→mX(l)

is levelwise free by [26, Lemma 5.7], it follows that X � − preserves absolute level-

wise contravariant I-equivalences. From here the proof proceeds as the one of [18,

Proposition 3.18] that addresses the claim for X being absolute projective cofibrant

(rather than flat). �

Proof of Theorem 1.3. Proposition 6.4 implies that the monoidal product on the

category sSetI/Mrig considered in [18, Theorem 3.15] is homotopy invariant. Since the

homotopy invariance allows us to cofibrantly replace objects, it is preserved under the

monoidal left Bousfield localization arising from [18, Proposition 2.2]. Therefore, the

proof of [18,Theorem 1.1] shows the claim. �

Appendix A. Algebras Over the Injection Operad

In this appendix we identify the commutative monoids in the symmetric monoidal cate-

gory of tame M-sets with the tame algebras over the injection operad, see Theorem A.13.

We also show that for tame M-sets, the box product introduced in Definition 2.12 as an

M-subset of the product is isomorphic to the operadic product, see Proposition A.17.

The results in this appendix are combinatorial in nature and they are not needed for the

homotopical analysis in the body of the paper; however, we feel that Theorem A.13

and Proposition A.17 are important to put the box product of M-spaces into

context.

Construction A.1 (Injection operad). The injection monoid M is the monoid of 1-ary

operations in the injection operad M, an operad in the category of sets with respect to

cartesian product. As before, we set n = {1, . . . , n} and ω = {1, 2, . . . }. For n ≥ 0 we let

M(n) denote the set of injective maps from the set n × ω to the set ω. The symmetric

group �n acts on M(n) by permuting the 1st coordinate in n × ω: for a permutation

σ ∈ �n and an injection ϕ : n × ω → ω we set

(ϕσ)(k, i) = ϕ(σ(k), i).
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The collection of sets {M(n)}n≥0 then becomes an operad M via ‘disjoint union and

composition’. More formally, the operad structure maps

M(k) × M(n1) × · · · × M(nk) → M(n1 + · · · + nk) (A.2)

(ϕ; ψ1, . . . , ψk) �−→ ϕ ◦ (ψ1 + · · · + ψk)

are defined by setting

(ϕ ◦ (ψ1 + · · · + ψk))(i, j) = ϕ(m, ψm(i − (n1 + · · · + nm−1), j)),

where m ∈ {1, . . . , k} is the unique number such that n1 + · · · + nm−1 < i ≤ n1 + · · · + nm.

As for operads in any symmetric monoidal category, a categorical operad has a

category of algebras over it.

Definition A.3. An M-set is a set equipped with an algebra structure over the injection

operad M. A morphism of M-sets is a morphism of algebras over M.

Given an M-set X, we write the action of the n-ary operations as

M(n) × Xn → X, (ϕ, x1, . . . , xn) �−→ ϕ∗(x1, . . . , xn).

Because M(1) = M is the injection monoid, every M-set has an underlying M-

set. We call an M-set tame if the underlying M-set is tame in the sense of Definition 2.2.

Because 0 is the empty set, the set M(0) has a single element, the unique function ∅ =
0 ×ω → ω. So every M-set X has a distinguished element 0, the image of the action map

M(0) → X. The associativity of the operad action implies that the distinguished element

0 of an M-set is supported on the empty set.

Example A.4. We let A be an abelian monoid. Then A becomes a “trivial” M-set: for

n ≥ 0 and ϕ ∈ M(n) we define

ϕ∗ : An → A, ϕ∗(a1, . . . , an) = a1 + · · · + an

by summing in the monoid A; in particular, ϕ∗ only depends on n, but not on ϕ. The M-

set associated to an abelian monoid has the special property that the monoid M = M(1)

acts trivially. One can show that M-sets with trivial M-action “are” the abelian monoids.

The support of elements in sets with an action of M = M(1) was introduced in

Definition 2.4. Now we discuss the behavior of support in the more highly structured M-

sets, in particular its interaction with n-ary operations for n �= 1. For example, we will
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6282 S. Sagave and S. Schwede

show that given any pair of finitely supported elements x, y and an injection ϕ ∈ M(2),

then ϕ∗(x, y) is finitely supported and

supp(ϕ∗(x, y)) ⊆ ϕ({1} × supp(x) ∪ {2} × supp(y)).

For this we need the following lemma about the orbits of the right M(1)n-action on the

set M(n). Since the monoid M(1)n is not a group, the relation resulting from this action

is not symmetric and it is not a priori clear when two elements of M(n) are equivalent in

the equivalence relation that it generates. The following lemma is a discrete counterpart

of the analogous property for the linear isometries operad, compare [6, Lemma I.8.1].

Lemma A.5. Let n ≥ 2 and let A1, . . . , An be finite subsets ω. Consider the equivalence

relation on the set M(n) of injections from n × ω to ω generated by the relation

ϕ ∼ ϕ(f1 + · · · + fn)

for all fi ∈ M(1) such that fi is the identity on Ai. Then two elements of M(n) are

equivalent if and only if they agree on the subsets {i} × Ai of n × ω for all i = 1, . . . , n.

Proof. The “only if’‘ is clear since the value of ϕ on {i} × Ai does not change when

ϕ is modified by a generating relation. For the converse we consider ϕ, ϕ′ ∈ M(n),

which agree on {i} × Ai for all i = 1, . . . , n. If we choose bijections between ω and the

complements of the Ai in ω we can reduce (by conjugation with the bijections) to the

special case where all Ai are empty.

We prove the special case by induction over n, starting with n = 2. We need

to show that all injections in M(2) are equivalent in the equivalence relation generated

by the right action of M(1)2. We show that an arbitrary injection ϕ is equivalent to the

bijection s : 2 × ω → ω given by s(1, i) = 2i − 1 and s(2, i) = 2i.

Case 1: suppose that ϕ({1} × ω) consists entirely of odd numbers and ϕ({2} × ω)

consists entirely of even numbers. We define α, β ∈ M by α(i) = (ϕ(1, i) + 1)/2,

respectively, β(i) = ϕ(2, i)/2. Then we have ϕ = s(α + β), so ϕ and s are equivalent.

Case 2: suppose that ϕ({1} × ω) consists entirely of even numbers and ϕ({2} × ω)

consists entirely of odd numbers. We use the same kind of argument as in case 1.

Case 3: suppose that the image of ϕ consists entirely of odd numbers. We define

ψ ∈ M(2) by ψ(1, i) = ϕ(1, i), ψ(2, 2i) = ϕ(2, i) and ψ(2, 2i − 1) = 2i. Define d+, d− ∈ M(1)

by d+(i) = 2i and d−(i) = 2i − 1. Then ϕ = ψ(id + d+), so ϕ is equivalent to ψ , which

in turn is equivalent to ψ(id + d−). But ψ(id + d−) satisfies the hypothesis of case 1, so

altogether ϕ and s are equivalent.
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Case 4: suppose that the image of ϕ consists entirely of even numbers. This can

be reduced to case 2 by the analogous arguments as in case 3.

Case 5: In the general case we exploit that ϕ({1} × ω) contains infinitely many

odd numbers or it contains infinitely many even numbers (or both). So we can choose

an injection α ∈ M(1) such that ϕ({1} × α(ω)) consists of numbers of the same parity.

Similarly we can choose β ∈ M(1) such that ϕ({2} × β(ω)) consists of numbers of the

same parity. But then ϕ is equivalent to ϕ(α + β), which satisfies the hypothesis of one

of the cases 1, 2, 3, or 4. So any ϕ ∈ M(2) is equivalent to the elements s.

Now we perform the inductive step and suppose that n ≥ 2. We let ϕ, ψ ∈ M(n+1)

be two injections. We let s : 2 × ω → ω be any bijection. By the inductive hypothesis, the

injections

ϕ ◦ (idn−1×ω + s−1) and ψ ◦ (idn−1×ω + s−1) ∈ M(n)

are equivalent under the action of M(1)n by precomposition. We may assume without

loss of generality that

ϕ ◦ (idn−1×ω + s−1) = ψ ◦ (idn−1×ω + s−1) ◦ (f1 + · · · + fn)

for some f1, . . . , fn ∈ M(1). By the special case n = 2, the injections fns and s in M(2) are

equivalent under the action of M(1)2. We may assume without loss of generality that

fns = s(α + β) for some α, β ∈ M(1). Then

ϕ = ϕ ◦ (idn−1×ω + s−1) ◦ (idn−1×ω + s)

= ψ ◦ (idn−1×ω + s−1) ◦ (f1 + · · · + fn) ◦ (idn−1×ω + s)

= ψ ◦ (f1 + · · · + fn−1 + (s−1fns)) = ψ ◦ (f1 + · · · + fn−1 + α + β).
�

Proposition A.6. Let X be an M-set, xi, . . . , xn finitely supported elements of X, and

ϕ, ψ ∈ M(n) for some n ≥ 1.

(i) If ϕ and ψ agree on {i} × supp(xi) for all i = 1, . . . , n, then ϕ∗(x1, . . . , xn) =
ψ∗(x1, . . . , xn).

(ii) The element ϕ∗(x1, . . . , xn) is finitely supported and

supp(ϕ∗(x1, . . . , xn)) ⊆
⋃

i=1,...,n

ϕ({i} × supp(xi)).

(iii) The subset Xτ of X consisting of finitely supported elements is closed under

the action of the injection operad, and hence a tame M-set.
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Proof. (i) By Lemma A.5 we can assume without loss of generality that

ψ = ϕ(f1 + · · · + fn) for suitable f1, . . . , fn ∈ M(1) such that fi is the identity on supp(xi).

Then

ψ∗(x1, . . . , xn) = (ϕ(f1 + · · · + fn))∗(x1, . . . , xn)

= ϕ∗((f1)∗(x1), . . . , (fn)∗(xn)) = ϕ∗(x1, . . . , xn).

(ii) We let u ∈ M(1) be an injection that fixes ϕ({i} × supp(xi)) elementwise for

all i = 1, . . . , n. Then uϕ agrees with ϕ on {i} × supp(xi) for all i = 1, . . . , n. By Lemma

A.5 we can assume without loss of generality that uϕ = ϕ(f1 + · · · + fn) for suitable

f1, . . . , fn ∈ M(1) such that fi is the identity on supp(xi). So

u∗(ϕ∗(x1, . . . , xn)) = (uϕ)∗(x1, . . . , xn) = (ϕ(f1 + · · · + fn))∗(x1, . . . , xn)

= ϕ∗((f1)∗(x1), . . . , (fn)∗(xn)) = ϕ∗(x1, . . . , xn).

This shows that ϕ∗(x1, . . . , xn) is supported on the union of the sets ϕ({i}×supp(xi)). Part

(iii) is just another way to concisely summarize part (ii). �

Construction A.7 (Box product of tame M-sets). We let X and Y be tame M-sets. The

box product X �Y of the underlying M-sets was introduced in Definition 2.12. We claim

that X�Y has a preferred M-action, which makes it a coproduct in the category of tame

M-sets. Indeed, a general fact about algebras over an operad is that the product X × Y

has a coordinatewise M-action that makes it a product of X and Y in the category of

M-sets. Proposition A.6 (ii) shows that the subset X � Y of X × Y is invariant under the

action of the full injection operad; hence, the product M-action on X × Y restricts to an

M-action on X � Y.

Given two morphisms between tame M-sets f : X → X ′ and g : Y → Y ′, the map

f � g : X � Y → X ′ � Y ′

is a morphism of M-sets (and not just a morphism of M-sets). A formal consequence of

the identification of tame M-sets with commutative monoids under the box product in

Theorem A.13 below is that the box product is actually a coproduct in the category of

tame M-sets.

Construction A.8 (Sum operation). We introduce a partially defined “sum” operation

on a tame M-set X; the operation is defined on pairs of elements with disjoint support,

that is, it is a map

+ : X � X → X.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/8/6246/5698247 by U
LB Bonn user on 24 April 2021



Homotopy Invariance of Convolution Products 6285

Given two disjointly supported objects (x, y) of the tame M-set X, we choose an injection

ϕ : 2 × ω → ω such that ϕ(1, j) = j for all j ∈ supp(x) and ϕ(2, j) = j for all j ∈ supp(y).

Then we define the sum of x and y as

x + y = ϕ∗(x, y). (A.3)

Proposition A.6 implies that this is independent of the choice of ϕ, and that the support

of x + y satisfies

supp(x + y) ⊆ ϕ({1} × supp(x)) ∪ ϕ({2} × supp(y)) = supp(x) ∪ supp(y). (A.4)

Proposition A.11. Let X be a tame M-set.

(i) For every pair (x, y) of disjointly supported elements of X, the relation

(x, y) = (x, 0) + (0, y)

holds in the M-set X � X.

(ii) The element 0 satisfies x + 0 = x = 0 + x for all x ∈ X.

(iii) The sum map + : X � X → X is a morphism of M-sets.

(iv) The relation x + y = y + x holds for all disjointly supported elements x, y

of X.

(v) The sum map is associative in the following sense: the relation

(x + y) + z = x + (y + z)

holds for every triple (x, y, z) of elements in X whose supports are pairwise

disjoint.

Proof. (i) We choose ϕ ∈ M(2) as in the definition of x + y, that is, ϕ1 = ϕ(1, −) is the

identity on supp(x) and ϕ2 = ϕ(2, −) is the identity on supp(y). Since the distinguished

object 0 has empty support, we have supp(x, 0) = supp(x) and supp(0, y) = supp(y). So

ϕ can also be used to define (x, 0) + (0, y). Hence,

(x, 0) + (0, y) = ϕ∗((x, 0), (0, y)) = (ϕ∗(x, 0), ϕ∗(0, y)) = (ϕ1∗ (x), ϕ2∗ (y)) = (x, y).

(ii) The distinguished 0 has empty support. We choose an injection ϕ ∈ M(2) as

in the definition of x + 0, that is, such that ϕ1 is the identity on the support of x. Then

x + 0 = ϕ∗(x, 0) = ϕ1∗ (x) = x.

The relation 0 + x = x is proved in much the same way.
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(iii) We must show that the sum map commutes with the action of n-ary

operations in M(n), for every n ≥ 0. The case n = 0 is the relation 0 + 0 = 0, which

holds by (ii). For n ≥ 1 we consider any λ ∈ M(n), as well as elements (xj, yj) in X �X for

j = 1, . . . , n. We choose ϕj ∈ M(2) as in the definition of xj + yj, that is, ϕ1
j is the identity

on supp(xj) and ϕ2
j is the identity on supp(yj). We choose κ ∈ M(2) as in the definition

of λ∗(x1, . . . , xn) + λ∗(y1, . . . , yn), that is, κ1 is the identity on

supp(λ∗(x1, . . . , xn)) ⊆ λ

⎛
⎝

n⋃
j=1

{ j} × supp(xj)

⎞
⎠ ,

and κ2 is the identity on supp(λ∗(y1, . . . , yn)). We let χ : 2n → n2 be the shuffle

permutation defined by χ(1, . . . , 2n) = (1, n + 1, 2, n + 2, . . . , 2n). Then the injections

κ(λ + λ) and λ(ϕ1 + · · · + ϕn)(χ × idω)

in M(n + n) agree on the sets {j} × supp(xj) and {n + j} × supp(yj) for all j = 1, . . . , n. So

these two injections act in the same way on the (n + n)-tuple (x1, . . . , xn, y1, . . . , yn), and

we deduce the relations

λ∗(x1, . . . ,xn) + λ∗(y1, . . . , yn)

= κ∗(λ∗(x1, . . . , xn), λ∗(y1, . . . , yn))

= (κ(λ + λ))∗(x1, . . . , xn, y1, . . . , yn)

= (λ(ϕ1 + · · · + ϕn)(χ × idω))∗(x1, . . . , xn, y1, . . . , yn)

= (λ(ϕ1 + · · · + ϕn))∗(x1, y1, . . . , xn, yn)

= λ∗((ϕ1)∗(x1, y1), . . . , (ϕn)∗(xn, yn))

= λ∗(x1 + y1, . . . , xn + yn).

(iv) We showed in part (iii) that the sum map + : X � X → X is a morphism of M-

sets. Every morphism of M-sets commutes with the sum operation, so the sum map

+ : X �X → X takes sums in X �X to sums in X. In other words, the interchange relation

(x + y) + (y′ + z) = (x + y′) + (y + z) (A.12)

holds for all ((x, y), (y′, z)) in (X �X)� (X �X). We specialize to the case where x = z = 0

are the distinguished elements. Since the distinguished element is a neutral element for

the sum operation, we obtain the commutativity relation y + y′ = y′ + y.

(v) In the special case where y′ = 0 is the neutral element, the interchange

relation (A.12) becomes the associativity relation (x + y) + z = x + (y + z). �
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Altogether this shows that for every tame M-set X, the sum map + : X � X → X

is a unital, commutative and associative morphism of M-sets. In particular, the sum

map makes the underlying M-set of X into a commutative monoid with respect to the

symmetric monoidal structure given by the box product. The next theorem shows that

this data determines the M-action completely, and tame M-algebras are “the same as”

commutative monoids in the symmetric monoidal category (SetM
tame,�).

Theorem A.13. The functor

SetMtame → Com(SetM
tame,�), X �−→ (X, +)

is an isomorphism of categories from the category of tame M-sets to the category of

commutative monoids in the symmetric monoidal category (SetM
tame,�).

Proof. The functor is clearly faithful. Now we show that the functor is full. So we let

f : X → Y be a morphism of commutative �-monoids in tame M-sets; we must show

that f is also a morphism of M-sets. As a morphism of commutative �-monoids, f in

particular preserves the distinguished element 0 and is compatible with the action of

M = M(1).

To treat the case n ≥ 2, we consider the map

χn
X : M(n) × Xn → X�n, (λ, x1, . . . , xn) �→ (λ1∗(x1), . . . , λn∗ (xn)),

where λi = λ(i, −). Since χn
X is natural in X, the upper square in the following diagram

commutes:

(A14)

Since f is a morphism of commutative �-monoids, the lower square also commutes.

We claim that the vertical composites are the operadic action maps. To show this we

consider (λ, x1, . . . , xn) ∈ M(n) × Xn. The generalization of Proposition A.11 (i) to several

components shows that

(x1, . . . , xn) =
n∑

j=1

ιj(xj),
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where ιj : X → X�n puts x in the j-th slot and fills up the other coordinates with the

distinguished element 0. The right-hand side of this equation is the sum for the M-set

X�n. We let ϕ ∈ M(n) be an injection as in the definition of λ1∗(x1) + · · · + λn∗ (xn), that

is, such that ϕj is the identity on λj(supp(xj)) for every 1 ≤ j ≤ n. Then the injections

ϕ(λ1 +· · ·+λn) and λ agree on {j}×supp(xj) for all 1 ≤ j ≤ n and we thus have λ∗(ιj(xj)) =
(ϕ(λ1 + · · · + λn))∗(ιj(xj)) = λ

j
∗(xj). As a consequence, we have

λ∗(x1, . . . , xn) = λ∗

⎛
⎝

n∑
j=1

ιj(xj)

⎞
⎠ =

n∑
j=1

λ∗
(
ιj(xj)

)
=

n∑
j=1

λ
j
∗(xj),

where the 2nd equation is the fact that the sum functor is a morphism of M-sets, by

Proposition A.11 (iii). Since the diagram (A.14) commutes, the map f is compatible with

the operadic action of M(n) for all n ≥ 0, and so the functor is full.

The vertical factorization of the operadic action in (A.14) shows that it is

determined by the M-action and the sum. Thus, the functor is injective on objects. It

remains to show that it is surjective on objects, that is, that every commutative �-

monoid (X, 0, +) arises from an M-set through the sum construction. For n ≥ 0, we

define the operadic action map

M(n) × Xn → X by (λ, x1, . . . , xn) �−→ λ∗(x1, . . . , xn) =
n∑

j=1

λ
j
∗(xj).

This makes sense because the maps λj have disjoint images for j = 1, . . . , n, so the

elements λ1∗(x1), . . . , λn∗ (x1) can indeed be added. For n = 0, this definition returns

the distinguished element 0, and for n = 1 it specializes to the given M-action. The

operadic symmetry condition holds because the sum operation is commutative. The

operadic associativity condition holds because the sum operation is associative and

commutative. Finally, the sum map derived from this operadic action is the sum map we

started out with, by definition. �

Now we recall the operadic product, another binary pairing for M-sets. We will

show that the operadic product supports a natural map to the box product and that map

is an isomorphism of M-sets whenever the factors are tame.

Construction A.15 (Operadic product). As before we denote by M(2) the set of binary

operations in the injection operad M, that is, the set of injections from {1, 2} × ω to ω.
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As part of the operad structure of M, the set M(2) comes with a left M-action and a

right M2-action given by

M × M(2) × M2 → M(2), (f , ψ , (u, v)) �−→ f ◦ ψ ◦ (u + v).

Here u + v : {1, 2} × ω → {1, 2} × ω is defined by (u + v)(1, i) = (1, u(i)) and (u + v)(2, i) =
(2, v(i)). Given two M-sets X and Y we can coequalize the right M2-action on M(2) with

the left M2-action on the product X × Y and form

M(2) ×M×M (X × Y).

The left M-action on M(2) by postcomposition descends to an M-action on this operadic

product. Some care has to be taken when analyzing this construction: because the

monoid M is not a group, it may be hard to figure out when two elements of

M(2) × X × Y become equal in the coequalizer. Viewed as a binary product on M-sets,

M(2) ×M×M (X × Y) is coherently associative and commutative, but it does not have a

unit object.

Now we let X and Y be tame M-sets. To state the next result, we write

p1 : M(2) ×M×M (X × Y) → X and p2 : M(2) ×M×M (X × Y) → Y

for the morphisms of M-sets defined by

p1[ψ , x, y] = ψ1x and p2[ψ , x, y] = ψ2y,

where ψ1 = ψ(1, −) and ψ2 = ψ(2, −). We observe that

supp(p1[ψ , x, y]) = supp(ψ1x) ⊆ ψ1(supp(x)) = ψ({1} × supp(x)),

and similarly supp(p2[ψ , x, y]) ⊆ ψ({2} × supp(y)). Because ψ is injective, these two sets

are disjoint. So all elements in the image of (p1, p2) lie in X � Y. We write

χX,Y : M(2) ×M×M (X × Y) → X � Y (A.15)

for the map (p1, p2) when we restrict the codomain to X � Y.

Proposition A.17. For all tame M-sets X and Y, the map (A.15) is an isomorphism of

M-sets.

Proof. Source and target of the morphism χX,Y commute with disjoint unions and

orbits by group actions in each of the variables. So Theorem 2.11 reduces the claim to
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the special case X = Im and Y = In for some m, n ≥ 0. In this special case, the morphism

χIm,In
factors as the following composite:

M(2) ×M×M (Im × In)
q−→ M(2)/(M(m) × M(n))

ε−→ Im+n
ρ−→∼= Im � Im.

Here M(m) is the submonoid of M consisting of those injections that are the identity

on {1, . . . , m}. The 1st map q sends the class [ψ , f , g] to the class of ψ(f + g); it is an

isomorphism because the map

M/M(m) → Im, [ f ] �−→ f |{1,...,m}

is an isomorphism of M-sets. The 2nd map ε is defined by

ε[ψ ](i) =
⎧⎨
⎩

ψ(1, i) for 1 ≤ i ≤ m, and

ψ(2, i − m) for m + 1 ≤ i ≤ m + n.
(A.16)

The 2nd map ε is an isomorphism of M-sets by Lemma A.5, applied to n = 2, A1 =
{1, . . . , m} and A2 = {1, . . . , n}. The 3rd map ρ is the isomorphism discussed in Example

2.15. So the map χIm,In
is an isomorphism. �
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