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Abstract
We introduce a global equivariant refinement of alge-
braic K-theory; here ‘global equivariant’ refers to simul-
taneous and compatible actions of all finite groups.
Our construction turns a specific kind of categorical
input data into a global Ω-spectrum that keeps track
of genuine 𝐺-equivariant infinite loop spaces, for all
finite groups 𝐺. The resulting global algebraic K-theory
spectrum is a rigid way of packaging the represen-
tation K-theory, or ‘Swan K-theory’ into one highly
structured object.
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INTRODUCTION

In this paper, we propose a global equivariant refinement of algebraic K-theory; here ‘global equiv-
ariant’ refers to simultaneous and compatible actions of all finite groups. Our construction turns
a specific kind of categorical input data into a global Ω-spectrum that keeps track of genuine 𝐺-
equivariant infinite loop spaces, for all finite groups 𝐺. The resulting global algebraic K-theory
spectrum is an extremely rigid way of packaging the representation K-theory, or ‘Swan K-theory’
into one highly structured object. We give a more precise summary of our main results below,
after a quick review of some aspects of algebraic K-theory.
Algebraic K-theory started out as the study of the K-group (Grothendieck group) of projec-

tive modules over a ring, or of vector bundles over a scheme. After some attempts to extend the
Grothendieck group to higher K-groups by purely algebraic means, several people proposed def-
initions of higher K-groups as homotopy groups of certain K-theory spaces at the end of the
60’s; in retrospect, the most successful definition is due to Quillen, originally introduced via
the so-called ‘plus construction’ [31]. Several excellent survey papers on the early days of K-
theory are available [11, 44], and we refer to these references for more details and proper credit.
Higher algebraic K-groups are powerful invariants (albeit notoriously difficult to compute) that
contain arithmetic information about rings, and geometric information about symmetries of
high-dimensional manifolds.
By its very nature as homotopy groups of certain spaces, algebraic K-theory is intimately related

to homotopy theory. A key conceptual insight was that Quillen’s K-theory spaces are naturally
infinite loop spaces; as far as I know, the first reference that advocates this perspective is Segal’s
paper [35] who acknowledges that it ‘(...) is one possible formulation of Quillen’s ideas about
algebraic 𝐾-theory.’ On a conceptual level, and from a revisionist’s perspective, K-theory is the
composite of two constructions: one step turns specific kinds of categorical input data (such as, for
example, symmetric monoidal categories, permutative categories, exact categories, or categories
with cofibrations and weak equivalences) into a kind of coherently homotopy-commutative and
homotopy-associative H-spaces (such as, for example, 𝐸∞-spaces or special Γ-spaces). The second
step is a delooping construction for 𝐸∞-spaces, which implements the equivalence between the
homotopy theories of group-like 𝐸∞-spaces and connective spectra.
In this paper, we propose a global equivariant extension of algebraic K-theory; here ‘global

equivariant’ refers to simultaneous and compatible actions of all finite groups. In Definition 4.1,
we introduce a specific kind of extra structure on a category that we call a parsummable category;
the adjective ‘parsummable’ stands for ‘partially summable’. This structure can be interpreted in
at least two ways: on the one hand, parsummable categories are to symmetric monoidal cate-
gories what partial abelian monoids are to 𝐸∞-spaces: the monoidal operation of a parsummable
category is only partially defined, but it is strictly associative and commutative on its domain
of definition. On the other hand, parsummable categories are also algebras over the injection
operad, a specific categorical operad made from injections between countably infinite sets, see
Remark 4.20. The categories in this operad have contractible nerves, so the injection operad is in
particular an 𝐸∞-operad. Our results suggest to view the injection operad as a ‘global 𝐸∞-operad’,
because it encodes 𝐸∞-𝐺-operads for all finite groups 𝐺. From this perspective, our K-theory con-
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struction is a global analog of the equivariant delooping machine of Guillou and May [12] that
applies to a fixed finite group 𝐺.
Our main construction assigns to a parsummable category  its global K-theory spectrum𝐊gl,

see Definition 4.14. This is a symmetric spectrum, and as such it represents a global stable homo-
topy type, based on finite groups, by thework ofHausmann [15]. Ourmain results about the global
K-theory construction are the following.

Theorem (Global deloopings). For every parsummable category , the symmetric spectrum𝐊gl
is a restricted globalΩ-spectrum.

The global delooping theorem will be proved as part of Theorem 4.15. Roughly speaking, it
means that evaluating 𝐊gl at a transitive-free 𝐺-set yields a genuine 𝐺-equivariant infinite loop
space, for every finite group 𝐺. Since these deloopings arise from a single symmetric spectrum,
they are automatically consistent for varying groups𝐻. We refer to Remark 1.4 for amore detailed
explanation. The upshot is that 𝐊gl provides a ‘global delooping’ of the parsummable category
.
As we explain in Proposition 5.6, the underlying category of every parsummable category 

affords a symmetric monoidal structure 𝜑∗(), depending on a choice of injection 𝜑 ∶ {1, 2} ×
𝜔⟶ 𝜔, where𝜔 = {0, 1, 2, … }. The symmetricmonoidal structure is independent of the injection
up to contractible choice, see Remark 5.7. The following consistency result is part of Theorem 5.14.

Theorem (Consistency). For every parsummable category, the underlying non-equivariant stable
homotopy type of𝐊gl is that of the K-theory of the symmetric monoidal category 𝜑∗().
Corollary 7.19 shows that for every finite group 𝐺, the genuine 𝐺-fixed point spectrum of𝐊gl

is equivalent to the K-theory spectrum of the category of 𝐺-objects in , relative to a certain sym-
metric monoidal structure arising from the structure as parsummable category, at least under
a mild technical hypothesis that we call saturation, see Definition 7.3. So, the symmetric spec-
trum 𝐊gl is a compact and very rigid way of packaging the information that is contained in
the ‘representation K-theory’ (or the ‘Swan K-theory’) of the input category . A related result
is Theorem 6.23, showing that the global Mackey functor made from the 0th equivariant homo-
topy groups of the spectrum 𝐊gl is isomorphic to the ‘Swan K-theory’ functor arising from the
parsummable category :
Theorem (Rigidification of representation K-theory). For every parsummable category , the
homotopy group global functor 𝜋0(𝐊gl) is isomorphic to the K-group global functor of the input
category .
By definition, parsummable categories are -categories with additional structure, where 

is the contractible groupoid with objects all self-injections of the set 𝜔 = {0, 1, 2, … }. The free par-
summable category ℙ generated by an -category  is the initial example of a parsummable
category equippedwith amorphism of-categories from, compare Example 4.6. Aswe explain
in Construction 8.2, every-category  gives rise to an 𝐈-space 𝜌(), that is, a functor from the
category 𝐈 of finite sets and injections to the category of spaces. The 𝐈-space 𝜌() represents the
unstable global homotopy type corresponding to .
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Theorem (Global Barratt–Priddy–Quillen theorem). Let be a tame-category without objects
with empty support. Then the symmetric spectrum 𝐊gl(ℙ) is globally equivalent to the unreduced
suspension spectrum of the 𝐈-space 𝜌() associated with .
We state the global Barratt–Priddy–Quillen theorem as Theorem 8.7.
In addition to a satisfying theory, our formalism also incorporates many examples. Specific

parsummable categories that we discuss are: the parsummable category of an abelian monoid
(Example 4.4), the parsummable category of finite sets (Example 4.5), free parsummable cate-
gories (Example 4.6), the parsummable category of finite 𝐺-sets for a group 𝐺, possibly infinite
(Example 9.1), the parsummable category of finitely generated projective modules over a ring
(Construction 10.1) and the parsummable category associated with a permutative category (Con-
struction 11.1). The category of parsummable categories also has all limits and colimits, and is
closed under passage to 𝐺-objects (Example 4.12), 𝐺-fixed points (Construction 4.22) and 𝐺-
homotopy fixed points (Construction 7.17), for every finite group 𝐺. This provides many ways
to build new examples of parsummable categories from existing ones.
Organization. As explained in Hausmann’s paper [15], the category of symmetric spectra in

the sense of Hovey, Shipley and Smith [18] is a model for the global stable homotopy theory based
on finite groups, relative to a certain class of ‘global equivalences’. Since this is the model we use
in the present paper, we start in Section 1 by reviewing symmetric spectra, 𝐺-symmetric spectra
and global equivalences. We also discuss ‘restricted globalΩ-spectra’, a type of symmetric spectra
that encodes compatible equivariant infinite loop spaces for all finite groups, see Definition 1.3.
In Section 2, we introduce and study-categories. Here is the contractible groupoid with

objects all self-injections of the set 𝜔 = {0, 1, 2, … }. The category is a strict monoidal category
under composition of injections; an-category is a category equipped with a strict action of the
monoidal category. An-action on a category  gives rise to a notion of ‘support’ for objects
of , see Definition 2.12. The support is a subset of the set 𝜔, and of fundamental importance for
everything else we do in this paper. An-category is tame if the support of every object is finite.
In Section 3, we introduce a global equivariant variation of Segal’s formalism [35] to produce

spectra from Γ-categories, see Construction 3.3. Our input is a Γ--category, that is, a functor
from Γ to the category of-categories; or, equivalently, a Γ-category equipped with a strict action
of the monoidal category . While Γ-categories give rise to non-equivariant stable homotopy
types, andΓ-𝐺-categories yield𝐺-equivariant stable homotopy types, ourΓ--categories produce
global stable homotopy types. In Definition 3.11 we introduce the notion of ‘global specialness’ for
Γ--categories; our main results of Section 3 are the facts that globally special Γ--categories
give rise to restricted global Ω-spectra (Theorem 3.12), and that the underlying 𝐺-homotopy type
agrees with that of a naturally associated Γ-𝐺-category (Theorem 3.14).
Section 4 contains the central construction of this paper, the global K-theory spectrum of a par-

summable category, see Definition 4.14. A parsummable category is a tame-category equipped
with a sum operation that is partially defined on disjointly supported objects and morphisms, see
Definition 4.1. In a sense, parsummable categories are to symmetricmonoidal categorieswhat par-
tial abelian monoids are to 𝐸∞-spaces: in a parsummable category, the ‘addition’ is not defined
everywhere, but it is strictly unital, associative and commutative whenever it is defined. In a
symmetric monoidal category, the addition is defined everywhere, but it is only unital, associa-
tive and commutative up to specified coherence data. Some examples of parsummable categories
are: the parsummable category of an abelian monoid (Example 4.4), the parsummable category
of finite sets (Example 4.5), free parsummable categories (Example 4.6), the parsummable cat-
egory of finite 𝐺-sets for a group 𝐺, possibly infinite (Example 9.1), the parsummable category
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of finitely generated projective modules over a ring (Construction 10.1) and the parsummable
category associated with a permutative category (Construction 11.1).
The definition of the global K-theory spectrum of a parsummable category proceeds in two

steps: the parsummable category  gives rise to a globally special Γ--category 𝛾() by taking
powers under the ⊠-product of tame -categories, see Construction 4.3. The global K-theory
spectrum 𝐊gl is the symmetric spectrum associated to the Γ--category 𝛾() as in Section 3.
The Γ--category 𝛾() is globally special by Theorem 4.13, so the global K-theory spectrum is a
restricted global Ω-spectrum, see Theorem 4.15. We also establish some basic invariance proper-
ties of global K-theory: by Theorem 4.16, global equivalences of parsummable categories induce
global equivalences of K-theory spectra; by Theorem 4.17, global K-theory takes box products and
products of parsummable categories to products of K-theory spectra, up to global equivalence.
Corollary 4.28 identifies the 𝐺-fixed point spectrum of the global homotopy type of 𝐊gl, for a
finite group 𝐺: the 𝐺-fixed category 𝐹𝐺 is naturally again a parsummable category, and the gen-
uine𝐺-fixed point spectrum 𝐹𝐺(𝐊gl) receives a natural equivalence from the K-theory spectrum
of 𝐹𝐺.
Section 5 contains a reality check: every parsummable category  gives rise to a symmetric

monoidal category 𝜑∗(), see Proposition 5.6. We show in Theorem 5.14 that the underlying non-
equivariant homotopy type of 𝐊gl is that of the algebraic K-theory spectrum of the symmetric
monoidal category 𝜑∗(), that is, the canonical infinite delooping of the group completion of the
classifying space of 𝜑∗().
In Section 6, we identify the collection of the 0th equivariant homotopy groups of the global K-

theory spectrum𝐊gl in terms of the parsummable category  that serves as the input. The main
result is Theorem 6.23 that establishes an isomorphism of global functors between 𝜋0(𝐊gl) and
the global functor of Swan K-groups of . More concretely this means that the group 𝜋𝐺

0
(𝐊gl) is

a group completion of the abelian monoid 𝜋0(𝐹𝐺), and the homotopy theoretic restriction and
transfer maps have an explicit categorical description.
Section 7 is devoted to the phenomenon of saturation, which roughly means that there are

‘enough fixed objects’. For every finite group 𝐺 and parsummable category , the 𝐺-fixed cate-
gory 𝐹𝐺 embeds fully faithfully into the category 𝐺 of 𝐺-objects in . This embedding need
not be essentially surjective, so it is not necessarily an equivalence. The parsummable category
 is saturated if the comparison functor 𝐹𝐺 ⟶𝐺 is an equivalence of categories for every
finite group 𝐺, see Corollary 7.7. Whenever this happens, the 𝐺-fixed point spectrum 𝐹𝐺(𝐊gl) of
the global K-theory spectrum is equivalent to the K-theory spectrum of 𝐺-objects in , see Corol-
lary 7.19. Saturation can always be arranged in the following sense: there is a saturation functor
for parsummable categories and a natural morphism of parsummable categories 𝑠 ∶  ⟶𝐶sat

that is an equivalence of underlying categories, see Theorem 7.24.
The last four sections are devoted to examples. In Section 8, we establish a global equivariant

generalization of the Barratt–Priddy–Quillen theorem: Theorem 8.7 identifies the global K-theory
spectrum of a free parsummable category as a suspension spectrum. In Theorem 8.9, we use the
global Barratt–Priddy–Quillen theorem to recognize the global K-theory of finite sets as the global
sphere spectrum. In Section 9, we discuss the global K-theory of finite 𝐺-sets, where 𝐺 is a group,
possibly infinite. The upshot is Corollary 9.11, where we identify the global K-theory spectrum
of finite 𝐺-sets with the wedge, indexed by conjugacy classes of finite index subgroups, of the
suspension spectra of the global classifying spaces of the Weyl groups. In Section 10, we dis-
cuss the global K-theory of rings, and in Section 11 we define and study the global K-theory of
permutative categories.
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Relation to equivariant algebraic K-theory.While our paper provides the first global equiv-
ariant approach to algebraic K-theory, several authors have introduced equivariant K-theory
constructions for individual finite groups that produce genuine equivariant 𝐺-spectra; we com-
ment specifically on the relation between our construction and the work of Shimakawa [37],
Guillou–May [12], Merling [28] and Barwick and Barwick–Glasman–Shah [4, 5]. These construc-
tions use different categorical input data and produce different kinds of output, but I expect certain
connections that I sketch now.
Shimakawa [37] uses 𝐺-graded monoidal categories, a relative version of symmetric monoidal

categories where all the structure is over the category with one object and 𝐺 as endomorphisms.
Most of his examples arise from symmetricmonoidal𝐺-categories, that is, symmetricmonoidal cat-
egories equipped with a strict 𝐺-action through strict symmetric monoidal functors. From these
data, Shimakawa produces an equivariant K-theory spectrum that deloops the underlying 𝐸∞-𝐺-
space, has the desired behavior on fixed points and the expected equivariant homotopy groups
in dimension 0, see [37, Theorem A and the Proposition, p. 242]. Shimakawa’s equivariant K-
theory ought to be related to our global K-theory as follows. For a parsummable category  and a
finite group 𝐺, the category [𝜔𝐺] obtained by reparameterization is naturally a 𝐺-parsummable
category, that is, a parsummable category equipped with a strict 𝐺-action through morphisms
of parsummable categories; we refer to Remark 4.30 for more details on the construction. The
passage from parsummable categories to symmetric monoidal categories described in Proposi-
tion 5.6 is functorial, so it turns the 𝐺-parsummable category [𝜔𝐺] into a symmetric monoidal
𝐺-category 𝜑∗([𝜔𝐺]). I expect that the underlying genuine𝐺-homotopy type of𝐊gl agrees with
the𝐺-homotopy type obtained by applying Shimakawa’s construction to the symmetric monoidal
𝐺-category𝜑∗([𝜔𝐺]). Theorem5.14 verifies that this is indeed the casewhen the group𝐺 is trivial,
and moreover, the two constructions have equivalent fixed point spectra for all subgroups of 𝐺.
Guillou and May [12] start from an 𝐸∞-𝐺-category. This concept is based on the notion of an

𝐸∞-operad of 𝐺-categories, defined as an operad  in the cartesian closed category of small 𝐺-
categories, such that the geometric realization |(𝑛)| of the category of 𝑛-ary operations is a
universal (𝐺 × Σ𝑛)-space for principal Σ𝑛-bundles over 𝐺-spaces, compare [12, Definition 3.11].
An 𝐸∞-𝐺-category is then a small 𝐺-category equipped with the action of an 𝐸∞-operad of
𝐺-categories. In [12, Definition 4.12], Guillou andMay associate to an 𝐸∞-𝐺-category an equiv-
ariant K-theory spectrum 𝕂𝐺(). The paper [26] by May, Merling and Osorno is devoted to
comparing the operadic approach of [12] to the Segal–Shimakawa approach of [37]. I expect that
for a parsummable category , the underlying genuine 𝐺-homotopy type of𝐊gl agrees with the
𝐺-homotopy type obtained by applying the Guillou-May K-theory construction [12, Definition
4.12] to the 𝐸∞-𝐺-category [𝜔𝐺]; I refer to Remark 4.20 for more details.
As far as I know, equivariant algebraic K-theory for rings was first considered by Fiedorowicz,

Hauschild and May in [10], and for exact categories by Dress and Kuku [8]; both papers produce
𝐺-equivariant K-theory spaces. In the ring case,Merling [28] offers a spectrum level extension and
allows for non-trivial group actions: in [28, Definition 5.23], she associates to a ring with an action
of a finite group 𝐺 an orthogonal 𝐺-spectrum𝐊𝐺(𝑅), the equivariant algebraic K-theory spectrum
of the𝐺-ring𝑅; the construction is an application of theGuillou–May operadic deloopingmachine
outlined in the previous paragraph. Another innovation of Merling’s paper is that she can process
actions and functors that are only ‘pseudo equivariant’ (as opposed to strictly equivariant). Every
ring𝑅 can be endowedwith the trivial𝐺-action; I expect that the orthogonal𝐺-spectrum𝐊𝐺(𝑅

triv)

agrees with the underlying 𝐺-homotopy type of our 𝐊gl𝑅 of Definition 10.2. More precisely, the
underlying 𝐺-symmetric spectra of𝐊𝐺(𝑅

triv) and𝐊gl𝑅 ought to be 𝐺-stably equivalent.
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In [4], Barwick introduces a very general framework of spectral Mackey functors. He works in
the setting of quasi-categories and defines spectralMackey functors as additive functors from suit-
able∞-categories of spans to the∞-category of spectra. When applied to finite 𝐺-sets for a finite
group 𝐺, this yields a model for genuine 𝐺-equivariant stable homotopy theory. Replacing finite
𝐺-sets by finite groupoids ought to give amodel for 𝑖𝑛-global stable homotopy theory as spectral
Mackey functors; here the understanding is that we consider spans with arbitrary functors in the
restriction direction, but with only faithful functors in the transfer direction. However, I am not
aware of a place where the details of such ‘global spectral Mackey functors’ have been worked
out, much less compared to the symmetric spectrum model of  𝑖𝑛-global stable homotopy
theory.
Under the expected equivalence between the stable ∞-category underlying the global model

structure on symmetric spectra and global spectral Mackey functors, our global K-theory con-
struction ought to relate to Barwick’s approach as follows. As we explain in Proposition 5.6, every
parsummable category  gives rise to a symmetricmonoidal structure on the underlying category.
The symmetric monoidal structure depends on a choice, but the choices can be parameterized by
a contractible category, see Remark 5.7. In symmetricmonoidal categories, one can restrict actions
along arbitrary group homomorphisms, and one can induce actions along inclusions between
finite groups. So, as  varies over all finite groupoids, the nerves of the functor categories 𝐜𝐚𝐭(,)
ought to extend to an additive functor from the span∞-category of finite groupoids to symmetric
monoidal ∞-categories. If the parsummable category  is saturated, then postcomposing with
any ∞-categorical delooping functor ought to give the spectral Mackey functor counterpart of
𝐊gl.
Outlook: parsummable categories model connective global homotopy theory. Thoma-

son showed in [40] that every connective spectrum is stably equivalent to the K-theory spectrum
of a symmetric monoidal category. Equivalently, every infinite loop space is the group comple-
tion, as an 𝐸∞-space, of the nerve of a permutative category. Even more is true: [40, Theorem
5.1] shows that the K-theory functor induces an equivalence from the homotopy category of
the category of symmetric monoidal categories and lax symmetric monoidal functors, local-
ized at the class of K-theory equivalences, to the homotopy category of connective spectra. A
different proof of Thomason’s theorem was later given by Mandell [24], who also provided an
‘un-group-complete’ version.
In the first version of this paper, posted on the arXiv in 2019, I had speculated about a global

refinement of Thomason’s andMandell’s results.While this paperwas being refereed, Tobias Lenz
proved this conjecture as part of his PhD thesis; he showed in [19, Theorem B] that the global
K-theory functor

𝐊gl ∶ 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 ⟶ 𝑝
induces an equivalence of ∞-categories between the quasi-categorical localization of par-
summable categories at the 𝐊gl-equivalences, and globally connective symmetric spectra at the
global equivalences. In particular, the functor descends to an equivalence between the respective
homotopy categories, and every connective  𝑖𝑛-global stable homotopy type arises as the global
K-theory spectrum of some parsummable category. Lenz’ results are in fact a lot more general:
he shows in [19, Theorem A] that for every discrete group 𝐺, the ∞-category of 𝐺-global con-
nective spectra is a quasi-categorical localization of the category of parsummable categories with
𝐺-action; and he also provides an un-group-complete version of this statement.
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1 A REVIEWOF SYMMETRIC SPECTRA

Our global K-theory construction produces symmetric spectra. Hence, we start by recalling the
definition of symmetric spectra, due to Jeff Smith, and first published in the paper [18] by Hovey,
Shipley and Smith. Symmetric spectra were originally introduced as a convenient model for the
non-equivariant stable homotopy category with a compatible smash product. Later, Mandell [22]
and Hausmann [14] extended the work of Hovey, Shipley and Smith and introduced different
symmetric spectrummodels for genuine 𝐺-spectra, where 𝐺 is a finite group. Hausmann’s model
is particularly convenient for global purposes: he endows 𝐺-objects internal to symmetric spec-
tra with a suitable equivariant stable model structure; hence non-equivariant symmetric spectra,
endowedwith trivial actions,model genuine𝐺-homotopy types for all finite groups𝐺. Hausmann
subsequently showed in [15] that with respect to a specific notion of global equivalence, symmet-
ric spectra model global stable homotopy theory based on finite groups; we review the relevant
definitions in this section.
We work with symmetric spectra in spaces (as opposed to simplicial sets as in [18]), where we

use the convention that a space is a compactly generated space in the sense of [27], that is, a 𝑘-
space (also called Kelley space) that satisfies the weak Hausdorff condition. We write 𝐓 for the
category of compactly generated spaces and continuous maps. Moreover, we use a slightly more
invariant version of symmetric spectra, where the terms are indexed by finite sets (as opposed to
natural numbers). So, our definition below is not identical with the one given in [18], but it defines
an equivalent category.
For a finite set 𝐴, we denote by ℝ[𝐴] the ℝ-vector space of functions from 𝐴 to ℝ, and by 𝑆𝐴

the one-point compactification ofℝ[𝐴], based at infinity. We write𝐴 + 𝐵 for the disjoint union of
two sets 𝐴 and 𝐵. The canonical linear isomorphism

ℝ[𝐴] ⊕ ℝ[𝐵] ≅ ℝ[𝐴 + 𝐵]

induced by the inclusions of 𝐴 and 𝐵 into 𝐴 + 𝐵 compactifies to a homeomorphism 𝑆𝐴 ∧ 𝑆𝐵 ≅

𝑆𝐴+𝐵 that we will often use without explicit mentioning to identify 𝑆𝐴 ∧ 𝑆𝐵 and 𝑆𝐴+𝐵.

Definition 1.1. A symmetric spectrum 𝑋 consists of a based space 𝑋(𝐴) for every finite set 𝐴,
equipped with continuous based maps

𝑖∗ ∶ 𝑋(𝐴) ∧ 𝑆𝐵⧵𝑖(𝐴) ⟶ 𝑆𝐵

for every injective map 𝑖 ∶ 𝐴⟶ 𝐵 between finite sets. These data are required to satisfy the
following conditions.

(a) For every set 𝐴, the following composite is the identity.

𝑋(𝐴) ≅ 𝑋(𝐴) ∧ 𝑆∅
(Id𝐴)∗
::::::→ 𝑋(𝐴).

(b) If 𝑖 ∶ 𝐴⟶ 𝐵 and 𝑗 ∶ 𝐵⟶ 𝐶 are composable injections between finite sets, then the
following diagram commutes.
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The unnamed isomorphism between 𝑆𝐵⧵𝑖(𝐴) ∧ 𝑆𝐶⧵𝑗(𝐵) and 𝑆𝐶⧵𝑗(𝑖(𝐴)) is given by 𝑗 on the coordi-
nates in 𝐵 ⧵ 𝑖(𝐴), and by the inclusion 𝐶 ⧵ 𝑗(𝐵)⟶ 𝐶 ⧵ 𝑗(𝑖(𝐴)) on the remaining coordinates.
A morphism 𝑓 ∶ 𝑋 ⟶ 𝑌 of symmetric spectra consists of based continuous maps 𝑓(𝐴) ∶

𝑋(𝐴)⟶ 𝑌(𝐴) for every finite set 𝐴 such that for every injection 𝑖 ∶ 𝐴⟶ 𝐵 between finite sets
the following square commutes:

The data of a symmetric spectrum𝑋 in particular provide an action of the symmetric group Σ𝐴
of self-bijections of𝐴 in the space𝑋(𝐴), wherewe let a bijection𝜎 ∶ 𝐴⟶𝐴 act by the composite

𝑋(𝐴) ≅ 𝑋(𝐴) ∧ 𝑆∅
𝜎∗
::→ 𝑋(𝐴).

Also, the inclusion 𝐴⟶𝐴+ 𝐵 of a summand into the disjoint union of two finite sets pro-
duces a structure map 𝜎𝐴,𝐵 ∶ 𝑋(𝐴) ∧ 𝑆𝐵 ⟶ 𝑋(𝐴 + 𝐵), where we implicitly identify 𝐵 with the
complement of the embedding 𝐴⟶𝐴+ 𝐵.
In [18, Definition 3.1.3], Hovey, Shipley and Smith define stable equivalences of symmetric spec-

tra; they show in [18, Theorem 3.4.4] that the stable equivalences participate in a model structure
on the category of symmetric spectra whose homotopy category is equivalent to the traditional
stable homotopy category. It is an unfortunate fact of life that stable equivalences of symmetric
spectra cannot be defined as the morphisms that induce isomorphisms of the naively defined sta-
ble homotopy groups, see [18, Definition 3.1.9]. By [18, Theorem 3.1.11], every 𝜋∗-isomorphism
of symmetric spectra is a stable equivalence, but the converse is not true generally. In [18, Def-
inition 5.6.1], Hovey, Shipley and Smith introduce the notion of semistability and show in [18,
Proposition 5.6.5] that stable equivalences between semistable symmetric spectra are already
𝜋∗-isomorphisms.
In [14], Hausmann generalizes the work of Hovey, Shipley and Smith to 𝐺-symmetric spectra,

that is, symmetric spectra equipped with an action of a finite group 𝐺. Hausmann works relative
to a 𝐺-set universe , that is, a countably infinite 𝐺-set that is isomorphic to the disjoint union of
two copies of itself. We restrict our attention the special case when  = 𝐺 is a universal 𝐺-set,
that is, a 𝐺-set universe that contains an isomorphic copy of every finite 𝐺-set; we often omit the
universal𝐺-set from part of the notation. Hausmann introduces a notion of𝐺-stable equivalences
[14, Definition 2.3.5] and complements them into a stable model structure on the category of 𝐺-
symmetric spectra [14, Theorem 4.8]. By [14, Theorem 7.4, 7.5], Hausmann’s model structure is
Quillen equivalent to the category of orthogonal 𝐺-spectra with either the stable model structure
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of Mandell and May [23, Theorem 4.2], Stolz [39] or Hill, Hopkins and Ravenel [17, Proposition
B.63].
In [14, Definition 3.1]Hausmann introduces the naive𝐺-equivariant homotopy group𝜋𝐺,𝐺

𝑘
(𝑋)

of a 𝐺-symmetric spectrum as

𝜋
𝐺,𝐺

𝑘
(𝑋) = colim𝐴⊂𝐺

[𝑆𝑘+𝐴, 𝑋(𝐴)]𝐺 ; (1.2)

here the colimit is taken over the filtered poset of finite 𝐺-subsets of 𝐺 , formed along specific
structure maps. Strictly speaking, the definition above only makes sense for 𝑘 ⩾ 0; for negative
𝑘, the precise interpretation is explained in [14, 3.1]. A morphism of 𝐺-symmetric spectra is a
𝜋
∗ -isomorphism if the induced map on 𝜋𝐻,𝐺

𝑘
is an isomorphism for every integer 𝑘 and every

subgroup 𝐻 of 𝐺. By [14, Theorem 3.36], every 𝜋
∗ -isomorphism of 𝐺-symmetric spectra is a 𝐺-

stable equivalence. Hausmann defines a notion of 𝐺-semistability in [14, Definition 3.22], and
shows in [14, Corollary 3.37] that 𝐺-stable equivalences between 𝐺-semistable symmetric spectra
are already 𝜋

∗ -isomorphisms.
Symmetric spectra (without any additional actions) can be viewed as encoding ‘global sta-

ble homotopy types’; loosely speaking, one can think of this as a collection of compatible
𝐺-equivariant stable homotopy types for every finite group 𝐺. We briefly sketch how to formalize
this approach to global stable homotopy theory; the details of the theory are developed in Haus-
mann’s paper [15]. There is a version with orthogonal spectra instead of symmetric spectra, where
finite groups are generalized to compact Lie groups, compare [34].
Every symmetric spectrum can be considered as a 𝐺-symmetric spectrum by letting 𝐺 act triv-

ially; we call this the underlying 𝐺-spectrum of a symmetric spectrum. A morphism of symmetric
spectra is a global equivalence [15, Definition 2.10] if it is a 𝐺-stable equivalence of underlying
𝐺-spectra for every finite group 𝐺. There is an alternative way to define global equivalences of
symmetric spectra, as follows.We call amorphism 𝑓 ∶ 𝑌 ⟶ 𝑍 of symmetric spectra a global level
equivalence if for every 𝑛 ⩾ 0 themap𝑓𝑛 ∶ 𝑌𝑛 ⟶ 𝑍𝑛 is aΣ𝑛-weak equivalence (that is, restricts to
a weak equivalence on𝐻-fixed points for all subgroups𝐻 ⩽ Σ𝑛), compare [15, Definition 2.3]. The
global level equivalences and the 𝑆-cofibrations of [18, Definition 5.3.6] (or rather the analog for
symmetric spectra of spaces, which are called flat cofibrations in [15, Definition 2.3]) determine
a global level model structure on the category of symmetric spectra, see [15, Proposition 2.6]. A
morphism 𝑓 ∶ 𝑌 ⟶ 𝑍 of symmetric spectra is a global equivalence if and only if for every global
Ω-spectrum𝑋 the inducedmap [𝑓, 𝑋]str ∶ [𝑍, 𝑋]str ⟶ [𝑌,𝑋]str is bijective, where [−,−]str is the
set ofmorphisms in the global level homotopy category (the localization of symmetric spectrawith
respect to the class of global level equivalences), see the remark at the end of [15, section 2.2].
A morphism of symmetric spectra is a global 𝜋∗-isomorphism [15, Definition 4.2] if it is a 𝜋

∗ -
isomorphism of underlying 𝐺-spectra for every finite group 𝐺. A symmetric spectrum is globally
semistable in the sense of [15, Definition 4.11] precisely when the underlying 𝐺-spectrum is 𝐺-
semistable for every finite group 𝐺, by [15, Proposition 4.13 (i)]. So, every global 𝜋∗-isomorphism
is a global equivalence [15, Proposition 4.5], and every global equivalence between globally
semistable symmetric spectra is a global 𝜋∗-isomorphism [15, Proposition 4.13(vi)].
In Section 4, we will explain how to turn a parsummable category  into a symmetric spectrum

𝐊gl, the globalK-theory spectrum of; the symmetric spectrum𝐊gl has the remarkable property
of being a ‘restricted globalΩ-spectrum’, a slight generalization of the notion of globalΩ-spectrum
of [15, Definition 2.13]. We introduce this concept now and explain how a restricted global Ω-
spectrum encodes compatible equivariant infinite loop spaces for all finite groups.
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We let 𝑋 be a symmetric spectrum and 𝐺 a group. Then for all finite 𝐺-sets𝐴 and 𝐵, the spaces
𝑋(𝐴), 𝑆𝐵 and𝑋(𝐴 + 𝐵) inherit a𝐺-action, and the structuremap 𝜎𝐴,𝐵 ∶ 𝑋(𝐴) ∧ 𝑆𝐵 ⟶ 𝑋(𝐴 + 𝐵)

is 𝐺-equivariant. The adjoint

�̃�𝐴,𝐵 ∶ 𝑋(𝐴) ⟶ map∗(𝑆
𝐵, 𝑋(𝐴 + 𝐵))

is then𝐺-equivariant for the conjugation action on the target, the space of based continuousmaps.
We will say that a 𝐺-set has a free orbit if it contains an element with trivial isotropy group. We
recall that a continuous𝐺-equivariantmap𝑓 ∶ 𝐾 ⟶ 𝐿 between𝐺-spaces is a𝐺-weak equivalence
if the induced map 𝑓𝐻 ∶ 𝐾𝐻 ⟶ 𝐿𝐻 on𝐻-fixed point spaces is a weak homotopy equivalence for
every subgroup𝐻 of 𝐺.

Definition 1.3. A symmetric spectrum𝑋 is a restricted globalΩ-spectrum if for every finite group
𝐺, every finite 𝐺-set 𝐴 with a free orbit, and all finite 𝐺-sets 𝐵, the adjoint structure map �̃�𝐴,𝐵 ∶
𝑋(𝐴)⟶map∗(𝑆

𝐵, 𝑋(𝐴 + 𝐵)) is a 𝐺-weak equivalence.

A symmetric spectrum is a global Ω-spectrum if the adjoint structure map �̃�𝐴,𝐵 is a 𝐺-weak
equivalence for all finite 𝐺-sets 𝐴 and 𝐵 such that 𝐺 acts faithfully on 𝐴, see [15, Definition 2.13].
If 𝐴 contains an element with trivial isotropy group, then 𝐺 must in particular act faithfully. So,
every globalΩ-spectrum is in particular a restricted globalΩ-spectrum; the ‘restricted’ objects are
somewhat analogous to positive Ω-spectra in the non-equivariant context. The global Ω-spectra
are the fibrant objects in the global model structure on the category of symmetric spectra, see [15,
Theorem 2.18].
For restricted global Ω-spectra 𝑋, all maps in the colimit system defining 𝜋𝐺

0
(𝑋) that start at a

𝐺-set with a free orbit are isomorphisms. Since 𝐺-sets with a free orbit are cofinal in the poset of
finite 𝐺-subsets of𝐺 , the canonical map

[𝑆𝐺, 𝑋(𝐺)]𝐺 ⟶ 𝜋𝐺0 (𝑋)

is bijective.

Remark 1.4. A restricted global Ω-spectrum 𝑋 is a very rich kind of structure: for every finite
group 𝐺, the 𝐺-space

𝑋⟨𝐺⟩ = map∗(𝑆
𝐺, 𝑋(𝐺))

is an equivariant infinite loop space, indexed on a complete𝐺-universe; here𝐺 acts on itself by left
translation, and by conjugation on the mapping space. In other words, for every 𝐺-representation
𝑉, there is another 𝐺-space 𝑋⟨𝐺,𝑉⟩ and a 𝐺-weak equivalence

𝑋⟨𝐺⟩ ⟶ map∗(𝑆
𝑉, 𝑋⟨𝐺,𝑉⟩).

To construct such an equivalence, we observe that ℝ[𝐺 ×𝐦] is isomorphic to a sum of 𝑚 copies
of the regular representation of 𝐺. Here we write 𝐦 = {1, 2, … ,𝑚}, and 𝐺 acts on 𝐺 ×𝐦 by left
translation on the first factor. So, we can choose a 𝐺-equivariant linear isometric embedding 𝑖 ∶
𝑉 ⟶ ℝ[𝐺 ×𝐦] for some𝑚 ⩾ 1. Then we let 𝑉⟂ be the orthogonal complement of the image of
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𝑖, and we set

𝑋⟨𝐺,𝑉⟩ = map∗(𝑆
𝑉⟂, 𝑋(𝐺 ×𝐦)) ,

with 𝐺 acting by conjugation on the mapping space. Because 𝑋 is a restricted globalΩ-spectrum,
the adjoint structure map

�̃�𝐺,𝐺×(𝐦−𝟏) ∶ 𝑋(𝐺) ⟶ map∗(𝑆
𝐺×(𝐦−𝟏), 𝑋(𝐺 ×𝐦))

is a 𝐺-weak equivalence. Applying map∗(𝑆𝐺, −) gives the desired 𝐺-weak equivalence from
𝑋⟨𝐺⟩ = map∗(𝑆

𝐺, 𝑋(𝐺)) to

map∗(𝑆
𝐺,map∗(𝑆

𝐺×(𝐦−𝟏), 𝑋(𝐺 ×𝐦))) ≅ map∗(𝑆
𝐺 ∧ 𝑆𝐺×(𝐦−𝟏), 𝑋(𝐺 ×𝐦))

≅ map∗(𝑆
𝐺×𝐦,𝑋(𝐺 ×𝐦)) ≅ map∗(𝑆

𝑉 ∧ 𝑆𝑉
⟂
, 𝑋(𝐺 ×𝐦))

≅ map∗(𝑆
𝑉,map∗(𝑆

𝑉⟂, 𝑋(𝐺 ×𝐦))) = map∗(𝑆
𝑉, 𝑋⟨𝐺,𝑉⟩).

As 𝐺 varies, the equivariant infinite loop spaces 𝑋⟨𝐺⟩ are closely related to each other. For
example, if 𝐻 is a subgroup of 𝐺, then 𝑋⟨𝐻⟩ is 𝐻-weakly equivalent to the restriction of the
𝐺-equivariant infinite loop space 𝑋⟨𝐺⟩. Indeed, the underlying 𝐻-set of 𝐺 decomposes as the
internal disjoint union

res𝐺𝐻(𝐺) = 𝐻 + (𝐺 ⧵ 𝐻).

Because 𝑋 is a restricted global Ω-spectrum, the adjoint structure map

�̃�𝐻,𝐺⧵𝐻 ∶ 𝑋(𝐻) ⟶ map∗(𝑆
𝐺⧵𝐻, 𝑋(𝐺))

is an𝐻-weak equivalence. Applyingmap∗(𝑆𝐻,−) gives an𝐻-weak equivalence

𝑋⟨𝐻⟩ = map∗(𝑆
𝐻, 𝑋(𝐻)) ⟶ map∗(𝑆

𝐻,map∗(𝑆
𝐺⧵𝐻, 𝑋(𝐺))) ≅ res𝐺𝐻(𝑋⟨𝐺⟩).

Construction 1.5 (Fixed point symmetric spectrum). Given a symmetric spectrum𝑋 and a finite
group 𝐺, we construct another symmetric spectrum 𝐹𝐺𝑋, the 𝐺-fixed point spectrum. We let

�̄�𝐺 =
{∑

𝜆g ⋅ g ∈ 𝜌𝐺 ∶
∑

𝜆g = 0
}

denote the reduced regular representation of 𝐺, that is, the kernel of the augmentation 𝜌𝐺 =

ℝ[𝐺]⟶ ℝ. Several times below — and sometimes without explicit mentioning – we shall use
the 𝐺-equivariant isometry

ℝ⊕ �̄�𝐺 ≅ 𝜌𝐺 , (𝜆, 𝑥) ⟶

(
𝜆√|𝐺|∑g∈𝐺

g

)
+ 𝑥. (1.6)
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For a finite set 𝐴, we set

(𝐹𝐺𝑋)(𝐴) = map𝐺∗ (𝑆
�̄�𝐺⊗ℝ[𝐴], 𝑋(𝐺 × 𝐴)).

As before, 𝑆�̄�𝐺⊗ℝ[𝐴] is the one-point compactification of the tensor product of �̄�𝐺 with ℝ[𝐴], and
map𝐺∗ (−,−) is the space of𝐺-equivariant continuous basedmaps. To define the structuremapswe
let 𝑖 ∶ 𝐴⟶ 𝐵 be an injection between finite sets. We define the structure map 𝑖∗ ∶ (𝐹𝐺𝑋)(𝐴) ∧
𝑆𝐵⧵𝑖(𝐴) ⟶ (𝐹𝐺𝑋)(𝐵) as the composite

map𝐺∗ (𝑆
�̄�𝐺⊗ℝ[𝐴],𝑋(𝐺 × 𝐴)) ∧ 𝑆𝐵⧵𝑖(𝐴)

assembly
::::::::→ map𝐺∗ (𝑆

�̄�𝐺⊗ℝ[𝐴], 𝑋(𝐺 × 𝐴) ∧ 𝑆𝐵⧵𝑖(𝐴))

⟶ map𝐺∗ (𝑆
�̄�𝐺⊗ℝ[𝐴] ∧ 𝑆�̄�𝐺⊗ℝ[𝐵⧵𝑖(𝐴)], 𝑋(𝐺 × 𝐴) ∧ 𝑆𝐵⧵𝑖(𝐴) ∧ 𝑆�̄�𝐺⊗ℝ[𝐵⧵𝑖(𝐴)])

≅
:::→ map𝐺∗ (𝑆

�̄�𝐺⊗ℝ[𝐵], 𝑋(𝐺 × 𝐴) ∧ 𝑆𝐺×(𝐵⧵𝑖(𝐴)))

⟶ map𝐺∗ (𝑆
�̄�𝐺⊗ℝ[𝐵], 𝑋(𝐺 × 𝐵)).

The second map smashes from the right with the sphere 𝑆�̄�𝐺⊗ℝ[𝐵⧵𝑖(𝐴)]. The third map is induced
by the isometry

(�̄�𝐺 ⊗ ℝ[𝐴]) ⊕ (�̄�𝐺 ⊗ ℝ[𝐵 ⧵ 𝑖(𝐴)]) ≅ �̄�𝐺 ⊗ ℝ[𝐵] ,

given by 𝑖 ∶ 𝐴⟶ 𝐵 on the first summand, and by the inclusion 𝑖 ∶ 𝐵 ⧵ 𝑖(𝐴)⟶ 𝐵 on the second
summand, and by the isometry

ℝ[𝐵 ⧵ 𝑖(𝐴)] ⊕ (�̄�𝐺 ⊗ ℝ[𝐵 ⧵ 𝑖(𝐴)]) ≅ (ℝ ⊕ �̄�𝐺) ⊗ ℝ[𝐵 ⧵ 𝑖(𝐴)] ≅(1.6) 𝜌𝐺 ⊗ ℝ[𝐵 ⧵ 𝑖(𝐴)].

The fourth map is induced by the structure map

(𝐺 × 𝑖)∗ ∶ 𝑋(𝐺 × 𝐴) ∧ 𝑆𝐺×(𝐵⧵𝑖(𝐴)) ⟶ 𝑋(𝐺 × 𝐵)

of the symmetric spectrum𝑋. We note that when𝐺 = 𝑒 is a trivial group, the fixed point spectrum
𝐹𝐺𝑋 is naturally isomorphic to 𝑋.

We warn the reader that the above fixed point construction is not fully homotopical. In other
words, if 𝑓 ∶ 𝑋 ⟶ 𝑌 is a 𝐺-stable equivalence of 𝐺-symmetric spectra, then 𝐹𝐺𝑓 ∶ 𝐹𝐺𝑋 ⟶

𝐹𝐺𝑌 need not be a non-equivariant stable equivalence without further hypotheses on 𝑋 and 𝑌.

2 -CATEGORIES

In this section, we introduce and study -categories, that is, categories equipped with a strict
action of a particular strict monoidal category made from self-injections of a countably infinite
set, see Definition 2.2. These -categories underlie the more highly structured parsummable
categories, the input data for our global K-theory. An action of the monoidal category  on a
category  gives rise to a notion of ‘support’ for objects of , see Definition 2.12. The support is a
countable set, possibly infinite, and of fundamental importance for everything in this paper. An
-category is tame if the support of every object is finite.
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Construction 2.21 introduces the 𝐺-fixed -category 𝐹𝐺 associated with an -category 
and a finite group 𝐺. By Proposition 2.25, the 𝐺-fixed category 𝐹𝐺 embeds fully faithfully into
the category of 𝐺-objects in . A morphism of-categories is a global equivalence if the induced
functor on 𝐺-fixed categories is a weak equivalence for all finite groups, see Definition 2.26.
The final topic of this section is the box product of two-categories, defined as the full subcat-

egory of the product spanned by the pairs of disjointly supported objects, see Definition 2.32. The
inclusion of the box product into the product is always a global equivalence by Theorem 2.33, and
the box product restricts to a symmetric monoidal product on the category of tame-categories,
see Proposition 2.35.

Construction 2.1 (The monoidal category of injections). We let 𝑀 denote the monoid, under
composition, of injective self-maps of the set 𝜔 = {0, 1, 2, … }.
Given a set 𝑋, the category 𝐸𝑋 has object set 𝑋 and a unique morphism between any pair of

objects. More formally, the morphism set of the category 𝐸𝑋 is 𝑋 × 𝑋, and the source and target
maps are the projections to the second, respectively, the first factor. In other words, the pair (𝑦, 𝑥)
is the unique morphism from 𝑥 to 𝑦. Composition is then forced to be (𝑧, 𝑦) ◦ (𝑦, 𝑥) = (𝑧, 𝑥). The
category 𝐸𝑋 is sometimes called the chaotic category, or the indiscrete category with object set 𝑋.
The functor 𝐸 is in fact right adjoint to the object functor (as a functor from small categories to

sets); hence 𝐸 preserves limits, in particular products, and so it takes monoids to strict monoidal
categories. So, we obtain a strict monoidal category  = 𝐸𝑀 whose monoid of objects is the
injection monoid𝑀.

Definition 2.2. An -category is a small category equipped with a strict action of the strict
monoidal category. Amorphism of-categories is a functor𝐹 ∶  ⟶  such that the square
of categories and functors

commutes on the nose.

We emphasize that  is a strict monoidal category, that is, the associativity and unit dia-
grams of categories and functors commute strictly (and not just up to natural isomorphism).
Correspondingly we are looking at strict actions of  on a category, and strict morphisms of
-categories.

Remark 2.3 (Explicit structure). We make the structure provided by an-action on a category 
more explicit; at the same time, we also fix notation and spell out some specific relations that we
will later use.
Given two injections 𝑢, 𝑣 ∈ 𝑀, the pair (𝑣, 𝑢) ∶ 𝑢⟶ 𝑣 is a morphism in the category  =

𝐸𝑀. Given an object 𝑥 in an-category , we write
[𝑣, 𝑢]𝑥 = (𝑣, 𝑢) ⋄ 1𝑥 ∶ 𝑢∗(𝑥) ⟶ 𝑣∗(𝑥).
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Here ⋄ ∶ ×  ⟶  is the structure functor of the -action. As the object 𝑥 varies, these
morphisms form a natural transformation from the functor 𝑢∗ ∶  ⟶  to the functor 𝑣∗. This
transformation enjoys another level of naturality: if 𝐹 ∶  ⟶  is a morphism of-categories,
then

[𝑣, 𝑢]𝐹(𝑥) = 𝐹([𝑣, 𝑢]𝑥) ∶ 𝑢∗(𝐹(𝑥)) = 𝐹(𝑢∗(𝑥)) ⟶ 𝑣∗(𝐹(𝑥)) = 𝐹(𝑣∗(𝑥)).

The transformations [𝑣, 𝑢] enjoy a number of properties, some of which we spell out now.
Firstly, the relations (𝑢, 𝑢) = 1𝑢 and (𝑤, 𝑣) ◦ (𝑣, 𝑢) = (𝑤, 𝑢) in the category imply

[𝑢, 𝑢]𝑥 = 1𝑢∗(𝑥) and [𝑤, 𝑣]𝑥 ◦ [𝑣, 𝑢]𝑥 = [𝑤, 𝑢]𝑥.

For 𝜆 ∈ 𝑀, the associativity property of the-action provides the relations

[𝑣, 𝑢]𝜆∗(𝑥) = [𝑣𝜆, 𝑢𝜆]𝑥 and 𝜆∗([𝑣, 𝑢]
𝑥) = [𝜆𝑣, 𝜆𝑢]𝑥 . (2.4)

We claim that an-action on a category  is determined by part of its structure, namely:
(a) the action of the injection monoid𝑀 on the set of objects of , and
(b) the isomorphisms

𝑢𝑥◦ = [𝑢, 1]𝑥 ∶ 𝑥⟶ 𝑢∗(𝑥)

for all 𝑢 ∈ 𝑀 and all objects 𝑥 of . Moreover, these pieces of data satisfy the relation
𝑣
𝑢∗(𝑥)
◦ ◦ 𝑢𝑥◦ = (𝑣𝑢)𝑥◦ (2.5)

for all 𝑢 and 𝑣 in 𝑀 and all objects 𝑥 of . The next proposition simplifies the construction of
-actions in concrete examples, as it frees us from having to specify redundant data.

Proposition 2.6. Let  be a category equipped with an action of the injectionmonoid𝑀 on the set of
objects of , and with isomorphisms 𝑢𝑥◦ ∶ 𝑥⟶ 𝑢∗(𝑥) for all 𝑢 ∈ 𝑀 and all objects 𝑥 of . Suppose
moreover that the relation (2.5) holds for all 𝑢 and 𝑣 in 𝑀 and all objects 𝑥 of . Then there is a
unique extension to an-action on  such that 𝑢𝑥◦ = [𝑢, 1]𝑥 for all 𝑢 ∈ 𝑀 and all objects 𝑥 of .
Proof. We start with the uniqueness. The naturality of 𝑢◦ = [𝑢, 1] is equivalent to the relation

𝑢∗(𝑓) = 𝑢
𝑦
◦ ◦ 𝑓 ◦ (𝑢𝑥◦ )

−1 (2.7)

for every -morphism 𝑓 ∶ 𝑥⟶ 𝑦. So, the effect of 𝑢∗ on morphisms is determined by the data
(a) and (b). Also, the relation

[𝑣, 𝑢] = [𝑣, 1] ◦ [1, 𝑢] = 𝑣◦ ◦ (𝑢◦)
−1

shows that the natural isomorphism [𝑣, 𝑢] ∶ 𝑢∗ ⟹ 𝑣∗ is determined by (a) and (b). This
completes the proof of uniqueness.
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For the existence, we define the rest of the structure as required by the uniqueness argument
above. So, we define the functor 𝑢∗ on morphisms by the relation (2.7), and this visibly ensures
that 𝑢∗ preserves identities and composition, so it is indeed a functor.
The relation 1∗ = Id holds on objects by hypothesis. For 𝑢 = 𝑣 = 1, the relation (2.5) special-

izes to 1𝑥◦ ◦ 1𝑥◦ = 1𝑥◦ . Because 1
𝑥
◦ is an isomorphism, we can conclude that 1

𝑥
◦ is the identity of

𝑥. This yields that 1∗(𝑓) = 𝑓, that is, 1∗ is the identity functor. For 𝑢 and 𝑣 in 𝑀, the relation
𝑣∗ ◦ 𝑢∗ = (𝑣𝑢)∗ holds on objects by hypothesis, and on morphisms by (2.5). This shows that the
action of𝑀 on objects of  extends uniquely to an action of𝑀 on the whole category .
Now we define the isomorphisms [𝑣, 𝑢]𝑥 by 𝑣𝑥◦ ◦ (𝑢𝑥◦ )

−1, as we must. The naturality relation
𝑣∗(𝑓) ◦ [𝑣, 𝑢]

𝑥 = [𝑣, 𝑢]𝑦 ◦ 𝑢∗(𝑓) for a morphism 𝑓 ∶ 𝑥⟶ 𝑦 then holds by definition, so there is
a unique extension of the action of𝑀 on  to a functor ⋄ ∶ ×  ⟶ .
The final check is to verify that this action functor is associative and unital, where we already

know this for the monoid𝑀 of objects of. The remaining relations (2.4) hold because

[𝑣, 𝑢]𝜆∗(𝑥) = 𝑣
𝜆∗(𝑥)
◦ ◦

(
𝑢
𝜆∗(𝑥)
◦

)−1
(2.5) = (𝑣𝜆)𝑥◦ ◦

(
𝜆𝑥◦
)−1

◦
(
(𝑢𝜆)𝑥◦ ◦

(
𝜆𝑥◦
)−1)−1

= (𝑣𝜆)𝑥◦ ◦
(
(𝑢𝜆)𝑥◦

)−1
= [𝑣𝜆, 𝑢𝜆]𝑥

and

𝜆∗([𝑣, 𝑢]
𝑥) = 𝜆∗

(
𝑣𝑥◦ ◦

(
𝑢𝑥◦
)−1)

= 𝜆∗
(
𝑣𝑥◦
)
◦
(
𝜆∗(𝑢

𝑥
◦ )
)−1

= (𝜆
𝑣∗(𝑥)
◦ ◦ 𝑣𝑥◦ ◦ (𝜆𝑥◦ )

−1) ◦ (𝜆𝑢∗(𝑥)◦ ◦ 𝑢𝑥◦ ◦ (𝜆𝑥◦ )
−1)−1

= (𝜆
𝑣∗(𝑥)
◦ ◦ 𝑣𝑥◦ ) ◦ (𝜆

𝑢∗(𝑥)
◦ ◦ 𝑢𝑥◦ )

−1

(2.5) = (𝜆𝑣)𝑥◦ ◦ ((𝜆𝑢◦)
𝑥)−1 = [𝜆𝑣, 𝜆𝑢]𝑥 . □

Now we note that-categories are closed under various kinds of constructions.

Remark 2.8 (Full subcategories). Let ̄ be a full subcategory of an -category closed under the
action of the injection monoid𝑀. More precisely, we suppose that for every injection 𝑢 ∈ 𝑀 the
composite functor

̄ incl
:::→  𝑢∗

:::→ 
has image in the full subcategory ̄. Then ̄ is an -category in its own right, by restriction of
structure. The inclusion ̄ ⟶  is a morphism of-categories.

Example 2.9 (Opposite -categories). If  is an -category, then the opposite category op
inherits a canonical structure of-category. Indeed, since the category is a groupoid, it has an
anti-automorphism (−)−1 ∶⟶op that is the identity on objects and sends everymorphism
to its inverse. If ⋄ ∶ ×  ⟶  is the action of  on , then the action of  on op is the
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composite

 × op (−)−1×Id
::::::::→ op × op = ( × )op ⋄op

:::→ op .
More explicitly, this means that the structure functor of op associated with an injection 𝑢 ∈ 𝑀 is
the functor

𝑢op ∶ op ⟶ op ,
and the value of the natural isomorphism [𝑣, 𝑢] in op at an object 𝑥 is the inverse of [𝑣, 𝑢]𝑥 in .
Example 2.10 (Limits and colimits of-categories). The category 𝐜𝐚𝐭 of small categories is com-
plete and cocomplete. Limits of small categories are calculated as limits of objects and limits of
morphisms; colimits of categories are typically more difficult to describe.
The forgetful functor 𝐜𝐚𝐭 ⟶ 𝐜𝐚𝐭 has both a left adjoint and a right adjoint. The left adjoint

𝐜𝐚𝐭 ⟶ 𝐜𝐚𝐭 takes a small category 𝑋 to the category × 𝑋, with action by multiplication
on the first factor. The right adjoint 𝐜𝐚𝐭 ⟶ 𝐜𝐚𝐭 takes𝑋 to the category 𝐜𝐚𝐭(, 𝑋) of functors
from to 𝑋, with natural transformation as morphisms. The-action on 𝐜𝐚𝐭(, 𝑋) is adjoint
to the composite

 × 𝐜𝐚𝐭(, 𝑋) × ×twist
::::::::→ × × 𝐜𝐚𝐭(, 𝑋)

⋄×𝐜𝐚𝐭(,)
:::::::::::→ × 𝐜𝐚𝐭(, 𝑋)

evaluation
:::::::::→ 𝑋 .

Since the forgetful functor is a left and a right adjoint, it creates limits and colimits. So, the category
 𝐜𝐚𝐭 of-categories is complete and cocomplete, and limits and colimits can be calculated on
underlying categories.
Similarly, for every-category  and every small category 𝐽, the category 𝐜𝐚𝐭(𝐽,) of functors

from 𝐽 to  has a preferred structure of-category: the action functor is the composite

 × 𝐜𝐚𝐭(𝐽,) ⟶ 𝐜𝐚𝐭(𝐽, × ) 𝐜𝐚𝐭(𝐽,⋄)
::::::::→ 𝐜𝐚𝐭(𝐽,) .

The first functor is of ‘assembly type’ and sends an object (𝑢, 𝐹) of × 𝐜𝐚𝐭(𝐽,) to the functor
(1𝑢, 𝐹) ∶ 𝐽 ⟶ × .
The structure of an-category gives rise to an intrinsic finiteness condition for objects, as well

as an intrinsic notion of ‘disjointness’ (or ‘orthogonality’) for pairs of objects. The finiteness and
disjointness conditions both rely on the concept of ‘support’ of an object in an -category that
we discuss now.

Definition 2.11. Let  be an -category. An object 𝑥 of  is supported on a subset 𝐴 of 𝜔 if
the following condition holds: for every injection 𝑢 ∈ 𝑀 that is the identity on 𝐴, the relation
𝑢∗(𝑥) = 𝑥 holds. An object 𝑥 is finitely supported if it is supported on some finite subset of 𝜔. The
-category  is tame if all its objects are finitely supported. We write 𝐜𝐚𝐭𝜏 for the category of
tame-categories and-equivariant functors.



1342 SCHWEDE

Clearly, if 𝑥 is supported on 𝐴 and 𝐴 ⊆ 𝐵 ⊆ 𝜔, then 𝑥 is supported on 𝐵. Every object is sup-
ported on all of 𝜔. An object 𝑥 is supported on the empty set if and only if 𝑢∗(𝑥) = 𝑥 for all 𝑢 ∈ 𝑀.
So, the objects supported on the empty set are precisely the𝑀-fixed objects.

Definition 2.12. Let 𝑥 be an object of an-category. The support of 𝑥 is the intersection of all
finite subsets of 𝜔 on which 𝑥 is supported.

We write supp(𝑥) for the support of an object 𝑥. If 𝑥 is not finitely supported, then we agree
that supp(𝑥) = 𝜔. It is important that in Definition 2.12 the intersection is only over finite sup-
porting subsets. Indeed every object is supported on the set 𝜔 − {𝑗} for every 𝑗 ∈ 𝜔, because the
only injection that fixes 𝜔 − {𝑗} elementwise is the identity. So, without the finiteness condition,
the intersection in Definition 2.12 would always be empty.

Proposition 2.13. Let 𝑥 be an object of an-category .
(i) The object 𝑥 is supported on its support supp(𝑥).
(ii) If two injections 𝑣, 𝑣 ∈ 𝑀 agree on supp(𝑥), then 𝑣∗(𝑥) = 𝑣∗(𝑥), [𝑣, 𝑢]𝑥 = [𝑣, 𝑢]𝑥 and [𝑢, 𝑣]𝑥 =

[𝑢, 𝑣]𝑥 for all 𝑢 ∈ 𝑀.
(iii) Suppose that 𝑥 is supported on a subset𝐴 of 𝜔. Then for every injection 𝑣 ∈ 𝑀, the object 𝑣∗(𝑥)

is supported on the set 𝑣(𝐴). Moreover, if 𝑥 is finitely supported, then supp(𝑣∗(𝑥)) = 𝑣(supp(𝑥)),
and 𝑣∗(𝑥) is also finitely supported.

(iv) Let 𝑓 ∶ 𝑥⟶ 𝑦 be a -morphism, and suppose that 𝑢, 𝑣 ∈ 𝑀 agree on supp(𝑥) ∪ supp(𝑦).
Then 𝑢∗(𝑓) = 𝑣∗(𝑓).

(v) For every morphism of-categories 𝐹 ∶  ⟶ , the relation
supp(𝐹(𝑥)) ⊆ supp(𝑥)

holds.

Proof.

(i) There is nothing to show if 𝑥 is not finitely supported. Otherwise, there is a finite subset of
𝜔 on which 𝑥 is supported, and hence supp(𝑥) is itself finite. While the support is defined as
the intersection of infinitely many sets, it being finite means that we can express it as a finite
intersection

supp(𝑥) = 𝐵1 ∩⋯ ∩ 𝐵𝑘

of finite subset 𝐵1, … , 𝐵𝑘 of 𝜔 such that 𝑥 is supported on each 𝐵𝑖 . By induction on 𝑘, it thus
suffices to show the following claim: if 𝑥 is supported on two finite subsets 𝐴 and 𝐵 of 𝜔,
then 𝑥 is supported on the intersection 𝐴 ∩ 𝐵.
We let 𝑢 ∈ 𝑀 be an injection that fixes 𝐴 ∩ 𝐵 elementwise. We let 𝑚 be the maximum of

the finite set𝐴 ∪ 𝐵 ∪ 𝑢(𝐴) and define 𝜎 ∈ 𝑀 as the involution that interchanges 𝑗with 𝑗 + 𝑚
for all 𝑗 ∈ 𝐵 ⧵ 𝐴, that is,

𝜎(𝑗) =

⎧⎪⎨⎪⎩
𝑗 + 𝑚 for 𝑗 ∈ 𝐵 ⧵ 𝐴,
𝑗 − 𝑚 for 𝑗 ∈ (𝐵 ⧵ 𝐴) + 𝑚, and
𝑗 for 𝑗 ∉ (𝐵 ⧵ 𝐴) ∪ ((𝐵 ⧵ 𝐴) + 𝑚).
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In particular, the map 𝜎 fixes the set𝐴 elementwise. Since𝐴 and 𝑢(𝐴) are both disjoint from
𝐵 +𝑚, we can choose a bijection 𝛾 ∈ 𝑀 such that

𝛾(𝑗) =

{
𝑢(𝑗) if 𝑗 ∈ 𝐴, and
𝑗 for 𝑗 ∈ 𝐵 +𝑚.

Then 𝑢 can be written as the composition

𝑢 = 𝜎(𝜎𝛾𝜎)(𝜎𝛾−1𝑢) .

In this decomposition, the factors 𝜎 and 𝜎𝛾−1𝑢 fix 𝐴 pointwise, and the factor 𝜎𝛾𝜎 fixes 𝐵
pointwise. So,

𝜎∗(𝑥) = (𝜎𝛾𝜎)∗(𝑥) = (𝜎𝛾−1𝑢)∗(𝑥) = 𝑥

because 𝑥 is supported on 𝐴 and on 𝐵. This gives

𝑢∗(𝑥) = 𝜎∗((𝜎𝛾𝜎)∗((𝜎𝛾
−1𝑢)∗(𝑥))) = 𝑥 .

Since 𝑢 was any injection fixing 𝐴 ∩ 𝐵 elementwise, the object 𝑥 is supported on 𝐴 ∩ 𝐵.
(ii) If 𝑥 is not finitely supported, then supp(𝑥) = 𝜔, so 𝑣 = 𝑣, and there is nothing to show. So,

we can assume that the support of 𝑥 is finite. We start with a special case: we consider an
injection 𝑣 ∈ 𝑀 that is the identity on supp(𝑥); we show that then the automorphism 𝑣𝑥◦ =

[𝑣, 1]𝑥 of 𝑥 = 𝑣∗(𝑥) is the identity.
We choose two injections 𝑠, 𝑡 ∈ 𝑀 that are the identity on supp(𝑥) and whose images

intersect only in supp(𝑥). We define another injection 𝑢 ∈ 𝑀 by

𝑢(𝑖) =

{
𝑡(𝑣(𝑡−1(𝑖))) if 𝑖 is in the image of 𝑡, and
𝑖 if 𝑖 is not in the image of 𝑡.

Then the relations

𝑢𝑠 = 𝑠 and 𝑢𝑡 = 𝑡𝑣

hold in the monoid 𝑀. Because 𝑠, 𝑡, 𝑢 and 𝑣 are the identity on supp(𝑥), we have 𝑠∗(𝑥) =
𝑡∗(𝑥) = 𝑢∗(𝑥) = 𝑣∗(𝑥) = 𝑥. The relation (2.5) yields

𝑢𝑥◦ ◦ 𝑠𝑥◦ = (𝑢𝑠)𝑥◦ = 𝑠𝑥◦ .

Because 𝑠𝑥◦ is invertible, we deduce that 𝑢
𝑥
◦ = Id𝑥. Moreover,

𝑡𝑥◦ = 𝑢𝑥◦ ◦ 𝑡𝑥◦ =(2.5) (𝑢𝑡)
𝑥
◦ = (𝑡𝑣)𝑥◦ =(2.5) 𝑡𝑥◦ ◦ 𝑣𝑥◦ ;

canceling the isomorphism 𝑡𝑥◦ yields 𝑣
𝑥
◦ = 1𝑥.

Now we treat the general case. We let 𝑣, 𝑣 ∈ 𝑀 agree on supp(𝑥). We choose a bijection
𝛾 ∈ 𝑀 such that 𝛾𝑣 and 𝛾𝑣 are the identity on supp(𝑥). Then

𝑣∗(𝑥) = 𝛾−1∗ ((𝛾𝑣)∗(𝑥)) = 𝛾−1∗ (𝑥) = 𝛾−1∗ ((𝛾𝑣)∗(𝑥)) = 𝑣∗(𝑥) .
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Moreover, (𝛾𝑣)𝑥◦ = (𝛾𝑣)𝑥◦ = 1𝑥 by the special case above. Now we let 𝑢 ∈ 𝑀 be any injection.
Then

[𝑣, 𝑢]𝑥 = [𝑣, 𝑣]𝑥 ◦ [𝑣, 𝑢]𝑥 = 𝛾−1∗ ([𝛾𝑣, 𝛾𝑣]𝑥) ◦ [𝑣, 𝑢]𝑥

= 𝛾−1∗ ((𝛾𝑣)𝑥◦ ◦ ((𝛾𝑣)𝑥◦)
−1) ◦ [𝑣, 𝑢]𝑥 = [𝑣, 𝑢]𝑥 .

The proof of the relation [𝑢, 𝑣]𝑥 = [𝑢, 𝑣]𝑥 is analogous.
(iii) We let 𝑢 ∈ 𝑀 be the identity on 𝑣(𝐴). Then 𝑢𝑣 and 𝑣 agree on 𝐴, and hence

𝑢∗(𝑣∗(𝑥)) = (𝑢𝑣)∗(𝑥) = 𝑣∗(𝑥)

by part (ii), because 𝑥 is supported on 𝐴. This shows that 𝑣∗(𝑥) is supported on 𝑣(𝐴).
If 𝑥 is finitely supported, then 𝑣∗(𝑥) is supported on the finite set 𝑣(supp(𝑥)), so 𝑣∗(𝑥) is
finitely supported and supp(𝑣∗(𝑥)) ⊆ 𝑣(supp(𝑥)). For the reverse inclusionwe choose ℎ ∈ 𝑀

such that ℎ𝑣 fixes supp(𝑥) elementwise; then (ℎ𝑣)∗(𝑥) = 𝑥. Applying the argument to ℎ and
𝑣∗(𝑥) (instead of 𝑣 and 𝑥) gives

supp(𝑥) = supp(ℎ∗(𝑣∗(𝑥))) ⊆ ℎ(supp(𝑣∗(𝑥))) ,

and thus

𝑣(supp(𝑥)) ⊆ 𝑣(ℎ(supp(𝑣∗(𝑥)))) = (𝑣ℎ)(supp(𝑣∗(𝑥))) = supp(𝑣∗(𝑥)) .

The last equation uses that 𝑣ℎ is the identity of 𝑣(supp(𝑥)), hence also the identity on the
subset supp(𝑣∗(𝑥)). This proves the desired relation when 𝑥 is finitely supported.

(iv) By part (ii) we have 𝑢∗(𝑥) = 𝑣∗(𝑥), as well as [𝑣, 𝑢]𝑥 = [𝑢, 𝑢]𝑥 = Id𝑢∗(𝑥) and [𝑣, 𝑢]𝑦 =

[𝑢, 𝑢]𝑦 = Id𝑢∗(𝑦). So,

𝑢∗(𝑓) = [𝑣, 𝑢]𝑦 ◦ 𝑢∗(𝑓) = 𝑣∗(𝑓) ◦ [𝑣, 𝑢]
𝑥 = 𝑣∗(𝑓)

by naturality of [𝑣, 𝑢].
(v) We let 𝑢 ∈ 𝑀 be the identity on supp(𝑥). Then

𝑢∗(𝐹(𝑥)) = 𝐹(𝑢∗(𝑥)) = 𝐹(𝑥) .

So, the-object𝐹(𝑥) is supported on the support of 𝑥, and hence supp(𝐹(𝑥)) ⊆ supp(𝑥). □

Example 2.14 (The-category of finite sets). We introduce the-category  of finite sets. The
objects of the category  are all finite subsets of the countably infinite set 𝜔. Morphisms in  are
all bijections of sets. The functor

𝑢∗ ∶  ⟶ 
associated to an injection 𝑢 ∶ 𝜔⟶ 𝜔 is given on objects by

𝑢∗(𝑃) = 𝑢(𝑃) ,
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the image under 𝑢 of the given set. This clearly defines an action of the injection monoid 𝑀 on
the objects set of  . We define a bijection by

𝑢𝑃◦ = 𝑢|𝑃 ∶ 𝑃 ⟶ 𝑢(𝑃) ,

the restriction of the injection𝑢 to the finite set𝑃. Then the relation (2.5) holds, so there is a unique
extension of these data to an-action on the category  , compare Proposition 2.6.
If 𝑢 ∈ 𝑀 is the identity on the set 𝑃, then 𝑢∗(𝑃) = 𝑃. If 𝑄 is a proper subset of 𝑃, then we

can choose an injection 𝑢 ∈ 𝑀 that is the identity on 𝑄, but such that 𝑢∗(𝑃) = 𝑢(𝑃) ≠ 𝑃. So, the
support of an object 𝑃 of  is the set 𝑃 itself.
A minimal variation of the construction produces a non-tame-category. Indeed, if we drop

the finiteness condition on the objects in the definition of , we still obtain an-action by exactly
the same formulas. In this larger-category ̄ , the infinite sets are not finitely supported, and
hence ̄ is not tame. The -category  is precisely the full -subcategory of ̄ consisting of
finitely supported objects, and hence it is the maximal tame-subcategory of ̄ .
Example 2.15 (Limits and colimits of tame-categories). As we explained in Example 2.10, the
category of -categories is complete and cocomplete; the same is true for the full subcategory
of tame -categories. Indeed, for every -category , the full subcategory 𝜏 of finitely sup-
ported objects is closed under the-action by Proposition 2.13(iii). So, 𝜏 is an-category in its
own right. Moreover, every morphism of-categories 𝐹 ∶ ⟶  whose source is tame auto-
matically takes values in the subcategory 𝜏, by Proposition 2.13(v). So, the functor sending an
-category  to its full-subcategory 𝜏 is right adjoint to the inclusion

 𝐜𝐚𝐭𝜏 ⟶  𝐜𝐚𝐭 .

Said differently: 𝐜𝐚𝐭𝜏 is a coreflective subcategory of 𝐜𝐚𝐭, and so the inclusion 𝐜𝐚𝐭𝜏 ⟶

 𝐜𝐚𝐭 creates colimits. Since 𝐜𝐚𝐭 is cocomplete, so is 𝐜𝐚𝐭𝜏, and the inclusion preserves col-
imits. Since 𝐜𝐚𝐭 is complete, so is 𝐜𝐚𝐭𝜏; limits in 𝐜𝐚𝐭𝜏 can be calculated by forming limits
in the ambient category 𝐜𝐚𝐭, and then taking the full subcategory of finitely supported objects.

Definition 2.16. Let 𝐺 be a finite group. A universal 𝐺-set is a countable 𝐺-set such that every
subgroup of 𝐺 occurs as the stabilizer of infinitely many elements.

The proof of the following proposition is straightforward, and we omit it.

Proposition 2.17. Let 𝐺 be a finite group.

(i) A countable 𝐺-set𝑈 is a universal 𝐺-set if and only if every finite 𝐺-set admits a 𝐺-equivariant
injection into𝑈.

(ii) Any two universal 𝐺-sets are 𝐺-equivariantly isomorphic.
(iii) If𝑈′ is a countable𝐺-set and𝑈 ⊂ 𝑈′ a𝐺-subset that is a universal𝐺-set, then𝑈′ is a universal

𝐺-set.
(iv) For every subgroup𝐻 of 𝐺, the underlying𝐻-set of every universal 𝐺-set is a universal𝐻-set.
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Example 2.18. We let 𝐺 be a finite group. Then the 𝐺-set

𝑈 =
∐
𝐻

ℕ × 𝐺∕𝐻

is a universal 𝐺-set, where the disjoint union runs over all subgroups of 𝐺. We also get a universal
𝐺-set by letting the union run over representatives of the conjugacy classes of subgroups of 𝐺.

We let 𝐺 be a group and𝐴 a finite 𝐺-set. Then the set 𝜔𝐴 of functions from𝐴 to 𝜔 = {0, 1, 2, … }

becomes a 𝐺-set via

(g ⋅ 𝑓)(𝑎) = 𝑓(g−1𝑎)

for (g , 𝑎) ∈ 𝐺 × 𝐴 and 𝑓 ∶ 𝐴⟶ 𝜔.

Proposition 2.19. Let 𝐺 be a finite group, and let 𝐴 be a finite 𝐺-set with a free orbit. Then 𝜔𝐴 is a
universal 𝐺-set.

Proof. Since𝐴 has a free𝐺-orbit wemay assume that𝐴 = 𝐺 ∪ 𝐵 for some finite𝐺-set 𝐵. Then the
map

𝜔𝐺 ⟶ 𝜔𝐺∪𝐵 = 𝜔𝐴

that extends a map by sending all of 𝐵 to 0 is a 𝐺-equivariant injection. If we can show that 𝜔𝐺 is
a universal 𝐺-set, then so is 𝜔𝐴. So, we can assume without loss of generality that 𝐴 = 𝐺.
Now we let 𝐻 be any subgroup of 𝐺. We choose infinitely many injections 𝛼𝑖 ∶ 𝐺∕𝐻 ⟶ 𝜔,

𝑖 = 1, 2, … , with disjoint images. We define 𝑓𝑖 ∶ 𝐺 ⟶ 𝜔 by

𝑓𝑖(g) = 𝛼𝑖(g
−1𝐻) .

These maps 𝑓𝑖 are infinitely many distinct elements of the 𝐺-set 𝜔𝐺 whose stabilizer group is
𝐻. □

Construction 2.20 (Reparameterization of 𝑀-objects and -actions). We recall that 𝑀 is the
monoid, under composition, of injective self-maps of the set 𝜔 = {0, 1, 2, … }. In the rest of the
paper we will often need to extend an 𝑀-object in some category to a functor defined on
the category 𝐽 of countably infinite sets and injections. We will often refer to this process as
reparameterization.
Since every countably infinite set bijects with the set 𝜔, the inclusion of the full subcategory

with only object 𝜔 into 𝐽 is an equivalence. Since𝑀 is the endomorphismmonoid of 𝜔 in 𝐽, every
𝑀-object can be extended to a functor on 𝐹 ∶ 𝐽 ⟶ , and for any two extensions 𝐹, 𝐹′ there is a
unique natural isomorphism 𝐹 ≅ 𝐹′ that is the identity on 𝜔. It will be convenient later to extend
𝑀-objects 𝑋 in  to functors 𝑋[−] ∶ 𝐽 ⟶  in a specific way that we now explain. For each
countably infinite set 𝑈 we choose, once and for all, a bijection 𝜅𝑈 ∶ 𝜔⟶𝑈, subject only to
the requirement that 𝜅𝜔 be the identity of 𝜔. Then we define a functor 𝑋[−] ∶ 𝐽 ⟶  on objects
by 𝑋[𝑈] = 𝑋, the underlying -object that we started with. The value of 𝑋[𝑗] on an injection
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𝑗 ∶ 𝑈 ⟶ 𝑉 is defined as

𝑋[𝑗] = (𝜅−1𝑉 ◦ 𝑗 ◦ 𝜅𝑈)∗ ∶ 𝑋 ⟶ 𝑋 ,

the action of the injection 𝜅−1
𝑉

◦ 𝑗 ◦ 𝜅𝑈 ∈ 𝑀. This is clearly a functor and 𝑋[𝜔] = 𝑋 as𝑀-objects.
One advantage of this specific way of extending 𝑀-objects is that it commutes, on the nose,

with functors. More precisely, if 𝑋 is an𝑀-object in a category  and 𝐹 ∶  ⟶  a functor, then
we view 𝐹(𝑋) as an𝑀-object in through 𝐹, and get an equality

𝐹(𝑋)[−] = 𝐹 ◦ 𝑋[−] ∶ 𝐽 ⟶ 
(and not just a natural isomorphism) of functors.
In much the same way we can also extend actions of the monoidal category . If 𝑈 and 𝑉

are countably infinite sets, we write  (𝑈, 𝑉) = 𝐸𝐽(𝑈,𝑉) for the chaotic category with object set
𝐽(𝑉,𝑈). Composition of injections extends uniquely to a functor

◦ ∶  (𝑉,𝑊) ×  (𝑈, 𝑉) ⟶  (𝑈,𝑊) .

These data define a 2-category whose underlying 1-category is the category 𝐽 of countably infinite
sets and injections, and such that there is a unique 2-morphism, necessarily invertible, between
any pair of parallel 1-morphisms.
We can nowmimic the above extension procedure one category level higher: we extend an-

category  to a strict 2-functor  ⟶𝐜𝐚𝐭 as follows. On objects we set [𝑈] = . For countably
infinite sets 𝑈 and 𝑉, we define the action functor

 (𝑈, 𝑉) × [𝑈] ⟶ [𝑉]
as the composite

 (𝑈, 𝑉) ×  (𝜅−1
𝑉

◦ − ◦ 𝜅𝑈)×
:::::::::::::::→  (𝜔, 𝜔) ×  =  ×  act

::::→  .
The notions of ‘finitely supported objects’ and of ‘support’ generalize to this context, by replacing
subset of 𝜔 by subsets of general countably infinite sets 𝑈.

Construction 2.21 (Fixed-categories). Given an-category  and a finite group𝐺, we define
a new -category 𝐹𝐺 as follows. We denote by 𝜔𝐺 the set of maps from 𝐺 to 𝜔, on which 𝐺
acts by (g ⋅ 𝑓)(ℎ) = 𝑓(g−1ℎ), for g , ℎ ∈ 𝐺 and 𝑓 ∶ 𝐺 ⟶ 𝜔. Now we let  be an-category. The
underlying category of 𝐹𝐺 is then given by

𝐹𝐺 = [𝜔𝐺]𝐺 ,
the𝐺-fixed category of the𝐺-category [𝜔𝐺]. The-action on  induces a natural action on 𝐹𝐺
as follows. The injection monoid𝑀 acts on 𝜔𝐺 by postcomposition, that is,

(𝑢 ⋅ 𝑓)(ℎ) = 𝑢(𝑓(ℎ))
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for 𝑢 ∈ 𝑀, 𝑓 ∶ 𝐺 ⟶ 𝜔 and ℎ ∈ 𝐺. Then

(𝑢 ⋅ −)∗ ∶ [𝜔𝐺] ⟶ [𝜔𝐺]
is a 𝐺-equivariant functor, so it restricts to a functor on 𝐺-fixed subcategories

(𝐹𝐺𝑢)∗ = ((𝑢 ⋅ −)∗)
𝐺 ∶ 𝐹𝐺 = [𝜔𝐺]𝐺 ⟶ [𝜔𝐺]𝐺 = 𝐹𝐺 .

Given another injection 𝑣 ∈ 𝑀, we define the natural isomorphism [𝑣, 𝑢] at an object 𝑥 of 𝐹𝐺
as

[𝑣, 𝑢]𝑥
𝐹𝐺 = [𝑣 ⋅ −, 𝑢 ⋅ −]𝑥 .

More precisely, 𝑣 ⋅ −, 𝑢 ⋅ − ∶ 𝜔𝐺 ⟶ 𝜔𝐺 are two injections, and hence objects of the category
 (𝜔𝐺, 𝜔𝐺); and (𝑣 ⋅ −, 𝑢 ⋅ −) is the unique morphism in  (𝜔𝐺, 𝜔𝐺) from 𝑢 ⋅ − to 𝑣 ⋅ −. The strict
monoidal category  (𝜔𝐺, 𝜔𝐺) acts on [𝜔𝐺] =  via reparameterization of the given -action
(that is, via restriction along the monoidal functor  (𝜔𝐺, 𝜔𝐺)⟶ given by conjugation by
the bijection 𝜅𝜔𝐺 ∶ 𝜔⟶ 𝜔𝐺), and [𝑣, 𝑢]𝐹𝐺 is the restriction to 𝐹𝐺 = [𝜔𝐺]𝐺 of the natu-
ral transformation specified by (𝑣 ⋅ −, 𝑢 ⋅ −). So, if we were to fully expand all definitions, we
would discover that [𝑣, 𝑢]𝑥

𝐹𝐺 = [𝜅−1
𝜔𝐺
(𝑣 ⋅ −)𝜅𝜔𝐺 , 𝜅

−1
𝜔𝐺
(𝑢 ⋅ −)𝜅𝜔𝐺 ]

𝑥. The above shorthand notation
[𝑣 ⋅ −, 𝑢 ⋅ −]𝑥 is a slight abuse, but more suggestive, and we will use it in what follows.
We must show that [𝑣, 𝑢]𝑥

𝐹𝐺 is a morphism in the category 𝐹𝐺, that is, it is 𝐺-fixed whenever
the object 𝑥 is. For every group element g ∈ 𝐺 we let 𝑙g ∶ 𝜔𝐺 ⟶ 𝜔𝐺 denote left multiplication
by g . Then

𝑙g∗

(
[𝑣, 𝑢]𝑥

𝐹𝐺
)
= [𝑙g (𝑣 ⋅ −), 𝑙g (𝑢 ⋅ −)]𝑥 = [(𝑣 ⋅ −)𝑙g , (𝑢 ⋅ −)𝑙g ]𝑥

= [𝑣 ⋅ −, 𝑢 ⋅ −]𝑙
g
∗ (𝑥) = [𝑣 ⋅ −, 𝑢 ⋅ −]𝑥 = [𝑣, 𝑢]𝑥

𝐹𝐺 .

The second equation is the fact that the𝑀-action on 𝜔𝐺 commutes with the 𝐺-action.

Proposition 2.22. Let  be an-category and 𝐺 a finite group. If  is tame, then the fixed point
-category 𝐹𝐺 is tame.
Proof. We let 𝑥 be any object of [𝜔𝐺]. Because the-category  is tame, the object 𝑥 is supported
on some finite subset 𝑇 of 𝜔𝐺 . We define

𝐼(𝑇) =
⋃
𝛼∈𝑇

image(𝛼) ,

which is a finite subset of 𝜔.
Now we suppose that 𝑥 is 𝐺-fixed, and hence belongs to 𝐹𝐺 = [𝜔𝐺]𝐺 . We claim that with

respect to the-action on 𝐹𝐺, the object 𝑥 is supported on 𝐼(𝑇). To this end we let 𝑢 ∈ 𝑀 be an
injection that is the identity on 𝐼(𝑇). Then for all (𝛼, g) ∈ 𝑇 × 𝐺 we have

(𝑢 ⋅ 𝛼)(g) = 𝑢(𝛼(g)) = 𝛼(g)
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because𝛼(g) ∈ 𝐼(𝑇). Hence, 𝑢 ⋅ 𝛼 = 𝛼, and so 𝑢 ⋅ − ∶ 𝜔𝐺 ⟶ 𝜔𝐺 is the identity on the set𝑇. Thus,
𝑢𝐹

𝐺
∗ (𝑥) = 𝑥. This completes the proof that𝑥 is supported on the finite set 𝐼(𝑇). So, the-category
𝐹𝐺 is tame. □

Construction 2.23 (𝐺-fixed objects versus 𝐺-objects). We let  be an-category and 𝐺 a finite
group. A 𝐺-object in  is an object 𝑥 of  equipped with a 𝐺-action, that is, a monoid homo-
morphism 𝜌 ∶ 𝐺 ⟶ (𝑥, 𝑥) to the endomorphism monoid. We denote by 𝐺 the category of
𝐺-objects in  with 𝐺-equivariant -morphisms.
We shall now explain that the 𝐺-fixed-category 𝐹𝐺, defined in Construction 2.21, embeds

fully faithfully into the category of 𝐺-objects in . This embedding is often — but not always
— essentially surjective (and hence an equivalence of categories). In Section 7, we look more
closely at the saturated -categories, that is, those for which the embeddings 𝐹𝐺 ⟶𝐺 are
equivalences for all finite groups.
We choose an injection 𝜆 ∶ 𝜔𝐺 ⟶ 𝜔. Based on this choice, we define a functor

𝜆♭ ∶ 𝐹𝐺 = [𝜔𝐺]𝐺 ⟶ 𝐺 , (2.24)

a refinement of the functor 𝜆∗ ∶ [𝜔𝐺]⟶ . Aswe shall see in Proposition 2.25, different choices
of injections yield canonically isomorphic functors. Given a 𝐺-fixed object 𝑥 of [𝜔𝐺] and an
element g ∈ 𝐺, the morphism

[𝜆𝑙g , 𝜆]𝑥 ∶ 𝜆∗(𝑥) ⟶ 𝜆∗(𝑙
g
∗ (𝑥)) = 𝜆∗(𝑥)

is an endomorphism of 𝜆∗(𝑥), where 𝑙g ∶ 𝜔𝐺 ⟶ 𝜔𝐺 is left translation by g . If ℎ ∈ 𝐺 is another
group element, then

[𝜆𝑙g , 𝜆]𝑥 ◦ [𝜆𝑙ℎ, 𝜆]𝑥 = [𝜆𝑙g , 𝜆]𝑙
ℎ
∗ (𝑥) ◦ [𝜆𝑙ℎ, 𝜆]𝑥

= [𝜆𝑙g 𝑙ℎ, 𝜆𝑙ℎ]𝑥 ◦ [𝜆𝑙ℎ, 𝜆]𝑥 = [𝜆𝑙g 𝑙ℎ, 𝜆]𝑥 = [𝜆𝑙gℎ, 𝜆]𝑥 .

So, as g varies, the morphisms [𝜆𝑙g , 𝜆]𝑥 define a 𝐺-action on 𝜆∗(𝑥), and we write 𝜆♭(𝑥) for this
𝐺-object in . Now we let 𝑓 ∶ 𝑥⟶ 𝑦 be a 𝐺-fixed morphism between 𝐺-fixed objects of [𝜔𝐺].
Then

[𝜆𝑙g , 𝜆]𝑦 ◦ 𝜆∗(𝑓) = 𝜆∗([𝑙
g , 1]𝑦) ◦ 𝜆∗(𝑓) = 𝜆∗([𝑙

g , 1]𝑦 ◦ 𝑓) = 𝜆∗(𝑙
g
∗ (𝑓) ◦ [𝑙

g , 1]𝑥)

= 𝜆∗(𝑓 ◦ [𝑙g , 1]𝑥) = 𝜆∗(𝑓) ◦ 𝜆∗([𝑙
g , 1]𝑥) = 𝜆∗(𝑓) ◦ [𝜆𝑙

g , 𝜆]𝑥 .

So, 𝜆∗(𝑓) is 𝐺-equivariant, and we set 𝜆♭(𝑓) = 𝜆∗(𝑓) on morphisms.

Proposition 2.25. Let  be an-category and 𝐺 a finite group.

(i) For every injection 𝜆 ∶ 𝜔𝐺 ⟶ 𝜔, the functor 𝜆♭ ∶ 𝐹𝐺 ⟶𝐺 is fully faithful.
(ii) If 𝜇 ∶ 𝜔𝐺 ⟶ 𝜔 is another injection, then the morphisms [𝜇, 𝜆]𝑥 ∶ 𝜆∗(𝑥)⟶ 𝜇∗(𝑥) form a

natural isomorphism from 𝜆♭ to 𝜇♭.
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Proof.

(i) The functor 𝜆∗ ∶ [𝜔𝐺]⟶  is an equivalence of categories, so for all objects 𝑥 and 𝑦 of
[𝜔𝐺], the induced map of morphism sets

𝜆∗ ∶ [𝜔𝐺](𝑥, 𝑦) ⟶ (𝜆∗(𝑥), 𝜆∗(𝑦))
is bijective.
Now we let 𝑥 and 𝑦 be 𝐺-fixed objects of [𝜔𝐺]. As we already argued above, the relations
[𝜆𝑙g , 𝜆]𝑦 ◦ 𝜆∗(𝑓) = 𝜆∗(𝑙

g
∗ (𝑓) ◦ [𝑙

g , 1]𝑥) and 𝜆∗(𝑓) ◦ [𝜆𝑙
g , 𝜆]𝑥 = 𝜆∗(𝑓 ◦ [𝑙g , 1]𝑥)

hold for every [𝜔𝐺]-morphism 𝑓 ∶ 𝑥⟶ 𝑦. Because 𝜆∗ is faithful and [𝑙g , 1]𝑥 is an isomor-
phism, these two morphisms are equal if and only if 𝑙g∗ (𝑓) = 𝑓. This shows that 𝑓 ∶ 𝑥⟶ 𝑦

is 𝐺-fixed if and only if the morphism 𝜆∗(𝑓) ∶ 𝜆∗(𝑥)⟶ 𝜆∗(𝑦) is 𝐺-equivariant with respect
to the 𝐺-actions above. So, the functor 𝜆♭ is fully faithful.

(ii) We let 𝑥 be a 𝐺-fixed object of [𝜔𝐺] and g ∈ 𝐺. Then

[𝜇, 𝜆]𝑥 ◦ [𝜆𝑙g , 𝜆]𝑥 = [𝜇, 𝜆]𝑙
g
∗ (𝑥) ◦ [𝜆𝑙g , 𝜆]𝑥

= [𝜇𝑙g , 𝜆𝑙g ]𝑥 ◦ [𝜆𝑙g , 𝜆]𝑥 = [𝜇𝑙g , 𝜆]𝑥 = [𝜇𝑙g , 𝜇]𝑥 ◦ [𝜇, 𝜆]𝑥 .

So, the natural-isomorphism [𝜇, 𝜆]𝑥 is also𝐺-equivariant, and hence a natural isomorphism
from 𝜆♭(𝑥) to 𝜇♭(𝑥) in 𝐺. □

Now we come to another key definition, that of global equivalences of -categories. We call
a functor 𝐹 ∶ ⟶  between small categories a weak equivalence if the induced morphism
of nerves 𝑁𝐹 ∶ 𝑁⟶𝑁 is a weak equivalence of simplicial sets; equivalently, the induced
continuous map of geometric realizations |𝑁𝐹| ∶ |𝑁|⟶ |𝑁| must be a weak equivalence
(or, equivalently, a homotopy equivalence) of spaces. We recall that for a finite group 𝐺, any two
universal 𝐺-sets are 𝐺-equivariantly isomorphic, and moreover the 𝐺-set 𝜔𝐺 of functions from 𝐺

to 𝜔 = {0, 1, 2, … } is universal by Proposition 2.19. This shows the equivalence of conditions (a),
(b) and (c) in the following definition.

Definition 2.26. A morphism of -categories Φ ∶  ⟶  is a global equivalence if for every
finite group 𝐺, the following equivalent conditions hold.

(a) For every universal 𝐺-set , the functor Φ[ ]𝐺 ∶ [ ]𝐺 ⟶ [ ]𝐺 is a weak equivalence
of categories.

(b) For some universal 𝐺-set , the functor Φ[ ]𝐺 ∶ [ ]𝐺 ⟶ [ ]𝐺 is a weak equivalence
of categories.

(c) The functor 𝐹𝐺Φ ∶ 𝐹𝐺 ⟶𝐹𝐺 is a weak equivalence of categories.

Construction 2.27. We consider two finite groups 𝐺 and 𝐾 and an-category . The (𝐾 × 𝐺)-
categories [𝜔𝐺][𝜔𝐾] and [(𝜔𝐾)𝐺] both have  as their underlying category, and they come with
specific (and typically different) commuting actions of 𝐾 and 𝐺, through the reparameteriza-
tion procedure of Construction 2.20. We will now specify a (𝐾 × 𝐺)-equivariant isomorphism of
categories from [𝜔𝐺][𝜔𝐾] to [(𝜔𝐾)𝐺]. This isomorphism, and its effect on various fixed sub-
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categories, will show up several times in the remaining part of the paper; so we explain the
construction in detail.
The reparameterization procedure in Construction 2.20 involves a choice of equivalence

between the category 𝐽 of countably infinite sets and injections and its full subcategory spanned
by the object 𝜔. This equivalence is controlled by chosen bijections 𝜅𝑈 ∶ 𝜔⟶𝑈 for all count-
ably infinite sets 𝑈, subject to the only requirement that 𝜅𝜔 is the identity. In particular, we have
independently made such choices for the countably infinite sets 𝜔𝐺 , 𝜔𝐾 and (𝜔𝐾)𝐺 . We define the
intertwiner ℑ ∶ 𝜔⟶ 𝜔 as the composite bijection

𝜔
𝜅𝜔𝐺
::::→ 𝜔𝐺

(𝜅𝜔𝐾 )
𝐺

::::::→ (𝜔𝐾)𝐺
𝜅−1
(𝜔𝐾)𝐺

::::::→ 𝜔 . (2.28)

The associated action functor ℑ∗ ∶  ⟶  is then an isomorphism of categories.

Proposition 2.29. Let  be an-category, and let 𝐾 and 𝐺 be finite groups. Then the action of the
intertwiner (2.28) is a (𝐾 × 𝐺)-equivariant isomorphism

ℑ∗ ∶ [𝜔𝐺][𝜔𝐾] ≅ [(𝜔𝐾)𝐺] (2.30)

with respect to the reparameterized actions.

Proof. Both [𝜔𝐺][𝜔𝐾] and [(𝜔𝐾)𝐺] have  as their underlying category, and the (𝐾 × 𝐺)-actions
are by iterated and one-step reparameterization, respectively. The ( × 𝐺)-action on [𝜔𝐺] is
obtained from the original-action by restriction along the strict monoidal functor

 × 𝐺 ⟶ 
that sends an object (𝑢, g) ∈ 𝑀 × 𝐺 to the composite injection

𝜔
𝜅𝜔𝐺
::::→ 𝜔𝐺

(𝑢,g)⋅−
::::::→ 𝜔𝐺

𝜅−1
𝜔𝐺

::::→ 𝜔 ,

and is uniquely extended to morphisms. The second map is the action of the element (𝑢, g) on
𝜔𝐺 , that is,

((𝑢, g) ⋅ 𝑓)(ℎ) = 𝑢(𝑓(g−1ℎ))

for 𝑓 ∈ 𝜔𝐺 and ℎ ∈ 𝐺. Iterating this, the (𝐾 × 𝐺)-action on [𝜔𝐺][𝜔𝐾] is obtained from the
original-action by restriction along the strict monoidal functor

𝐾 × 𝐺 ⟶ 
that sends (𝑘, g) ∈ 𝐾 × 𝐺 to the composite injection

𝜔
𝜅𝜔𝐺
::::→ 𝜔𝐺

(𝜅𝜔𝐾 )
𝐺

::::::→ (𝜔𝐾)𝐺
(𝑘,g)⋅−
::::::→ (𝜔𝐾)𝐺

(𝜅−1
𝜔𝐾

)𝐺

::::::→ 𝜔𝐺
𝜅−1
𝜔𝐺

::::→ 𝜔 .
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The two bijections

(𝜅𝜔𝐾 )
𝐺 ◦ 𝜅𝜔𝐺 , 𝜅(𝜔𝐾)𝐺 ∶ 𝜔 ⟶ (𝜔𝐾)𝐺

need not be related in any way, which is why the two (𝐾 × 𝐺)-actions will typically be different
(unless one of the two groups is trivial). But by design, the intertwinerℑ = 𝜅−1

(𝜔𝐾)𝐺
◦ (𝜅𝜔𝐾 )

𝐺 ◦ 𝜅𝜔𝐺
accounts for the difference between these two unrelated bijections. So, the action of the induced
isomorphism of categories ℑ∗ ∶ [𝜔𝐺][𝜔𝐾]⟶ [(𝜔𝐾)𝐺] mediates between the two actions, as
claimed. □

Proposition 2.31. Let Φ ∶  ⟶  be a global equivalence of-categories. Then for every finite
group 𝐺, the morphism 𝐹𝐺Φ ∶ 𝐹𝐺 ⟶𝐹𝐺 is a global equivalence of-categories.

Proof. We let 𝐾 be another finite group. The restriction of the (𝐾 × 𝐺)-equivariant isomorphism
ℑ∗ ∶ [𝜔𝐺][𝜔𝐾] ≅ [(𝜔𝐾)𝐺] from (2.30) to (𝐾 × 𝐺)-fixed subcategories is an isomorphism

ℑ𝐾×𝐺
∗ ∶ 𝐹𝐾(𝐹𝐺) = ([𝜔𝐺][𝜔𝐾])𝐾×𝐺 ≅ [(𝜔𝐾)𝐺]𝐾×𝐺 .

Since ℑ∗ is natural for morphisms of -categories, the following square of categories and
functors commutes:

Since (𝜔𝐾)𝐺 is a universal (𝐾 × 𝐺)-set and Φ is a global equivalence, the right vertical functor is
a weak equivalence of categories. The horizontal functors are isomorphisms, so the left vertical
functor 𝐹𝐾(𝐹𝐺Φ) is a weak equivalence of categories. Since 𝐾 was any finite group, this shows
that 𝐹𝐺Φ is a global equivalence. □

The final topic of this section is the box product, a certain symmetricmonoidal product for tame
-categories. In Section 4, we will then define parsummable categories as the tame-categories
equipped with a commutative multiplication with respect to the box product.
The diagonal -action makes the product  × of two -categories  and  into an -

category. With respect to this diagonal-action,  × is moreover a product of  and  in the
category of-categories and strict morphisms, compare Example 2.10.

Definition 2.32. Let  and be-categories. An object (𝑐, 𝑑) of  × is disjointly supported if
there are disjoint subsets𝐴 and 𝐵 of 𝜔 such that 𝑐 is supported on𝐴, and 𝑑 is supported on 𝐵. The
box product  ⊠ of two-categories is the full subcategory of the product-category  ×
generated by the disjointly supported objects.

In the previous definition, we do not insist that the objects 𝑐 and 𝑑 must be finitely supported.
However, I doubt that the construction is particularly useful in this generality, and we will mostly
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be interested in the box product for tame-categories. If 𝑐 and 𝑑 are finitely supported objects
of  and , respectively, then (𝑐, 𝑑) is disjointly supported if and only if supp(𝑐) ∩ supp(𝑑) = ∅.
Proposition 2.13(iii) shows that the subcategory  ⊠ of  × is invariant under the diagonal
-action; hence the product-action on  × restricts to an-action on  ⊠.
The following theorem makes precise that assuming disjoint support is no loss of generality,

even globally.

Theorem 2.33. For all -categories  and , the inclusion  ⊠⟶  × is a global
equivalence of-categories.

Proof. We let 𝐺 be a finite group. Since ( ⊠)[𝜔𝐺] is a full subcategory of ( ×)[𝜔𝐺] =
[𝜔𝐺] ×[𝜔𝐺], the inclusion restricts to a fully faithful functor 𝐹𝐺( ⊠)⟶ 𝐹𝐺( ×) =
(𝐹𝐺) × (𝐹𝐺) on 𝐺-fixed subcategories. We show that this restricted functor is also dense, and
hence an equivalence of categories. This shows in particular that the functor is aweak equivalence
of categories.
To prove the claim, we consider 𝐺-fixed objects 𝑐 of [𝜔𝐺] and 𝑑 of [𝜔𝐺]. Since 𝜔𝐺 is a

universal 𝐺-set, we can choose 𝐺-equivariant injections 𝑢, 𝑣 ∶ 𝜔𝐺 ⟶ 𝜔𝐺 with disjoint images.
Then

𝑙g∗ (𝑢∗(𝑐)) = (𝑙g𝑢)∗(𝑐) = (𝑢𝑙g )∗(𝑐) = 𝑢∗(𝑙
g
∗ (𝑐)) = 𝑢∗(𝑐) ,

so 𝑢∗(𝑐) is another 𝐺-fixed object of [𝜔𝐺]. Moreover,
𝑙g∗ ([𝑢, 1]

𝑐) = [𝑙g𝑢, 𝑙g ]𝑐 = [𝑢𝑙g , 𝑙g ]𝑐 = [𝑢, 1]𝑙
g
∗ (𝑐) = [𝑢, 1]𝑐 ,

that is, the [𝜔𝐺]-isomorphism [𝑢, 1]𝑐 ∶ 𝑐⟶ 𝑢∗(𝑐) is 𝐺-fixed. Similarly, 𝑣∗(𝑑) is 𝐺-fixed and the
isomorphism [𝑣, 1]𝑑 ∶ 𝑑⟶ 𝑣∗(𝑑) is 𝐺-fixed. So, (𝑐, 𝑑) is isomorphic in 𝐹𝐺( ×) to the object
(𝑢∗(𝑐), 𝑣∗(𝑑)). Proposition 2.13(iii) shows that 𝑢∗(𝑐) is supported on the image of 𝑢, and 𝑣∗(𝑑) is
supported on the image of 𝑣. So, the pair (𝑢∗(𝑐), 𝑣∗(𝑑)) is disjointly supported, and thus an object
of the subcategory 𝐹𝐺( ⊠). □

An object (𝑐, 𝑑) of  × is supported on the set supp(𝑐) ∪ supp(𝑑). So, we conclude:

Corollary 2.34. If the-categories  and are tame, then the-category  ⊠ is tame.

Given two morphisms between -categories 𝐹 ∶  ⟶ ′ and 𝐺 ∶ ⟶ ′, the product
functor 𝐹 ∶  ×⟶ ′ ×′ takes the subcategory  ⊠ to the subcategory ′ ⊠′, by
Proposition 2.13(v). So, 𝐹 × 𝐺 restricts to a morphism of-categories

𝐹 ⊠ 𝐺 ∶  ⊠ ⟶ ′ ⊠′ .

This makes the box product of tame-categories a functor

⊠ ∶  𝐜𝐚𝐭𝜏 × 𝐜𝐚𝐭𝜏 ⟶  𝐜𝐚𝐭𝜏 .

The associativity, symmetry and unit isomorphisms of the cartesian product of -categories
clearly restrict to the box product; hence they inherit the coherence conditions required for a
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symmetric monoidal product. For example, the associativity isomorphism is given by

( ⊠) ⊠  ≅  ⊠ (⊠ ) , ((𝑓, g), ℎ) ⟼ (𝑓, (g , ℎ)) .

We thus conclude:

Proposition 2.35. The box product is a symmetric monoidal structure on the category of tame
-categories with respect to the associativity, symmetry and unit isomorphisms inherited from the
cartesian product. The terminal-category is a unit object for the box product.

3 FROM 𝚪--CATEGORIES TO SYMMETRIC SPECTRA

In this section, we introduce and study a global equivariant variation of Segal’s construction [35]
that turns Γ-categories into spectra, where Γ is the category of finite based sets. Our version in
Construction 3.3 accepts a Γ--category 𝑌 as input, and it returns a symmetric spectrum 𝑌⟨𝕊⟩.
All the key qualitative properties of Segal’s machine have global equivariant generalizations: the
symmetric spectrum 𝑌⟨𝕊⟩ is globally connective and globally semistable by Proposition 3.7; if the
Γ--category𝑌 is globally special in the sense of Definition 3.11, then𝑌⟨𝕊⟩ is a restricted globalΩ-
spectrum, see Theorem 3.12. Themain case of interest for us will be the Γ--category constructed
from a parsummable category, see Construction 4.3, as this yields the global K-theory spectrum.
A key feature of our delooping machine is its sensitivity to global equivariant structure. For

example, for every finite group 𝐺, the underlying 𝐺-symmetric spectrum of 𝑌⟨𝕊⟩ is 𝐺-stably
equivalent to the 𝐺-symmetric spectrum obtained by evaluating a specific special Γ-𝐺-category
on spheres, see Theorem 3.14 for the precise statement. Also, the assignment 𝑌 ↦ 𝑌⟨𝕊⟩ com-
mutes with 𝐺-fixed points in the following sense: we show in Theorem 3.20 that the 𝐺-fixed point
spectrum of 𝑌⟨𝕊⟩ is globally equivalent to the result of applying our delooping to the 𝐺-fixed
Γ--category 𝐹𝐺𝑌.

Construction 3.1 (Prolongation of Γ-spaces). We write Γ for the category whose objects are the
finite pointed sets 𝑛+ = {0, 1, … , 𝑛} for 𝑛 ⩾ 0, with 0 being the basepoint. Morphisms in Γ are all
basepoint preserving maps. A Γ-object in a category is a functor 𝑋 ∶ Γ⟶  that is reduced in
the sense that 𝑋(0+) is a terminal object of . A morphism of Γ-objects is a natural transforma-
tion of functors. Cases of particular interest are when  is the category 𝐜𝐚𝐭 of small categories,
the category 𝐓 of spaces, or equivariant variations of these where a finite group or the monoidal
category acts.
In particular, a Γ-space is a reduced functor 𝑋 ∶ Γ⟶ 𝐓 from Γ to the category of spaces, that

is, the value𝑋(0+) is a one-point space.Wemay then view a Γ-space as a functor to pointed spaces,
where 𝑋(𝑛+) is pointed by the image of the map 𝑋(0+)⟶ 𝑋(𝑛+) induced by the unique mor-
phism 0+ ⟶ 𝑛+ in Γ. A Γ-space 𝑋 can be extended to a continuous functor on the category of
based spaces by a coend construction. If 𝐾 is a pointed space, the value of the extended functor
on 𝐾 is given by

𝑋(𝐾) = ∫
𝑛+∈Γ

𝑋(𝑛+) × 𝐾
𝑛 =

(∐
𝑛⩾0

𝑋(𝑛+) × 𝐾
𝑛
)
∕ ∼ ,
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where we use that 𝐾𝑛 = map∗(𝑛+, 𝐾) is contravariantly functorial in 𝑛+. In more detail, 𝑋(𝐾)
is the quotient space of the disjoint union of the spaces 𝑋(𝑛+) × 𝐾𝑛 by the equivalence relation
generated by

(𝑋(𝛼)(𝑥); 𝑘1, … , 𝑘𝑛) ∼ (𝑥; 𝑘𝛼(1), … , 𝑘𝛼(𝑚))

for all morphisms 𝛼 ∶ 𝑚+ ⟶ 𝑛+ in Γ, all 𝑥 ∈ 𝑋(𝑚+), and all (𝑘1, … , 𝑘𝑛) ∈ 𝐾𝑛. Here 𝑘𝛼(𝑖) is to be
interpreted as the basepoint of𝐾whenever𝛼(𝑖) = 0. In general, quotient spaces ofweakHausdorff
spaces need not be weak Hausdorff, so it is not completely obvious that the space 𝑋(𝐾) is again
compactly generated. However, we show in [34, Proposition B.26(i)] that this is the case.
We will not distinguish notationally between the original Γ-space and its extension. We write

[𝑥; 𝑘1, … , 𝑘𝑛] for the equivalence class in 𝑋(𝐾) of a tuple (𝑥; 𝑘1, … , 𝑘𝑛) ∈ 𝑋(𝑛+) × 𝐾
𝑛. The assign-

ment (𝑋, 𝐾) ↦ 𝑋(𝐾) is functorial in the Γ-space𝑋 and the based space𝐾. In particular, if𝑋 comes
with an action by a group 𝐺 and 𝐾 is equipped with an action by another group 𝐻, then 𝐺 × 𝐻
acts on 𝑋(𝐾) by

(g , ℎ) ⋅ [𝑥; 𝑘1, … , 𝑘𝑛] = [g𝑥; ℎ𝑘1, … , ℎ𝑘𝑛] .

We will often be interested in the case where 𝐺 = 𝐻, that is, we evaluate a Γ-𝐺-space 𝑋 on a 𝐺-
space𝐾, and thenwe usually restrict to the diagonal𝐺-action. The extended functor is continuous
and comes with a continuous, based assembly map

𝛼 ∶ 𝑋(𝐾) ∧ 𝐿 ⟶ 𝑋(𝐾 ∧ 𝐿) , 𝛼([𝑥; 𝑘1, … , 𝑘𝑛] ∧ 𝑙) = [𝑥; 𝑘1 ∧ 𝑙, … , 𝑘𝑛 ∧ 𝑙] . (3.2)

The assembly map is associative, unital and natural in all three variables.

We can turn a Γ-category ∶ Γ⟶ 𝐜𝐚𝐭 into a Γ-space by taking nerve and geometric realiza-
tion objectwise. To simplify the notation we suppress the nerve functor in the notation, write ||
for the composite functor

Γ

:::→ 𝐜𝐚𝐭

nerve
:::::→ (simplicial sets)

|−|
::::→ 𝐓

and refer to || as the realization of the Γ-category . If the original Γ-category comes with an
action of a monoid, group or monoidal category, then the realization inherits an action of the
same monoid or group, or of the geometric realization of the monoidal category, respectively. In
particular, realization turns Γ--categories into Γ-||-spaces. The main example we have in
mind is  = 𝛾(), the Γ--category associated with a parsummable category , to be discussed
in Construction 4.3.

Construction 3.3. We now define the associated symmetric spectrum𝑌⟨𝕊⟩ of a Γ--category 𝑌,
that is, a Γ-category equipped with a left action of the monoidal category = 𝐸𝑀. For a finite
set 𝐴 we continue to denote by 𝜔𝐴 the set of maps from 𝐴 to 𝜔. We explained in Construction
2.20 how to extend an object with an action of the monoid 𝑀 to a functor defined on countably
infinite sets and injections. The value of 𝑌⟨𝕊⟩ at a non-empty finite set 𝐴 is

𝑌⟨𝕊⟩(𝐴) = |𝑌[𝜔𝐴]|(𝑆𝐴) ,
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the value of the Γ-space |𝑌[𝜔𝐴]| on the 𝐴-sphere. For the empty set we declare
𝑌⟨𝕊⟩(∅) = |𝑌(1+)supp=∅| ,

the realization of the full subcategory of 𝑌(1+) on the objects supported on the empty set.
To define the structure map associated with an injection 𝑖 ∶ 𝐴⟶ 𝐵 we let

𝑖! ∶ 𝜔𝐴 ⟶ 𝜔𝐵

be the map given by

𝑖!(𝑓)(𝑏) =

{
𝑓(𝑎) if 𝑏 = 𝑖(𝑎), and
0 if 𝑏 ∉ 𝑖(𝐴).

(3.4)

So, if 𝑖 is bijective, then 𝑖! is precomposition with 𝑖−1. On the other hand, if 𝑖 is the inclusion of a
subset, then 𝑖! is extension by 0.
The structure map

𝑖∗ ∶ 𝑌⟨𝕊⟩(𝐴) ∧ 𝑆𝐵⧵𝑖(𝐴) ⟶ 𝑌⟨𝕊⟩(𝐵)
is now defined as the diagonal composite in the commutative diagram:

Here the upper verticalmaps are assemblymaps (3.2) of the Γ-spaces |𝑌[𝜔𝐴]| and |𝑌[𝜔𝐵]|, respec-
tively, and the lower vertical maps are the effects of these two Γ-spaces on the homeomorphism
𝑆𝐴 ∧ 𝑆𝐵⧵𝑖(𝐴) ≅ 𝑆𝐵 given by 𝑖 on 𝐴. In the special case where 𝐴 = ∅ is empty, the morphism of Γ-
categories𝑌[𝑖!] ∶ 𝑌[𝜔𝐴]⟶ 𝑌[𝜔𝐵] is to be interpreted as the inclusion𝑌(1+)supp=∅ ⟶ 𝑌(1+) =

𝑌[𝜔𝐵](1+) of the subcategory of objects supported on the empty set.

Remark 3.5. Our global K-theory machinery produces restricted global Ω-spectra, which in par-
ticular means that the value at the empty set does not have any homotopical significance. Still, the
definition of𝑌⟨𝕊⟩(∅) can bemotivated by the requirement that as a symmetric spectrum, the struc-
ture maps 𝑌⟨𝕊⟩(∅) ∧ 𝑆𝐵 ⟶ 𝑌⟨𝕊⟩(𝐵)must be Σ𝐵-equivariant for the trivial action on 𝑌⟨𝕊⟩(∅); if
we want these structure maps to arise from the assembly map of the Γ-space |𝑌|, then the only
general way to arrange the necessary equivariance is to let 𝑌⟨𝕊⟩(∅) be a subspace of the realiza-
tion of the -fixed subcategory of 𝑌(1+). Our definition just uses the maximal choice, the full-fixed subcategory of 𝑌(1+).
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As we already mentioned, our construction of a symmetric spectrum from a Γ--category is
a variation of Segal’s construction of a spectrum from a Γ-category [35]. Moreover, Theorem 3.14,
applied to the trivial group, shows that the underlying non-equivariant stable homotopy type of
our construction agrees with Segal’s delooping of the underlying Γ-category of a Γ--category.
We emphasize that the -action on 𝑌 enters into the definition of 𝑌⟨𝕊⟩ in a crucial way, via
the Σ𝐴-action on the 𝐴th level, and via the structure maps. The extra flexibility coming from the
-action is the key to the good equivariance properties.
We let 𝑌 be a Γ--category and 𝑢 ∶ 𝐼 ⟶ 𝐽 an injection between countably infinite sets. Then

𝑢∗ ∶ 𝑌[𝐼]⟶ 𝑌[𝐽] is a morphism of Γ-categories, and it induces a continuous based map

𝑢∗(𝐾) ∶ |𝑌[𝐼]|(𝐾) ⟶ |𝑌[𝐽]|(𝐾)
for every based space 𝐾.

Proposition 3.6. Let 𝑌 be a Γ--category, 𝐺 a finite group,  and  universal 𝐺-sets, and 𝐾 a
based 𝐺-space.

(i) Let 𝑢, 𝑣 ∶  ⟶  be two 𝐺-equivariant injections. Then the two 𝐺-maps

𝑢∗(𝐾) , 𝑣∗(𝐾) ∶ |𝑌[ ]|(𝐾) ⟶ |𝑌[]|(𝐾)
are 𝐺-equivariantly homotopic, with respect to the diagonal 𝐺-actions on |𝑌[ ]|(𝐾) and|𝑌[]|(𝐾).

(ii) Let 𝑢 ∶  ⟶  be a 𝐺-equivariant injection. Then the 𝐺-map

𝑢∗(𝐾) ∶ |𝑌[ ]|(𝐾) ⟶ |𝑌[]|(𝐾)
is a based 𝐺-homotopy equivalence with respect to the diagonal 𝐺-actions.

Proof.

(i) Wewrite 𝐼( ,) for the set of injections from to , andwe denote by 𝐸𝐼( ,) the chaotic
category with object set 𝐼( ,). We let 𝐺 act on the set 𝐼( ,) by conjugation, and on the
space |𝐸𝐼( ,)| by functoriality. Taking fixed points commutes with geometric realization
and with the functor 𝐸 from sets to categories. So,

|𝐸𝐼( ,)|𝐺 = |𝐸(𝐼( ,)𝐺)| ;
this space is contractible because the set of𝐺-equivariant injections from to is non-empty.
The-action on 𝑌 induces a 𝐺-equivariant action functor

𝐸𝐼( ,) × 𝑌[ ] ⟶ 𝑌[]
whose restriction to the objects 𝑢 and 𝑣 of 𝐸𝐼( ,) yields the functors 𝑢∗ and 𝑣∗, respec-
tively. Taking nerves and geometric realization and evaluating at 𝐾 provides a continuous
𝐺-equivariant action map

|𝐸𝐼( ,)| × |𝑌[ ]|(𝐾) ⟶ |𝑌[]|(𝐾) .
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The given 𝐺-equivariant injections 𝑢 and 𝑣 are two 𝐺-fixed points in |𝐸𝐼( ,)|. Since the
𝐺-fixed point space is contractible, there is a path 𝜆 ∶ [0, 1]⟶ |𝐸𝐼( ,)|𝐺 from 𝑢 to 𝑣. The
map

[0, 1] × |𝑌[ ]|(𝐾) ⟶ |𝑌[]|(𝐾) , 𝑡 ⟼ 𝜆(𝑡)∗(𝐾)

is the desired 𝐺-equivariant homotopy from 𝑢∗ to 𝑣∗.
(ii) Since  and  are universal 𝐺-sets, we can choose a 𝐺-equivariant injection 𝑣 ∶  ⟶  .

Then

𝑣∗(𝐾) ◦ 𝑢∗(𝐾) = (𝑣𝑢)∗(𝐾) ∶ |𝑌[ ]|(𝐾) ⟶ |𝑌[ ]|(𝐾)
is 𝐺-homotopic to the identity map, by part (i). Similarly, 𝑢∗(𝐾) ◦ 𝑣∗(𝐾) is equivariantly
homotopy to the identity. So, 𝑢∗(𝐾) is an equivariant homotopy equivalence. □

We recall that a symmetric spectrum is globally semistable if for every finite group𝐺, the under-
lying 𝐺-symmetric spectrum is 𝐺-semistable in the sense of [14, Definition 3.22], that is, the
monoid of equivariant self-injections of a complete 𝐺-set acts trivially on the naive 𝐺-equivariant
stable homotopy groups. One of the main features of global semistability is that for these sym-
metric spectra, global equivalences are precisely the morphisms that induce isomorphisms of
equivariant homotopy groups, see [15, Proposition 4.13(vi)]. A globally semistable symmetric spec-
trum 𝑋 is globally connective if for every finite group 𝐺, the equivariant homotopy groups 𝜋𝐺

𝑘
(𝑋)

are trivial for negative values of 𝑘.

Proposition 3.7. For every Γ--category 𝑌, the symmetric spectrum 𝑌⟨𝕊⟩ is globally semistable
and globally connective.

Proof. To show that the symmetric spectrum 𝑌⟨𝕊⟩ is globally semistable we have to show that for
every finite group 𝐺, every 𝐺-equivariant injection 𝑢 ∶ 𝐺 ⟶ 𝐺 and every 𝑘 ∈ ℤ, the induced
map 𝑢∗ ∶ 𝜋𝐺𝑘 (𝑌⟨𝕊⟩)⟶ 𝜋𝐺

𝑘
(𝑌⟨𝕊⟩) is the identity. We show this for 𝑘 = 0, the general case being

similar. After unraveling all the definitions, this comes down to the following fact: for every finite
𝐺-set 𝐴 and every continuous based 𝐺-map 𝑓 ∶ 𝑆𝐴 ⟶ |𝑌[𝜔𝐴]|(𝑆𝐴), the two 𝐺-maps

𝜎𝐴,𝐴 ◦ (𝑆𝐴 ∧ 𝑓) , 𝜎op
𝐴,𝐴

◦ (𝑓 ∧ 𝑆𝐴) ∶ 𝑆𝐴 ∧ 𝑆𝐴 ⟶ |𝑌[𝜔𝐴⨿𝐴]|(𝑆𝐴 ∧ 𝑆𝐴)
are equivariantly based homotopic. The two maps differ by the twist involution of 𝑆𝐴 ∧ 𝑆𝐴 in
source and target, and by the effect of the involution 𝑡 ∶ 𝜔𝐴⨿𝐴 ⟶ 𝜔𝐴⨿𝐴 arising from switching
the two copies of 𝐴. The effect of 𝑡 alone is equivariantly homotopic to the identity, by Proposi-
tion 3.6(i). The effect of the twist involution of 𝑆𝐴 ∧ 𝑆𝐴 in source and target can be homotoped to
the identity by the standard sine-cosine equivariant homotopy between the two directs summand
embeddings ℝ[𝐴]⟶ ℝ[𝐴] ⊕ ℝ[𝐴].
To show global connectivity we consider a subgroup𝐻 of a finite group 𝐺. For a finite 𝐺-set 𝐴

we set 𝑑𝐻 = dim((ℝ[𝐴])𝐻), which is equal to the number of 𝐻-orbits of 𝐴. The underlying Γ-𝐻-
space of |𝑌[𝜔𝐴]| arises from a Γ-𝐻-simplicial set, so it is𝐻-cofibrant in the sense of [34, Definition
B.33], by [34, Example B.34]. So, (|𝑌[𝜔𝐴]|(𝑆ℝ𝑘⊕ℝ[𝐴]))𝐻 is (𝑘 + 𝑑𝐻 − 1)-connected by [34, Proposi-
tion B.43]. On the other hand, the cellular dimension of 𝑆𝐴 at𝐻, in the sense of [41, II.2, p. 106], is
𝑑𝐻 . So, whenever 𝑘 is positive, the cellular dimension of 𝑆𝐴 at𝐻 does not exceed the connectivity
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of (|𝑌[𝜔𝐴]|(𝑆ℝ𝑘⊕ℝ[𝐴]))𝐻 . So, every based continuous 𝐺-map 𝑆𝐴 ⟶ |𝑌[𝜔𝐺]|(𝑆ℝ𝑘⊕ℝ[𝐴]) is equiv-
ariantly null-homotopic by [41, II Proposition 2.6], and the set [𝑆𝐴, |𝑌[𝜔𝐴]|(𝑆ℝ𝑘⊕ℝ[𝐴])]𝐺 has only
one element. Passage to the colimit over finite 𝐺-invariant subsets of the chosen universal 𝐺-set
proves that the homotopy group 𝜋𝐺

−𝑘
(𝑌⟨𝕊⟩) is trivial for all 𝑘 ⩾ 1. □

The next proposition shows that the passage from Γ--categories to associated symmetric
spectra preserves finite products. Part (i) of the following proposition ought to be well-known,
but I do not know a reference.

Proposition 3.8.

(i) For all Γ-spaces 𝐸 and 𝐹 and every based space 𝐾, the map

(𝐸 × 𝐹)(𝐾) ⟶ 𝐸(𝐾) × 𝐹(𝐾)

induced by the projections of 𝐸 × 𝐹 to the two factors is a homeomorphism.
(ii) For all Γ--categories 𝑋 and 𝑌, the morphism

(𝑋 × 𝑌)⟨𝕊⟩ ⟶ 𝑋⟨𝕊⟩ × 𝑌⟨𝕊⟩
induced by the projections is an isomorphism of symmetric spectra.

Proof.

(i) We define a continuous map in the opposite direction. To facilitate this, we first rewrite the
space 𝐸(𝐾) × 𝐹(𝐾). We exploit the fact that in the category of compactly generated spaces,
productwith a fixed space is a left adjoint, so it commuteswith coends. The space𝐸(𝐾) × 𝐹(𝐾)
is thus a coend of the functor

Γ × Γ × Γop × Γop ⟶ 𝐓 , (𝑘+, 𝑙+,𝑚+, 𝑛+) ⟼ 𝐸(𝑘+) × 𝐹(𝑙+) × 𝐾
𝑚 × 𝐾𝑛 . (3.9)

For given 𝑚, 𝑛 ⩾ 0, we define based maps 𝑖𝑚,𝑛 ∶ 𝑚+ ⟶ (𝑚 + 𝑛)+ and 𝑗𝑚,𝑛 ∶ 𝑛+ ⟶ (𝑚 +

𝑛)+ by

𝑖𝑚,𝑛(𝑥) = 𝑥 and 𝑗𝑚,𝑛(𝑥) = 𝑚 + 𝑥 .

Then we define continuous maps

𝜌𝑚,𝑛 ∶ 𝐸(𝑚+) × 𝐹(𝑛+) × 𝐾
𝑚 × 𝐾𝑛 ⟶ (𝐸 × 𝐹)(𝐾)

by

𝜌𝑚,𝑛(𝑥, 𝑦; 𝜅1, … , 𝜅𝑚, 𝜆1, … , 𝜆𝑛) = [𝐸(𝑖𝑚,𝑛)(𝑥), 𝐹(𝑗𝑚,𝑛)(𝑦); 𝜅1, … , 𝜅𝑚, 𝜆1, … , 𝜆𝑛] .

We omit the verification that these maps are compatible when (𝑚+, 𝑛+) varies over the
category Γ × Γ, so that they descend to a continuous map

𝜌 ∶ 𝐸(𝐾) × 𝐹(𝐾) = ∫
(𝑚+,𝑛+)∈Γ×Γ

𝐸(𝑚+) × 𝐹(𝑛+) × 𝐾
𝑚 × 𝐾𝑛 ⟶ (𝐸 × 𝐹)(𝐾)
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defined on the coend of the functor (3.9). Now we argue that 𝜌 is inverse to the map induced
by the projections. We write 𝑝1 ∶ 𝐸 × 𝐹 ⟶ 𝐸 for the projection to the first factor. Then for
all (𝑥, 𝑦; 𝜅1, … , 𝜅𝑚, 𝜆1, … , 𝜆𝑛) ∈ 𝐸(𝑚+) × 𝐹(𝑛+) × 𝐾

𝑚 × 𝐾𝑛 we have

(𝑝1(𝐾) ◦ 𝜌)[𝑥, 𝑦; 𝜅1, … , 𝜅𝑚, 𝜆1, … , 𝜆𝑛] = [𝐸(𝑖𝑚,𝑛)(𝑥); 𝜅1, … , 𝜅𝑚, 𝜆1, … , 𝜆𝑛]

= [𝑥; 𝑖∗𝑚,𝑛(𝜅1, … , 𝜅𝑚, 𝜆1, … , 𝜆𝑛)] = [𝑥; 𝜅1, … , 𝜅𝑚] .

Similarly, (𝑝2(𝐾) ◦ 𝜌)[𝑥, 𝑦; 𝜅1, … , 𝜅𝑚, 𝜆1, … , 𝜆𝑛] = [𝑦; 𝜆1, … , 𝜆𝑛]. This proves that the compos-
ite of 𝜌 and the canonical map is the identity of 𝐸(𝐾) × 𝐹(𝐾). For the other composite we
consider a tuple (𝑥, 𝑦; 𝜅1, … , 𝜅𝑚) ∈ (𝐸 × 𝐹)(𝑚+) × 𝐾

𝑚, and we write ∇ ∶ (𝑚 +𝑚)+ ⟶𝑚+

for the based map defined by

∇(𝑎) =

{
𝑎 for 0 ⩽ 𝑎 ⩽ 𝑚, and
𝑎 − 𝑚 for𝑚 + 1 ⩽ 𝑎 ⩽ 𝑚 +𝑚.

Then ∇ ◦ 𝑖𝑚,𝑚 = ∇ ◦ 𝑗𝑚,𝑚 = Id𝑚+
, and hence

(𝜌 ◦ (𝑝1(𝐾), 𝑝2(𝐾)))[𝑥, 𝑦; 𝜅1, … , 𝜅𝑚] = 𝜌[𝑥, 𝑦; 𝜅1, … , 𝜅𝑚, 𝜅1, … , 𝜅𝑚]

= [𝐸(𝑖𝑚,𝑚)(𝑥), 𝐹(𝑗𝑚,𝑚)(𝑦); 𝜅1, … , 𝜅𝑚, 𝜅1, … , 𝜅𝑚]

= [𝐸(𝑖𝑚,𝑚)(𝑥), 𝐹(𝑗𝑚,𝑚)(𝑦); ∇
∗(𝜅1, … , 𝜅𝑚)]

= [𝐸(∇ ◦ 𝑖𝑚,𝑚)(𝑥), 𝐹(∇ ◦ 𝑗𝑚,𝑚)(𝑦); 𝜅1, … , 𝜅𝑚]

= [𝑥, 𝑦; 𝜅1, … , 𝜅𝑚] .

This proves that the other composite is the identity of (𝐸 × 𝐹)(𝐾).
(ii) We let 𝐴 be a finite set. We specialize part (i) to the Γ-spaces 𝐸 = |𝑋[𝜔𝐴]| and 𝐹 = |𝑌[𝜔𝐴]|

and the based space 𝐾 = 𝑆𝐴. We conclude that the map

(𝑝1⟨𝕊⟩(𝐴), 𝑝2⟨𝕊⟩(𝐴)) ∶ (𝑋 × 𝑌)⟨𝕊⟩(𝐴) = |𝑋[𝜔𝐴] × 𝑌[𝜔𝐴]|(𝑆𝐴) ⟶
(|𝑋[𝜔𝐴]| × |𝑌[𝜔𝐴]|)(𝑆𝐴) = (𝑋⟨𝕊⟩ × 𝑌⟨𝕊⟩)(𝐴)

is a homeomorphism. □

Now we introduce the notion of ‘global specialness’ for Γ--categories, a global equivariant
refinement of Segal’s condition [35, Definition 2.1] that is nowadays referred to as ‘special-
ness’. As we shall prove in Theorem 3.12, the symmetric spectrum 𝑌⟨𝕊⟩ associated to a globally
special Γ--category 𝑌 is a restricted global Ω-spectrum. Our main class of examples arises
from parsummable categories: Theorem 4.13 shows that the Γ--category 𝛾() associated to a
parsummable category  is globally special.
Construction 3.10. We let 𝑌 be a Γ-category and 𝑆 a finite set. Given 𝑠 ∈ 𝑆 we denote by 𝑝𝑠 ∶
𝑆+ ⟶ 1+ = {0, 1} the based map with 𝑝−1𝑠 (1) = {𝑠}. We denote by

𝑃𝑆 ∶ 𝑌(𝑆+) ⟶ map(𝑆, 𝑌(1+))



GLOBAL ALGEBRAIC K-THEORY 1361

the functor whose 𝑠-component is 𝑌(𝑝𝑠) ∶ 𝑌(𝑆+)⟶ 𝑌(1+). Segal’s condition [35, Definition 2.1]
is the requirement that the functor 𝑃𝑆 is an equivalence of categories for all finite sets 𝑆. We need
a global equivariant version of this condition.
If 𝑌 is a Γ-𝐺-category, for a finite group 𝐺, and if the group 𝐺 also acts on the finite set 𝑆, then

the categories 𝑌(𝑆+) and map(𝑆, 𝑌(1+)) have two commuting 𝐺-actions: the ‘external’ action is
the value at 𝑆+, respectively, 1+ of the 𝐺-action on 𝑌; the ‘internal’ action is induced by the 𝐺-
action on 𝑆. In this situation, the functor 𝑃𝑆 ∶ 𝑌(𝑆+)⟶map(𝑆, 𝑌(1+)) is (𝐺 × 𝐺)-equivariant.
Below, we will consider 𝑌(𝑆+) and map(𝑆, 𝑌(1+)) endowed with the diagonal 𝐺-action, respec-
tively, the conjugation action; then the functor 𝑃𝑆 ∶ 𝑌(𝑆+)⟶map(𝑆, 𝑌(1+)) is 𝐺-equivariant.
In particular, the functor restricts to a functor

(𝑃𝑆)
𝐺 ∶ (𝑌(𝑆+))

𝐺 ⟶ map𝐺(𝑆, 𝑌(1+))

on the 𝐺-fixed subcategories.

If 𝑌 is a Γ--category, 𝐺 a finite group, and  a 𝐺-set, then 𝑌[ ] becomes a Γ-𝐺-category
through the action of 𝐺 on .

Definition 3.11. Let 𝐺 be a finite group. A Γ-𝐺-category 𝑌 is special if for every subgroup𝐻 of 𝐺
and every finite𝐻-set 𝑆 the functor

(𝑃𝑆)
𝐻 ∶ 𝑌(𝑆+)

𝐻 ⟶ map𝐻(𝑆, 𝑌(1+))

is a weak equivalence of categories. A Γ--category 𝑌 is globally special if for every finite group
𝐺 and some (hence any) universal 𝐺-set , the Γ-𝐺-category 𝑌[ ] is special.

Theorem 3.12. Let 𝑌 be a globally special Γ--category.

(i) Let 𝐺 be a finite group,  a universal 𝐺-set and 𝐴 a non-empty finite 𝐺-set. Then for every
𝐺-representation 𝑉, the adjoint assembly map

�̃� ∶ |𝑌[ ]|(𝑆𝐴) ⟶ map∗(𝑆
𝑉, |𝑌[ ]|(𝑆𝐴 ∧ 𝑆𝑉))

is a 𝐺-weak equivalence.
(ii) The symmetric spectrum 𝑌⟨𝕊⟩ is a restricted globalΩ-spectrum.
Proof.

(i) Since  is a universal 𝐺-set, the Γ-𝐺-space |𝑌[ ]| is special, by hypothesis. Since 𝐴 is non-
empty, the permutation representation of 𝐴 has non-trivial 𝐺-fixed points; so we can apply
Shimakawa’s theorem [37, Theorem B] to𝑊 = ℝ[𝐴] and the given representation 𝑉, and we
conclude that the adjoint assembly map �̃� is a 𝐺-weak equivalence. To be completely honest,
we cannot literally use Shimakawa’s theorem, because he uses a homotopy coend (bar con-
struction) to evaluate a Γ-𝐺-space on spheres, as opposed to the strict coend that we employ.
So, we instead quote [34, Theorem B.65], using that the Γ-𝐺-space |𝑌[ ]| is 𝐺-cofibrant by
[34, Example B.34].
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(ii) We let𝐺 be a finite group and𝐴 a finite𝐺-set with a free orbit. Thenwe let 𝐵 be another finite
𝐺-set. The adjoint structure map �̃�𝐴,𝐵 of the symmetric spectrum 𝑌⟨𝕊⟩ is the composite

|𝑌[𝜔𝐴]|(𝑆𝐴) |𝑌[𝑖!]|(𝑆𝐴)
:::::::::→ |𝑌[𝜔𝐴+𝐵]|(𝑆𝐴) �̃�

:::→ map∗(𝑆
𝐵, |𝑌[𝜔𝐴+𝐵]|(𝑆𝐴+𝐵)) ,

where 𝑖! ∶ 𝜔𝐴 ⟶ 𝜔𝐴+𝐵 is ‘extension by 0’ as defined in (3.4), and �̃� is the adjoint of
the assembly map (3.2) of the Γ-𝐺-space |𝑌[𝜔𝐴+𝐵]|. The injection 𝑖! is 𝐺-equivariant, and
source and target are universal 𝐺-sets by Proposition 2.19; the map |𝑌[𝑖!]|(𝑆𝐴) is thus a
𝐺-equivariant homotopy equivalence by Proposition 3.6(ii). The adjoint assembly map is a
𝐺-weak equivalence by part (i), because 𝜔𝐴+𝐵 is a universal 𝐺-set. □

The symmetric spectrum 𝑌⟨𝕊⟩ associated to a Γ--category is a symmetric spectrum without
any additional group actions, and as such it represents a global stable homotopy type. We will
now identify the underlying𝐺-symmetric spectrum𝑌⟨𝕊⟩𝐺 (that is,𝑌⟨𝕊⟩ endowedwith the trivial
𝐺-action) with the 𝐺-symmetric spectrum associated to a Γ-𝐺-category by evaluation on spheres.

Construction 3.13. We let 𝑌 be a Γ--category, 𝐺 a finite group, and a universal 𝐺-set. Then|𝑌[ ]| is a Γ-𝐺-space through the action of 𝐺 on  . We can thus evaluate |𝑌[ ]| on spheres
and obtain an orthogonal 𝐺-spectrum |𝑌[ ]|(𝕊). We use the same notation |𝑌[ ]|(𝕊) for the
underlying 𝐺-symmetric spectrum.
We relate the 𝐺-symmetric spectrum |𝑌[ ]|(𝕊) to 𝑌⟨𝕊⟩𝐺 via an intermediate object that is

designed to receive morphisms from both. We define a 𝐺-symmetric spectrum 𝑌⟨ , 𝕊⟩ at a finite
set 𝐴 by

𝑌⟨ , 𝕊⟩(𝐴) = |𝑌[ ⨿ 𝜔𝐴]|(𝑆𝐴) ,
the value of the Γ-𝐺-space |𝑌[ ⨿ 𝜔𝐴]| on the𝐴-sphere. The𝐺-action on𝑌⟨ , 𝕊⟩(𝐴) arises from
the 𝐺-action on , just as for |𝑌[ ]|(𝕊). The Σ𝐴-action on 𝑌⟨ , 𝕊⟩(𝐴) arises from the action on
𝜔𝐴 and on 𝑆𝐴, just as for 𝑌⟨𝕊⟩. Since the actions of 𝐺 and Σ𝐴 are through disjoint summands,
they commute with each other.
The structure map

𝑖∗ ∶ 𝑌⟨ , 𝕊⟩(𝐴) ∧ 𝑆𝐵⧵𝑖(𝐴) ⟶ 𝑌⟨ , 𝕊⟩(𝐵)
associated with an injection 𝑖 ∶ 𝐴⟶ 𝐵 is defined as for 𝑌⟨𝕊⟩, namely as the diagonal composite
in the commutative diagram:
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Here 𝑖! ∶ 𝜔𝐴 ⟶ 𝜔𝐵 is the ‘extension by 0’ injection defined in (3.4). The upper vertical maps are
assemblymaps of the Γ-spaces |𝑌[ ⨿ 𝜔𝐴]| and |𝑌[ ⨿ 𝜔𝐵]|, respectively, and the lower vertical
maps are the effects of these two Γ-spaces on the homeomorphism 𝑆𝐴 ∧ 𝑆𝐵⧵𝑖(𝐴) ≅ 𝑆𝐵 given by 𝑖
on 𝐴.
The 𝐺-symmetric spectrum 𝑌⟨ , 𝕊⟩ is designed so that the (𝐺 × Σ𝐴)-maps

|𝑌[ ]|(𝑆𝐴) :::→ |𝑌[ ⨿ 𝜔𝐴]|(𝑆𝐴) ←::: |𝑌[𝜔𝐴]|(𝑆𝐴)
induced by the inclusions of and 𝜔𝐴 into ⨿ 𝜔𝐴 form morphisms of 𝐺-symmetric spectra

|𝑌[ ]|(𝕊) 𝑏𝑌
𝐺

::::→ 𝑌⟨ , 𝕊⟩ 𝑎𝑌
𝐺

←:::: 𝑌⟨𝕊⟩𝐺 .
Theorem 3.14. Let 𝑌 be a Γ--category. For every finite group 𝐺 and every universal 𝐺-set , the
two morphisms of 𝐺-symmetric spectra

|𝑌[ ]|(𝕊) 𝑏𝑌
𝐺

::::→ 𝑌⟨ , 𝕊⟩ 𝑎𝑌
𝐺

←:::: 𝑌⟨𝕊⟩𝐺
are 𝐺-stable equivalences.

Proof. If𝐴 is any𝐺-set, then the inclusion ⟶  ⨿ 𝜔𝐴 is an equivariant injection betweenuni-
versal𝐺-sets. The induced𝐺-map |𝑌[ ]|(𝑆𝐴)⟶ |𝑌[ ⨿ 𝜔𝐴]|(𝑆𝐴) is thus a based𝐺-homotopy
equivalence by Proposition 3.6(ii). Since the morphism 𝑏𝑌

𝐺
is levelwise a 𝐺-weak equivalence, it is

in particular a 𝜋∗-isomorphism, and hence a 𝐺-stable equivalence by [14, Theorem 3.36].
Now we let 𝐴 be a 𝐺-set with a free orbit. Then the inclusion 𝜔𝐴 ⟶  ⨿ 𝜔𝐴 is an equivari-

ant injection between universal 𝐺-sets, by Proposition 2.19. The induced 𝐺-map |𝑌[𝜔𝐴]|(𝑆𝐴)⟶|𝑌[ ⨿ 𝜔𝐴]|(𝑆𝐴) is thus a based 𝐺-homotopy equivalence, again by Proposition 3.6(ii). Since the
𝐺-sets with a free orbit are cofinal in all finite 𝐺-subsets of a given universal 𝐺-set, this shows
that the morphism 𝑎𝑌

𝐺
is a 𝜋∗-isomorphism, and hence a 𝐺-stable equivalence by [14, Theorem

3.36]. □

Global equivalences of-categories were introduced in Definition 2.26.

Proposition 3.15. Let Φ ∶ 𝑋 ⟶ 𝑌 be a morphism of globally special Γ--categories such that
Φ(1+) ∶ 𝑋(1+)⟶ 𝑌(1+) is a global equivalence of-categories. Then the morphism

Φ⟨𝕊⟩ ∶ 𝑋⟨𝕊⟩ ⟶ 𝑌⟨𝕊⟩
is a global equivalence of symmetric spectra.

Proof. We let𝐺 be a finite group, and𝐴 a finite𝐺-set with a free orbit. Then𝜔𝐴 is a universal𝐺-set
by Proposition 2.19. So, the Γ-𝐺-spaces |𝑋[𝜔𝐴]| and |𝑌[𝜔𝐴]| are special by the hypotheses on 𝑋
and 𝑌. Moreover, the map |Φ[𝜔𝐴]|(1+) ∶ |𝑋[𝜔𝐴]|(1+)⟶ |𝑌[𝜔𝐴]|(1+) is a 𝐺-weak equivalence
because Φ(1+) is a global equivalence. We claim that the morphism of Γ-𝐺-spaces

|Φ[𝜔𝐴]| ∶ |𝑋[𝜔𝐴]| ⟶ |𝑌[𝜔𝐴]|
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is a strict equivalence in the following sense: for every subgroup 𝐻 of 𝐺 and every finite 𝐻-set 𝑆,
the map

(|Φ[𝜔𝐴]|(𝑆+))𝐻 ∶ (|𝑋[𝜔𝐴]|(𝑆+))𝐻 ⟶ (|𝑌[𝜔𝐴]|(𝑆+))𝐻
is a weak equivalence. To see this we choose representatives 𝑠1, … , 𝑠𝑚 of the𝐻-orbits of 𝑆, and we
let 𝐾𝑖 be the stabilizer group of 𝑠𝑖 . Then we consider the commutative diagram:

The two upper vertical maps are weak equivalences by specialness. The two lower vertical maps
are evaluation at the representatives 𝑠1, … , 𝑠𝑚, and they are homeomorphisms. The lower hor-
izontal map |Φ[𝜔𝐴]|(1+)𝐾𝑖 is a weak equivalence for each 1 ⩽ 𝑖 ⩽ 𝑚, because |Φ[𝜔𝐴]|(1+) ∶|𝑋[𝜔𝐴]|(1+)⟶ |𝑌[𝜔𝐴]|(1+) is a 𝐺-weak equivalence. So, the upper horizontal map is a
weak equivalence.
Now we can finish the proof. Since the Γ-𝐺-spaces |𝑋[𝜔𝐴]| and |𝑌[𝜔𝐴]| are realizations of

Γ-𝐺-simplicial sets, they are 𝐺-cofibrant by [34, Example B.34]. Since the morphism |Φ[𝜔𝐴]| ∶|𝑋[𝜔𝐴]|⟶ |𝑌[𝜔𝐴]| is a strict equivalence of Γ-𝐺-spaces, evaluation at the based𝐺-CW-complex
𝑆𝐴 yields a 𝐺-weak equivalence

Φ⟨𝕊⟩(𝐴) ∶ 𝑋⟨𝕊⟩(𝐴) = |𝑋[𝜔𝐴]|(𝑆𝐴) ⟶ |𝑌[𝜔𝐴]|(𝑆𝐴) = 𝑌⟨𝕊⟩(𝐴)
by [34, Proposition B.48]. Since all Γ-𝐺-spaces in sight arise from Γ-𝐺-simplicial sets, and 𝑆𝐴 is
also the realization of a 𝐺-simplicial set, we can alternatively quote [29, Lemma 4.8].
The 𝐺-sets with a free orbit are cofinal in the poset of finite 𝐺-subsets of any given universal

𝐺-set. So, the morphism Φ⟨𝕊⟩ induces isomorphisms of 𝐺-equivariant stable homotopy groups,
for every finite group 𝐺. In other words, Φ⟨𝕊⟩ is a global 𝜋∗-isomorphism, and hence a global
equivalence by [15, Proposition 4.5]. □

The 𝐺-fixed -category 𝐹𝐺 associated to a finite group 𝐺 and an -category  was intro-
duced in Construction 2.21. We can apply the functor 𝐹𝐺 ∶ 𝐜𝐚𝐭 ⟶ 𝐜𝐚𝐭 objectwise (in the
Γ-direction) to a Γ--category 𝑌, and thus obtain another Γ--category 𝐹𝐺𝑌.

Proposition 3.16. Let 𝑌 be a globally special Γ--category. Then for every finite group 𝐺, the Γ-
-category 𝐹𝐺𝑌 is globally special.

Proof. Wemust show that for every finite group𝐾, every universal𝐾-set , and every finite𝐾-set
𝑆, the functor

(𝑃𝑆)
𝐾 ∶ ((𝐹𝐺𝑌)[ ](𝑆+))

𝐾 ⟶ map𝐾(𝑆, (𝐹𝐺𝑌)[ ](1+))
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is a weak equivalence of categories. The 𝐾-set 𝜔𝐾 is universal by Proposition 2.19, so we can
assume that  = 𝜔𝐾 . The (𝐾 × 𝐺)-equivariant isomorphism (2.30) restricts to a 𝐾-equivariant
isomorphism on 𝐺-fixed subcategories, identifying

(𝐹𝐺𝑌)[𝜔𝐾] = (𝑌[𝜔𝐺][𝜔𝐾])𝐺

with the 𝐾-category 𝑌[(𝜔𝐾)𝐺]𝐺 . We make the 𝐾-set 𝑆 into a (𝐾 × 𝐺)-set by giving it the trivial
𝐺-action. Then the functor (𝑃𝑆)𝐾 becomes the functor

(𝑃𝑆)
𝐾×𝐺 ∶ (𝑌[(𝜔𝐾)𝐺](𝑆+))

𝐾×𝐺 ⟶ map𝐾×𝐺(𝑆, (𝑌[(𝜔𝐾)𝐺](1+))) .

This functor is a weak equivalence of categories because 𝑌 is globally special and (𝜔𝐾)𝐺 is a
universal (𝐾 × 𝐺)-set. □

The previous Theorem 3.14 provides an interpretation of the underlying𝐺-symmetric spectrum
of 𝑌⟨𝕊⟩. Theorem 3.20 is of a similar spirit: we describe the 𝐺-fixed point spectrum of 𝑌⟨𝕊⟩ in
terms of the 𝐺-fixed Γ--category 𝐹𝐺𝑌, as long as 𝑌 is globally special.

Construction 3.17. Let𝐺 be a finite group and𝑌 a Γ--category.We now introduce amorphism
of symmetric spectra

𝜓𝐺𝑌 ∶ (𝐹𝐺𝑌)⟨𝕊⟩ ⟶ 𝐹𝐺(𝑌⟨𝕊⟩) ,
where the target is the𝐺-fixed point symmetric spectrum as defined in Construction 1.5. We show
in Theorem 3.20 that this morphism is a global equivalence whenever 𝑌 is globally special.
Themorphism 𝜓𝐺

𝑌
arises from the Γ-(𝐺 × Σ𝐴)-space |𝑌[𝜔𝐺×𝐴]|, where𝐴 is a finite set. In much

the same way as (2.30), the intertwiner

ℑ ∶ 𝜔
𝜅𝜔𝐺
::::→ 𝜔𝐺

(𝜅𝜔𝐴 )
𝐺

::::::→ (𝜔𝐴)𝐺
𝜅−1
(𝜔𝐴)𝐺

::::::→ 𝜔

induces a (𝐺 × Σ𝐴)-equivariant isomorphism of Γ-(𝐺 × Σ𝐴)-categories

ℑ∗ ∶ 𝑌[𝜔𝐺][𝜔𝐴] ≅ 𝑌[(𝜔𝐴)𝐺] .

In combination with the isomorphism induced by the (𝐺 × Σ𝐴)-equivariant bijection

(𝜔𝐴)𝐺 ≅ 𝜔𝐺×𝐴 , 𝑓 ⟼ {(g , 𝑎) ↦ 𝑓(g)(𝑎)} ,

we arrive at a (𝐺 × Σ𝐴)-equivariant isomorphism

𝑌[𝜔𝐺][𝜔𝐴] ≅ 𝑌[𝜔𝐺×𝐴] .

The 𝐺-fixed Γ-Σ𝐴-space of |𝑌[𝜔𝐺×𝐴]| can then be rewritten as
|𝑌[𝜔𝐺×𝐴]|𝐺 ≅ |𝑌[𝜔𝐺][𝜔𝐴]|𝐺 ≅ |(𝑌[𝜔𝐺][𝜔𝐴])𝐺|

= |(𝑌[𝜔𝐺])𝐺[𝜔𝐴]| = |𝐹𝐺(𝑌)[𝜔𝐴]| .
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The second isomorphism is the fact that 𝐺-fixed points commute with nerve and geometric
realization. The third equality uses that 𝐺 acts trivially on 𝐴. Evaluation on 𝑆𝐴 thus yields an
isomorphism of based Σ𝐴-spaces

𝐹𝐺(𝑌)⟨𝕊⟩(𝐴) = |𝐹𝐺(𝑌)[𝜔𝐴]|(𝑆𝐴) ≅ |𝑌[𝜔𝐺×𝐴]|𝐺(𝑆𝐴) ≅ (|𝑌[𝜔𝐺×𝐴]|(𝑆𝐴))𝐺 . (3.18)

As a second input we consider the (𝐺 × Σ𝐴)-equivariant assembly map (3.2)

|𝑌[𝜔𝐺×𝐴]|(𝑆𝐴) ∧ 𝑆�̄�𝐺⊗ℝ[𝐴] ⟶ |𝑌[𝜔𝐺×𝐴]|(𝑆𝐴 ∧ 𝑆�̄�𝐺⊗ℝ[𝐴])
≅ |𝑌[𝜔𝐺×𝐴]|(𝑆𝐺×𝐴) = 𝑌⟨𝕊⟩(𝐺 × 𝐴)

of the Γ-(𝐺 × Σ𝐴)-space |𝑌[𝜔𝐺×𝐴]|. The homeomorphism above is induced by the (𝐺 × Σ𝐴)-linear
isometry

ℝ[𝐴] ⊕ (�̄�𝐺 ⊗ ℝ[𝐴]) ≅ (ℝ ⊕ �̄�𝐺) ⊗ ℝ[𝐴] ≅(1.6) 𝜌𝐺 ⊗ ℝ[𝐴] ≅ ℝ[𝐺 × 𝐴] .

We form the adjoint and restrict to 𝐺-fixed points to obtain a Σ𝐴-equivariant map

(|𝑌[𝜔𝐺×𝐴]|(𝑆𝐴))𝐺 ⟶ map𝐺∗ (𝑆
�̄�𝐺⊗ℝ[𝐴], 𝑌⟨𝕊⟩(𝐺 × 𝐴)) = 𝐹𝐺(𝑌⟨𝕊⟩)(𝐴) . (3.19)

So, the composition of the homeomorphism (3.18) and themap (3.19) is a continuousmap of based
Σ𝐴-spaces

𝜓𝐺𝑌(𝐴) ∶ (𝐹𝐺𝑌)⟨𝕊⟩(𝐴) ⟶ map𝐺∗

(
𝑆�̄�𝐺⊗ℝ[𝐴], 𝑌⟨𝕊⟩(𝐺 × 𝐴)) = 𝐹𝐺(𝑌⟨𝕊⟩)(𝐴) .

As 𝐴 varies, the maps 𝜓𝐺
𝑌
(𝐴) form a morphism of symmetric spectra 𝜓𝐺

𝑌
∶ (𝐹𝐺𝑌)⟨𝕊⟩⟶

𝐹𝐺(𝑌⟨𝕊⟩).
Theorem 3.20. For every globally special Γ--category 𝑌 and every finite group 𝐺, the morphism
of symmetric spectra

𝜓𝐺𝑌 ∶ (𝐹𝐺𝑌)⟨𝕊⟩ ⟶ 𝐹𝐺(𝑌⟨𝕊⟩)
is a global equivalence.

Proof. We let𝐾 be a finite group and𝐴 a finite𝐾-set with a free orbit. Themap 𝜓𝐺
𝑌
(𝐴)was defined

as the composite of two homeomorphisms and the effect on 𝐺-fixed points (3.19) of the adjoint
assemblymap of the Γ-(𝐺 × 𝐾)-space |𝑌[𝜔𝐺×𝐴]|. Since𝐴 has a free𝐾-orbit, the (𝐺 × 𝐾)-set𝐺 × 𝐴
has a free (𝐺 × 𝐾)-orbit. So,𝜔𝐺×𝐴 is a universal (𝐺 × 𝐾)-set by Proposition 2.19. Since𝑌 is globally
special, the adjoint assembly map

�̃� ∶ |𝑌[𝜔𝐺×𝐴]|(𝑆𝐴) ⟶ map∗(𝑆
�̄�𝐺⊗ℝ[𝐴], |𝑌[𝜔𝐺×𝐴]|(𝑆𝐴 ∧ 𝑆�̄�𝐺⊗ℝ[𝐴]))

is a (𝐺 × 𝐾)-weak equivalence by Theorem 3.12(i). So, the restriction to 𝐺-fixed points (3.19) of �̃�
is a 𝐾-weak equivalence. This concludes the proof that the map 𝜓𝐺

𝑌
(𝐴) is a 𝐾-weak equivalence

whenever 𝐴 has a free 𝐾-orbit.
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The 𝐾-sets with a free orbit are cofinal in the poset of finite 𝐾-subsets of any given univer-
sal 𝐾-set. So, the morphism 𝜓𝐺

𝑌
induces isomorphisms of 𝐾-equivariant stable homotopy groups,

for every finite group 𝐾. In other words, 𝜓𝐺
𝑌
is a global 𝜋∗-isomorphism, and hence a global

equivalence by [15, Proposition 4.5]. □

4 GLOBAL K-THEORY OF PARSUMMABLE CATEGORIES

In this section, we introduce the global K-theory construction and establish some of its formal
properties. We start by discussing the categorical data that our global K-theory construction
accepts as input. The data are a parsummable category, that is, an-category equippedwith a uni-
tal, associative and commutative multiplication with respect to the box product of-categories.
The prototypical example is the parsummable category of finite sets, compare Examples 2.14 and
4.5. In the later sections, we provide further examples of these categorical input data, including
free parsummable categories (Section 8), the parsummable category of finite 𝐺-sets (Section 9),
the parsummable category of finitely generated projective modules over a ring (Section 10), and
parsummable categories associated with permutative categories (Section 11).
The global K-theory spectrum of a parsummable category  is then obtained in two steps: the

⊠-powers of  assemble into a Γ--category 𝛾() as explained in Construction 4.3; the previ-
ous Construction 3.3 turns this Γ--category into a symmetric spectrum 𝐊gl = 𝛾()⟨𝕊⟩. The
Γ--category 𝛾() is globally special by Theorem 4.13, so the global K-theory spectrum is a
restricted global Ω-spectrum, see Theorem 4.15. Global K-theory has two fundamental invari-
ance properties: by Theorem 4.16, global equivalences of parsummable categories are taken to
global equivalences of K-theory spectra; by Theorem 4.17, global K-theory takes box products and
products of parsummable categories to products of K-theory spectra, up to global equivalence.

Definition 4.1. A parsummable category is a tame-category equipped with the structure of a
commutative monoid under the box product.

In the following, we will write

+ ∶  ⊠  ⟶ 
for the structure functor of a parsummable category . The adjective ‘parsummable’ stands for
‘partially summable’, and it reflects the fact that the sum functor is not defined on all of  × ,
but only on its globally equivalent full-subcategory  ⊠ . Every parsummable category has a
distinguished object: the unit morphism is an-equivariant functor ∗⟶  from the terminal
-category with only one object and its identity morphism. We write 0 for the image in  of the
unique object of ∗, because it behaves a lot like the neutral element in an abelian monoid. Since
the unit functor is-equivariant, the object 0 has empty support, and it is-fixed.
The support of objects in a parsummable category  is sub-additive in the following sense. If 𝑎

and 𝑏 are two disjointly supported objects, then (𝑎, 𝑏) is an object of  ⊠  with support
supp(𝑎, 𝑏) = supp(𝑎) ∪ supp(𝑏) .
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Because the structure functor + ∶  ⊠  ⟶  is -equivariant, Proposition 2.13(v) lets us
conclude that

supp(𝑎 + 𝑏) ⊆ supp(𝑎, 𝑏) = supp(𝑎) ∪ supp(𝑏) . (4.2)

A parsummable category may be thought of as a ‘partial strict symmetric monoidal category’.
The adjective ‘partial’ refers to the feature that the product+ is not defined for all pairs of objects,
but only for those with disjoint support. The adjective ‘strict’ refers to the feature that whenever
the monoidal product is defined, it is strictly unital, associative and commutative (and not just
up to specified coherence data). We give several examples of parsummable categories after the
following construction; more examples will follow in Sections 8–11.

Construction 4.3 (From parsummable categories to Γ--categories). We recall that Γ denotes
the category with objects the finite based sets 𝑛+ = {0, 1, … , 𝑛}, with basepoint 0; morphisms in Γ
are all based maps. We associate to a parsummable category  a Γ-parsummable category 𝛾(),
that is, a functor from Γ to the category of parsummable categories and strict morphisms. For
𝑛 ⩾ 0 we define

𝛾()(𝑛+) = ⊠𝑛 ⊆ 𝑛

as the full parsummable subcategory of the product category with objects those 𝑛-tuples
(𝑎1, … , 𝑎𝑛) that are disjointly supported, that is, the supports supp(𝑎𝑖) are pairwise disjoint. In
particular, 𝛾()(1+) is the category  itself. By convention, 𝛾()(0+) is the terminal parsummable
category with only one object 0 and only the identitymorphism.We use the notation ⊠𝑛 because
this parsummable category is canonically isomorphic to the 𝑛-fold iterated box product of copies
of , with any bracketing.
To define the effect of a based map 𝜆 ∶ 𝑚+ ⟶ 𝑛+ we use the universal property of ⊠𝑚 as an

𝑚-fold coproduct in the category of parsummable categories, see Example 4.10. For 1 ⩽ 𝑘 ⩽ 𝑚we
let 𝑖𝑘 ∶  ⟶ ⊠𝑚 denote the morphism given by

𝑖𝑘(𝑓) = (0, … , 0, 𝑓, 0, … , 0) ,

where 𝑓 sits in the 𝑘th slot. We define

𝛾()(𝜆) ∶ 𝛾()(𝑚+) = ⊠𝑚 ⟶ ⊠𝑛 = 𝛾()(𝑛+)
as the unique morphism of parsummable categories such that

𝛾()(𝜆) ◦ 𝑖𝑘 = 𝑖𝜆(𝑘) ∶  ⟶ ⊠𝑛

for all 1 ⩽ 𝑘 ⩽ 𝑚. Here 𝑖0 is to be interpreted as the zero morphism, that is, the constant functor
with value the distinguished object (0, … , 0) of ⊠𝑛. If 𝜅 ∶ 𝑛+ ⟶ 𝑝+ is another basedmap, then

𝛾()(𝜅) ◦ 𝛾()(𝜆) ◦ 𝑖𝑘 = 𝛾()(𝜅) ◦ 𝑖𝜆(𝑘) = 𝑖𝜅(𝜆(𝑘)) = 𝛾()(𝜅 ◦ 𝜆) ◦ 𝑖𝑘
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for all 1 ⩽ 𝑘 ⩽ 𝑚. The universal property of an𝑚-fold coproduct then forces 𝛾()(𝜅) ◦ 𝛾()(𝜆) =
𝛾()(𝜅 ◦ 𝜆), sowe have really obtained a functor fromΓ to the category of parsummable categories
and strict morphisms.
The functor 𝛾()(𝜆) ∶ 𝛾()(𝑚+)⟶ 𝛾()(𝑛+) is effectively given on objects andmorphisms by

summing up, that is,

(𝛾()(𝜆)(𝑓1, … , 𝑓𝑚))𝑗 =
∑
𝜆(𝑖)=𝑗

𝑓𝑖 .

If (𝑎1, … , 𝑎𝑚) is an object of ⊠𝑚 and (𝑏1, … , 𝑏𝑛) = 𝛾()(𝜆)(𝑎1, … , 𝑎𝑚), then
supp(𝑏𝑗) = supp

(∑
𝜆(𝑖)=𝑗

𝑎𝑖

)
⊆
⋃

𝜆(𝑖)=𝑗
supp(𝑎𝑖)

by (4.2). So, the tuple (𝑏1, … , 𝑏𝑛) is again disjointly supported, that is, it lies in 𝛾()(𝑛+).
It is time to discuss examples of parsummable categories.

Example 4.4 (Abelian monoids). We let 𝐴 be an abelian monoid that we consider as a discrete
category (that is, the object set is 𝐴, and there are only identity morphisms). We give 𝐴 the trivial
-action: every object and morphism of the category acts on 𝐴 as the identity. For this triv-
ial-action, every object of 𝐴 is supported on the empty set, so 𝐴⊠𝐴 = 𝐴 × 𝐴. The structure
functor

+ ∶ 𝐴⊠𝐴 = 𝐴 × 𝐴 ⟶ 𝐴

is the given monoid structure on objects. Because every tuple of elements is disjointly supported,
the category 𝛾(𝐴)(𝑛+) = 𝐴𝑛 is the entire product category. The Γ-category 𝛾(𝐴) is thus discrete
and coincides with the usual construction [35, p. 293] of a Γ-set from an abelian monoid. As we
discuss in Example 4.29, the global K-theory spectrum of the parsummable category 𝐴 is a global
Eilenberg–Mac Lane spectrum of the constant global functor with value the group completion of
𝐴.

Example 4.5 (The parsummable category of finite sets). In Example 2.14, we introduced the tame
-category  of finite subsets of 𝜔 = {0, 1, 2, … }; morphisms in  are all bijections of sets. This
-category has a preferred parsummable structure, as follows. Since the support of an object of
 is the set itself, objects of the -category  ⊠  are pairs of finite disjoint subsets of 𝜔. The
structure functor

+ ∶  ⊠  ⟶ 
is given on objects by the union inside the set 𝜔. If 𝑓 ∶ 𝑃⟶ 𝑄 and 𝑓′ ∶ 𝑃′ ⟶ 𝑄′ are bijections
between finite subsets of 𝜔, and moreover 𝑃 ∩ 𝑃′ = ∅ = 𝑄 ∩ 𝑄′, then 𝑓 + 𝑓′ ∶ 𝑃 + 𝑃′ ⟶ 𝑄+𝑄′

is the ‘union’ of 𝑓 and 𝑓′, that is,

(𝑓 + 𝑓′)(𝑥) =

{
𝑓(𝑥) for 𝑥 ∈ 𝑃, and
𝑓′(𝑥) for 𝑥 ∈ 𝑃′.
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We omit the straightforward verification that + is indeed a functor, that it is compatible with the
-actions, and that it is associative, commutative and unital. So, the sum functor + makes the
-category  into a parsummable category.
The parsummable category  has a universal property: it is a free parsummable category gen-

erated by an object supported on the set {0}. More formally, for every parsummable category  the
map

𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭( ,) ⟶ {𝑥 | 𝑥 is supported on {0}} , 𝐹 ⟼ 𝐹({0})

is bijective. We indicate what goes into the proof. We let 𝑥 be an object of  supported on the
set {0}; we construct a morphism of parsummable categories 𝐹 ∶  ⟶  that takes the set {0}
to 𝑥. To define 𝐹 on objects we let 𝑃 ⊂ 𝜔 be a finite subset of cardinality 𝑛. We choose injections
𝑢1, … , 𝑢𝑛 ∈ 𝑀 such that

𝑃 = {𝑢1(0), … , 𝑢𝑛(0)} ;

then the objects 𝑢1∗(𝑥), … , 𝑢
𝑛
∗(𝑥) of  are disjointly supported, so we can set

𝐹(𝑃) = 𝑢1∗(𝑥) +⋯ + 𝑢𝑛∗(𝑥) .

This is independent of the choices of 𝑢𝑖 by Proposition 2.13(ii) and the commutativity of the sum
functor. Moreover, 𝐹(𝑃) is supported on 𝑃 by the additivity relation (4.2).
Given a bijection 𝑓 ∶ 𝑃⟶ 𝑄 between finite subsets of 𝜔, we choose an injection 𝑤 ∈ 𝑀 that

coincides with 𝑓 on 𝑃. Then 𝑤𝑢1, … ,𝑤𝑢𝑛 ∈ 𝑀 can be used to define 𝐹(𝑄). We define 𝐹(𝑓) ∶
𝐹(𝑃)⟶ 𝐹(𝑄) as

𝐹(𝑓) = [𝑤𝑢1, 𝑢1]𝑥 +⋯ + [𝑤𝑢𝑛, 𝑢𝑛]𝑥 ∶

𝐹(𝑃) = 𝑢1∗(𝑥) +⋯ + 𝑢𝑛∗(𝑥) ⟶ (𝑤𝑢)1∗(𝑥) +⋯ + (𝑤𝑢)𝑛∗(𝑥) = 𝐹(𝑄) .

We omit the straightforward verification that 𝐹 ∶  ⟶  is a functor, compatible with the action
of themonoidal category, that it takes the empty set to the distinguished object 0 of , and that
it is additive on disjoint unions. The uniqueness is a consequence of the fact that the identity of
the object {0} of generates  under the-action and the sum operation.

Example 4.6 (Free parsummable categories). The category of tame-categories is cocomplete,
with colimits created in the underlying category 𝐜𝐚𝐭 of small categories, see Example 2.15. In
particular, for every tame-category , we can form the symmetric algebra with respect to the
box product

ℙ =
∐
𝑚⩾0

(⊠𝑚)∕Σ𝑚 .

We refer to ℙ as the free parsummable category generated by the tame-category . This free
functor is left adjoint to the forgetful functor 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 ⟶ 𝐜𝐚𝐭𝜏, with the embedding 𝜂 ∶
⟶ℙ as the summand indexed by 𝑚 = 1 being the unit of the adjunction. In other words,
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for every parsummable category  and every morphism of-categories 𝑓 ∶ ⟶ , there is a
unique morphism of parsummable categories 𝑓♯ ∶ ℙ⟶  such that 𝑓♯ ◦ 𝜂 = 𝑓.

Now we record that parsummable categories are closed under various kinds of constructions.

Example 4.7 (Full subcategories). We let ̄ be a full subcategory of a parsummable category that
contains the unit object 0 and is closed under the-action and under the structure functor + ∶

 ⊠  ⟶ . Then ̄ is a parsummable category in its own right, by restriction of all the structure.
The inclusion ̄ ⟶  is a morphism of parsummable categories.
Here are two specific examples of this situation. For every 𝑛 ⩾ 1, we can take  [𝑛] to be the full

subcategory of  of those finite subsets of 𝜔 whose cardinality is divisible by 𝑛. For every ring 𝑅,
another example is the full subcategory  f r(𝑅) of free modules inside the parsummable category
(𝑅) of finitely generated projective splittable 𝑅-submodules of 𝑅{𝜔}, defined in Construction
10.1.

Example 4.8. For every parsummable category  we can consider the full subcategory ∅ of
 spanned by the objects that are supported on the empty set. By parts (iii) and (iv) of Propo-
sition 2.13, the -action is trivial on ∅; in particular, the subcategory ∅ is closed under
the -action. The subcategory ∅ is moreover closed under the sum functor by (4.2). So, the
subcategory ∅ is a parsummable category in its own right.
The parsummable categories  in which all objects are supported on the empty set are very

rigid. For example, we have  ⊠  =  × , so the sum functor is defined for all pairs of objects
andmorphisms. Moreover, the sum operation makes  into a strict symmetric monoidal category
in which the symmetry isomorphisms are identities. The nerve of  then becomes a simplicial
abelian monoid, and its K-theory spectrum is a product of Eilenberg–Mac Lane spectra.

Example 4.9 (Opposite parsummable categories). If  is a parsummable category, then the oppo-
site category op inherits a canonical structure of a parsummable category as follows. As we
explained in Example 2.9, the opposite of an-category has a preferred-action. For this-
action, the support of an object is the same in  and in op. So, in particular op is again tame,
and op ⊠ op = ( ⊠ )op. The structure functor of op is then defined as the composite

op ⊠ op = ( ⊠ )op +op

::::→ op .
So, the sum operation in  and op is the same on objects, and is the ‘opposite sum’ onmorphisms.
Moreover,

𝛾(op) = 𝛾()op

as Γ-parsummable categories.

Example 4.10 (Coproducts of parsummable categories). It is a general feature that the commu-
tative monoid objects in a symmetric monoidal category have coproducts, and these are given by
the underlying monoidal product. This applies to parsummable categories, as these are the com-
mutative monoid objects in tame-categories under the box product. In more detail: given two
parsummable categories  and, the box product  ⊠ becomes a parsummable category with



1372 SCHWEDE

distinguished zero object (0,0) and addition functor

( ⊠) ⊠ ( ⊠) ⊠twist⊠
:::::::::::→

≅
( ⊠ ) ⊠ (⊠) +⊠+

:::::→  ⊠ .

The two functors

𝑖1 = (−, 0) ∶  ⟶  ⊠ and 𝑖2 = (0, −) ∶  ⟶  ⊠
are morphisms of parsummable categories that enjoy the universal property of a coproduct.
Moreover, the unique morphism of Γ-parsummable categories

𝛾() ⊠ 𝛾() ⟶ 𝛾( ⊠)
that restricts to 𝛾(𝑖1) ∶ 𝛾()⟶ 𝛾( ⊠) and 𝛾(𝑖2) ∶ 𝛾()⟶ 𝛾( ⊠), respectively, is an iso-
morphism.

Example 4.11 (Limits of parsummable categories). As we explained in Example 2.15, the category
of tame -categories is complete. Moreover, finite limits are created on underlying categories,
and an infinite product of tame-categories is given by the full subcategory of finitely supported
objects inside the product of categorieswith the induced-action. Since parsummable categories
are the commutative algebras for a symmetric monoidal structure on  𝐜𝐚𝐭𝜏, the category of
parsummable categories is also complete, and limits are created in 𝐜𝐚𝐭𝜏.

Example 4.12 (Objects with an action). Let 𝐺 be a monoid. A 𝐺-object in a category  is an
object 𝑥 of  equipped with a 𝐺-action, that is, a monoid homomorphism 𝜌 ∶ 𝐺 ⟶ (𝑥, 𝑥) to
the endomorphism monoid. We denote by 𝐺 the category of 𝐺-objects in with 𝐺-equivariant
-morphisms. We will mostly be interested in the special case when 𝐺 is a finite group (whence
the letter ‘𝐺’).
We note that parsummable structures lift to objects with a monoid action. In other words: a

parsummable structure on a category  gives rise to a preferred parsummable structure on the cat-
egory 𝐺. Indeed, because 𝐺-objects are ‘the same as’ functors from the category with one object
and 𝐺 as endomorphism monoid, the category 𝐺 inherits a ‘pointwise’ -action as explained
in Example 2.10. For this -action, the support of a 𝐺-object is the support of the underlying
-object. So, 𝐺 is again tame, and

(𝐺) ⊠ (𝐺) = 𝐺( ⊠ ) .
The structure functor of 𝐺 is then defined as the composite

(𝐺) ⊠ (𝐺) = 𝐺( ⊠ ) 𝐺+
::::→ 𝐺 .

Moreover, 𝛾(𝐺) = 𝐺(𝛾()) as Γ-parsummable categories.
Every Γ-parsummable category has an underlying Γ--category. We introduced the concept

of global specialness for Γ--categories in Definition 3.11.
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Theorem 4.13. Let  be a parsummable category. Then the Γ-parsummable category 𝛾() is
globally special.

Proof. We will show that for every finite group 𝐺, every universal 𝐺-set and every finite 𝐺-set
𝑆 the functor

(𝑃𝑆)
𝐺 ∶ (𝛾()[ ](𝑆+))

𝐺 ⟶ map𝐺(𝑆, 𝛾()[ ](1+))

is an equivalence of categories. The 𝐺-category 𝛾()[ ](𝑆+) is a full 𝐺-subcategory of
map(𝑆,[ ]), and the functor

𝑃𝑆 ∶ 𝛾()[ ](𝑆+) ⟶ map(𝑆, 𝛾()[ ](1+)) = map(𝑆,[ ])

is the inclusion, and hence fully faithful. For all 𝐺-fixed objects 𝑥 and 𝑦 in 𝛾()[ ](𝑆+), the map

𝑃𝑆 ∶ 𝛾()[ ](𝑆+)(𝑥, 𝑦) ⟶ map(𝑆,[ ])(𝑃𝑆(𝑥), 𝑃𝑆(𝑦))

of morphism sets is thus a 𝐺-equivariant bijection. So, the restriction to 𝐺-fixed points

(𝑃𝑆)
𝐺 ∶ 𝛾()[ ](𝑆+)

𝐺(𝑥, 𝑦) ⟶ map𝐺(𝑆,[ ])(𝑃𝑆(𝑥), 𝑃𝑆(𝑦))

is also a bijection. This means that the 𝐺-fixed functor (𝑃𝑆)𝐺 is also fully faithful.
It remains to show that the functor (𝑃𝑆)𝐺 is dense, that is, every object in the target category

is isomorphic to an object in the image of (𝑃𝑆)𝐺 . Since  is a universal 𝐺-set, we can choose a
𝐺-equivariant injection 𝜓 ∶ 𝑆 × ⟶  . For 𝑠 ∈ 𝑆 we define 𝜓𝑠 ∶  ⟶  by

𝜓𝑠(𝑗) = 𝜓(𝑠, 𝑗) .

Now we let (𝑥𝑠)𝑠∈𝑆 be a 𝐺-fixed object in the product category map(𝑆,[ ]), that is, such that
𝑙g∗ (𝑥𝑠) = 𝑥g𝑠 for all (g , 𝑠) ∈ 𝐺 × 𝑆, where 𝑙g ∶  ⟶  is left multiplication by g . Since the
injections 𝜓𝑠 have disjoint images, the tuple

(𝜓𝑠∗(𝑥𝑠))𝑠∈𝑆 ∈ map(𝑆,[ ])

consists of objects with pairwise disjoint supports, so it belongs to the subcategory 𝛾()[ ](𝑆+).
The 𝐺-equivariance of 𝜓 translates into the relation 𝑙g ◦ 𝜓𝑠 = 𝜓g𝑠 ◦ 𝑙g for all (g , 𝑠) ∈ 𝐺 × 𝑆. So,
we have

𝑙g∗ ([𝜓
𝑠, 1]𝑥𝑠 ) = [𝑙g𝜓𝑠, 𝑙g ]𝑥𝑠 = [𝜓g𝑠𝑙g , 𝑙g ]𝑥𝑠 = [𝜓g𝑠, 1]𝑙

g
∗ (𝑥𝑠) = [𝜓g𝑠, 1]𝑥g𝑠 .

This means that the 𝑆-tuple of isomorphisms [𝜓𝑠, 1]𝑥𝑠 ∶ 𝑥𝑠 ⟶ 𝜓𝑠∗(𝑥𝑠) is 𝐺-fixed. So, the origi-
nal tuple (𝑥𝑠)𝑠∈𝑆 is isomorphic to the tuple (𝜓𝑠∗(𝑥𝑠))𝑠∈𝑆 in the 𝐺-fixed category (𝛾()[ ](𝑆+))

𝐺 .
This completes the proof that the functor (𝑃𝑆)𝐺 is essentially surjective on objects, and thus an
equivalence of categories. □

Now we come to the main construction of this paper.
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Definition 4.14. The global algebraic K-theory spectrum of a parsummable category  is the
symmetric spectrum

𝐊gl = 𝛾()⟨𝕊⟩ ,
as defined in Construction 3.3, associated with the Γ-parsummable category 𝛾().
Since the global algebraic K-theory spectrum is the central construction of this paper, we take

the time to expand the definition of 𝐊gl. The value of this symmetric spectrum at a non-empty
finite set 𝐴 is

(𝐊gl)(𝐴) = 𝛾()⟨𝕊⟩(𝐴) = |𝛾()[𝜔𝐴]|(𝑆𝐴) ,
the value of the Γ-Σ𝐴-space |𝛾()[𝜔𝐴]| on the 𝐴-sphere. The symmetric group Σ𝐴 acts diago-
nally, through the reparameterization action on 𝛾()[𝜔𝐴], and the action on 𝑆𝐴 by permuting
coordinates. The value at the empty set is

(𝐊gl)(∅) = 𝛾()⟨𝕊⟩(∅) = |supp=∅| ,
the realization of the full subcategory of  = 𝛾()(1+) of objects with empty support (also known
as the𝑀-fixed subcategory of ). The structure maps of the symmetric spectrum𝐊gl are defined
in Construction 3.3.
The following theorem records two properties of the global algebraic K-theory spectrum 𝐊gl

that are special cases of results from Section 3. As before, (𝐊gl)𝐺 denotes the underlying 𝐺-
symmetric spectrum of the symmetric spectrum 𝐊gl (that is, with 𝐺 acting trivially). The
𝐺-symmetric spectrum 𝛾()⟨𝜔𝐺, 𝕊⟩ and the morphisms of 𝐺-symmetric spectra
𝑎
𝛾()
𝐺

∶ (𝐊gl)𝐺 = (𝛾()⟨𝕊⟩)𝐺 ⟶ 𝛾()⟨𝜔𝐺, 𝕊⟩ and 𝑏
𝛾()
𝐺

∶ |𝛾()[𝜔𝐺]|(𝕊) ⟶ 𝛾()⟨𝜔𝐺, 𝕊⟩
were defined in Construction 3.13.

Theorem 4.15. Let  be a parsummable category.
(i) The global K-theory spectrum𝐊gl is globally connective and a restricted globalΩ-spectrum.
(ii) For every finite group 𝐺, the two morphisms of 𝐺-symmetric spectra

(𝐊gl)𝐺
𝑎
𝛾()
𝐺

::::::→ 𝛾()⟨𝜔𝐺, 𝕊⟩ 𝑏
𝛾()
𝐺

←::::: |𝛾()[𝜔𝐺]|(𝕊)
are 𝐺-stable equivalences.

Proof. The Γ-parsummable category 𝛾() is globally special by Theorem 4.13. The two claims are
thus special cases of Proposition 3.7 and Theorem 3.12, and Theorem 3.14, respectively, applied to
the globally special Γ--category 𝛾(). □

Algebraic K-theory usually takes equivalent categorical input data to equivalent homotopical
output. Our next theorem is a version of this principle for global algebraic K-theory. We call a
morphism of parsummable categories a global equivalence if the underlying morphism of -
categories is a global equivalence in the sense of Definition 2.26.
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Theorem 4.16. For every global equivalence of parsummable categories Φ ∶  ⟶ , the
morphism

𝐊glΦ ∶ 𝐊gl ⟶ 𝐊gl
is a global equivalence of symmetric spectra.

Proof. The Γ-parsummable categories 𝛾() and 𝛾() are globally special by Theorem 4.13. The
value of the morphism of Γ-parsummable categories 𝛾(Φ) ∶ 𝛾()⟶ 𝛾() at 1+ is the original
morphism Φ, and hence a global equivalence. Proposition 3.15 thus applies to the morphism
𝛾(Φ) ∶ 𝛾()⟶ 𝛾(), and yields the desired result. □

K-theory tends to take finite products of input data to products of spaces or spectra. The next
proposition proves a version of this principle in our context. The box product  ⊠ of two par-
summable categories is a full parsummable subcategory of the product  ×, and it comes with
distinguished morphisms

𝑖1 = (−, 0) ∶  ⟶  ⊠ and 𝑖2 = (0, −) ∶  ⟶  ⊠
that express  ⊠ as a coproduct in the category of parsummable categories, see Example 4.10.

Theorem 4.17. Let  and be parsummable categories. Then the morphisms

(𝐊gl) ∨ (𝐊gl)
(𝐊gl𝑖1)+(𝐊gl𝑖2)
:::::::::::::→ 𝐊gl( ⊠)
𝐊gl(incl)
::::::::→ 𝐊gl( ×) (𝐊gl𝑝1,𝐊gl𝑝2)

::::::::::::→ (𝐊gl) × (𝐊gl)
are global equivalences of symmetric spectra, where 𝑝1 ∶  ×⟶  and 𝑝2 ∶  ×⟶  are
the projections.

Proof. We start with the morphism (𝐊gl𝑝1,𝐊gl𝑝2) ∶ 𝐊gl( ×)⟶ (𝐊gl) × (𝐊gl). This
morphism factors as the composite

𝐊gl( ×) = 𝛾( ×)⟨𝕊⟩ (𝛾(𝑝1),𝛾(𝑝2))⟨𝕊⟩
::::::::::::::→ (𝛾() × 𝛾())⟨𝕊⟩
(𝑝1⟨𝕊⟩,𝑝2⟨𝕊⟩)
::::::::::::→ 𝛾()⟨𝕊⟩ × 𝛾()⟨𝕊⟩ = (𝐊gl) × (𝐊gl) .

The Γ-parsummable categories 𝛾(), 𝛾() and 𝛾( ×) are globally special by Theorem 4.13.
Global specialness is inherited by products, so the Γ-parsummable category 𝛾() × 𝛾() is also
globally special. The morphism of Γ-parsummable categories

(𝛾(𝑝1), 𝛾(𝑝2)) ∶ 𝛾( ×) ⟶ 𝛾() × 𝛾()
is the identity of 𝛾( ×)(1+) =  × = (𝛾() × 𝛾())(1+) at the object 1+. Proposition 3.15
thus applies to the morphism (𝛾(𝑝1), 𝛾(𝑝2)) and shows that the first morphism (𝛾(𝑝1), 𝛾(𝑝2))⟨𝕊⟩
is a global equivalence of symmetric spectra. The morphism (𝑝1⟨𝕊⟩, 𝑝2⟨𝕊⟩) is an isomorphism of
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symmetric spectra by Proposition 3.8. So, altogether this shows that the morphism
(𝐊gl𝑝1,𝐊gl𝑝2) ∶ 𝐊gl( ×)⟶ (𝐊gl) × (𝐊gl) is a global equivalence of symmetric spectra.
The inclusion ⊠⟶  × is amorphismof parsummable categories, and a global equiva-

lence by Theorem 2.33; so the inducedmorphism of global K-theory spectra is a global equivalence
by Theorem 4.16. The composite (𝐊gl) ∨ (𝐊gl)⟶ (𝐊gl) × (𝐊gl) is the canonicalmorphism
from the coproduct to the product of two symmetric spectra; it is a global equivalence by [15,
Proposition 4.6(3)]. This concludes the proof. □

The next theorem generalizes the additivity of global K-theory to infinitely many factors.

Example 4.18 (Infinite box products). The construction of the box product of parsummable cate-
gories directly generalizes to more than two factors. We let 𝐽 be an indexing set, possibly infinite,
and {𝑗}𝑗∈𝐽 a family of parsummable categories. The box product

⊠𝑗∈𝐽 𝑗 ⊆
∏
𝑗∈𝐽

𝑗

is the full subcategory of the product consisting of those objects (𝑥𝑗)𝑗∈𝐽 such that the supports
of the objects 𝑥𝑗 are pairwise disjoint, and moreover 𝑥𝑗 = 0 for almost all 𝑗 ∈ 𝐽. As for the box
product with two factors in Example 4.10, this subcategory is a parsummable category in its own
right, and it is a coproduct, in 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭, of the parsummable categories 𝑗 .
Theorem 4.19. Let 𝐽 be a set and let {𝑗}𝑗∈𝐽 be a family of parsummable categories. Then the
canonical morphism ⋁

𝑗∈𝐽
𝐊gl(𝑗) ⟶ 𝐊gl(⊠𝑗∈𝐽 𝑗)

is a global equivalence of symmetric spectra.

Proof. For finite indexing sets, the claim follows from Theorem 4.17 by induction over the car-
dinality. If the indexing set 𝐽 is infinite, we let 𝑠(𝐽) denote the filtered poset, under inclusion, of
finite subsets of 𝐽. The canonical morphism factors as the composite⋁

𝑗∈𝐽
𝐊gl(𝑗) ⟶ colim𝐾∈𝑠(𝐽) 𝐊gl(⊠𝑘∈𝐾 𝑘) ⟶ 𝐊gl(⊠𝑗∈𝐽 𝑗) .

The wedge over 𝐽 is the colimit of the finite wedges over 𝐾 ∈ 𝑠(𝐽), and filtered colimits of global
equivalences of symmetric spectra arising from simplicial sets are homotopical. For every 𝐾 ∈

𝑠(𝐽), the morphism
⋁
𝑘∈𝐾 𝐊gl(𝑘)⟶ 𝐊gl(⊠𝑘∈𝐾 𝑘) is a global equivalence, hence so is the first

map in the factorization.
For the second map we observe that for every finite set 𝐴, the map

colim𝐾∈𝑠(𝐽) |𝛾(⊠𝑘∈𝐾 𝑘)[𝜔𝐴]|(𝑆𝐴) ⟶ |𝛾(⊠𝑗∈𝐽 𝑗)[𝜔𝐴]|(𝑆𝐴)
is a homeomorphism, because all individual steps involved commute with filtered colimits. So,
the second morphism is even an isomorphism of symmetric spectra. □
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Remark 4.20 (Parsummable categories as global 𝐸∞-categories). As we indicate now, the structure
of a parsummable category on a category  is equivalent to an action of the injection operad,
a specific categorical operad whose category of unary operations is the monoidal category .
We will not use this perspective on parsummable categories, so we will be brief. In the simpler
context of sets (as opposed to categories), the analogous comparison is discussed in detail in [32,
appendix A]: TheoremA.13 of that paper provides an isomorphism of categories from the category
of algebras over the set-version of the injection operad to the category of commutative monoids,
under box product, in the category of tame 𝑀-sets. The present remark is about the analogous
statement one category level higher.
The injection operad  is an operad in the category of small categories with respect to cartesian

product; it contains the monoidal category as its category of unary operations. For 𝑚 ⩾ 0 we
define𝐦 = {1,… ,𝑚} and we let 𝐼(𝑚) denote the set of injective maps from the set𝐦× 𝜔 to the
set 𝜔 = {0, 1, 2, … }. The symmetric group Σ𝑚 acts on 𝐼(𝑚) by permuting the first coordinate in
𝐦× 𝜔. The collection of sets {𝐼(𝑚)}𝑚⩾0 becomes an operad via ‘disjoint union and composition’.
The functor

𝐸 ∶ 𝐬𝐞𝐭 ⟶ 𝐜𝐚𝐭

from sets to small categories is right adjoint to taking the set of objects; so 𝐸 preserves products
and hence it takes set operads to categorical operads. So, we obtain an operad  = {𝐸𝐼(𝑚)}𝑚⩾0 in
the category of small categories under cartesian product.
Nowwe sketchwhy parsummable categories ‘are’ algebras over the categorical operad . We let

 be a parsummable category and 𝜑 ∶ 𝐦 × 𝜔⟶ 𝜔 an injection. For 𝑖 = 1, … ,𝑚, the injections
𝜑𝑖 = 𝜑(𝑖, −) have disjoint images, so the functor

𝑚∏
𝑖=1

𝜑𝑖∗ ∶ 𝑚 ⟶ 𝑚

takes values in the full subcategory ⊠𝑚 of𝑚-tuples of disjointly supported objects. We can thus
define a functor 𝜑∗ ∶ 𝑚 ⟶  as the composite

𝑚
∏𝑚
𝑖=1 𝜑

𝑖
∗

:::::::→ ⊠𝑚 +
:::→  ,

where the second functor is the iterated sum functor. Given another injection 𝜓 ∶ 𝐦 × 𝜔⟶ 𝜔,
we define a natural isomorphism

[𝜓, 𝜑] ∶ 𝜑∗ ⟹ 𝜓∗

of functors 𝑚 ⟶  at a tuple (𝑥1, … , 𝑥𝑚) of objects as

[𝜓, 𝜑]𝑥1,…,𝑥𝑚 =

𝑚∑
𝑖=1

[𝜓𝑖, 𝜑𝑖]𝑥𝑖 ∶

𝑚∑
𝑖=1

𝜑𝑖∗(𝑥𝑖) ⟶

𝑚∑
𝑖=1

𝜓𝑖∗(𝑥𝑖) . (4.21)

We omit the verification that these data define an action of the category operad  on the category
. Clearly, for𝑚 = 1, the action of (1) coincides with the given action of the monoidal category
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. We claim without proof that for tame-categories, the process can be reversed, and leads to
an an isomorphism of categories between parsummable categories in the sense of Definition 4.1
and algebras over the injection operad  whose underlying-categories are tame. As we already
mentioned, the argument is similar to the proof of [32, TheoremA.13], but with categories instead
of sets.
We also justify why we think of the injection operad as a ‘global 𝐸∞-operad’. We let 𝐺 be a

finite group. Replacing the set 𝜔 by the universal 𝐺-set 𝜔𝐺 yields a categorical 𝐺-operad 𝐺 , that
is, an operad in the cartesian monoidal category of small 𝐺-categories. The 𝐺-category of 𝑚-ary
operations is 𝐺(𝑚) = 𝐸𝐼(𝐦 × 𝜔𝐺, 𝜔𝐺), where 𝐼(𝐦 × 𝜔𝐺, 𝜔𝐺) is the set of injections from 𝐦×

𝜔𝐺 to 𝜔𝐺 , with 𝐺-action by conjugation. A moment’s thought shows that 𝐺 is an 𝐸∞-operad
of 𝐺-categories in the sense of Guillou and May [12, Definition 3.11]; hence the nerve of every
𝐺-𝐺-category is an 𝐸∞-𝐺-space.
The connection to our present discussion is that every parsummable category  has an

underlying 𝐸∞-𝐺-category in the sense of [12, Definition 4.10], namely, the 𝐺-category [𝜔𝐺]
with a specific action of the categorical 𝐸∞-𝐺-operad 𝐺 arising from the parsummable struc-
ture. The formalism of Guillou and May assigns to the 𝐸∞-𝐺-category [𝜔𝐺] an orthogonal
𝐺-spectrum 𝕂𝐺([𝜔𝐺]), see [12, Definition 4.12]. It seems highly plausible that the Guillou-May
𝐺-spectrum 𝕂𝐺([𝜔𝐺]) is equivalent to the equivariant K-theory 𝐺-spectrum obtained by the
Segal–Shimakawa delooping machine from the Γ-𝐺-category that extends [𝜔𝐺]; however, I have
not attempted to formally prove this. Assuming this equivalence, our Theorem 4.15 (ii) shows
that the underlying genuine 𝐺-homotopy type of 𝐊gl agrees with the 𝐺-homotopy type of the
𝐸∞-𝐺-category [𝜔𝐺] as defined by Guillou and May.
In the final part of this section, we identify the 𝐺-fixed point spectrum of the global homo-

topy type of𝐊gl, for 𝐺 a finite group: loosely speaking, global K-theory ‘commutes with 𝐺-fixed
points’. More precisely, the𝐺-fixed category 𝐹𝐺 and a parsummable category  is naturally again
a parsummable category. We show in Corollary 4.28 that the 𝐺-fixed point spectrum 𝐹𝐺(𝐊gl)
receives a natural equivalence from the K-theory spectrum of 𝐹𝐺.
Construction 4.22. Given a parsummable category  and a finite group 𝐺, we define a new
parsummable category 𝐹𝐺, the𝐺-fixed point parsummable category, by extending Construction
2.21 from-categories to parsummable categories.We recall that the underlying category is given
by

𝐹𝐺 = [𝜔𝐺]𝐺 ,
the𝐺-fixed category of the𝐺-category[𝜔𝐺], where𝜔𝐺 is the𝐺-set ofmaps from𝐺 to𝜔. Tameness
is a property of the underlying-category, so Proposition 2.22 shows that 𝐹𝐺 is tame because
 is.
We record how the passage to𝐺-fixed categories interacts with the box product. So, we consider

two tame -categories  and . Since  ⊠ is a full subcategory of  ×, the fixed category
𝐹𝐺( ⊠) is a full subcategory of 𝐹𝐺( ×) ≅ (𝐹𝐺) × (𝐹𝐺), and so is (𝐹𝐺) ⊠ (𝐹𝐺). As
we now explain, there is a subtle difference in the support conditions that define 𝐹𝐺( ⊠)
and (𝐹𝐺) ⊠ (𝐹𝐺). Indeed, the support condition that defines the subcategory [𝜔𝐺] ⊠[𝜔𝐺]
refers to support as a subset of 𝜔, and it arises from the 𝑀-action through the action on 𝜔𝐺 by
postcomposition. The support condition that singles out the subcategory ( ⊠)[𝜔𝐺] refers to
support as a subset of 𝜔𝐺 , and uses the action of the monoid 𝑀𝐺 = 𝐼(𝜔𝐺, 𝜔𝐺). The connection
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between these kinds of support is as follows: for a finite subset 𝑇 of 𝜔𝐺 , we set

𝐼(𝑇) =
⋃
𝛼∈𝑇

image(𝛼) ,

which is a finite subset of 𝜔. If 𝑆, 𝑇 ⊂ 𝜔𝐺 are such that 𝐼(𝑆) and 𝐼(𝑇) are disjoint subsets of 𝜔,
then 𝑆 and 𝑇 must in particular be disjoint. However, the converse implication need not hold in
general. Moreover, if (𝑐, 𝑑) is an object of [𝜔𝐺] ×[𝜔𝐺] with supp(𝑐) ∩ supp(𝑑) = ∅ as subsets
of 𝜔𝐺 , but 𝐼(supp(𝑐)) ∩ 𝐼(supp(𝑑)) ≠ ∅ as subsets of 𝜔, then (𝑐, 𝑑) belongs to ( ⊠)[𝜔𝐺], but not
to [𝜔𝐺] ⊠[𝜔𝐺]. In summary, the category [𝜔𝐺] ⊠[𝜔𝐺] is contained in ( ⊠)[𝜔𝐺], but it
is typically strictly smaller. We write

𝜖 ∶ [𝜔𝐺] ⊠[𝜔𝐺] ⟶ ( ⊠)[𝜔𝐺] (4.23)

for the fully faithful inclusion. Restricting to 𝐺-fixed subcategories provides another fully faithful
inclusion

𝜖𝐺 ∶ (𝐹𝐺) ⊠ (𝐹𝐺) = ([𝜔𝐺] ⊠[𝜔𝐺])𝐺 ⟶ (( ⊠)[𝜔𝐺])𝐺 = 𝐹𝐺( ⊠) . (4.24)

Proposition 4.25. Let  and be tame-categories. Then for every finite group 𝐺, the morphism
𝜖𝐺 ∶ (𝐹𝐺) ⊠ (𝐹𝐺)⟶ 𝐹𝐺( ⊠) is a global equivalence of-categories.

Proof. The composite

(𝐹𝐺) ⊠ (𝐹𝐺) 𝜖𝐺

:::→ 𝐹𝐺( ⊠) 𝐹𝐺(incl)
:::::::→ 𝐹𝐺( ×) (𝐹𝐺𝑝1,𝐹

𝐺𝑝2)
:::::::::::→ (𝐹𝐺) × (𝐹𝐺)

is the inclusion, and hence a global equivalence by Theorem 2.33. Reparameterization by 𝜔𝐺 and
taking 𝐺-fixed points commute with products, so the third functor (𝐹𝐺𝑝1, 𝐹𝐺𝑝2) is an isomor-
phism of-categories. The inclusion  ⊠⟶  × is a global equivalence by Theorem 2.33,
so the secondmorphism𝐹𝐺(incl) is a global equivalence by Proposition 2.31. Since the second and
third morphism, as well as the composite, are global equivalences, so is the morphism 𝜖𝐺 . □

Now we let  be a parsummable category and 𝐺 a finite group. We can make the 𝐺-fixed cat-
egory 𝐹𝐺 into a parsummable category by endowing it with the structure morphism defined as
the composite

(𝐹𝐺) ⊠ (𝐹𝐺) 𝜖𝐺

:::→ 𝐹𝐺( ⊠ ) 𝐹𝐺(+)
::::::→ 𝐹𝐺() .

We will now compare the global K-theory of the 𝐺-fixed point parsummable category 𝐹𝐺 to
the 𝐺-fixed point spectrum of the global K-theory of , via two global equivalences of symmetric
spectra

𝐊gl(𝐹
𝐺) = 𝛾(𝐹𝐺())⟨𝕊⟩ 𝜆𝐺 ⟨𝕊⟩

:::::→ 𝐹𝐺(𝛾())⟨𝕊⟩ 𝜓𝐺
𝛾()

::::::→ 𝐹𝐺(𝛾()⟨𝕊⟩) = 𝐹𝐺(𝐊gl) .



1380 SCHWEDE

The second morphism is a special case of the one analyzed in Theorem 3.20, for the globally spe-
cial Γ-parsummable category 𝛾(). The morphism 𝜆𝐺 ⟨𝕊⟩ arises from a preferred morphism of
Γ-parsummable categories 𝜆𝐺 ∶ 𝛾(𝐹𝐺)⟶ 𝐹𝐺(𝛾()) that we define next.
Construction 4.26. We let  be a parsummable category and𝐺 a finite group. Applying the func-
tor 𝐹𝐺 ∶ 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 ⟶ 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 objectwise to the Γ-parsummable category 𝛾() yields
a new Γ-parsummable category 𝐹𝐺(𝛾()). There is then a unique morphism of Γ-parsummable
categories

𝜆𝐺 ∶ 𝛾(𝐹𝐺) ⟶ 𝐹𝐺(𝛾())
such that 𝜆𝐺 (1+) ∶ 𝛾(𝐹𝐺)(1+) = 𝐹𝐺 ⟶𝐹𝐺 = 𝐹𝐺(𝛾())(1+) is the identity. The morphism

𝜆𝐺 (𝑛+) ∶ (𝐹𝐺)⊠𝑛 ⟶ 𝐹𝐺(⊠𝑛)
is the iteration of the morphism (4.24); equivalently 𝜆𝐺 (𝑛+) is the unique morphism such that
𝜆𝐺 (𝑛+) ◦ 𝑖𝑘 = 𝐹𝐺(𝑖𝑘) ∶ 𝐹

𝐺 ⟶𝐹𝐺(⊠𝑛) for all 1 ⩽ 𝑘 ⩽ 𝑛.
Theorem 4.27. For every parsummable category  and every finite group 𝐺, the morphism of
symmetric spectra

𝜆𝐺 ⟨𝕊⟩ ∶ 𝐊gl(𝐹
𝐺) = 𝛾(𝐹𝐺)⟨𝕊⟩ ⟶ 𝐹𝐺(𝛾())⟨𝕊⟩

is a global equivalence.

Proof. The Γ-parsummable category 𝛾(𝐹𝐺) is globally special by Theorem 4.13. The Γ-
parsummable category 𝐹𝐺(𝛾()) is globally special by Proposition 3.16. The morphism 𝜆𝐺 (1+)
is the identity of

𝛾(𝐹𝐺)(1+) = 𝐹𝐺 = 𝐹𝐺(𝛾())(1+) ;
so 𝜆𝐺 (1+) is in particular a global equivalence. Proposition 3.15 thus applies to the morphism
𝜆𝐺 ∶ 𝛾(𝐹𝐺)⟶ 𝐹𝐺(𝛾()), and yields the desired result. □

For every parsummable category , the Γ-parsummable category 𝛾() is globally special
by Theorem 4.13. So, for every finite group 𝐺, the morphism of symmetric spectra 𝜓𝐺

𝛾() ∶
𝐊gl(𝐹

𝐺) ⟶ 𝐹𝐺(𝛾()⟨𝕊⟩) = 𝐹𝐺(𝐊gl) is a global equivalence by Theorem 3.20. In combination
with Theorem 4.27, this yields the following.

Corollary 4.28. For every parsummable category  and every finite group 𝐺, the morphism of
symmetric spectra

𝜓𝐺
𝛾() ◦ 𝜆𝐺 ⟨𝕊⟩ ∶ 𝐊gl(𝐹

𝐺) ⟶ 𝐹𝐺(𝐊gl)
is a global equivalence.
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Example 4.29. In Example 4.4 we discussed the discrete parsummable category associated with
an abelian group 𝐴. The Γ-category 𝛾(𝐴) is discrete and coincides with the usual construction of
a Γ-set from an abelian group, compare [35, p. 293]; the-action on 𝐴 and on 𝛾(𝐴) is trivial. So,
the associated symmetric spectrum

𝐊gl𝐴 = 𝛾(𝐴)⟨𝕊⟩ = 𝐻𝐴

specializes to the standard construction of a symmetric Eilenberg-Mac Lane spectrum (com-
pare [18, Example 1.2.5]): the 𝑛th level is

(𝐊gl𝐴)𝑛 = 𝐴[𝑆𝑛] ,

the reduced 𝐴-linearization of the 𝑛-sphere.
Corollary 4.28 lets us identify the 𝐺-fixed point spectrum 𝐹𝐺(𝐻𝐴) as the K-theory spectrum

associated with the parsummable category 𝐹𝐺𝐴 = 𝐴[𝜔𝐺]𝐺 . Since the -action on 𝐴 is trivial,
the 𝐺-action on 𝐴[𝜔𝐺] is trivial as well, so

𝐹𝐺𝐴 = 𝐴[𝜔𝐺]𝐺 = 𝐴[𝜔𝐺] = 𝐴 .

This equality is as parsummable categories, so the 𝐺-fixed point spectrum 𝐹𝐺(𝐻𝐴) is also an
Eilenberg–Mac Lane spectrum for the group 𝐴, independent of 𝐺. We conclude that the global
homotopy type of the global Ω-spectrum 𝐻𝐴 is that of the Eilenberg–Mac Lane spectrum of the
constant global functor with value 𝐴.

Remark 4.30 (Parsummable categories and symmetric monoidal 𝐺-categories). The above fixed
point construction for parsummable categories is underlying a slightly more refined structure.
Indeed, for a parsummable category  and a finite group 𝐺, the category [𝜔𝐺] obtained by repa-
rameterization is naturally a 𝐺-parsummable category, that is, a parsummable category equipped
with a strict 𝐺-action through morphisms of parsummable categories. More concretely, the 𝐺-
action and the -action on [𝜔𝐺] commute with each other, the distinguished zero object of
[𝜔𝐺] is 𝐺-fixed, and the sum functor

[𝜔𝐺] ⊠ [𝜔𝐺] 𝜖
::→ ( ⊠ )[𝜔𝐺] +[𝜔𝐺]

::::::→ [𝜔𝐺]
is 𝐺-equivariant. The 𝐺-fixed subcategory of every 𝐺-parsummable category is naturally a
parsummable category, and this procedure turns [𝜔𝐺] into 𝐹𝐺 = [𝜔𝐺]𝐺 .
Since 𝐺-parsummable categories are just 𝐺-objects in the category of parsummable categories,

every functor defined on 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 takes 𝐺-parsummable categories to 𝐺-objects in the target
category. In Proposition 5.6 we discuss a functor

𝜑∗ ∶ 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 ⟶ SymMonCatstrict

that turns parsummable categories into symmetricmonoidal categories with the same underlying
category, andmorphisms of parsummable categories into strict symmetric monoidal functors. So,
𝜑∗ extends to a functor from 𝐺-parsummable categories to symmetric monoidal 𝐺-categories. In
particular, this construction enhances the 𝐺-category [𝜔𝐺] to a symmetric monoidal 𝐺-category
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𝜑∗([𝜔𝐺]). Shimakawa [37] defines a𝐺-spectrum𝐊𝐺 for every symmetric monoidal𝐺-category
. I expect that for every parsummable category , the underlying genuine 𝐺-homotopy type of
𝐊gl agrees with the 𝐺-homotopy type obtained by applying Shimakawa’s construction to the
symmetric monoidal 𝐺-category 𝜑∗([𝜔𝐺]). Our Theorem 5.14 verifies that this is indeed the case
when the group 𝐺 is trivial, and moreover, the two constructions have equivalent fixed point
spectra for all subgroups of 𝐺. A strategy to compare (𝐊gl)𝐺 to 𝐊𝐺(𝜑

∗([𝜔𝐺])) could be to first
compare the special Γ-𝐺-category 𝐵(𝜑∗([𝜔𝐺])) used by Shimakawa in his equivariant K-theory
construction to the special Γ-𝐺-category 𝛾()[𝜔𝐺], and then exploit our Theorem 4.15(ii).

5 PARSUMMABLE CATEGORIES VERSUS SYMMETRIC
MONOIDAL CATEGORIES

In this section, we show that parsummable categories are very closely related to symmetric
monoidal categories, in a way that links the underlying non-equivariant homotopy type of our
global algebraic K-theory spectrum to the traditional K-theory spectrum of a symmetric monoidal
category. As we explain in Proposition 5.6, every injection 𝜑 ∶ {1, 2} × 𝜔⟶ 𝜔 gives rise to a
symmetric monoidal structure on the underlying category of a parsummable category . While
the construction involves a choice, the resulting symmetric monoidal structure is fairly canoni-
cal: different choices of injections lead to strongly equivalent structures, and the choices can be
parameterized by a contractible category.
Armedwith this construction,we performan important reality check.We show inTheorem5.14

that the symmetric spectrum 𝐊gl is non-equivariantly stably equivalent to the K-theory spec-
trum of the symmetric monoidal category 𝜑∗(). In other words, the underlying non-equivariant
homotopy type of𝐊gl is ‘the usual K-theory’, that is, the canonical infinite delooping of the group
completion of the classifying space of 𝜑∗().
Construction 5.1. Let  be a parsummable category and let 𝜑 ∶ 𝐦 × 𝜔⟶ 𝜔 be an injection,
for some𝑚 ⩾ 0. We define a functor

𝜑∗ ∶ 𝑚 ⟶ 
on objects and morphisms by

𝜑∗(𝑓1, … , 𝑓𝑚) =

𝑚∑
𝑖=1

𝜑𝑖∗(𝑓𝑖) , (5.2)

where 𝜑𝑖 = 𝜑(𝑖, −) ∶ 𝜔⟶ 𝜔. This definition makes sense because the injections 𝜑1, … , 𝜑𝑚 have
pairwise disjoint images, so the morphism (𝜑1∗(𝑓1), … , 𝜑

𝑚
∗ (𝑓𝑚)) lies in the full subcategory ⊠𝑚

of 𝑚. If 𝜓 ∶ 𝐦 × 𝜔⟶ 𝜔 is another injection, then a natural isomorphism [𝜓, 𝜑] ∶ 𝜑∗ ⟹ 𝜓∗
was defined in (4.21).

The next proposition says that the natural transformation [𝜓, 𝜑] ∶ 𝜑∗ ⟹ 𝜓∗ is distinguished
by enjoying an extra layer of functoriality, namely by its additional naturality for strict morphisms
of parsummable categories.
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Definition 5.3. Let 𝜑, 𝜓 ∶ 𝐦 × 𝜔⟶ 𝜔 be injections, for some 𝑚 ⩾ 0. A universally natu-
ral transformation from 𝜑 to 𝜓 consists of natural transformations 𝛼 ∶ 𝜑∗ ⟶ 𝜓

∗ of functors
𝑚 ⟶ , for every parsummable category , with the following property: for every morphism
of parsummable categories 𝐹 ∶ ⟶  the relation

𝛼 ◦ 𝐹𝑚 = 𝐹 ◦ 𝛼

holds as natural transformations from the functor 𝜑∗ ◦ 𝐹𝑚 = 𝐹 ◦ 𝜑∗ to the functor 𝜓
∗ ◦ 𝐹𝑚 =

𝐹 ◦ 𝜓
∗ .

The following proposition will be used several times to establish equalities of certain natural
transformations.

Proposition 5.4. For every𝑚 ⩾ 0 and every pair of injections𝜑, 𝜓 ∶ 𝐦 × 𝜔⟶ 𝜔, there is a unique
universally natural transformation from 𝜑 to 𝜓, namely [𝜓, 𝜑] as defined in (4.21).

Proof. We only have to show the uniqueness, for which we use a representability argument. We
let 𝐴 be a finite subset of 𝜔, and we write 𝐴 = 𝐸𝐼(𝐴, 𝜔) for the chaotic category with object set
𝐼(𝐴, 𝜔), the set of injections from𝐴 to𝜔; themonoidal category acts on 𝐴 by postcomposition.
Every injection 𝐴⟶ 𝜔 is supported on its image, so the-category 𝐴 is tame.
We let 𝜄𝐴 ∶ 𝐴⟶ 𝜔 denote the inclusion, which is an object of 𝐴; then for every-category

, evaluation at 𝜄𝐴 is a bijection

 𝐜𝐚𝐭(𝐴,) ≅
:::→ ⩽𝐴 = {𝑥 ∈ ob() ∶ supp(𝑥) ⊆ 𝐴} .

In other words: the -category 𝐴 represents the functor of taking the set of objects that are
supported on 𝐴.
Now we consider a parsummable category  and an 𝑚-tuple (𝑥1, … , 𝑥𝑚) of objects of .

We choose finite subsets 𝐴1,… ,𝐴𝑚 of 𝜔 such that 𝑥𝑖 is supported on 𝐴𝑖 . The category of
tame -categories has coproducts, given by disjoint unions. So, there is unique morphism of
-categories

�̄� ∶ 𝐴1 ⨿⋯ ⨿ 𝐴𝑚 ⟶ 
such that �̄�(𝜄𝑗) = 𝑥𝑗 for all 𝑗 = 1,… ,𝑚, where 𝜄𝑗 ∶ 𝐴𝑗 ⟶ 𝜔 is the inclusion, sitting in the 𝑗th
summand of the disjoint union. We let

𝑥♯ ∶ ℙ[𝐴1, … ,𝐴𝑚] = ℙ(𝐴1 ⨿⋯ ⨿ 𝐴𝑚) ⟶ 
be the unique extension of �̄� to a morphism of parsummable categories, where the source is the
free parsummable category generated by 𝐴1 ⨿⋯ ⨿ 𝐴𝑚 , as discussed in Example 4.6.
We claim that there is a unique morphism in the category ℙ[𝐴1, … ,𝐴𝑚] from the object

𝜑∗(𝜄1, … , 𝜄𝑚) to the object 𝜓∗(𝜄1, … , 𝜄𝑚), namely the morphism [𝜓, 𝜑]𝜄1,…,𝜄𝑚 . Indeed, the objects
𝜑∗(𝜄1, … , 𝜄𝑚) and 𝜓∗(𝜄1, … , 𝜄𝑚) belong to the homogeneous summand of the free parsummable cat-
egory of degree 𝑚. Since the box product of tame-categories distributes over disjoint unions,
the homogeneous degree 𝑚 summand also breaks up as a disjoint union, and 𝜑∗(𝜄1, … , 𝜄𝑚) and
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𝜓∗(𝜄1, … , 𝜄𝑚) lie in the summand

(Σ𝑚 × (𝐴1 ⊠⋯⊠ 𝐴𝑚))∕Σ𝑚 = 𝐴1 ⊠⋯⊠ 𝐴𝑚 .
This particular summand of ℙ[𝐴1, … ,𝐴𝑚] is a chaotic category, which proves the claim.
Nowwe let𝛼 = {𝛼 ∶ 𝜑∗ ⟹ 𝜓∗} be a universally natural transformation. As explained above,

for every 𝑚-tuple (𝑥1, … , 𝑥𝑚) of objects of a parsummable category , there is a morphism of
parsummable categories 𝑥♯ ∶ ℙ[𝐴1, … ,𝐴𝑚]⟶  for suitable finite subsets 𝐴1,… ,𝐴𝑚 of 𝜔, sat-
isfying 𝑥♯(𝜄𝑗) = 𝑥𝑗 for all 𝑗 = 1,… ,𝑚. By the uniqueness property of the previous paragraph, we
must have 𝛼ℙ[𝐴1,…,𝐴𝑚]𝜄1,…,𝜄𝑚

= [𝜓, 𝜑]𝜄1,…,𝜄𝑚 . The universal naturality of 𝛼 implies that

𝛼 ◦ 𝑥𝑚
♯
= 𝑥♯ ◦ 𝛼

ℙ[𝐴1,…,𝐴𝑚] ∶ 𝑥♯ ◦ 𝜑∗ ⟹ 𝑥♯ ◦ 𝜓∗ ∶ ℙ[𝐴1, … ,𝐴𝑚]
𝑚 ⟶  .

In particular,

𝛼𝑥1,…,𝑥𝑚 = 𝛼
𝑥♯(𝜄1),…,𝑥♯(𝜄𝑚)

= (𝛼 ◦ 𝑥𝑚
♯
)𝜄1,…,𝜄𝑚

= (𝑥♯ ◦ 𝛼
ℙ[𝐴1,…,𝐴𝑚])𝜄1,…,𝜄𝑚 = 𝑥♯(𝛼

ℙ[𝐴1,…,𝐴𝑚]
𝜄1,…,𝜄𝑚

)

= 𝑥♯([𝜓, 𝜑]
𝜄1,…,𝜄𝑚 ) = [𝜓, 𝜑]𝑥♯(𝜄1),…,𝑥♯(𝜄𝑚) = [𝜓, 𝜑]𝑥1,…,𝑥𝑚 .

This completes the proof that the given universal natural transformation 𝛼 coincides with
[𝜓, 𝜑]. □

Construction 5.5 (From parsummable categories to symmetric monoidal categories). We con-
struct a symmetric monoidal category from a parsummable category. The construction depends
on a choice of injection 𝜑 ∶ 𝟐 × 𝜔⟶ 𝜔; for different choices of 𝜑, these structures are different,
but equivalent, as we explain below.We introduce associativity, symmetry and unit isomorphisms
that enhance the functor

𝜑∗ ∶  ×  ⟶ 
defined in (5.2) to a symmetric monoidal structure with unit object 0, the distinguished object of
. The associativity isomorphism for three objects 𝑥, 𝑦 and 𝑧 of  is given by

𝛼𝑥,𝑦,𝑧 = [𝜑(1 + 𝜑), 𝜑(𝜑 + 1)]𝑥,𝑦,𝑧 ∶ 𝜑∗(𝜑∗(𝑥, 𝑦), 𝑧)
≅
:::→ 𝜑∗(𝑥, 𝜑∗(𝑦, 𝑧)) ,

an instance of the natural isomorphism (4.21).
We let 𝑡 = (1 2) × 𝜔 be the involution of 𝟐 × 𝜔 that interchanges 1 and 2 in the first factor. The

symmetry isomorphism for two objects 𝑥 and 𝑦 of  is then defined as
𝜏𝑥,𝑦 = [𝜑𝑡, 𝜑]𝑥,𝑦 ∶ 𝜑∗(𝑥, 𝑦)

≅
:::→ (𝜑𝑡)∗(𝑥, 𝑦) = 𝜑∗(𝑦, 𝑥) .

Finally, the right unit isomorphism for 𝑥 is given by

[𝜑1, 1]𝑥 ∶ 𝑥
≅
:::→ 𝜑1∗(𝑥) = 𝜑∗(𝑥, 0) ,

where 𝜑1 = 𝜑(1, −).
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Proposition 5.4 shows that in fact, 𝛼 is the only universally natural transformation from
𝜑(𝜑 + 1) to 𝜑(1 + 𝜑), that 𝜏 is the only universally natural transformation from 𝜑 to 𝜑𝑡, and that
[𝜑(1, −), 1] is the only universally natural transformation from the identity of 𝜔 to 𝜑(1, −). As we
show in the proof of the next proposition, the uniqueness of universally natural transformations
will also take care of the coherence constraints of a symmetric monoidal structure.

Proposition 5.6. Let  be a parsummable category.
(i) For every injection 𝜑 ∶ 𝟐 × 𝜔⟶ 𝜔, the functor 𝜑∗ and the coherence isomorphisms defined

above make the underlying category of  into a symmetric monoidal category with unit object 0.
We denote this symmetric monoidal category by 𝜑∗().

(ii) For all injections 𝜑, 𝜓 ∶ 𝟐 × 𝜔⟶ 𝜔, the natural isomorphism [𝜓, 𝜑] ∶ 𝜑∗ ⟹ 𝜓∗ makes the
identity functor of  into a strong symmetric monoidal functor from the symmetric monoidal
category 𝜑∗() to the symmetric monoidal category 𝜓∗().

Proof.

(i) We need to verify the commutativity of various coherence diagrams. Given four objects𝑤, 𝑥, 𝑦
and 𝑧 of , we consider the following pentagon:

As the objects and the parsummable category vary, both composites around the pentagon are
universally natural transformations from 𝜑(𝜑 + 1)(𝜑 + 1 + 1) to 𝜑(1 + 𝜑)(1 + 1 + 𝜑); so they
coincide by Proposition 5.4.
The symmetry condition is the relation 𝜏𝑦,𝑥 = 𝜏−1𝑥,𝑦 for all objects 𝑥 and 𝑦 of . Again, for

varying 𝑥, 𝑦 and , these two morphisms are universally natural transformations with the
same source and target, so they agree by Proposition 5.4.
Coherence between associativity and symmetry isomorphisms means that the two

composites from the top to the bottom of the hexagon
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must be equal; the composite once around the entire hexagon is a universally natural self-
transformation of 𝜑(𝜑 + 1), so it must be the identity by Proposition 5.4.
The coherence condition for the unit morphisms requires the following square to

commute:

Both composites are universally natural transformations from 𝜑 to 𝜑(1 + 𝜑(2, −)), so they
coincide by Proposition 5.4.

(ii) We have to show the compatibility of [𝜓, 𝜑] with the unit, associativity and symmetry iso-
morphism of the two symmetric monoidal structures. For the symmetry isomorphisms this
means the commutativity of the diagram

for all objects𝑥 and 𝑦 of. As the objects and the parsummable category vary, both composites
around the square are universally natural transformations from 𝜑 to 𝜓𝑡; so they coincide by
Proposition 5.4. At this point, the reader probably got the message that all relevant coherence
diagrams commute by uniqueness of universal natural transformations; this principle also
yields the compatibility of [𝜓, 𝜑] with the unit and associativity isomorphism, and we omit
the remaining details. □

Remark 5.7. Proposition 5.6 can be interpreted as saying thatwhile the passage fromparsummable
categories to symmetric monoidal categories involves a choice, the choices live in a contractible
category. Let us write SymMonCatstrong for the category of small symmetric monoidal categories
and strong symmetric monoidal functors. Then Construction 5.5 provides a functor

𝐸𝐼(𝟐 × 𝜔, 𝜔) × 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 ⟶ SymMonCatstrong (5.8)

that sends the object (𝜑,) on the left to the symmetricmonoidal category𝜑∗(). Since the chaotic
category 𝐸𝐼(𝟐 × 𝜔, 𝜔) is a contractible groupoid, this is almost as a good as an honest functor from
parsummable categories to symmetric monoidal categories.
In one of the two input variables, the construction is in fact a little better: for every injection 𝜑 ∶

𝟐 × 𝜔⟶ 𝜔 and every morphism of parsummable categories Φ ∶  ⟶ , the induced functor
𝜑∗(Φ) ∶ 𝜑∗()⟶ 𝜑∗() is even strictly symmetric monoidal (as opposed to strongly monoidal).
On the other hand, one can generalize the notion of morphism of parsummable categories to a
lax version that only commutes with the -action, the zero object and the sum functor up to
specified and suitably coherent natural isomorphisms. The functor 𝜑∗ can then be extended to
turn such lax morphisms into strong symmetric monoidal functors.
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Also, the functor (5.8) can be slightly extended to a strict 2-functor between 2-categories, where
𝐸𝐼(𝟐 × 𝜔, 𝜔) has only identity 2-morphisms, SymMonCatstrong has the monoidal transformations
as 2-morphisms, and the 2-morphisms of parsummable categories are those natural transforma-
tions 𝛼 ∶ Φ⟹ Ψ between morphisms of parsummable categories that preserve the-actions,
the zero objects and the sum functors in the following sense: the equality

𝛼 ⋄ act = act ◦ ( × 𝛼) ∶ Φ ◦ act = act ◦ ( × Φ) ⟹ Ψ ◦ act = act ◦ ( × Ψ)

holds as natural transformations between functors  ×  ⟶ ; the morphism 𝛼0 ∶ Φ(0)⟶

Ψ(0) is the identity of Φ(0) = Ψ(0) = 0; and the relation

𝛼 ⋄ + = + ◦ (𝛼 × 𝛼) ∶ Φ ◦ + = + ◦ (Φ × Φ) ⟹ Ψ ◦ + = + ◦ (Ψ × Ψ)

holds as natural transformations between functors  ×  ⟶ .
Construction 5.9 (Comparing additions). We now have two essentially different ways to ‘add’
objects and morphisms in a parsummable category .
∙ By definition, a parsummable category comes with a sum operation for pairs of disjointly sup-
ported objects and morphisms of . This operation is only partially defined; but whenever it is
defined, the sum operation is strictly unital, associative and commutative.

∙ Every injection 𝜑 ∶ 𝟐 × 𝜔⟶ 𝜔 gives rise to a symmetric monoidal structure on the category 
withmonoidal product𝜑∗ ∶  ×  ⟶ , compare Proposition 5.6. This kind of sumoperations
is everywhere defined, but is only unital, associative and commutative up to specific natural
isomorphisms arising from the parsummable structure.

We will now argue that whenever both kinds of sum operations are defined, they are coherently
isomorphic in a specific way, also arising from the parsummable structure. This fact is crucial
for showing that the underlying non-equivariant homotopy type of the global K-theory spectrum
𝐊gl is stably equivalent to the K-theory spectrum of the symmetric monoidal category 𝜑∗(),
compare Theorem 5.14. Given two disjointly supported objects 𝑥 and 𝑦 of , we define a preferred
isomorphism by

𝜑♯𝑥,𝑦 = [1, 𝜑1]𝑥 + [1, 𝜑2]𝑦 ∶ 𝜑∗(𝑥, 𝑦) = 𝜑1∗(𝑥) + 𝜑
2
∗(𝑦) ⟶ 𝑥 + 𝑦 . (5.10)

Proposition 5.11. Let 𝑥, 𝑦 and 𝑧 be objects of a parsummable category  with pairwise disjoint
supports.

(i) The morphism

𝜑♯
𝑥,0

∶ 𝜑1∗(𝑥) = 𝜑∗(𝑥, 0) ⟶ 𝑥 + 0 = 𝑥

is the isomorphism [1, 𝜑1]𝑥 .
(ii) The composite

𝜑∗(𝑦, 𝑥)
𝜏𝑦,𝑥
:::→ 𝜑∗(𝑥, 𝑦)

𝜑♯𝑥,𝑦
::::→ 𝑥 + 𝑦

agrees with 𝜑♯𝑦,𝑥 ∶ 𝜑∗(𝑦, 𝑥)⟶ 𝑦 + 𝑥.
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(iii) The following diagram commutes:

(iv) Let 𝑓 ∶ 𝑥⟶ 𝑥′ and g ∶ 𝑦⟶ 𝑦′ be morphisms such that the supports of 𝑥 and 𝑦 are disjoint,
and the supports of 𝑥′ and 𝑦′ are disjoint. Then the following square commutes:

Proof. We deduce all the coherence properties from the uniqueness of universally natural trans-
formations (see Proposition 5.4). We spell out the argument in detail in themost complicated case
of the associativity relation (iii), and we leave the other arguments to the reader.
The functors and natural transformations occurring in the diagram of part (iii) are not defined

on the category 3, but rather on its full subcategory ⊠3; so we cannot directly apply unique-
ness of universally natural transformations. The trick is to apply Proposition 5.4 to injections that
depend on the given triple of disjointly supported objects, as follows. Given objects 𝑥, 𝑦 and 𝑧 of 
with pairwise disjoint supports, we choose an injection 𝜇 ∶ 𝟑 × 𝜔⟶ 𝜔 such that 𝜇1 = 𝜇(1, −) is
the identity on supp(𝑥), 𝜇2 is the identity on supp(𝑦), and 𝜇3 is the identity on supp(𝑧). We define
𝜇12 as the restriction of 𝜇 to 𝟐 × 𝜔, and we set 𝜇23(𝑖, 𝑗) = 𝜇(𝑖 + 1, 𝑗). Then the following diagram
of functors 3 ⟶  and natural transformations commutes by uniqueness of universally natural
transformations:

We claim that evaluating this commutative diagram at the object (𝑥, 𝑦, 𝑧) of 3 yields the desired
diagram of part (iii). Indeed,

𝜇∗(𝑥, 𝑦, 𝑧) = 𝜇1∗(𝑥) + 𝜇
2
∗(𝑦) + 𝜇

3
∗(𝑧) = 𝑥 + 𝑦 + 𝑧
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by Proposition 2.13(ii). Similarly, 𝜇12∗ (𝑥, 𝑦) = 𝑥 + 𝑦 and 𝜇23∗ (𝑦, 𝑧) = 𝑦 + 𝑧. Also,

𝜑♯𝑥,𝑦 = [1, 𝜑1]
𝑥
+ [1, 𝜑2]

𝑦
= [𝜇1, 𝜑1]

𝑥
+ [𝜇2, 𝜑2]

𝑦
= [𝜇12, 𝜑]

𝑥,𝑦
,

again by Proposition 2.13 (ii), and similarly for the remaining morphisms. □

Our next aim is to show that the underlying non-equivariant homotopy type of 𝐊gl agrees
with the K-theory of the symmetric monoidal category 𝜑∗(). We recall the reference model.
Construction 5.12 (K-theory of symmetric monoidal categories). We let  be a symmetric
monoidal category with monoidal product ⊕, unit object 0, associativity isomorphism 𝛼, sym-
metry isomorphism 𝜏, and right unit isomorphism 𝜌. We shall now recall how these data give rise
to a Γ-category Γ(), and hence to a K-theory spectrum. The construction goes back to Segal who
introduces it for symmetric monoidal structures given by a categorical coproduct in [35, p. 294];
the definition for general symmetric monoidal categories appears in [36, Definition 2.1].
An object of the category Γ()(𝑛+) consists of the following data:

∙ an object 𝑥𝐴 of for every subset 𝐴 of 𝐧 = {1, … , 𝑛}, and
∙ an isomorphism

𝜓𝐴,𝐵 ∶ 𝑥𝐴 ⊕ 𝑥𝐵
≅
:→ 𝑥𝐴∪𝐵

for every pair of disjoint subsets 𝐴 and 𝐵 of 𝐧.

These data are required to satisfy the following coherence conditions:

∙ the object 𝑥∅ is the unit object 0 of the monoidal structure, and for every subset 𝐴 of 𝐧 the
morphism

𝜓𝐴,∅ ∶ 𝑥𝐴 ⊕ 0 = 𝑥𝐴 ⊕ 𝑥∅ ⟶ 𝑥𝐴

is the right unit isomorphism 𝜌𝐴;
∙ for every pair of disjoint subsets 𝐴 and 𝐵 of 𝐧, we have

𝜓𝐵,𝐴 = 𝜓𝐴,𝐵 ◦ 𝜏𝑥𝐵,𝑥𝐴 ;

∙ for every triple 𝐴, 𝐵, 𝐶 of pairwise disjoint subsets of 𝐧, the following diagram commutes:

A morphism in Γ()(𝑛+) from an object (𝑥𝐴, 𝜓𝐴,𝐵) to an object (𝑥′𝐴, 𝜓
′
𝐴,𝐵

) consists of morphisms
𝑓𝐴 ∶ 𝑥𝐴 ⟶ 𝑥′

𝐴
for all subsets 𝐴 of 𝐧, such that 𝑓∅ is the identity, and for every pair of disjoint
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subsets 𝐴 and 𝐵, the following square commutes:

If 𝜆 ∶ 𝑚+ ⟶ 𝑛+ is a based map, then the functor Γ()(𝜆) ∶ Γ()(𝑚+)⟶ Γ()(𝑛+) sends an
object (𝑥𝐴, 𝜓𝐴,𝐵) to the object (𝑦𝐶, 𝜈𝐶,𝐷) defined as

𝑦𝐶 = 𝑥𝜆−1(𝐶) and 𝜈𝐶,𝐷 = 𝜓𝜆−1(𝐶),𝜆−1(𝐷) .

Because of the compatibility requirement in the definition for morphisms in Γ()(𝑛+), all the
morphisms 𝑓𝐴 are in fact completely determined by the morphisms 𝑓{𝑖} ∶ 𝑥{𝑖} ⟶ 𝑦{𝑖} for 1 ⩽ 𝑖 ⩽
𝑛, which can be freely chosen. Hence, for every 𝑛 ⩾ 1, the functor

𝑃𝑛 ∶ Γ()(𝑛+) ⟶ 𝑛

that forgets all data except the objects 𝑥{𝑖} and the morphisms 𝑓{𝑖} is an equivalence of categories.
So, the Γ-category Γ() is special. The Γ-category Γ() gives rise to a Γ-space |Γ()| by taking
nerves and geometric realization.
The K-theory spectrum of the symmetric monoidal category  is the spectrum |Γ()|(𝕊)

obtained by evaluating the Γ-space |Γ()| on spheres. Equivalently, we can regard Γ() as a
Γ--category with trivial-action, and then apply Construction 3.3.

A convenient feature of this K-theory construction is its functoriality for strong symmetric
monoidal functors that preserve the unit object (and not just for strict symmetric monoidal
functors). Indeed, suppose that 𝐹 ∶  ⟶  is a strong symmetric monoidal functor between
symmetric monoidal categories, where 𝜂 ∶ 0⟶ 𝐹(0) is the unit isomorphism and

𝜇𝑥,𝑦 ∶ 𝐹(𝑥) ⊕ 𝐹(𝑦) ⟶ 𝐹(𝑥 ⊕ 𝑦)

is the structure isomorphism that satisfies the symmetry, associativity and unit constraints of a
strong symmetricmonoidal functor [21, section XI.2].We say that𝐹 strictly preserves the zero object
if 𝐹(0) = 0 and 𝜂 is the identity. In this case, an induced morphism of Γ-categories

Γ(𝐹, 𝜇) ∶ Γ() ⟶ Γ()
is defined as follows. For 𝑛 ⩾ 0, the functor

Γ(𝐹, 𝜇)(𝑛+) ∶ Γ()(𝑛+) ⟶ Γ()(𝑛+)
sends an object (𝑥𝐴, 𝜓𝐴,𝐵) to the object (𝐹(𝑥𝐴), 𝐹(𝜓𝐴,𝐵) ◦ 𝜇𝑥𝐴,𝑥𝐵 ). On morphisms, Γ(𝐹, 𝜇)(𝑛+) is
componentwise application of the functor 𝐹.
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If the functor 𝐹 is an equivalence of underlying categories, then Γ(𝐹, 𝜇)(𝑛+) is again an equiva-
lence by specialness. So, in this case the inducedmaps |Γ(𝐹, 𝜇)|(𝑆𝑚) ∶ |Γ()|(𝑆𝑚)⟶ |Γ()|(𝑆𝑚)
are weak equivalences, and hence (𝐹, 𝜇) induces a stable equivalence of K-theory spectra.

Construction 5.13. We let  be a parsummable category. In Construction 4.3 we defined a Γ-
category 𝛾()with values 𝛾()(𝑛+) = ⊠𝑛, the full subcategory of 𝑛 on the 𝑛-tuples of disjointly
supported objects. On the other hand, we showed in Proposition 5.6 that every injection 𝜑 ∶

𝟐 × 𝜔⟶ 𝜔 gives rise to a symmetric monoidal structure on the category  with monoidal prod-
uct 𝜑∗ ∶  ×  ⟶ . This symmetric monoidal category 𝜑∗() gives rise to another Γ-category
Γ(𝜑∗()) via Segal’s Construction 5.12. We now construct an equivalence of Γ-categories

Ψ ∶ 𝛾() ≃
:::→ Γ(𝜑∗()) .

For 𝑛 ⩾ 0, the functor Ψ(𝑛+) ∶ 𝛾()(𝑛+)⟶ Γ(𝜑∗())(𝑛+) is essentially given by summing up
objects and morphisms. More precisely, the functor is defined on objects by

Ψ(𝑛+)(𝑥1, … , 𝑥𝑛) = (𝑦𝐴)𝐴⊂𝐧 ,

where

𝑦𝐴 =
∑

𝑖∈𝐴
𝑥𝑖 .

For every pair of disjoint subsets 𝐴 and 𝐵, the objects 𝑦𝐴 and 𝑦𝐵 then have disjoint supports. We
extend the collection of 𝑦𝐴’s to an object of the category Γ(𝜑∗())(𝑛+) via the isomorphisms

𝜓𝐴,𝐵 = 𝜑♯𝑦𝐴,𝑦𝐵 ∶ 𝜑∗(𝑦𝐴, 𝑦𝐵)
≅
:::→ 𝑦𝐴 + 𝑦𝐵 = 𝑦𝐴∪𝐵

defined in (5.10). Parts (i)–(iii) of Proposition 5.11 provide the coherence conditions of Construc-
tion 5.12, required to make (𝑦𝐴, 𝜓𝐴,𝐵) an object of the category Γ(𝜑∗())(𝑛+).
On morphisms, the functor Ψ(𝑛+) is given by summing, that is,

Ψ(𝑛+)(𝑓1, … , 𝑓𝑛) = (
∑

𝑖∈𝐴
𝑓𝑖)𝐴⊂𝐧 .

Proposition 5.11(iv) shows that these maps indeed form amorphism in the category Γ(𝜑∗())(𝑛+).
Since the sum operation is a functor + ∶  ⊠  ⟶ , addition of disjointly supported mor-
phisms is compatible with composition and identities; so we have indeed defined a functor
Ψ(𝑛+) ∶ 𝛾()(𝑛+)⟶ Γ(𝜑∗())(𝑛+).
Theorem 5.14. Let  be a parsummable category, and let 𝜑 ∶ 𝟐 × 𝜔⟶ 𝜔 be an injection.

(i) The functors Ψ(𝑛+) form a morphism of Γ-categories Ψ ∶ 𝛾()⟶ Γ(𝜑∗()).
(ii) The symmetric spectrum 𝐊gl is non-equivariantly stably equivalent to the K-theory spectrum

of the symmetric monoidal category 𝜑∗().
(iii) For every finite group 𝐺, the fixed point spectrum 𝐹𝐺(𝐊gl) is non-equivariantly stably

equivalent to the K-theory spectrum of the symmetric monoidal category 𝜑∗(𝐹𝐺).
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Proof.

(i) The functoriality of Ψ for based maps 𝜆 ∶ 𝑚+ ⟶ 𝑛+ in Γ ultimately boils down to the
associativity and commutativity of the sum operation, as this provides the relation∑

𝑗∈𝐵

∑
𝜆(𝑖)=𝑗

𝑓𝑖 =
∑

𝑖∈𝜆−1(𝐵)
𝑓𝑖

for every subset 𝐵 of 𝐧. So, Ψ is indeed a morphism of Γ-categories.
(ii) The functor Ψ(1+) ∶ 𝛾()(1+)⟶ Γ(𝜑∗())(1+) is an isomorphism of categories (both sides

are isomorphic to the category ). Since both 𝛾() and Γ(𝜑∗()) are special Γ-categories, the
functor Ψ(𝑛+) ∶ 𝛾()(𝑛+)⟶ Γ(𝜑∗())(𝑛+) is an equivalence of categories for every 𝑛 ⩾ 0.
Every equivalence of Γ-categories becomes a strict equivalence between cofibrant Γ-spaces
upon taking nerves and geometric realization. This in turn induces homotopy equivalences
after evaluation at any based CW-complex, see, for example, [34, Proposition B.48]. So, the
map

|Ψ|(𝑆𝑚) ∶ |𝛾()|(𝑆𝑚) ⟶ |Γ(𝜑∗())|(𝑆𝑚)
is a homotopy equivalence for every𝑚 ⩾ 0. The spectrum obtained by evaluating the Γ-space|𝛾()| on spheres is thus level equivalent, hence stably equivalent, to the K-theory spectrum
of the symmetric monoidal category 𝜑∗().
Theorem 4.15(ii), applied to the trivial group, provides a chain of two non-equivariant sta-

ble equivalences between the spectrum 𝐊gl and the spectrum obtained by evaluating the
Γ-space |𝛾()| on spheres.

(iii) Corollary 4.28 provides a global equivalence to the fixed point spectrum 𝐹𝐺(𝐊gl) from the
symmetric spectrum 𝐊gl(𝐹

𝐺). This global equivalence is in particular a non-equivariant
stable equivalence. Part (ii) then provides a non-equivariant stable equivalence between
𝐊gl(𝐹

𝐺) and the K-theory spectrum of the symmetric monoidal category 𝜑∗(𝐹𝐺). □

6 EQUIVARIANT HOMOTOPY GROUPS AND SWANK-THEORY

The aim of this section is to provide a highly structured isomorphism between the 0th equivariant
homotopy groups of the global K-theory spectrum 𝐊gl and the combinatorially defined ‘Swan
K-groups’ of the parsummable category . For a finite group 𝐺, we write 𝐊(, 𝐺) for the group
completion of the abelianmonoid𝜋0(𝐹𝐺), with addition induced by the parsummable structure.
For varying finite groups, the groups 𝜋𝐺

0
(𝐊gl) and the groups 𝐊(, 𝐺) are connected by trans-

fer maps and restriction homomorphisms, and they form a global kind of Mackey functor. This
structure has been given different names in the literature: it is called an inflation functor byWebb
[43], a global (∅,∞)-Mackey functor by Lewis [20], and a  𝑖𝑛-global functor by the author [34].
Moreover, these objects are special cases of themore general biset functors, see, for example, [6] or
[20, section 5]. The main result of this section, Theorem 6.23, provides an isomorphism of global
functors between 𝜋0(𝐊gl) and𝐊() = {𝐊(, 𝐺)}𝐺 finite.

Remark 6.1. In the introduction, we had announced that our global K-theory spectrum 𝐊gl of
a parsummable category  combines the K-theory spectra of the categories of 𝐺-objects in  into
one global object. The rigorous statement is Corollary 4.28, saying in particular that for every finite
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group 𝐺, the 𝐺-fixed point spectrum 𝐹𝐺(𝐊gl) is stably equivalent to the K-theory spectrum of
the 𝐺-fixed parsummable category 𝐹𝐺.
For varying finite groups 𝐺, the 𝐺-fixed categories 𝐹𝐺 can be related by restriction functors

along group homomorphisms, and by ‘transfer’ functors (also called ‘induction’ or ‘norm’ func-
tors) for subgroup inclusions; moreover, these functors can be arranged to induce morphisms of
K-theory spectra. We claim that this K-theoretic restriction and transfer information is encoded
in the global homotopy type of𝐊gl. A full justification of this claim would require us to

∙ realize the restriction and transfer information bymorphisms (in the stable homotopy category,
at least) between the fixed point spectra 𝐹𝐺(𝐊gl),

∙ and then prove that the identifications of𝐹𝐺(𝐊gl)with theK-theory of𝐹𝐺 as non-equivariant
stable homotopy types match up the restriction and transfer data, at least as a commutative
diagram in the stable homotopy category:

(6.2)

Here 𝛼 ∶ 𝐾 ⟶ 𝐺 is a homomorphism between finite groups, and𝐻 is a subgroup of 𝐺.

All ways of rigorously implementing this that I could think of were either long and involved, or
very technical, or both, and I refrain from fully justifying this claim. The complications mostly
arise from the transfer information (and not so much from the restriction maps), because apply-
ing K-theory to the categorical transfer functor 𝐹𝐻 ⟶𝐹𝐺 a priori has very little to do with
the Thom–Pontryagin construction arising from an embedding of 𝐺∕𝐻 into a 𝐺-representation.
Also, a proper comparison should take the concomitant higher structure into account; to capture
this higher structure, a spectral Mackey functor approach à la Barwick [4] is probably the right
framework, but this requires very different techniques from the ones we employ here.
Theorem 6.23 compares the transfer and restriction maps on the level of Grothendieck groups

to the homotopy theoretic transfer and restriction homomorphisms on 0th equivariant homotopy
groups. So, informally speaking, it verifies that hypothetical diagram (6.2) in the stable homotopy
category (which we do not construct) commutes on the level of 0th stable homotopy groups.

Now we review the concepts of global functors, and of pre-global functors, a slight variation
where the values are only required to be abelian monoids (but not necessarily abelian groups).

Construction 6.3 (Effective Burnside category). We define a category 𝐀+, the effective Burnside
category. The objects of 𝐀+ are all finite groups. For two finite groups 𝐺 and 𝐾, the morphism set
𝐀+(𝐺,𝐾) is the set of isomorphism classes of finite 𝐾-𝐺-bisets where the right 𝐺-action is free.
Composition

◦ ∶ 𝐀+(𝐾, 𝐿) × 𝐀+(𝐺,𝐾) ⟶ 𝐀+(𝐺, 𝐿)
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in the category 𝐀+ is defined by balanced product over 𝐾: if 𝑇 is a finite 𝐾-free 𝐿-𝐾-biset and 𝑆 is
a finite 𝐺-free 𝐾-𝐺-biset, then

[𝑇] ◦ [𝑆] = [𝑇 ×𝐾 𝑆] ,

where square brackets denote isomorphism classes. This composition is clearly associative,
and the class of the 𝐺-𝐺-biset 𝐺𝐺𝐺 , with 𝐺 acting by left and right translation, is an identity
for composition.

Definition 6.4. A pre-global functor is a functor𝑀 ∶ 𝐀+ ⟶ 𝑏𝑜𝑛 from the effective Burn-
side category to the category of abelian monoids that satisfies the following additivity condition:
for all finite groups 𝐺 and 𝐾 and all finite 𝐺-free 𝐾-𝐺-bisets 𝑆 and 𝑇, the relation

𝑀[𝑆 ⨿ 𝑇] = 𝑀[𝑆] +𝑀[𝑇]

holds as homomorphisms 𝑀(𝐺)⟶𝑀(𝐾), where the plus is pointwise addition of homomor-
phisms. A global functor is a pre-global functor all of whose values are abelian groups.

For all finite groups 𝐺 and 𝐾, the morphism set 𝐀+(𝐺,𝐾) is an abelian monoid under disjoint
union of 𝐾-𝐺-bisets. As explained in [34, Remark 4.2.16], the preadditive category 𝐀 obtained by
group completing the morphism monoids is equivalent to the  𝑖𝑛-global Burnside category in
the sense of [34], that is, the full subcategory of the global Burnside category of [34, Construction
4.2.1] spanned by the finite groups. By the additivity relation, a global functor in the sense of
Definition 6.4 extends uniquely to an additive functor from the  𝑖𝑛-global Burnside category to
abelian groups. So, the category of global functors in the sense of Definition 6.4 is equivalent to
the category of  𝑖𝑛-global functors in the sense of [34].
Remark 6.5 (Restrictions and transfers). The data of a pre-global functor can be presented in a
different way in terms of restriction and transfer homomorphisms. This passage is classical and
wewill not give full details here.We let𝑀 be a pre-global functor in the sense of Definition 6.4.We
let 𝛼 ∶ 𝐾 ⟶ 𝐺 be a homomorphism between finite groups. We write 𝛼𝐺𝐺 for the 𝐾-𝐺-biset with
underlying set 𝐺, 𝐾-action by left translation through the homomorphism 𝛼, and right 𝐺-action
by translation. The restriction homomorphism along 𝛼 is the monoid homomorphism

𝛼∗ = 𝑀[𝛼𝐺𝐺] ∶ 𝑀(𝐺) ⟶ 𝑀(𝐾) .

An important special case is the inclusion 𝜄 ∶ 𝐻 ⟶ 𝐺 of a subgroup into the ambient group; the
associated restriction homomorphism is traditionally denoted

res𝐺𝐻 = 𝜄∗ ∶ 𝑀(𝐺) ⟶ 𝑀(𝐻) .

If 𝐻 is a subgroup of a finite group 𝐺, we write 𝐺𝐺𝐻 for the 𝐺-𝐻-biset with underlying set 𝐺,
𝐺-action by left translation, and𝐻-action by right translation. The transfer homomorphism is the
monoid homomorphism

tr𝐺𝐻 = 𝑀[𝐺𝐺𝐻] ∶ 𝑀(𝐻) ⟶ 𝑀(𝐺) .
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The transfer and restriction homomorphisms satisfy a couple of relations:

∙ the restriction homomorphisms are contravariantly functorial;
∙ restriction along an inner automorphism is the identity;
∙ transfers are transitive and tr𝐺

𝐺
is the identity;

∙ transfer along an inclusion𝐻 ⩽ 𝐺 interactswith restriction along an epimorphism𝛼 ∶ 𝐾 ⟶ 𝐺

according to

𝛼∗ ◦ tr𝐺𝐻 = tr𝐾𝐿 ◦ (𝛼|𝐿)∗ ∶ 𝑀(𝐻) ⟶ 𝑀(𝐾) ,

where 𝐿 = 𝛼−1(𝐻);
∙ for all subgroups𝐻 and 𝐾 of 𝐺, the double coset formula holds:

res𝐺𝐾 ◦ tr𝐺𝐻 =
∑

𝐾g𝐻∈𝐾∖𝐺∕𝐻

tr𝐾𝐾∩g𝐻 ◦ g⋆ ◦ res𝐻𝐾g∩𝐻 ;

here g runs over a set of representatives for the 𝐾-𝐻-double cosets in 𝐺, and g⋆ ∶ 𝑀(𝐾g ∩

𝐻)⟶𝑀(𝐾 ∩ g𝐻) is the restriction map associated to the conjugation homomorphism 𝐾 ∩
g𝐻 ⟶𝐾g ∩ 𝐻 sending 𝛾 to g−1𝛾g .

Conversely, the operations 𝑀[𝑆] ∶ 𝑀(𝐺)⟶𝑀(𝐾) can be recovered from the restriction and
transfer homomorphisms. Indeed, the additivity property means that a pre-global functor is
determined by the operations 𝑀[𝑆] for all transitive 𝐺-free 𝐾-𝐺-bisets 𝑆. Every such transitive
𝐾-𝐺-bisets is isomorphic to

𝐾 ×𝐿,𝛼 𝐺 = (𝐾 × 𝐺)∕(𝑘𝑙, g) ∼ (𝑘, 𝛼(𝑙)g)

for some subgroup 𝐿 of 𝐾 and some homomorphism 𝛼 ∶ 𝐿⟶ 𝐺. Moreover,

𝑀[𝐾 ×𝐿,𝛼 𝐺] = 𝑀[𝐾𝐾𝐿] ◦ 𝑀[𝛼𝐺𝐺] = tr𝐾𝐿 ◦ 𝛼∗ .

Example 6.6 (Free pre-global functors). For a finite group𝐺, we introduce a pre-global functor𝐀+
𝐺

and a global functor𝐀𝐺 . The pre-global functor𝐀+𝐺 is simply the functor represented by𝐺. Indeed,
for a finite group 𝐾, the set𝐀+

𝐺
(𝐾) = 𝐀+(𝐺,𝐾) is an abelian monoid under disjoint union of 𝐾-𝐺-

bisets. Balanced product preserves disjoint union in both variables, so 𝐀+
𝐺
= 𝐀+(𝐺,−) becomes a

functor to abelianmonoids that satisfies the additivity relation. The pre-global functor𝐀+
𝐺
is ‘freely

generated at 𝐺’ by Id𝐺 = [𝐺𝐺𝐺], the class of 𝐺𝐺𝐺 in 𝐀+(𝐺, 𝐺): for every pre-global functor𝑀 and
every element 𝑥 ∈ 𝑀(𝐺), there is a unique morphism of pre-global functors 𝑥♯ ∶ 𝐀+

𝐺
⟶𝑀 such

that 𝑥♯(𝐺)(Id𝐺) = 𝑥.
We define 𝐀𝐺 as the group completion of the pre-global functor 𝐀+

𝐺
. Group completions of

pre-global functors are ‘pointwise’, that is,

∙ for every finite group𝐾, the abelian group𝐀𝐺(𝐾) is the group completion (Grothendieck group)
of the abelian monoid 𝐀+

𝐺
(𝐾), and

∙ the operations𝐀𝐺[𝑆] are defined in the unique way so that for varying𝐾, the group completion
maps 𝐀+

𝐺
(𝐾)⟶ 𝐀𝐺(𝐾) form a morphism of pre-global functors 𝑖 ∶ 𝐀+

𝐺
⟶ 𝐀𝐺 .

This morphism 𝑖 ∶ 𝐀+
𝐺
⟶ 𝐀𝐺 is then initial among morphism of pre-global functors from𝐀+

𝐺
to

global functors. In particular,𝐀𝐺 inherits the representability property, but now in the category of
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global functors (as opposed to pre-global functors): for every global functor𝑀 and every element
𝑦 ∈ 𝑀(𝐺), there is a unique morphism of global functors 𝑦♯ ∶ 𝐀𝐺 ⟶𝑀 such that 𝑦♯(𝐺)(Id𝐺) =
𝑦.

As already indicated, the goal of this section is to construct an isomorphism of global functors
(6.7) from the ‘Swan K-theory’ global functor 𝐊() of  to the homotopy group global func-
tor 𝜋0(𝐊gl). Our construction uses an intermediate pre-global functor 𝜋0() whose values are
𝜋0()(𝐺) = 𝜋0(𝐹

𝐺); we then construct a morphism of pre-global functors

𝛽 ∶ 𝜋0() ⟶ 𝜋0(𝐊gl)
that is objectwise a group completion of abelianmonoids, see Theorem6.21. Thismeans thatwhen
we pass to the group completion of the pre-global functor 𝜋0(), the morphism 𝛽 extends to an
isomorphism of global functors

𝛽 ∶ 𝐊() = (𝜋0())⋆ ≅
:::→ 𝜋0(𝐊gl) . (6.7)

Construction 6.8. We let  be a parsummable category. The addition functor + ∶  ⊠  ⟶ 
gives rise to the structure of an abelianmonoid on the set𝜋0() of components of  as follows. The
inclusion  ⊠  ⟶  ×  is an equivalence of categories by Theorem 2.33, so the two projections
of  ⊠  induce a bijection

(𝜋0(𝑝1), 𝜋0(𝑝2)) ∶ 𝜋0( ⊠ ) ≅
:::→ 𝜋0() × 𝜋0() .

We obtain a binary operation on the set 𝜋0() as the composite

𝜋0() × 𝜋0() (𝜋0(𝑝1),𝜋0(𝑝2))
−1

::::::::::::::::→
≅

𝜋0( ⊠ ) 𝜋0(+)
::::::→ 𝜋0() .

In concrete terms, this means that we represent two given elements of 𝜋0() by disjointly
supported objects 𝑥 and 𝑦, and then the assignment

[𝑥] + [𝑦] = [𝑥 + 𝑦]

is well-defined. The associativity and commutativity of the sum functor on  ensures that the
binary operation + on 𝜋0() is associative and commutative. Moreover, the class of the dis-
tinguished object 0 is a neutral element. The monoid structure on 𝜋0() is clearly natural for
morphisms of parsummable categories.
An alternative description of the addition on 𝜋0() is as follows. We can choose any injection

𝜑 ∶ 𝟐 × 𝜔⟶ 𝜔, and let 𝜑1, 𝜑2 ∈ 𝑀 be the restrictions to the two summands of𝜔. Then [𝜑1, 1]𝑥 ∶
𝑥⟶ 𝜑1∗(𝑥) and [𝜑

2, 1]𝑦 ∶ 𝑦⟶ 𝜑2∗(𝑦) are isomorphisms in , and the two objects 𝜑1∗(𝑥) and
𝜑2∗(𝑦) are disjointly supported. So, for all objects 𝑥 and 𝑦, not necessarily disjointly supported, we
have

[𝑥] + [𝑦] = [𝜑1∗(𝑥)] + [𝜑
2
∗(𝑦)] = [𝜑1∗(𝑥) + 𝜑

2
∗(𝑦)] .
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Construction 6.9 (The pre-global functor of a parsummable category). We let  be a
parsummable category.We introduce a pre-global functor𝜋0()whose value at a finite group𝐺 is

𝜋0()(𝐺) = 𝜋0(𝐹
𝐺) = 𝜋0([𝜔𝐺]𝐺) ,

the set of components of the 𝐺-fixed point category introduced in Construction 4.22. Since
𝐹𝐺 inherits a parsummable structure as in Construction 4.22, its component set 𝜋0(𝐹𝐺)
inherits an abelian monoid structure as explained in Construction 6.8. In more down-to-earth
terms, this monoid structure works as follows. We choose an injection 𝜑 ∶ 𝟐 × 𝜔⟶ 𝜔. Then
(𝜑1)𝐺, (𝜑2)𝐺 ∶ 𝜔𝐺 ⟶ 𝜔𝐺 are 𝐺-equivariant injections with disjoint images, and

+ ∶ 𝜋0([𝜔𝐺]𝐺) × 𝜋0([𝜔𝐺]𝐺) ⟶ 𝜋0([𝜔𝐺]𝐺)
is given by [𝑥] + [𝑦] = [(𝜑1)𝐺∗ (𝑥) + (𝜑

2)𝐺∗ (𝑦)].
We let 𝐾 and 𝐺 be two finite groups, and we let 𝑆 be a finite 𝐾-𝐺-biset such that the right 𝐺-

action is free. The set 𝑆 ×𝐺 𝜔𝐺 is then a countable 𝐾-set via the left 𝐾-action on 𝑆. So, we can
choose a 𝐾-equivariant injection 𝜓 ∶ 𝑆 ×𝐺 𝜔𝐺 ⟶ 𝜔𝐾 . Because 𝐺 acts freely on 𝑆, the map

[𝑠, −] ∶ 𝜔𝐺 ⟶ 𝑆 ×𝐺 𝜔
𝐺

is injective for every 𝑠 ∈ 𝑆. Hence, the map

𝜓𝑠 = 𝜓[𝑠, −] ∶ 𝜔𝐺 ⟶ 𝜔𝐾

is injective, too. These maps satisfy

𝜓𝑠g = 𝜓𝑠 ◦ 𝑙g

for all g ∈ 𝐺. So, for every 𝐺-fixed object 𝑥 ∈ 𝐹𝐺 we have
𝜓𝑠g∗ (𝑥) = 𝜓𝑠∗(𝑙

g
∗ (𝑥)) = 𝜓𝑠∗(𝑥) ,

that is, 𝜓𝑠∗(𝑥) only depends on the orbit 𝑠𝐺 (and not on the orbit representative 𝑠). We observe that
for every 𝑘 ∈ 𝐾 the relation

𝑙𝑘∗

(∑
𝑠𝐺∈𝑆∕𝐺

𝜓𝑠∗(𝑥)
)
=

∑
𝑠𝐺∈𝑆∕𝐺

𝑙𝑘∗(𝜓
𝑠
∗(𝑥)) =

∑
𝑠𝐺∈𝑆∕𝐺

𝜓𝑘𝑠∗ (𝑥) =
∑

𝑠𝐺∈𝑆∕𝐺

𝜓𝑠∗(𝑥)

holds, that is, the [𝜔𝐾]-object ∑𝑠𝐺∈𝑆∕𝐺 𝜓
𝑠
∗(𝑥) is 𝐾-fixed. The analogous calculation for

morphisms shows that summing 𝜓𝑠∗ over 𝑆∕𝐺 is a functor∑
𝑠𝐺∈𝑆∕𝐺

𝜓𝑠∗ ∶ 𝐹𝐺 ⟶ 𝐹𝐾 .

We define the operation 𝜋0()[𝑆] as the effect of this functor on path components:

𝜋0()[𝑆] = 𝜋0

(∑
𝑠𝐺∈𝑆∕𝐺

𝜓𝑠∗

)
∶ 𝜋0(𝐹

𝐺) ⟶ 𝜋0(𝐹
𝐾) . (6.10)
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Now we argue that the map 𝜋0()[𝑆] is independent of the choice of 𝐾-equivariant injection 𝜓 ∶
𝑆 ×𝐺 𝜔

𝐺 ⟶ 𝜔𝐾 , and it only depends on the isomorphism class of 𝑆. We let 𝛽 ∶ 𝑆⟶ �̄� be an
isomorphism of 𝐾-𝐺-bisets, and we let �̄� ∶ �̄� ×𝐺 𝜔𝐺 ⟶ 𝜔𝐾 be another 𝐾-equivariant injection.
Then for all 𝑘 ∈ 𝐾, all 𝑠 ∈ 𝑆 and every 𝐾-fixed object 𝑥, we have

𝑙𝑘∗([�̄�
𝛽(𝑠), 𝜓𝑠]𝑥) = [𝑙𝑘�̄�𝛽(𝑠), 𝑙𝑘𝜓𝑠]𝑥 = [�̄�𝑘𝛽(𝑠), 𝜓𝑘𝑠]𝑥 = [�̄�𝛽(𝑘𝑠), 𝜓𝑘𝑠]𝑥 .

Summing over orbit representatives shows that the morphism∑
𝑠𝐺∈𝑆∕𝐺

[�̄�𝛽(𝑠), 𝜓𝑠]𝑥 ∶
∑

𝑠𝐺∈𝑆∕𝐺

𝜓𝑠∗(𝑥) ⟶
∑

𝛽(𝑠)𝐺∈�̄�∕𝐺

�̄�
𝛽(𝑠)
∗ (𝑥) =

∑
𝑠𝐺∈�̄�∕𝐺

�̄�𝑠∗(𝑥)

is 𝐾-fixed. So, (𝑆, 𝜓) and (�̄�, �̄�) yield the same class in 𝜋0(𝐹𝐾), and the operation 𝜋0()[𝑆] is
independent of the choices.

Wewill show in Theorem 6.14 that the operations (6.10) make the collection of abelianmonoids
𝜋0(𝐹

𝐺) into a pre-global functor. The following proposition facilitates the verification that
𝜋0()[𝑆] ∶ 𝜋0(𝐹𝐺)⟶ 𝜋0(𝐹

𝐾) is additive. We call a functor 𝐹 ∶ 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 ⟶ 𝑏𝑜𝑛

from the category of parsummable categories to the category of abelian monoids additive if for
all parsummable categories  and the map

(𝐹(𝑝1), 𝐹(𝑝2)) ∶ 𝐹( ⊠) ⟶ 𝐹() × 𝐹()
is bijective (and hence an isomorphism of monoids), where 𝑝1 ∶  ⊠⟶  and 𝑝2 ∶  ⊠
⟶  are the projections to the two factors.

Example 6.11. We claim that for every finite group 𝐺, the functor

𝜋0 ◦ 𝐹
𝐺 ∶ 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 ⟶ 𝑏𝑜𝑛

is additive. Indeed, for all parsummable categories  and , the inclusion  ⊠⟶  × is a
global equivalence by Theorem 2.33, so it induces an isomorphism

𝜋0(𝐹
𝐺(incl)) ∶ 𝜋0(𝐹

𝐺( ⊠)) ≅
:::→ 𝜋0(𝐹

𝐺( ×)) .
The functors 𝐹𝐺 ∶ 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 ⟶ 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 and 𝜋0 ∶ 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 ⟶ 𝑏𝑜𝑛 each pre-
serve products, so the map

(𝜋0(𝐹
𝐺(𝑝1)), 𝜋0(𝐹

𝐺(𝑝2))) ∶ 𝜋0(𝐹
𝐺( ×)) ⟶ 𝜋0(𝐹

𝐺) × 𝜋0(𝐹𝐺)
is bijective. Composing these two bijections shows the claim.

Proposition 6.12. Let

𝐹,𝐺 ∶ 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 ⟶ 𝑏𝑜𝑛
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be functors from the category of parsummable categories to the category of abelianmonoids. Suppose
that 𝐹 and 𝐺 are reduced, that is, they take every terminal parsummable category to a zero monoid,
and that the functor 𝐺 is additive. Then every natural transformation of set-valued functors from 𝐹

to 𝐺 is automatically additive.

Proof. We let 𝜏 ∶ 𝐹 ⟶ 𝐺 be a natural transformation of set-valued functors. We write 𝑖1, 𝑖2 ∶ ⟶  ⊠  for the two embeddings given by 𝑖1 = (−, 0) and 𝑖2 = (0, −). We consider two classes
𝑥 and 𝑦 in 𝐹(); we claim that

𝜏⊠(𝐹(𝑖1)(𝑥) + 𝐹(𝑖2)(𝑦)) = 𝐺(𝑖1)(𝜏(𝑥)) + 𝐺(𝑖2)(𝜏(𝑦)) (6.13)

in the abelian monoid 𝐺( ⊠ ). To show this, we observe that

𝐺(𝑝1)(𝜏⊠(𝐹(𝑖1)(𝑥) + 𝐹(𝑖2)(𝑦))) = 𝜏(𝐹(𝑝1)(𝐹(𝑖1)(𝑥) + 𝐹(𝑖2)(𝑦)))
= 𝜏(𝐹(Id)(𝑥) + 𝐹(0)(𝑦)) = 𝜏(𝑥)
= 𝐺(Id)(𝜏(𝑥)) + 𝐺(0)(𝜏(𝑥))
= 𝐺(𝑝1)(𝐺(𝑖1)(𝜏(𝑥)) + 𝐺(𝑖2)(𝜏(𝑦)))

in 𝐺(). Similarly,
𝐺(𝑝2)(𝜏⊠(𝐹(𝑖1)(𝑥) + 𝐹(𝑖2)(𝑦))) = 𝐺(𝑝2)(𝐺(𝑖1)(𝜏(𝑥)) + 𝐺(𝑖2)(𝜏(𝑦))) .

Since the morphism (𝐺(𝑝1), 𝐺(𝑝2)) is bijective, this shows the relation (6.13). The sum functor
+ ∶  ⊠  ⟶  is amorphism of parsummable categories, and it satisfies+ ◦ 𝑖1 = + ◦ 𝑖2 = Id .
So,

𝐹(+)(𝐹(𝑖1)(𝑥) + 𝐹(𝑖2)(𝑦)) = 𝐹(+ ◦ 𝑖1)(𝑥) + 𝐹(+ ◦ 𝑖2)(𝑦) = 𝑥 + 𝑦 .

So, we can finally conclude with the desired relation:

𝜏(𝑥 + 𝑦) = 𝜏(𝐹(+)(𝐹(𝑖1)(𝑥) + 𝐹(𝑖2)(𝑦)))
= 𝐺(+)(𝜏⊠(𝐹(𝑖1)(𝑥) + 𝐹(𝑖2)(𝑦)))

(6.13) = 𝐺(+)(𝐺(𝑖2)(𝜏(𝑥)) + 𝐺(𝑖2)(𝜏(𝑦)))
= 𝐺(+ ◦ 𝑖1)(𝜏(𝑥)) + 𝐺(+ ◦ 𝑖2)(𝜏(𝑦)) = 𝜏(𝑥) + 𝜏(𝑦) . □

Theorem 6.14. For every parsummable category , the operations 𝜋0()[𝑆] ∶ 𝜋0(𝐹𝐺)⟶
𝜋0(𝐹

𝐾) defined in (6.10) make the abelian monoids 𝜋0(𝐹𝐺) into a pre-global functor 𝜋0().
Proof. We simplify the notation by writing ⟨𝑆⟩ for the operation 𝜋0()[𝑆] ∶ 𝜋0(𝐹𝐺)⟶
𝜋0(𝐹

𝐾). Source and target of this operation are reduced additive functors in the parsummable
category  by Example 6.11. Since ⟨𝑆⟩ is natural for morphisms of parsummable categories in ,
it is additive by Proposition 6.12.



1400 SCHWEDE

Now we show the functoriality of the operations ⟨𝑆⟩. The identity property is straightforward:
we use the preferred 𝐺-equivariant bijection 𝜓 ∶ 𝐺 ×𝐺 𝜔𝐺 ⟶ 𝜔𝐺 defined by 𝜓[g , 𝑥] = g𝑥. Then
𝜓1 ∶ 𝜔𝐺 ⟶ 𝜔𝐺 is the identity. Since the right translation action of 𝐺 on itself is transitive, we
obtain

⟨𝐺𝐺𝐺⟩[𝑥] = [𝜓1∗(𝑥)] = [𝑥] .

For compatibility with composition we let 𝑆 be a finite 𝐺-free 𝐾-𝐺-biset, and we let 𝑇 be a finite
𝐾-free 𝐿-𝐾-biset. We choose a 𝐾-equivariant injection 𝜓 ∶ 𝑆 ×𝐺 𝜔𝐺 ⟶ 𝜔𝐾 and an 𝐿-equivariant
injection 𝜏 ∶ 𝑇 ×𝐾 𝜔𝐾 ⟶ 𝜔𝐿. Then the composite

𝑇 ×𝐾 𝑆 ×𝐺 𝜔
𝐺

𝑇×𝐾𝜓
:::::→ 𝑇 ×𝐾 𝜔

𝐾 𝜏
::→ 𝜔𝐿

is an 𝐿-equivariant injection that we can use to calculate the operation ⟨𝑇 ×𝐾 𝑆⟩. We let 𝐴 ⊂ 𝑆

be a set of representatives of the 𝐺-orbits of 𝑆, and we let 𝐵 ⊂ 𝑇 be a set of representatives of the
𝐾-orbits of 𝑇. Then {[𝑡, 𝑠]}(𝑡,𝑠)∈𝐵×𝐴 is a set of representatives of the𝐺-orbits of 𝑇 ×𝐾 𝑆. So, for every
object 𝑥 of 𝐹𝐺 we obtain

⟨𝑇 ×𝐾 𝑆⟩[𝑥] = [∑(𝑡,𝑠)∈𝐵×𝐴
(𝜏 ◦ (𝑇 ×𝐾 𝜓))

[𝑡,𝑠]
∗ (𝑥)

]
=
[∑

𝑡∈𝐵
𝜏𝑡∗

(∑
𝑠∈𝐴

𝜓𝑠∗(𝑥)
)]

= ⟨𝑇⟩(⟨𝑆⟩[𝑥]) .
For additivity we consider two finite 𝐺-free 𝐾-𝐺-sets 𝑆 and 𝑇. Because 𝜔𝐾 is a universal 𝐾-

set, we can choose 𝐾-equivariant injections 𝜓 ∶ 𝑆 ×𝐺 𝜔𝐺 ⟶ 𝜔𝐾 and 𝜏 ∶ 𝑇 ×𝐺 𝜔𝐺 ⟶ 𝜔𝐾 with
disjoint images. Then the map

(𝜓 + 𝜏) ∶ (𝑆 ⨿ 𝑇) ×𝐺 𝜔
𝐺 ⟶ 𝜔𝐾

defined as the ‘union’ of 𝜓 and 𝜏 is again𝐾-equivariant and injective. Since (𝑆 ⨿ 𝑇)∕𝐺 = (𝑆∕𝐺) ⨿

(𝑇∕𝐺), we conclude that

⟨𝑆 ⨿ 𝑇⟩[𝑥] = [∑
𝑢𝐺∈(𝑆⨿𝑇)∕𝐺

(𝜓 + 𝜏)𝑢∗(𝑥)
]

=
[∑

𝑠𝐺∈𝑆∕𝐺
𝜓𝑠∗(𝑥) +

∑
𝑡𝐺∈𝑇∕𝐺

𝜏𝑡∗(𝑥)
]
= ⟨𝑆⟩[𝑥] + ⟨𝑇⟩[𝑥]

for all objects 𝑥 of 𝐹𝐺. This concludes the proof. □

Definition 6.15. A morphism 𝑖 ∶ 𝑀 ⟶𝑁 of pre-global functors is a group completion if it is
initial among morphisms from𝑀 to global functors.

In other words, 𝑖 ∶ 𝑀 ⟶𝑁 is a group completion if and only if

∙ all the abelian monoids 𝑁(𝐺) are groups, and
∙ for every morphism 𝑓 ∶ 𝑀 ⟶ 𝑅 of pre-global functors such that 𝑅 is a global functor, there is
a unique morphism of global functors 𝑓♭ ∶ 𝑁 ⟶ 𝑅 such that 𝑓♭ ◦ 𝑖 = 𝑓.
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Group completions of pre-global functors are formed ‘pointwise’: amorphism 𝑖 ∶ 𝑀 ⟶𝑁 of pre-
global functors is a group completion if and only if the homomorphism 𝑖(𝐺) ∶ 𝑀(𝐺)⟶ 𝑁(𝐺) is
a group completion (Grothendieck construction) of abelian monoids for every finite group 𝐺.

Definition 6.16. Let  be a parsummable category. The Swan K-theory global functor𝐊() is the
group completion of the pre-global functor 𝜋0().
So, 𝐊(, 𝐺) is the group completion of the abelian monoid 𝜋0(𝐹𝐺), for every finite group

𝐺. The operations 𝐊(, [𝑆]) ∶ 𝐊(, 𝐺)⟶ 𝐊(, 𝐾), the restriction maps and the transfer homo-
morphisms of 𝐊() are uniquely determined by the requirement that the collection of group
completion maps 𝜋0(𝐹𝐺)⟶ 𝐊(, 𝐺) form a morphism of pre-global functors.
The main objective of this section is to identify the category-theoretically defined global func-

tor 𝐊() with the homotopy-theoretically defined global functor 𝜋0(𝐊gl); we achieve this in
Theorem 6.23. To make sense of this, we review how the equivariant homotopy groups 𝜋𝐺

0
(𝑋)

of a symmetric spectrum 𝑋 form a global functor as the group 𝐺 varies. We will not define the
restriction and transfer maps on the equivariant homotopy group for arbitrary symmetric spectra
here; instead we restrict ourselves to globally semistable symmetric spectra, a class that includes
restricted global Ω-spectra, and hence the global K-theory spectra 𝐊gl for all parsummable cat-
egories. The definition in full generality can be found in [15, section 4], and the fact that the
structure forms a global functor is shown in [15, Proposition 4.12].

Example 6.17 (Homotopy group global functor). We let 𝑋 be a globally semistable symmetric
spectrum. For every finite group𝐺 we choose a universal𝐺-set𝐺 and abbreviate the equivariant
homotopy group defined in (1.2) to

𝜋𝐺0 (𝑋) = 𝜋
𝐺,𝐺
0

(𝑋) .

The justification for dropping𝐺 from the notation is that for globally semistable symmetric spec-
tra,𝜋𝐺,𝐺

0
(𝑋) is independent of the choice of universal𝐺-set up to preferred natural isomorphism.

Indeed, if ̄𝐺 is another universal 𝐺-set, there are 𝐺-equivariant injections 𝜓 ∶ 𝐺 ⟶ ̄𝐺 and
𝜑 ∶ ̄𝐺 ⟶ 𝐺 that induce homomorphisms

𝜓∗ ∶ 𝜋
𝐺,𝐺
0

(𝑋) ⟶ 𝜋
𝐺,̄𝐺
0

(𝑋) and 𝜑∗ ∶ 𝜋
𝐺,̄𝐺
0

(𝑋) ⟶ 𝜋
𝐺,𝐺
0

(𝑋) ,

and these assignments are functorial. Since the underlying 𝐺-symmetric spectrum of 𝑋 is 𝐺-
semistable, every𝐺-equivariant self-injection of𝐺 induces the identity, and similarly for ̄𝐺 . So,
𝜓∗ and 𝜑∗ are inverse isomorphisms between 𝜋

𝐺,𝐺
0

(𝑋) and 𝜋𝐺,̄𝐺
0

(𝑋), and they are independent
of the chosen injections 𝜓 and 𝜑.
A homomorphism 𝛼 ∶ 𝐾 ⟶ 𝐺 between finite groups and an injective𝐾-map 𝜓 ∶ 𝛼∗(𝐺)⟶𝐾 together give rise to a restriction homomorphism

(𝛼, 𝜓)∗ ∶ 𝜋
𝐺,𝐺
0

(𝑋) ⟶ 𝜋
𝐾,𝐾
0

(𝑋) ,

see [15, section 4.4]. We let 𝑓 ∶ 𝑆𝑀 ⟶ 𝑋(𝑀) be a 𝐺-map that represents an element of the group
𝜋
𝐺,𝐺
0

(𝑋), where 𝑀 is a finite 𝐺-invariant subset of 𝐺 . Then 𝜓(𝛼∗(𝑀)) is a finite 𝐾-invariant
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subset of𝐾 , the composite

𝑆𝜓(𝛼
∗(𝑀)) 𝑆

𝜓|−1
𝛼∗(𝑀)

::::::::→
≅

𝑆𝛼
∗(𝑀) = 𝛼∗(𝑆𝑀)

𝛼∗(𝑓)
::::::→ 𝛼∗(𝑋(𝑀)) = 𝑋(𝛼∗(𝑀))

𝑋(𝜓|𝛼∗(𝑀))
::::::::::→

≅
𝑋(𝜓(𝛼∗(𝑀)))

is a 𝐾-map, and

(𝛼, 𝜓)∗[𝑓] =
[
𝑋(𝜓|𝛼∗(𝑀)) ◦ 𝛼

∗(𝑓) ◦ 𝑆
𝜓|−1
𝛼∗(𝑀)

]
.

Since 𝑋 is globally semistable, the homomorphism (𝛼, 𝜓)∗ is independent of the injection 𝜓, it
only depends on the conjugacy class of 𝛼 [15, Lemma 4.8], and it is contravariantly functorial in
𝛼. We then simplify the notation and write

𝛼∗ ∶ 𝜋𝐺0 (𝑋) ⟶ 𝜋𝐾0 (𝑋)

for the restriction homomorphism.
Given a subgroup𝐻 of a finite group𝐺, a transfer homomorphism tr𝐺

𝐻
∶ 𝜋𝐻

0
(𝑋)⟶ 𝜋𝐺

0
(𝑋) can

be defined in two equivalent ways, by using an equivariant Thom-Pontryagin construction as in
[15, section 4.5], or by exploiting the Wirthmüller isomorphism (or rather its incarnation in the
context of equivariant symmetric spectra). For our purposes, the definition via the Wirthmüller
isomorphism is more convenient; it says that for every semistable 𝐺-symmetric spectrum 𝑋, the
composite

Wirth𝐺𝐻 ∶ 𝜋𝐺0 (𝑋 ∧ 𝐺∕𝐻+)
res𝐺

𝐻
:::::→ 𝜋𝐻0 (𝑋 ∧ 𝐺∕𝐻+)

(𝑋∧Ψ)∗
::::::::→ 𝜋𝐻0 (𝑋)

is an isomorphism, where Ψ ∶ 𝐺∕𝐻+ ⟶ 𝑆0 is the𝐻-equivariant projection to the distinguished
coset, that is,

𝜓(g𝐻) =

{
0 if g ∈ 𝐻, and
∞ if g ∉ 𝐻.

(6.18)

The transfer can then be defined as the composite

𝜋𝐻0 (𝑋)
(Wirth𝐺𝐻)

−1

::::::::::→
≅

𝜋𝐺0 (𝑋 ∧ 𝐺∕𝐻+)
(𝑋∧𝑝)∗
::::::::→ 𝜋𝐺0 (𝑋) ,

where 𝑝 ∶ 𝐺∕𝐻+ ⟶ 𝑆0 takes 𝐺∕𝐻 to the non-basepoint.

Construction 6.19. We let  be a parsummable category and 𝐺 a finite group. Every object of
the category [𝜔𝐺] represents a point in |[𝜔𝐺]|, the geometric realization of the nerve of the
𝐺-category [𝜔𝐺]. If the object is 𝐺-fixed, so is the corresponding point. So, stabilizing by 𝑆𝐺 and
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composing with the assembly map yields the 𝐺-map

𝑆𝐺
𝑥∧−
::::→ |[𝜔𝐺]| ∧ 𝑆𝐺 (3.2)

::::→ |𝛾()[𝜔𝐺]|(𝑆𝐺) = (𝐊gl)(𝐺) .
If two 𝐺-fixed objects in [𝜔𝐺] are related by a 𝐺-fixed morphism, the corresponding objects can
be joined by a path of 𝐺-fixed points in |[𝜔𝐺]|; so the resulting maps from 𝑆𝐺 to (𝐊gl)(𝐺) are
𝐺-equivariantly homotopic. Altogether, this construction defines a map

𝛽(𝐺) ∶ 𝜋0(𝐹
𝐺) = 𝜋0([𝜔𝐺]𝐺) ⟶ 𝜋𝐺0 (𝐊gl) , [𝑥] ⟼ [assembly ◦ (𝑥 ∧ 𝑆𝐺)] . (6.20)

Theorem 6.21. Let  be a parsummable category. For every finite group𝐺, the map 𝛽(𝐺) is a group
completion of abelian monoids. As 𝐺 varies over all finite groups, the maps 𝛽(𝐺) form a morphism
of pre-global functors 𝛽 ∶ 𝜋0()⟶ 𝜋0(𝐊gl).
Proof. We consider the following diagram:

The lower horizontal maps are the isomorphisms of equivariant homotopy groups induced by
the 𝐺-stable equivalences of 𝐺-symmetric spectra 𝑎𝛾()

𝐺
and 𝑏𝛾()

𝐺
discussed in Theorem 4.15. The

diagram commutes because the two 𝐺-maps

|𝛾()[𝜔𝐺]|(𝑆𝐺) ⟶ |𝛾()[𝜔𝐺 ⨿ 𝜔𝐺]|(𝑆𝐺)
arising from the embeddings of the two summands of 𝜔𝐺 ⨿ 𝜔𝐺 are equivariantly homotopic by
Proposition 3.6(i). The right vertical map is a group completion of abelian monoids by Proposi-
tionA.3(i), applied to the Γ-𝐺-space |𝛾()[𝜔𝐺]|. So, the left verticalmap is also a group completion
of abelian monoids.
Now we show that the 𝛽-maps form a morphism of pre-global functors. As we explained in

Remark 6.5, every morphism in 𝐀+(𝐺,𝐾) is a finite sum of compositions of transfer and restric-
tion homomorphisms. So, it suffices to show that the 𝛽-maps are compatible with transfers and
with restriction along group homomorphisms. For this purpose it is convenient to introduce a
generalization with an extra parameter. We let𝐺 be a finite group and𝐴 a non-empty finite𝐺-set.
Then 𝜔𝐴 is a countably infinite𝐺-set; in this generality, 𝜔𝐴 need not be a universal𝐺-set, but that
is not relevant for the following construction. Every object 𝑥 of the 𝐺-category [𝜔𝐴] represents
a point in |[𝜔𝐴]|, the geometric realization of the nerve of the 𝐺-category [𝜔𝐴]. If the object 𝑥
is 𝐺-fixed, so is the corresponding point, and we obtain a continuous 𝐺-map

𝑆𝐴
𝑥∧−
::::→ |[𝜔𝐴]| ∧ 𝑆𝐴 (3.2)

::::→ |𝛾()[𝜔𝐴]|(𝑆𝐴) = (𝐊gl)(𝐴) .
As in the special case 𝐴 = 𝐺, this construction descends to a well-defined map

𝛽(𝐺;𝐴) ∶ 𝜋0([𝜔𝐴]𝐺) ⟶ 𝜋𝐺0 (𝐊gl) , [𝑥] ⟼ [assembly ◦ (𝑥 ∧ 𝑆𝐴)] .
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In the special case when 𝐺 acts on itself by left translation, the map 𝛽(𝐺; 𝐺) reduces to the map
𝛽(𝐺) of (6.20).
The maps 𝛽(𝐺;𝐴) have the following two properties, both of which are straightforward from

the definitions:

(a) Let 𝑖 ∶ 𝐴⟶ 𝐵 be an injective𝐺-map between non-empty finite𝐺-sets. Then the composite

𝜋0([𝜔𝐴]𝐺) 𝜋0([𝑖!]𝐺)
:::::::::→ 𝜋0([𝜔𝐵]𝐺) 𝛽(𝐺;𝐵)

::::::→ 𝜋𝐺0 (𝐊gl)
coincides with the map 𝛽(𝐺;𝐴), where 𝑖! ∶ 𝜔𝐴 ⟶ 𝜔𝐵 is extension by 0 as defined in (3.4).

(b) Let 𝛼 ∶ 𝐾 ⟶ 𝐺 be a homomorphism between finite groups and 𝐴 a non-empty finite 𝐺-set.
Then the following square commutes:

Now we can prove the compatibility of the 𝛽-maps with restriction along a group homomor-
phism 𝛼 ∶ 𝐾 ⟶ 𝐺. The restriction map 𝛼∗ ∶ 𝜋0([𝜔𝐺]𝐺)⟶ 𝜋0([𝜔𝐾]𝐾) is based on a choice
of 𝐾-equivariant injection 𝜆 ∶ 𝜔𝛼

∗(𝐺) = 𝛼∗(𝜔𝐺)⟶ 𝜔𝐾 . We let 𝑖1 ∶ 𝛼∗(𝐺)⟶ 𝛼∗(𝐺) ⨿ 𝐾 and
𝑖2 ∶ 𝐾 ⟶ 𝛼∗(𝐺) ⨿ 𝐾 denote the inclusions of the two summands into the 𝐾-set 𝛼∗(𝐺) ⨿ 𝐾. We
claim that the map 𝜋0([𝑖1! ]𝐾) factors as the composite

𝜋0([𝜔𝛼∗(𝐺)]𝐾) 𝜋0([𝜆]𝐾)
:::::::::→ 𝜋0([𝜔𝐾]𝐾)

𝜋0([𝑖2! ]𝐾)
:::::::::→ 𝜋0([𝜔𝛼∗(𝐺)⨿𝐾]𝐾) .

Indeed, if 𝑥 is a 𝐾-fixed object of the 𝐾-category [𝜔𝛼∗(𝐺)], then the isomorphism [𝑖2
!
◦ 𝜆, 𝑖1

!
]𝑥 ∶

(𝑖1∗)(𝑥)⟶ (𝑖2
!
)∗(𝜆∗(𝑥)) is 𝐾-fixed.

The relation 𝜋0([𝑖2! ]𝐾) ◦ 𝜋0([𝜆]𝐾) = 𝜋0([𝑖1! ]𝐾) and the properties (a) and (b) of the
parameterized 𝛽-maps witness that the following diagram commutes:

We conclude that 𝛽(𝐾) ◦ 𝛼∗ = 𝛼∗ ◦ 𝛽(𝐺).
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Now we show that the maps 𝛽(𝐺) commute with transfers. We reduce this to the more general
transfer compatibility property of Proposition A.3, applied to the special and 𝐺-cofibrant Γ-𝐺-
space |𝛾()[𝜔𝐺]|. We contemplate the following diagram of abelian monoids:

(6.22)

Here 𝑖! ∶ 𝜔𝐻 ⟶ 𝜔𝐺 is the 𝐻-equivariant injection that extends a function by zero on 𝐺 ⧵

𝐻. The three left horizontal maps are stabilization maps. The lower left transfer map tr𝐺
𝐻
∶

𝜋0([𝜔𝐺]𝐻)⟶ 𝜋0([𝜔𝐺]𝐺) is the transfer map for the special Γ-𝐺-space |𝛾()[𝜔𝐺]|, see Con-
struction A.2. The upper left square in (6.22) commutes by naturality, because |𝛾()[𝑖!]| ∶|𝛾()[𝜔𝐻]|⟶ |𝛾()[𝜔𝐺]| is a morphism of Γ-𝐻-spaces. The lower left square in diagram (6.22)
commutes by Proposition A.3 for the Γ-𝐺-space |𝛾()[𝜔𝐺]|. The lower right square commutes by
naturality of transfers, because 𝑏𝛾()

𝐺
and 𝑎𝛾()

𝐺
are morphisms of 𝐺-symmetric spectra.

Finally, the upper right triangle in (6.22) is the effect on𝐻-equivariant stable homotopy groups
of the commutative diagram of𝐻-symmetric spectra of Theorem 3.14:

All horizontal morphisms in this diagram are 𝐻-stable equivalences of 𝐻-symmetric spectra by
Theorem 3.14. □

The Swan K-theory global functor 𝐊() of a parsummable category  was defined as the
group completion of the pre-global functor 𝜋0(). So, the morphism of pre-global functors 𝛽 ∶
𝜋0()⟶ 𝜋0(𝐊gl) discussed in Theorem 6.21 extends uniquely to a morphism of global func-
tors 𝛽 ∶ 𝐊()⟶ 𝜋0(𝐊gl). The content of Theorem 6.21 can then be stated in an equivalent form
as follows:

Theorem 6.23. For every parsummable category , the unique extension of the morphism of
pre-global functors 𝛽 ∶ 𝜋0()⟶ 𝜋0(𝐊gl) is an isomorphism of global functors 𝛽 ∶ 𝐊()⟶
𝜋0(𝐊gl).
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7 SATURATION

In this section, we study the difference between 𝐺-fixed objects and 𝐺-objects in a parsummable
category , where 𝐺 is a finite group. As we explained in Proposition 2.25 above, the 𝐺-fixed cate-
gory 𝐹𝐺 embeds fully faithfully into the category 𝐺 of 𝐺-objects in . This embedding is often
— but not always — essentially surjective, and hence an equivalence.
We introduce a property of parsummable categories that we call ‘saturation’; loosely speaking,

a parsummable category  is saturated if it has ‘enough𝐺-fixed objects’ for all finite groups𝐺. For
saturated parsummable categories, the𝐺-fixed point spectrum 𝐹𝐺(𝐊gl) of the global K-theory of is equivalent to theK-theory spectrumof𝐺-objects in, seeCorollary 7.19. Saturation can always
be arranged in the following sense: there is a saturation functor for parsummable categories and a
natural morphism of parsummable categories 𝑠 ∶  ⟶𝐶sat that is an equivalence of underlying
categories, see Theorem 7.27. Also by Theorem 7.27, the saturation construction is idempotent
up to global equivalence, so the morphism 𝑠 ∶  ⟶𝐶sat is ‘globally homotopy initial’ among
morphisms from  to saturated parsummable categories.
Construction 7.1 (Homotopy fixed category).We let𝐺 be a group.Wewrite𝐸𝐺 for the translation
category, that is, the chaotic category with object set 𝐺. The group 𝐺 acts freely on the category
𝐸𝐺 by left translation. We recall that the homotopy fixed category of a 𝐺-category is

ℎ𝐺 = 𝐜𝐚𝐭𝐺(𝐸𝐺,) ,
the category of 𝐺-equivariant functors from the translation category 𝐸𝐺 to . The canonical
functor

𝜅 ∶ 𝐺 ⟶ ℎ𝐺 (7.2)

sends a 𝐺-fixed object 𝑥 to the constant functor with value 𝑥. We recall that the functor (7.2) is
always fully faithful, but not necessarily an equivalence. Indeed, the unique functor 𝑝 ∶ 𝐸𝐺 ⟶∗

to the terminal category is 𝐺-equivariant and an equivalence of underlying categories. So, the
‘constant functor’

 ⟶ 𝐜𝐚𝐭(𝐸𝐺,)
is𝐺-equivariant and an equivalence of underlying categories. The restriction to𝐺-fixed categories
(7.2) is thus fully faithful.

If  is an -category and 𝐺 a finite group, then [𝜔𝐺] is a 𝐺-category. So, the previous
discussion applies to [𝜔𝐺]. We write

𝐹ℎ𝐺 = [𝜔𝐺]ℎ𝐺 = 𝐜𝐚𝐭𝐺(𝐸𝐺,[𝜔𝐺])
for the homotopy 𝐺-fixed category of .
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Definition 7.3. An-category  is saturated if for every finite group 𝐺 the functor

𝜅 ∶ 𝐹𝐺 ⟶ 𝐹ℎ𝐺
is an equivalence of categories. A parsummable category  is saturated if the underlying
-category is saturated.

Corollary 7.7 provides an alternative characterization of saturation in terms of the compari-
son functors 𝜆♭ ∶ 𝐹𝐺 ⟶𝐺 between 𝐺-fixed objects and 𝐺-objects introduced in (2.24). To
establish this characterization, we need another construction.

Construction 7.4. We let  be an-category and 𝐺 a finite group. We define two functors

𝑐♯ ∶ 𝐺 ⟶ 𝐹ℎ𝐺 and 𝜆♯ ∶ 𝐹ℎ𝐺 ⟶ 𝐺 , (7.5)

the second one depending on a choice of injection 𝜆 ∶ 𝜔𝐺 ⟶ 𝜔. Both functors are natural for
morphisms of-categories, and both are equivalences of categories, by Proposition 7.6. The func-
tor 𝜆♯ is an extension from fixed points to homotopy fixed points of the functor 𝜆♭ ∶ 𝐹𝐺 ⟶𝐺
defined in (2.24), in the sense that 𝜆♭ = 𝜆♯ ◦ 𝜅.
We let 𝑐 ∶ 𝜔⟶ 𝜔𝐺 denote the ‘constant function’ injection that sends 𝑖 ∈ 𝜔 to the function

defined by 𝑐(𝑖)(g) = 𝑖. We will now lift the induced functor 𝑐∗ ∶  ⟶ [𝜔𝐺] to a functor 𝑐♯ ∶
𝐺 ⟶𝐹ℎ𝐺 from the category of𝐺-objects in to the homotopy𝐺-fixed point category. In a nut-
shell, the functor 𝑐♯ is the composite of the preferred isomorphismof categories𝐺 ≅ 𝐜𝐚𝐭𝐺(𝐸𝐺,)
and the functor induced by 𝑐∗ ∶  ⟶ [𝜔𝐺]by applying 𝐜𝐚𝐭𝐺(𝐸𝐺,−).We take the time to expand
this definition. We let 𝑦 be a 𝐺-object in , and we write g⋆ ∶ 𝑦⟶ 𝑦 for the action morphism of
an element g of 𝐺. The 𝐺-equivariant functor 𝑐♯(𝑦) ∶ 𝐸𝐺 ⟶ [𝜔𝐺] is then defined on objects by
𝑐♯(𝑦)(g) = 𝑐∗(𝑦), and on morphisms by

𝑐♯(𝑦)(𝛾, g) = 𝑐∗(𝛾
−1
⋆ g⋆) ∶ 𝑐∗(𝑦) ⟶ 𝑐∗(𝑦) .

If 𝑓 ∶ 𝑥⟶ 𝑦 is a morphism of 𝐺-objects in , the natural transformation 𝑐♯(𝑓) ∶ 𝑐♯(𝑥)⟹ 𝑐♯(𝑦)

is given at the object g ∈ 𝐺 by 𝑐♯(𝑓)(g) = 𝑐∗(𝑓).
Because the injection 𝑐 ∶ 𝜔⟶ 𝜔𝐺 takes values in the constant functions, we have 𝑙𝑘 ◦ 𝑐 = 𝑐

for all 𝑘 ∈ 𝐺, where 𝑙𝑘 ∶ 𝜔𝐺 ⟶ 𝜔𝐺 is the action of 𝑘. So

𝑙𝑘∗(𝑐♯(𝑦)(𝛾, g)) = 𝑙𝑘∗(𝑐∗(𝛾
−1
⋆ g⋆)) = 𝑐∗(𝛾

−1
⋆ g⋆)

= 𝑐∗((𝑘𝛾)
−1
⋆ (𝑘g)⋆) = 𝑐♯(𝑦)(𝑘𝛾, 𝑘g) .

This shows that the functor 𝑐♯(𝑦) ∶ 𝐸𝐺 ⟶ [𝜔𝐺] is 𝐺-equivariant. The proof that the natural
transformation 𝑐♯(𝑓) is 𝐺-equivariant is similar, and we omit it. This completes the definition of
the functor 𝑐♯.
Now we define the functor 𝜆♯ ∶ 𝐹ℎ𝐺 ⟶𝐺, which depends on a choice of injection 𝜆 ∶

𝜔𝐺 ⟶ 𝜔. We let 𝑥 be an object of the category 𝐹ℎ𝐺, that is, a 𝐺-equivariant functor 𝑥 ∶ 𝐸𝐺 ⟶

[𝜔𝐺]. The functor 𝜆♯ associates to 𝑥 the -object 𝜆♯(𝑥) = 𝜆∗(𝑥(1)), endowed with the 𝐺-action
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via the composite morphisms

𝜆∗(𝑥(1))
𝜆∗([𝑙

g ,1]𝑥(1))
::::::::::::→ 𝜆∗(𝑙

g
∗ (𝑥(1))) = 𝜆∗(𝑥(g))

𝜆∗(𝑥(1,g))
:::::::::→ 𝜆∗(𝑥(1)) ,

where 𝑙g ∶ 𝜔𝐺 ⟶ 𝜔𝐺 is left translation by g . If 𝛾 ∈ 𝐺 is another group element, then

𝑥(1, 𝛾) ◦ [𝑙𝛾, 1]𝑥(1) ◦ 𝑥(1, g) ◦ [𝑙g , 1]𝑥(1) = 𝑥(1, 𝛾) ◦ 𝑙𝛾∗(𝑥(1, g)) ◦ [𝑙
𝛾, 1]𝑙

g
∗ (𝑥(1)) ◦ [𝑙g , 1]𝑥(1)

= 𝑥(1, 𝛾) ◦ 𝑥(𝛾, 𝛾g) ◦ [𝑙𝛾𝑙g , 𝑙g ]𝑥(1) ◦ [𝑙g , 1]𝑥(1)

= 𝑥(1, 𝛾g) ◦ [𝑙𝛾g , 1]𝑥(1)

as endomorphisms of 𝑥(1) in the category [𝜔𝐺]. Applying the functor 𝜆∗ ∶ [𝜔𝐺]⟶  shows
that for varying g , the morphisms 𝜆∗(𝑥(1, g) ◦ [𝑙g , 1]𝑥(1)) define a 𝐺-action on 𝜆∗(𝑥(1)). This
completes the definition of the functor 𝜆♯ on objects.
The value of the functor 𝜆♯ on amorphism 𝛼 ∶ 𝑥⟶ 𝑦 in𝐹ℎ𝐺 (that is, a𝐺-equivariant natural

transformation) is

𝜆♯(𝛼) = 𝜆∗(𝛼(1)) ∶ 𝜆∗(𝑥(1)) ⟶ 𝜆∗(𝑦(1)) .

Then for every g ∈ 𝐺,

𝑦(1, g) ◦ [𝑙g , 1]𝑦(1) ◦ 𝛼(1) = 𝑦(1, g) ◦ 𝑙g∗ (𝛼(1)) ◦ [𝑙
g , 1]𝑥(1)

= 𝑦(1, g) ◦ 𝛼(g) ◦ [𝑙g , 1]𝑥(1) = 𝛼(1) ◦ 𝑥(1, g) ◦ [𝑙g , 1]𝑥(1)

as [𝜔𝐺]-morphisms from 𝑥(1) to 𝑦(1). Applying the functor 𝜆∗ ∶ [𝜔𝐺]⟶  shows that
𝜆∗(𝛼(1)) ∶ 𝜆∗(𝑥(1))⟶ 𝜆∗(𝑦(1)) is𝐺-equivariant for the𝐺-actions defined above. This completes
the definition of the functor 𝜆♯ on morphisms. We omit the routine verification that 𝜆♯ preserves
identities and composition, so it is indeed a functor.

Proposition 7.6. Let  be an-category and 𝐺 a finite group.

(i) The functor 𝑐♯ ∶ 𝐺 ⟶𝐹ℎ𝐺 is an equivalence of categories.
(ii) For every injection 𝜆 ∶ 𝜔𝐺 ⟶ 𝜔, the functor 𝜆♯ ∶ 𝐹ℎ𝐺 ⟶𝐺 is an equivalence of categories.
Proof. Weprove both statements together.We show first that the functor 𝜆♯ is faithful.We let 𝑥, 𝑦 ∶
𝐸𝐺 ⟶ [𝜔𝐺] be two𝐺-equivariant functors, andwe let 𝛼, 𝛽 ∶ 𝑥⟹ 𝑦 be two𝐺-equivariant nat-
ural transformations such that 𝜆♯(𝛼) = 𝜆♯(𝛽). This means that 𝜆∗(𝛼(1)) = 𝜆∗(𝛽(1)), by definition
of 𝜆♯. The functor 𝜆∗ ∶ [𝜔𝐺]⟶  is an equivalence of underlying categories, so it is in par-
ticular faithful. So, we deduce that 𝛼(1) = 𝛽(1). Because 𝛼 and 𝛽 are 𝐺-equivariant, this implies
that

𝛼(g) = 𝑙g∗ (𝛼(1)) = 𝑙g∗ (𝛽(1)) = 𝛽(g)

for every g ∈ 𝐺. So,𝛼 = 𝛽 as natural transformations, and this proves that the functor 𝜆♯ is faithful.
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Now we observe that the composite 𝜆♯ ◦ 𝑐♯ is equal to 𝐺(𝜆𝑐)∗, the functor induced by (𝜆𝑐)∗ ∶ ⟶  on 𝐺-objects. The natural transformation 𝐺[𝜆𝑐, 1] ∶ Id𝐺 ⟹𝐺(𝜆𝑐)∗ witnesses that
𝐺(𝜆𝑐)∗ = 𝜆♯ ◦ 𝑐♯ is an equivalence of categories. Because 𝜆♯ ◦ 𝑐♯ is fully faithful and 𝜆♯ is faithful,
both functors 𝜆♯ and 𝑐♯ are in fact fully faithful.
Because 𝜆♯ ◦ 𝑐♯ is essentially surjective, 𝜆♯ is essentially surjective, and hence an equivalence

of categories. Because 𝜆♯ ◦ 𝑐♯ and 𝜆♯ are equivalences of categories, so is 𝑐♯. □

Corollary 7.7.An-category is saturated if and only if for every finite group𝐺 and every injection
𝜆 ∶ 𝜔𝐺 ⟶ 𝜔, the functor 𝜆♭ ∶ 𝐹𝐺 ⟶𝐺 is an equivalence of categories.
Proof. The functor 𝜆♯ ∶ 𝐹ℎ𝐺 ⟶𝐺 is an equivalence of categories by Proposition 7.6(ii).
Because 𝜆♭ ◦ 𝜅 = 𝜆♯, we conclude that 𝜅 ∶ 𝐹𝐺 ⟶𝐹ℎ𝐺 is an equivalence if and only if 𝜆♭ is
an equivalence. Since this holds for all finite groups, we have proved the claim. □

Many-categories that we discuss in this paper are saturated, while some are not.

Example 7.8. The-category of finite sets was introduced in Example 2.14.We let𝐺 be a finite
group. Objects of 𝐹𝐺 = ([𝜔𝐺])𝐺 are finite 𝐺-invariant subsets of 𝜔𝐺 ; the comparison functor
𝜆♭ ∶ 𝐹

𝐺 = ([𝜔𝐺])𝐺 ⟶ 𝐺 takes such a 𝐺-invariant subset 𝐴 ⊂ 𝜔𝐺 to the image 𝜆(𝐴) ⊂ 𝜔

under the injection 𝜆 ∶ 𝜔𝐺 ⟶ 𝜔. The 𝐺-action on 𝜆(𝐴) is restricted from 𝜔𝐺 and conjugated by
𝜆|𝐴 ∶ 𝐴 ≅ 𝜆(𝐴); so by design, 𝜆(𝐴) is 𝐺-isomorphic to 𝐴. Because 𝜔𝐺 is a universal 𝐺-set (Propo-
sition 2.19), every finite 𝐺-set is equivariantly isomorphic to a 𝐺-invariant subset of 𝜔𝐺 . So, the
comparison functor 𝜆♭ is essentially surjective, and the-category  of finite sets is saturated.

Example 7.9. We let be any category, whichwe endowwith the trivial-action. Then for every
finite group 𝐺, the 𝐺-fixed category is  itself, and the functor 𝜆♭ ∶  = 𝐹𝐺 ⟶𝐺 endows a -
object with the trivial 𝐺-action. So, as soon as there is a non-trivial 𝐺-action on an object of ,
the functor 𝜆♭ is not an equivalence. We conclude that whenever there is a non-trivial action of a
finite group on a -object, then  with trivial-action is not saturated.

Example 7.10. We let  be an-category, andwe let𝐺 be a group, possibly infinite. The category
𝐺 of 𝐺-objects inherits a ‘pointwise’ -action, compare Example 2.10. We claim that the -
category 𝐺 is saturated whenever  is. To see this, we consider a finite group 𝐾. Then

𝐹𝐾(𝐺) = ((𝐺)[𝜔𝐾])𝐾 = (𝐺([𝜔𝐾]))𝐾 = 𝐺(([𝜔𝐾]))𝐾 = 𝐺(𝐹𝐾) .
The second equality uses the fact that the-action on𝐺 is ‘pointwise’, with the𝐺-action carried
along by functoriality.
Interchanging the orders in which the two groups act provides an isomorphism of categories

between 𝐾(𝐺) and 𝐺(𝐾). Moreover, for every injection 𝜆 ∶ 𝜔𝐾 ⟶ 𝜔, the following square of
categories and functors commutes:



1410 SCHWEDE

Since  is saturated, the functor 𝜆
♭
∶ 𝐹𝐾 ⟶𝐾 is an equivalence of categories by Corollary 7.7.

So, the lower horizontal functor 𝐺𝜆
♭
is an equivalence of categories, and hence so is the upper

horizontal functor 𝜆𝐺
♭
. Since this holds for all finite groups 𝐾, Corollary 7.7 shows that the-

category 𝐺 is saturated.
Proposition 7.11. Let Φ ∶  ⟶  be a morphism of -categories that is an equivalence of the
underlying categories. Suppose moreover that the-category  is saturated.
(i) The-category is saturated as well.
(ii) The morphism Φ is a global equivalence of-categories.

Proof.

(i) We consider a finite group 𝐺. We choose an injection 𝜆 ∶ 𝜔𝐺 ⟶ 𝜔 and contemplate the
following commutative square of categories and functors:

(7.12)

The two vertical functors are fully faithful by Proposition 2.25. Since Φ is an equivalence of
underlying categories, so is the induced functor𝐺Φ on𝐺-objects. The functor 𝜆

♭
is an equiva-

lence by Corollary 7.7, because  is saturated. So, the composite functor𝐺Φ ◦ 𝜆
♭
= 𝜆

♭
◦ 𝐹𝐺Φ

is an equivalence. Hence, the functor 𝜆
♭
is dense, and thus an equivalence. So, is saturated.

(ii) We let 𝐺 be a finite group. For every choice of injection 𝜆 ∶ 𝜔𝐺 ⟶ 𝜔, the vertical func-
tors in the commutative diagram (7.12) are equivalences because  and  are saturated. The
lower horizontal functor 𝐺Φ ∶ 𝐺 ⟶𝐺 is an equivalence because Φ is. So, the functor
𝐹𝐺Φ ∶ 𝐹𝐺 ⟶𝐹𝐺 is also an equivalence of categories, and hence in particular a weak
equivalence of categories. So, Φ is a global equivalence. □

Nowwe know that for every saturated parsummable category , the categories 𝐹𝐺 and𝐺 are
equivalent. Both categories 𝐹𝐺 and 𝐺 inherit the structure of a parsummable category from ,
by Construction 4.22 and Example 4.12, respectively. We will now argue that when  is saturated,
𝐹𝐺 and 𝐺 are even globally equivalent as parsummable categories. Since the K-theory of 𝐹𝐺
calculates the 𝐺-fixed points of the global K-theory spectrum𝐊gl (see Corollary 4.28), an impor-
tant consequence is that for all saturated parsummable categories , the 𝐺-fixed point spectrum
of 𝐊gl is globally equivalent to 𝐊gl(𝐺), the global K-theory of the parsummable category of
𝐺-objects in , see Corollary 7.19.
We will compare 𝐹𝐺 and 𝐺 through the homotopy 𝐺-fixed point category 𝐹ℎ𝐺, via the

functors 𝜅 ∶ 𝐹𝐺 ⟶𝐹ℎ𝐺 and 𝑐♯ ∶ 𝐺 ⟶𝐹ℎ𝐺, which lift tomorphisms of parsummable cat-
egories. We warn the reader that the functors 𝜆♭ ∶ 𝐹𝐺 ⟶𝐺 and 𝜆♯ ∶ 𝐹ℎ𝐺 ⟶𝐺 defined
in (2.24) and (7.5) with the help of an injection 𝜆 ∶ 𝜔𝐺 ⟶ 𝜔 are notmorphisms of parsummable
categories.
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Construction 7.13. We let  be an-category and 𝐺 a finite group. We already know that the
-category 𝐺 of 𝐺-objects in  and the 𝐺-fixed-category 𝐹𝐺 inherit-actions, by Exam-
ple 2.10 and Construction 2.21, respectively. We will now define an -action on the homotopy
𝐺-fixed-category 𝐹ℎ𝐺 in such a way that the two functors

𝐹𝐺 𝜅
::→ 𝐹ℎ𝐺 𝑐♯

←::: 𝐺
defined in (7.2) and (7.5), respectively, are-equivariant.
The-action on  induces an action of the monoidal category𝐺 = 𝐸𝐼(𝜔𝐺, 𝜔𝐺) on [𝜔𝐺].

We turn this into an -action through automorphisms of 𝐺-categories by restriction along the
monoidal functor

 ⟶ 𝐺 , 𝑢 ⟼ 𝑢𝐺 .

The functor category 𝐜𝐚𝐭(𝐸𝐺,[𝜔𝐺]) then inherits a ‘pointwise’ -action from [𝜔𝐺] as
described in Construction 4.12. This pointwise -action commutes with the 𝐺-action on
𝐜𝐚𝐭(𝐸𝐺,[𝜔𝐺]) by conjugation; so the -action restricts to an action on the fixed point cat-
egory 𝐹ℎ𝐺 = 𝐜𝐚𝐭𝐺(𝐸𝐺,[𝜔𝐺]). The functor 𝜅 ∶ 𝐹𝐺 ⟶𝐹ℎ𝐺 is clearly equivariant for this
-action.

The next proposition is a strengthening of Proposition 7.6(i), which says that the functor 𝑐♯ ∶
𝐺 ⟶𝐹ℎ𝐺 is an equivalence of underlying categories.
Theorem 7.14. Let  be an-category and 𝐺 a finite group.

(i) The functor 𝑐♯ ∶ 𝐺 ⟶𝐹ℎ𝐺 is a global equivalence of-categories.
(ii) If  is saturated, then the -categories 𝐹𝐺 and 𝐹ℎ𝐺 are saturated, and the functor 𝜅 ∶

𝐹𝐺 ⟶𝐹ℎ𝐺 is a global equivalences of-categories.

Proof.

(i) We start with parts of the verification that the functor 𝑐♯ is a morphism of-categories. We
recall that 𝑐 ∶ 𝜔⟶ 𝜔𝐺 is the ‘constant function’ injection that sends 𝑖 ∈ 𝜔 to the function
defined by 𝑐(𝑖)(g) = 𝑖; so the relation 𝑢𝐺 ◦ 𝑐 = 𝑐 ◦ 𝑢 holds for all 𝑢 ∈ 𝑀. We consider a 𝐺-
object 𝑦 of  with action morphisms g⋆ ∶ 𝑦⟶ 𝑦. Then

𝑢∗(𝑐♯(𝑦))(g) = 𝑢𝐺∗ (𝑐♯(𝑦)(g)) = 𝑢𝐺∗ (𝑐∗(𝑦)) = 𝑐∗(𝑢∗(𝑦)) = 𝑐♯(𝑢∗(𝑦))(g) ,

and

𝑢∗(𝑐♯(𝑦))(𝛾, g) = 𝑢𝐺∗ (𝑐♯(𝑦)(𝛾, g)) = 𝑢𝐺∗ (𝑐∗(𝛾
−1
⋆ g⋆))

= 𝑐∗(𝑢∗(𝛾⋆)
−1 ◦ 𝑢∗(g⋆)) = 𝑐♯(𝑢∗(𝑦))(𝛾, g) .

This shows that 𝑢∗(𝑐♯(𝑦)) = 𝑐♯(𝑢∗(𝑦)) as objects of 𝐹ℎ𝐺. The verifications that 𝑢∗ ◦ 𝑐♯ and
𝑐♯ ◦ 𝑢∗ agree on morphisms of 𝐺, and that the natural transformations [𝑣, 𝑢]𝑐♯(𝑦) and
𝑐♯([𝑢, 𝑣]

𝑦) coincide are similar, and we omit them.
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To show that the functor 𝑐♯ is a global equivalence we let 𝐾 be another finite group. We
consider the chain of (𝐾 × 𝐺)-equivariant isomorphisms of categories:

[𝜔𝐺][𝜔𝐾] ≅(2.30) [(𝜔𝐾)𝐺] ≅switch [(𝜔𝐺)𝐾] ≅(2.30) [𝜔𝐺][𝜔𝐾] . (7.15)

The first and third isomorphisms are instances of (2.30), in the last case with the roles of 𝐾
and𝐺 interchanged. The second isomorphism is induced by the (𝐾 × 𝐺)-equivariant bijection
(𝜔𝐾)𝐺 ≅ (𝜔𝐺)𝐾 that interchanges 𝐾 and 𝐺 in the argument. Unraveling the definition of the
intertwining isomorphism and the functoriality of [−] reveals that (7.15) is the action of the
composite bijection

𝜔
𝜅𝜔𝐺
::::→ 𝜔𝐺

(𝜅𝜔𝐾 )
𝐺

::::::→ (𝜔𝐾)𝐺
switch
::::::→ (𝜔𝐺)𝐾

(𝜅−1
𝜔𝐺
)𝐾

::::::→ 𝜔𝐾
𝜅−1
𝜔𝐾

::::→ 𝜔 .

The isomorphism (7.15) makes the following triangle commute:

(7.16)

Indeed, unraveling all definitions traces this claim back to the fact that the following diagram
of injections commutes:

Applying 𝐜𝐚𝐭𝐺×𝐾(𝐸𝐺,−) (with trivial 𝐾-action on 𝐸𝐺) to the (𝐾 × 𝐺)-equivariant isomor-
phism (7.15) yields an isomorphism of categories

𝐹𝐾(𝐹ℎ𝐺) = 𝐜𝐚𝐭𝐾×𝐺(𝐸𝐺,[𝜔𝐺][𝜔𝐾])
≅ 𝐜𝐚𝐭𝐾×𝐺(𝐸𝐺,[𝜔𝐾][𝜔𝐺]) = 𝐹ℎ𝐺(𝐹𝐾) .

The commutativity of the triangle (7.16) implies that the following square of categories and
functors commutes:
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The lower horizontal functor 𝑐𝐹𝐾
♯

is an equivalence of categories by Proposition 7.6 (i) for
the-category 𝐹𝐾. So, the upper horizontal functor 𝐹𝐾(𝑐

♯
) is an equivalence of categories.

Since 𝐾 was any finite group, this proves that 𝑐
♯
is a global equivalence.

(ii) We let 𝐾 be another finite group. We consider the commutative diagram of categories and
functors:

The upper horizontal isomorphism is the restriction of the (𝐾 × 𝐺)-equivariant isomorphism
ℑ∗ ∶ [𝜔𝐺][𝜔𝐾] ≅ [(𝜔𝐾)𝐺] from (2.30) to (𝐾 × 𝐺)-fixed subcategories. The lower horizontal
isomorphism is the homotopy fixed analog, that is, the restriction of the (𝐾 × 𝐺)-equivariant
isomorphism

𝐜𝐚𝐭(𝐸𝐾, 𝐜𝐚𝐭(𝐸𝐺,[𝜔𝐺][𝜔𝐾])) ≅ 𝐜𝐚𝐭(𝐸(𝐾 × 𝐺),[𝜔𝐺][𝜔𝐾])
𝐜𝐚𝐭(𝐸(𝐾×𝐺),ℑ∗)
:::::::::::::::→ 𝐜𝐚𝐭(𝐸(𝐾 × 𝐺),[(𝜔𝐾)𝐺])

to (𝐾 × 𝐺)-fixed categories. Because  is saturated, the functors 𝜅
𝐺
and 𝜅[(𝜔𝐾)𝐺] are equiv-

alences of categories; for the latter one, this exploits that (𝜔𝐾)𝐺 is a universal (𝐾 × 𝐺)-set.
Passage to homotopy fixed categories preserves equivalences, see the proof of [28, Proposition
2.16]; so the functor𝐹ℎ𝐾(𝜅

𝐺
) is also an equivalence. Hence, the functor 𝜅𝐹𝐺

𝐾
is an equivalence

for every finite group 𝐾. This shows that the-category 𝐹𝐺 is saturated.
Since  is saturated, the functor 𝜅 ∶ 𝐹𝐺 ⟶𝐹ℎ𝐺 is an equivalence of underlying categories.
Moreover,𝐹𝐺 is saturated by the previous paragraph; so by Proposition 7.11, 𝜅 is even a global
equivalence, and 𝐹ℎ𝐺 is saturated. □

If  is a parsummable category and 𝐺 a finite group, then the -categories 𝐺 and 𝐹𝐺
inherit natural parsummable structures, see Example 4.12 and Construction 4.22, respectively.
We will now argue that the homotopy 𝐺-fixed category 𝐹ℎ𝐺 also inherits a parsummable struc-
ture, in such a way that the functors 𝜅 ∶ 𝐹𝐺 ⟶𝐹ℎ𝐺 and 𝑐♯ ∶ 𝐺 ⟶𝐹ℎ𝐺 are morphisms of
parsummable categories.

Construction 7.17. Given a parsummable category  and a finite group 𝐺, we define a par-
summable structure on the homotopy fixed category 𝐹ℎ𝐺 = 𝐜𝐚𝐭𝐺(𝐸𝐺,[𝜔𝐺]). We start by
considering an-category . Then an-action on 𝐹ℎ𝐺 was already defined in Construction
7.13. A similar argument as for 𝐹𝐺 in Proposition 2.22 shows that the-action on 𝐹ℎ𝐺 is tame
whenever the original-action on  is.
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We define a lax symmetric monoidal transformation

(𝐹ℎ𝐺) ⊠ (𝐹ℎ𝐺) ⟶ 𝐹ℎ𝐺( ⊠) , (7.18)

where and are tame-categories. The definition uses the𝐺-equivariant, fully faithful and lax
symmetric monoidal embedding 𝜖 ∶ [𝜔𝐺] ⊠[𝜔𝐺]⟶ ( ⊠)[𝜔𝐺] discussed in (4.23). The
-equivariant functor (7.18) is then defined as the following composite:

(𝐹ℎ𝐺) ⊠ (𝐹ℎ𝐺) = (𝐜𝐚𝐭(𝐸𝐺,[𝜔𝐺]) ⊠ 𝐜𝐚𝐭(𝐸𝐺,[𝜔𝐺]))𝐺
product
:::::::→ 𝐜𝐚𝐭𝐺(𝐸𝐺,[𝜔𝐺] ⊠[𝜔𝐺])

𝐜𝐚𝐭𝐺(𝐸𝐺,𝜖)
::::::::::→ 𝐜𝐚𝐭𝐺(𝐸𝐺, ( ⊠)[𝜔𝐺]) = 𝐹ℎ𝐺( ⊠)

Now we let  be a parsummable category; then the tame -category 𝐹ℎ𝐺 becomes a
parsummable category by endowing it with the structure morphism

(𝐹ℎ𝐺) ⊠ (𝐹ℎ𝐺) (7.18)
:::::→ 𝐹ℎ𝐺( ⊠ ) 𝐹ℎ𝐺(+)

::::::→ 𝐹ℎ𝐺 .
Corollary 7.19. Let  be a saturated parsummable category and 𝐺 a finite group.

(i) The morphisms

𝐊gl(𝐺)
𝐊gl(𝑐♯)
::::::→ 𝐊gl(𝐹

ℎ𝐺) 𝐊gl(𝜅)
←::::: 𝐊gl(𝐹

𝐺) 𝜓𝐺
𝛾() ◦ 𝜆𝐺 ⟨𝕊⟩

::::::::::::→ 𝐹𝐺(𝐊gl)
are global equivalences of symmetric spectra.

(ii) Let 𝜑 ∶ 𝟐 × 𝜔⟶ 𝜔 be an injection. Then the fixed point spectrum 𝐹𝐺(𝐊gl) is non-
equivariantly stably equivalent to the K-theory spectrum of the symmetric monoidal category
of 𝐺-objects in 𝜑∗().

Proof.

(i) The morphism of symmetric spectra 𝜓𝐺
𝛾() ◦ 𝜆𝐺 ⟨𝕊⟩ ∶ 𝐊gl(𝐹

𝐺)⟶ 𝐹𝐺(𝐊gl) is a global
equivalence by Corollary 4.28. Themorphisms of parsummable categories 𝑐♯ ∶ 𝐺 ⟶𝐹ℎ𝐺
and 𝜅 ∶ 𝐹𝐺 ⟶𝐹ℎ𝐺 are global equivalences by Theorem 7.14. So, the morphisms 𝐊gl(𝑐♯)

and𝐊gl(𝜅) are global equivalences of symmetric spectra by Theorem 4.16.
(ii) Theorem 5.14(ii) provides a non-equivariant stable equivalence between 𝐊gl(𝐺) and the K-

theory spectrumof the symmetricmonoidal category𝜑∗(𝐺) = 𝐺(𝜑∗). In combinationwith
part (i), this proves the claim. □

Now we discuss a saturation construction for-categories and parsummable categories that
is due to Tobias Lenz. For a tame-category , it provides a morphism of-categories

𝑠 ∶  ⟶ sat
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that is an equivalence of underlying categories and whose target is a tame saturated-category.
In Construction 7.25, we will lift the procedure from-categories to the more highly structured
parsummable categories by endowing the saturation with a lax symmetric monoidal structure
with respect to the box product.

Construction 7.20 (Saturation). We let  be an-category. We denote by 𝐜𝐚𝐭(,) the cate-
gory of functors from to , with natural transformations as morphisms. The right translation
-action on itself and the given left action of  on  induce an ( ×)-action on the func-
tor category 𝐜𝐚𝐭(,). We endow 𝐜𝐚𝐭(,) with the diagonal-action. More concretely, the
action functor

⋄ ∶  × 𝐜𝐚𝐭(,) ⟶ 𝐜𝐚𝐭(,)
is thus given on objects by

(𝑢 ⋄ 𝑋)(𝑤) = (𝑢∗(𝑋))(𝑤) = 𝑢∗(𝑋(𝑤𝑢)) ,

where 𝑢,𝑤 ∈ 𝑀 are objects of , and 𝑋 ∶⟶  is a functor. This construction has three
levels of functoriality:

∙ a morphism (𝑤, 𝑣) ∶ 𝑣⟶ 𝑤 in is taken to

(𝑢∗(𝑋))(𝑤, 𝑣) = 𝑢∗(𝑋(𝑤𝑢, 𝑣𝑢)) ;

∙ a morphism in 𝐜𝐚𝐭(,) (that is, a natural transformation Ψ ∶ 𝑋 ⟶ 𝑌) is taken to

(𝑢∗(Ψ))(𝑤) = 𝑢∗(Ψ(𝑤𝑢)) ;

∙ and a morphism (𝑢′, 𝑢) ∶ 𝑢⟶ 𝑢′ in is taken to

[𝑢′, 𝑢]𝑋(𝑤) = 𝑢′∗(𝑋(𝑤𝑢
′, 𝑤𝑢)) ◦ [𝑢′, 𝑢]𝑋(𝑤𝑢) = [𝑢′, 𝑢]𝑋(𝑤𝑢

′) ◦ 𝑢∗(𝑋(𝑤𝑢
′, 𝑤𝑢)) . (7.21)

We emphasize that the present-action on 𝐜𝐚𝐭(,) is not a specialization of the ‘pointwise’
-action on a functor category discussed in Example 2.10.

While 𝐜𝐚𝐭(,) is an -category, it will not be tame, even if  is tame, except in degen-
erate cases. The following proposition gives us access to the support for objects in the functor
-category 𝐜𝐚𝐭(,). An equivalent way to reformulate the content of the next proposition is
as follows. A functor 𝑋 ∶⟶  is supported on 𝐴 ⊂ 𝜔 if and only if it factors as a composite

 𝐸 res𝜔
𝐴

:::::→ 𝐸𝐼(𝐴, 𝜔) ⟶ supp⊆𝐴 incl
:::→  .

Here, res𝜔
𝐴
∶ 𝑀 = 𝐼(𝜔, 𝜔)⟶ 𝐼(𝐴, 𝜔) is restriction of an injection from 𝜔 to the subset 𝐴.

Proposition 7.22. Let be a tame-category and𝐴 a finite subset of𝜔. Then a functor𝑋 ∶⟶

 is supported on 𝐴 if and only if the following conditions hold:
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(a) for every 𝑣 ∈ 𝑀, the -object 𝑋(𝑣) is supported on 𝐴, and
(b) if 𝑣, 𝑤 ∈ agree on the set 𝐴, then 𝑋(𝑣) = 𝑋(𝑤), and 𝑋(𝑤, 𝑣) = Id𝑋(𝑣) = Id𝑋(𝑤).

Proof. We start with a functor 𝑋 ∶⟶  that satisfies conditions (a) and (b). We let 𝑢 ∈ 𝑀 be
an injection that is the identity on the set𝐴. Then for every injection 𝑣 ∈ 𝑀, we have (𝑢∗(𝑋))(𝑣) =
𝑢∗(𝑋(𝑣𝑢)) = 𝑋(𝑣𝑢), because 𝑋(𝑣𝑢) is supported on 𝐴, by hypothesis (a). Also, 𝑣𝑢 and 𝑣 agree on
𝐴, so𝑋(𝑣𝑢) = 𝑋(𝑣) and𝑋(𝑣𝑢, 𝑣) = Id𝑋(𝑣), by hypothesis (b). In particular, (𝑢∗(𝑋))(𝑣) = 𝑋(𝑣), that
is, the functors 𝑢∗(𝑋) and 𝑋 agree on objects. To see that 𝑢∗(𝑋) and 𝑋 agree on morphisms, we
consider another injection 𝑤 ∈ 𝑀. Then

(𝑢∗(𝑋))(𝑣, 𝑤) = 𝑢∗(𝑋(𝑣𝑢,𝑤𝑢)) = 𝑋(𝑣𝑢,𝑤𝑢)

= 𝑋(𝑣𝑢, 𝑣) ◦ 𝑋(𝑣,𝑤) ◦ 𝑋(𝑤,𝑤𝑢) = 𝑋(𝑣, 𝑤) .

The second equation is an application of Proposition 2.13(iv), exploiting that 𝑋(𝑣𝑢) and 𝑋(𝑤𝑢)
are supported on 𝐴. Altogether, this proves that 𝑋 is supported on the set 𝐴.
Now we suppose that 𝑋 ∶⟶  is supported on the set 𝐴, and we establish conditions (a)

and (b). We consider an injection 𝑢 ∈ 𝑀 that is the identity on 𝐴. Then 𝑢∗(𝑋) = 𝑋, and so the
relation

𝑋(𝑣) = (𝑢∗(𝑋))(𝑣) = 𝑢∗(𝑋(𝑣𝑢))

holds for all 𝑣 ∈ 𝑀. Because  is tame, the object 𝑋(𝑣𝑢) is finitely supported, and hence
supp(𝑋(𝑣)) = supp(𝑢∗(𝑋(𝑣𝑢))) = 𝑢(supp(𝑋(𝑣𝑢)))

by Proposition 2.13(iii). Now suppose, by contradiction, that supp(𝑋(𝑣)) were not contained in
𝐴. Then we could choose an element 𝑚 ∈ supp(𝑋(𝑣)) ⧵ 𝐴 and an injection 𝑢 ∈ 𝑀 that is the
identity on𝐴, and such that𝑚 is not in the image of 𝑢. This contradicts the relation supp(𝑋(𝑣)) =
𝑢(supp(𝑋(𝑣𝑢))). So, we conclude that supp(𝑋(𝑣)) ⊂ 𝐴, that is, condition (a) holds.
Nowwe suppose that 𝑣, 𝑤 ∈ 𝑀 are two injections that agree on𝐴; we let 𝑢 ∈ 𝑀 be any injection

such that 𝑢𝑣 and 𝑢𝑤 are the identity on 𝐴. Because 𝑋 is supported on 𝐴, we then have 𝑣∗(𝑋) =
𝑤∗(𝑋). Because 𝑋(𝑣) and 𝑋(𝑤) are supported on 𝐴 by the previous paragraph, we conclude that

𝑋(𝑣) = (𝑢𝑣)∗(𝑋(𝑣)) = 𝑢∗(𝑣∗(𝑋)(1)) = 𝑢∗(𝑤∗(𝑋)(1)) = (𝑢𝑤)∗(𝑋(𝑤)) = 𝑋(𝑤) .

Because 𝑋(𝑣) is supported on 𝐴, we have [𝑤, 𝑣]𝑋(𝑣) = Id𝑣∗(𝑋(𝑣)) by Proposition 2.13(ii). More-
over, [𝑤, 𝑣]𝑋 = Id𝑣∗(𝑋) as endo-transformations of the functor 𝑋, because 𝑋 is supported on 𝐴.
Evaluating this equality at the object 1 of yields

𝑤∗(𝑋(𝑤, 𝑣)) = 𝑤∗(𝑋(𝑤, 𝑣)) ◦ [𝑤, 𝑣]
𝑋(𝑣)

(7.21) = [𝑤, 𝑣]𝑋(1) = (Id𝑣∗(𝑋))(1) = Id𝑣∗(𝑋(𝑣)) .

We choose an injection 𝑢 ∈ 𝑀 such that 𝑢𝑣 and 𝑢𝑤 are the identity on 𝐴. We conclude that

𝑋(𝑤, 𝑣) = (𝑢𝑤)∗(𝑋(𝑤, 𝑣)) = 𝑢∗(Id𝑣∗(𝑋(𝑣))) = Id(𝑢𝑣)∗(𝑋(𝑣)) = Id𝑋(𝑣) .

The first relation is Proposition 2.13(iv). □
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Like any -category, 𝐜𝐚𝐭(,) has a maximal tame -subcategory 𝐜𝐚𝐭(,)𝜏, the full
subcategory spanned by the finitely supported objects.

Definition 7.23. The saturation of a tame -category  is the tame -category sat =
𝐜𝐚𝐭(,)𝜏.
The ‘constant functor’

𝑠 ∶  ⟶ 𝐜𝐚𝐭(,)
sends a -object 𝑥 to the functor 𝑠(𝑥) ∶⟶  that is given on objects and morphisms by

𝑠(𝑥)(𝑤) = 𝑥 and 𝑠(𝑥)(𝑤, 𝑣) = 1𝑥 ,

for 𝑣, 𝑤 ∈ 𝑀. Amorphism 𝑓 ∶ 𝑥⟶ 𝑦 in  is taken to the natural transformation 𝑠(𝑓) ∶ 𝑠(𝑥)⟶
𝑠(𝑦) whose value at 𝑤 ∈ 𝑀 is 𝑠(𝑓)(𝑤) = 𝑓.

Theorem 7.24. Let  be an-category.

(i) The functor 𝑠 ∶  ⟶𝐜𝐚𝐭(,) is a morphism of-categories.
(ii) The-category 𝐜𝐚𝐭(,) is saturated.
(iii) If  is tame, then the inclusion

sat = 𝐜𝐚𝐭(,)𝜏 ⟶ 𝐜𝐚𝐭(,)
is a global equivalence of-categories.

(iv) If is tame, then the-categorysat is saturated, the functor 𝑠 ∶  ⟶𝐜𝐚𝐭(,) takes values
in sat, and the restriction

𝑠 ∶  ⟶ sat

is an equivalence of underlying categories.
(v) If  is tame and saturated, then 𝑠 ∶  ⟶ sat is a global equivalence of-categories.

Proof.

(i) We must show the equality

𝑠 ◦ ⋄ = ⋄𝐜𝐚𝐭(,) ◦ ( × 𝑠) ∶  ×  ⟶ 𝐜𝐚𝐭(,) .
We check this on objects: given 𝜑 ∈ 𝑀 and an object 𝑥 of , we have

𝜑∗(𝑠(𝑥))(𝑣, 𝑢) = 𝜑∗(1𝑥) = 1𝜑∗(𝑥) = 𝑠(𝜑∗(𝑥))(𝑣, 𝑢) .

The verification for morphisms is similar, and we omit it.
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(ii) The-action on 𝐜𝐚𝐭(,)was defined diagonally from the right translation action on the
source, and the given action on the target. So,

𝐜𝐚𝐭(,)[𝜔𝐺] = 𝐜𝐚𝐭(𝐸𝐼(𝜔, 𝜔),)[𝜔𝐺] = 𝐜𝐚𝐭(𝐸𝐼(𝜔𝐺, 𝜔),[𝜔𝐺]) .
Moreover, a group element g ∈ 𝐺 acts on a functor 𝑋 ∶ 𝐸𝐼(𝜔𝐺, 𝜔)⟶ [𝜔𝐺] by

g ⋅ 𝑋 = 𝑙g∗ ◦ 𝑋 ◦ 𝐸𝐼(𝑙g , 𝜔) ,

and similarly for morphisms in 𝐜𝐚𝐭(𝐸𝐼(𝜔𝐺, 𝜔),[𝜔𝐺]), that is, natural transformations.
Since the left𝐺-action on𝜔𝐺 is faithful, the induced right𝐺-action on the set 𝐼(𝜔𝐺, 𝜔) is free.
So, we can choose a right 𝐺-equivariant map

𝑞 ∶ 𝐼(𝜔𝐺, 𝜔) ⟶ 𝐺 .

Passing to the associated contractible groupoids and applying 𝐜𝐚𝐭𝐺(−,[𝜔𝐺]) yields a
functor

𝐜𝐚𝐭𝐺(𝐸𝑞,[𝜔𝐺]) ∶ 𝐹ℎ𝐺 = 𝐜𝐚𝐭𝐺(𝐸𝐺,[𝜔𝐺])
⟶ 𝐜𝐚𝐭𝐺(𝐸𝐼(𝜔𝐺, 𝜔),[𝜔𝐺]) = 𝐹𝐺(𝐜𝐚𝐭(,)) .

Nowwe let 𝜆 ∶ 𝜔𝐺 ⟶ 𝜔 be any injection such that 𝑞(𝜆) = 1. We write 𝜀 ∶ 𝐜𝐚𝐭(,)⟶ 
for the functor that evaluates functors and natural transformations at the object 1 of. The
composite

𝐹ℎ𝐺 𝐜𝐚𝐭𝐺(𝐸𝑞,[𝜔𝐺])
::::::::::::::→ 𝐹𝐺(𝐜𝐚𝐭(,)) 𝜆𝐜𝐚𝐭(,)

♭
:::::::::→ 𝐺 𝐜𝐚𝐭(,) 𝐺𝜀

::→ 𝐺
equals the functor 𝜆♯ defined in (7.5). The functor 𝜆♯ is an equivalence of categories by Propo-
sition 7.6; the evaluation functor 𝜀 ∶ 𝐜𝐚𝐭(,)⟶  is an equivalence of categories, hence
so is the induced functor 𝐺𝜀 on the associated categories of 𝐺-objects. So, the functor

𝜆𝐜𝐚𝐭(,)
♭

◦ 𝐜𝐚𝐭𝐺(𝐸𝑞,[𝜔𝐺]) ∶ 𝐹ℎ𝐺 ⟶ 𝐺𝐜𝐚𝐭(,)

is an equivalence. Hence, the fully faithful (by Proposition 2.25) functor 𝜆𝐜𝐚𝐭(,)
♭

∶

𝐹𝐺(𝐜𝐚𝐭(,))⟶ 𝐺 𝐜𝐚𝐭(,) is essentially surjective, and thus an equivalence. Since 𝐺
was any finite group, Corollary 7.7 shows that the-category 𝐜𝐚𝐭(,) is saturated.

(iii) We let 𝐺 be a finite group. We must show that the inclusion

𝐹𝐺(𝐜𝐚𝐭(,)𝜏) ⟶ 𝐹𝐺(𝐜𝐚𝐭(,))
is an equivalence of categories. As we discussed in part (ii), the objects of the category
𝐹𝐺(𝐜𝐚𝐭(,)) are the 𝐺-equivariant functors 𝑋 ∶ 𝐸𝐼(𝜔𝐺, 𝜔)⟶ [𝜔𝐺]. We claim that 𝑋
is naturally isomorphic to a functor in the subcategory 𝐹𝐺(𝐜𝐚𝐭(,)𝜏). To this end we
choose a finite faithful 𝐺-invariant subset 𝑆 of the universal 𝐺-set 𝜔𝐺 . Then the action of
𝐺 on the set 𝐼(𝑆, 𝜔) of injections from 𝑆 to 𝜔 is free, so we can choose a 𝐺-equivariant map
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𝑟 ∶ 𝐼(𝑆, 𝜔)⟶ 𝐼(𝜔𝐺, 𝜔) with finite image 𝐽 ⊂ 𝐼(𝜔𝐺, 𝜔). We define

𝐴 = 𝑆 ∪
⋃
𝜆∈𝐽

supp(𝑋(𝜆)) ,

which is a finite subset of 𝜔𝐺 . We define a 𝐺-equivariant functor 𝑌 ∶ 𝐸𝐼(𝜔𝐺, 𝜔)⟶ [𝜔𝐺]
as the composite

𝐸𝐼(𝜔𝐺, 𝜔)
𝐸(𝑟 ◦ res𝑆)
::::::::::→ 𝐸𝐼(𝜔𝐺, 𝜔)

𝑋
:::→ [𝜔𝐺] ,

where res𝑆 ∶ 𝐼(𝜔𝐺, 𝜔)⟶ 𝐼(𝑆, 𝜔) is the restriction of a function to 𝑆. Proposition 7.22 then
shows that the functor 𝑌 is supported on the finite subset 𝐴 of 𝜔𝐺 . So, 𝑌 belongs to the
subcategory 𝐹𝐺(𝐜𝐚𝐭(,)𝜏). Moreover, for varying 𝜆 ∈ 𝐼(𝜔𝐺, 𝜔), the isomorphisms

𝑋(𝑟(res𝑆(𝜆)), 𝜆) ∶ 𝑋(𝜆) ⟶ 𝑋(𝑟(res𝑆(𝜆))) = 𝑌(𝜆)

form a 𝐺-equivariant natural isomorphism from 𝑋 to 𝑌. This concludes the proof.
(iv) Every morphism of -categories takes finitely supported objects to finitely supported

objects. Since all objects of  are finitely supported, the functor 𝑠 ∶  ⟶𝐜𝐚𝐭(,) lands
in the full subcategory sat = 𝐜𝐚𝐭(,)𝜏. Since the -category 𝐜𝐚𝐭(,) is saturated
by part (ii) and the inclusion sat ⟶ 𝐜𝐚𝐭(,) is a global equivalence by part (iii), the
-category sat is also saturated. Since the inclusion sat ⟶ 𝐜𝐚𝐭(,) and the functor
𝑠 ∶  ⟶𝐜𝐚𝐭(,) are equivalences, so is the restricted functor 𝑠 ∶  ⟶ sat.
Given part (iv), the final part (v) is now an application of Proposition 7.11(ii). □

As we shall now explain, the saturation has a natural extension from -categories to
parsummable categories.

Construction 7.25 (Saturation for parsummable categories). Above we introduced the saturation
functor

(−)sat = 𝐜𝐚𝐭(, −)𝜏 ∶  𝐜𝐚𝐭𝜏 ⟶  𝐜𝐚𝐭𝜏

for tame-categories. We let  and  be tame-categories. We will now define a natural-
equivariant functor

sat ⊠sat ⟶ ( ⊠)sat (7.26)

that makes saturation into a lax symmetric monoidal functor for the box product of tame -
categories.
We consider functors 𝑋 ∶⟶  and 𝑌 ∶⟶  that are supported, as objects of the-

categories 𝐜𝐚𝐭(,) and 𝐜𝐚𝐭(,), on disjoint finite subset𝐴 and𝐵 of𝜔. Proposition 7.22 shows
that then the values of 𝑋 and 𝑌 are in particular objectwise disjointly supported. So, the functor

(𝑋, 𝑌) ∶  ⟶  ×
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takes values in the full subcategory  ⊠. Moreover, as an object of the-category 𝐜𝐚𝐭(, 𝑋 ⊠

𝑌), the functor (𝑋, 𝑌) is supported on the finite set 𝐴 ∪ 𝐵, again by Proposition 7.22. So, the
corresponding functor

sat ⊠sat = 𝐜𝐚𝐭(,)𝜏 ⊠ 𝐜𝐚𝐭(,)𝜏 ⟶ 𝐜𝐚𝐭(, ×)
takes values in the full subcategory 𝐜𝐚𝐭(, ⊠)𝜏 = ( ⊠)sat. This defines the natural
functor (7.26), which is clearly-equivariant, associative, commutative and unital.
Now we suppose that  is a parsummable category. Then the saturation sat of the underlying

-category inherits the structure of a parsummable category, with addition functor defined as
the composite

sat ⊠ sat (7.26)
:::::→ ( ⊠ )sat +sat

:::::→ sat .
In more down-to-earth terms, this means that the parsummable structure is entirely defined
‘objectwise’. For example, if 𝑋,𝑌 ∶⟶  are functors that have disjoint finite supports with
respect to the-action on 𝐜𝐚𝐭(,), then the functor 𝑋 + 𝑌 ∶⟶  is defined on objects
and morphisms by

(𝑋 + 𝑌)(𝑢) = 𝑋(𝑢) + 𝑌(𝑢) and (𝑋 + 𝑌)(𝑣, 𝑢) = 𝑋(𝑣, 𝑢) + 𝑌(𝑣, 𝑢) .

Theorem 7.27. Let  be a parsummable category.
(i) The parsummable category sat is saturated.
(ii) The functor 𝑠 ∶  ⟶ sat is a morphism of parsummable categories and an equivalence of

underlying categories.
(iii) If  is saturated, then 𝑠 ∶  ⟶ sat is a global equivalence of parsummable categories.
Proof. The constant functor ⟶  with value 0 is the distinguished zero object of the par-
summable category 𝐜𝐚𝐭(,)𝜏, so the constant functor 𝑠 ∶  ⟶𝐜𝐚𝐭(,)𝜏 is unital. For all
tame-categories  and, the composite

 ⊠ 𝑠⊠𝑠
::::→ 𝐜𝐚𝐭(,)𝜏 ⊠ 𝐜𝐚𝐭(,)𝜏 (7.26)

:::::→ 𝐜𝐚𝐭(, ⊠)𝜏

coincides with the constant functor 𝑠 ∶  ⊠⟶𝐜𝐚𝐭(, ⊠)𝜏. So, for every parsummable
category , the functor 𝑠 ∶  ⟶𝐜𝐚𝐭(,)𝜏 respects the addition functors. ‘Saturation’ and
‘global equivalence’ are properties of the underlying -categories, so the remaining claims are
special cases of Theorem 7.24. □

A consequence of Theorem 7.27 is that the 𝐺-fixed category 𝐹𝐺(sat) of the saturation of a par-
summable category  is equivalent to the category of 𝐺-objects in : because 𝑠 ∶  ⟶ sat is an
equivalence of categories and because sat is saturated, the three functors

𝐺 𝐺𝑠
::::→
≅

𝐺sat 𝑐♯
:::→
≅

𝐹ℎ𝐺(sat) 𝜅
←::
≅

𝐹𝐺(sat)

are equivalences of categories.
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8 GLOBAL K-THEORY OF FREE PARSUMMABLE CATEGORIES

As we explained in Example 4.6, the forgetful functor from parsummable categories to tame-
categories has a left adjoint, yielding free parsummable categories. In this section, we identify the
global K-theory spectrum of the free parsummable category generated by a tame-category as
a suspension spectrum, see Theorem 8.7. Our result can be interpreted as a global equivariant
generalization of the Barratt–Priddy–Quillen theorem; so before going into details, we review the
Barratt–Priddy–Quillen theorem and its variations and generalizations, in order to put our result
into context.
The original result of Barratt–Priddy and Quillen states that a specific map

ℤ × 𝐵Σ∞ ⟶ colim𝑛 Ω
𝑛𝑆𝑛 = 𝑄(𝑆0)

is a homology isomorphism; here 𝐵Σ∞ is the classifying space of the infinite symmetric group
Σ∞ =

⋃
𝑛⩾1 Σ𝑛, and 𝑄(𝑆0) is the infinite loop space of the sphere spectrum. The result was

announced by Barratt in [1] and by Priddy in [30], who jointly published a detailed proof in [3].
Barratt and Priddy acknowledge that Quillen had also proved the same result, but to my knowl-
edge, Quillen never circulated or published his proof in writing. Sometimes the result is stated
in an equivalent formulation, as a weak homotopy equivalence between ℤ × (𝐵Σ∞)+ and 𝑄(𝑆0),
where (−)+ is the plus construction. Another interpretation of the Barratt–Priddy–Quillen the-
orem is to say that 𝑄(𝑆0) is the group completion of

∐
𝑚⩾0 𝐵Σ𝑚, the free 𝐸∞-space generated by

a point. The 𝐸∞-space
∐

𝑚⩾0 𝐵Σ𝑚, in turn, is weakly equivalent to the nerve of the category of
finite sets and bijections, with the 𝐸∞-structure arising from disjoint union. So, yet another way
to view the Barratt–Priddy–Quillen theorem is as a stable equivalence between the sphere spec-
trum and the K-theory spectrum of the category of finite sets under disjoint union. We offer a
global equivariant refinement of this results in Theorem 8.9, saying that the global K-theory of
the parsummable category  of finite sets is globally equivalent to the global sphere spectrum.
A generalization of the Barratt–Priddy–Quillen theorem is the statement that the group

completion of the free 𝐸∞-space generated by a space 𝑋 is weakly equivalent to 𝑄(𝑋) =

colim𝑛⩾0 Ω
𝑛(Σ𝑛𝑋+), the infinite loop space of the unreduced suspension spectrum of 𝑋. Equiva-

lently, the spectrummade from the K-theoretic deloopings of the free𝐸∞-space on𝑋 is equivalent
to the unreduced suspension spectrum of 𝑋. Two versions of this result for different 𝐸∞-operads
were proved by Barratt–Eccles [2, Theorem A] and May [25, Theorem 2.2]; in the framework
of Γ-spaces, Segal stated the corresponding result in [35, Proposition 3.6]. For a fixed finite
group 𝐺, equivariant versions of the Barratt–Priddy–Quillen theorem have been established by
Hauschild [13, Theorem III.4], Carlsson–Douglas–Dundas [7, section 5.2], Guillou–May [12, sec-
tion 6], Barwick–Glasman–Shah [5, Theorem 10.6], and possibly others that I am not aware of.
Our Theorem 8.7 is a global equivariant version of the Barratt–Priddy–Quillen theorem.
If every object of the tame-category  has a non-empty support, then for every 𝑚 ⩾ 0, the

permutation action of the symmetric group Σ𝑚 on the box power ⊠𝑚 is free. So, in this sit-
uation, the nerve of the underlying category of the free parsummable category ℙ is weakly
equivalent to the free 𝐸∞-space generated by the nerve of the underlying category of . The
Barratt–Priddy–Quillen theorem thus suggest that non-equivariantly, the K-theory of ℙ ought
to be the unreduced suspension spectrum of the nerve of the underlying category of . We will
show that this is indeed the case, even in a global equivariant form.
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Construction 8.1 (Word length filtration). We let  be a tame -category. As we discussed in
Example 4.6, the free parsummable category generated by  has underlying category

ℙ =
∐
𝑚⩾0

(⊠𝑚)∕Σ𝑚 .

We filter the associated Γ--category 𝛾(ℙ) by ‘word length’, as follows. Since the free functor
ℙ ∶ 𝐜𝐚𝐭𝜏 ⟶ 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭 is left adjoint to the forgetful functor, it takes disjoint unions of tame
-categories to coproducts of parsummable categories, which are given by the box product, see
Example 4.10. So, the value of 𝛾(ℙ) at an object 𝑛+ of Γ can be rewritten as

𝛾(ℙ)(𝑛+) = (ℙ)⊠𝑛 ≅ ℙ( × 𝐧) =
∐
𝑚⩾0

(( × 𝐧)⊠𝑚)∕Σ𝑚 ,

where 𝐧 = {1, … , 𝑛}. We write 𝛾𝑘(ℙ) for the Γ--subcategory of 𝛾(ℙ) whose value at 𝑛+ is
𝛾𝑘(ℙ)(𝑛+) =

∐
0⩽𝑚⩽𝑘

(( × 𝐧)⊠𝑚)∕Σ𝑚 ,

that is, the disjoint union runs only up to 𝑘. Passing to the associated symmetric spectra (see
Construction 3.3) provides an exhaustive filtration

𝛾1(ℙ)⟨𝕊⟩ ⊆ 𝛾2(ℙ)⟨𝕊⟩ ⊆ … ⊆ 𝛾𝑘(ℙ)⟨𝕊⟩ ⊆ …

of the symmetric spectrum 𝛾(ℙ)⟨𝕊⟩ = 𝐊gl(ℙ).
Construction 8.2 (From-categories to 𝐈-spaces). We let 𝐈 denote the category of finite sets and
injective maps; an 𝐈-space is a functor from 𝐈 to the category of spaces. As indicated in [15, section
6.1] and explained in detail in [19, section 1.4], the category of 𝐈-spaces is a model for unstable
global homotopy theory based on finite groups.
We will now associate an 𝐈-space 𝜌() to every-category . As before, we denote by 𝜔𝐴 the

set of maps from 𝐴 to 𝜔. The value of 𝜌() at a non-empty finite set 𝐴 is

𝜌()(𝐴) = |[𝜔𝐴]| ,
the geometric realization of the category[𝜔𝐴]. For the empty set, we set 𝜌()(∅) = |supp=∅|, the
realization of the full subcategory of  on the objects supported on the empty set. The structure
map associated with an injection 𝑖 ∶ 𝐴⟶ 𝐵 is the map

𝜌()(𝑖) = |[𝑖!]| ∶ |[𝜔𝐴]| ⟶ |[𝜔𝐵]| ,
where 𝑖! ∶ 𝜔𝐴 ⟶ 𝜔𝐵 is extension by zero, see (3.4). In the special case where 𝐴 = ∅ is empty,
the map 𝜌()[𝑖!] ∶ 𝜌()[𝜔𝐴]⟶ 𝜌()[𝜔𝐵] is to be interpreted as the inclusion |supp=∅|⟶|[𝜔𝐵]|.
Definition 8.3 (Suspension spectrum of an 𝐈-space). The unreduced suspension spectrum Σ∞+ 𝑋 of
an 𝐈-space 𝑋 is defined by

(Σ∞+ 𝑋)(𝐴) = 𝑋(𝐴)+ ∧ 𝑆
𝐴 .
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The structure map 𝑖∗ ∶ (Σ∞+ 𝑋)(𝐴) ∧ 𝑆
𝐵⧵𝑖(𝐴) ⟶ (Σ∞+ 𝑋)(𝐵) associated to an injection 𝑖 ∶ 𝐴⟶ 𝐵

between finite sets is the smash product of the structuremap𝑋(𝑖)+ ∶ 𝑋(𝐴)+ ⟶ 𝑋(𝐵)+ of𝑋 with
the preferred homeomorphism 𝑆𝐴 ∧ 𝑆𝐵⧵𝑖(𝐴) ≅ 𝑆𝐵 that is given by 𝑖 on the 𝐴-coordinates.

Example 8.4. Let be a tame-category.We claim that the symmetric spectrum 𝛾1(ℙ)⟨𝕊⟩, the
first term in the word length filtration of 𝐊gl(ℙ) introduced in Construction 8.1, is isomorphic
to the unreduced suspension spectrum of the 𝐈-space 𝜌().
Indeed, by definition we have

|𝛾1(ℙ)|(𝑛+) = | ∗ ⨿( × 𝐧)| ≅ ||+ ∧ 𝑛+ .
The prolongation of this Γ-space is the functor ||+ ∧ − ∶ 𝐓∗ ⟶ 𝐓∗. So

𝛾1(ℙ)⟨𝕊⟩(𝐴) = |𝛾1(ℙ)[𝜔𝐴]|(𝑆𝐴) = |[𝜔𝐴]|+ ∧ 𝑆𝐴 = (Σ∞+ 𝜌())(𝐴).
We omit the straightforward verification that the structure maps of the symmetric spectra
𝛾1(ℙ)⟨𝕊⟩ and Σ∞+ 𝜌() correspond to each other under this identification.
Our proof of Theorem 8.7 is based on connectivity estimates of the subquotients in the word-

length filtration; this kind of connectivity argument goes back, at least, to Barratt and Eccles [2,
section 6]. The following proposition is the key technical ingredient; we write 𝐴∕𝐺 for the set of
𝐺-orbits of a 𝐺-set 𝐴, and we write |𝐴∕𝐺| for its cardinality.
Proposition8.5. Let𝐺 be a finite groupand let𝑋 be a (𝐺 × Σ𝑘)-simplicial set such that theΣ𝑘-action
is free, for 𝑘 ⩾ 2. Let 𝐴 be a finite 𝐺-set with 𝑞 free 𝐺-orbits. Then the 𝐺-fixed simplicial set

((𝑋+ ∧ (𝑆
𝐴)∧𝑘)∕Σ𝑘)

𝐺

is (|𝐴∕𝐺| + 𝑞 − 1)-connected.
Proof. Because the Σ𝑘-action on 𝑋 is free, the Σ𝑘-action on 𝑋+ ∧ (𝑆𝐴)∧𝑘 is free away from the
basepoint. The 𝐺-fixed points of the Σ𝑘-orbits can thus be identified as(

(𝑋+ ∧ (𝑆
𝐴)∧𝑘)∕Σ𝑘

)𝐺
≅

⋁
[𝛼∶𝐺⟶Σ𝑘]

(𝑋+ ∧ (𝑆
𝐴)∧𝑘)Γ(𝛼)∕𝐶(𝛼) .

The wedge is indexed by conjugacy classes of homomorphisms 𝛼 ∶ 𝐺 ⟶ Σ𝑘, Γ(𝛼) denotes the
graph of 𝛼, and 𝐶(𝛼) denotes the centralizer in Σ𝑘 of the image of 𝛼. So, to prove the claim, it
suffices to show that each of the wedge summands is (|𝐴∕𝐺| + 𝑞 − 1)-connected.
For the rest of the proof, we thus fix a particular homomorphism 𝛼 ∶ 𝐺 ⟶ Σ𝑘. We let

𝑖1, … , 𝑖𝑚 ∈ {1, … , 𝑘} be representatives of the 𝐺-orbits for the action through 𝛼. We let 𝐻𝑗 be the
stabilizer of 𝑖𝑗 , a subgroup of 𝐺. Then the Γ(𝛼)-fixed points of (𝑆𝐴)∧𝑘 are given by

((𝑆𝐴)∧𝑘)Γ(𝛼) ≅
⋀

𝑗=1,…,𝑚

(𝑆𝐴)𝐻𝑗 ,



1424 SCHWEDE

the smash product of the 𝐻𝑗-fixed simplicial sets of 𝑆𝐴. The connectivity of these fixed points is
one less than the dimension of the sphere

⋀
𝑗=1,…,𝑚(𝑆

𝐴)𝐻𝑗 , which is

dim

( ⋀
𝑗=1,…,𝑚

(𝑆𝐴)𝐻𝑗

)
=

∑
𝑗=1,…,𝑚

|𝐴∕𝐻𝑗| .
Now we distinguish two cases. If the 𝐺-action on {1, … , 𝑘} through 𝛼 ∶ 𝐺 ⟶ Σ𝑘 is not transitive,
then𝑚 ⩾ 2, and hence ∑

𝑗=1,…,𝑚

|𝐴∕𝐻𝑗| ⩾ 2 ⋅ |𝐴∕𝐺| ⩾ |𝐴∕𝐺| + 𝑞 .
If the 𝐺-action on {1, … , 𝑘} is transitive, then 𝑚 = 1 and the stabilizer group 𝐻1 is a proper sub-
group of index 𝑘 ⩾ 2. Because 𝐴 has 𝑞 free 𝐺-orbits, it is 𝐺-isomorphic to 𝐵 ⨿ (𝐪 × 𝐺) for some
finite 𝐺-set 𝐵. So,

|𝐴∕𝐻1| = |𝐵∕𝐻1| + 𝑞 ⋅ [𝐺 ∶ 𝐻1] ⩾ |𝐵∕𝐺| + 2𝑞 = |𝐴∕𝐺| + 𝑞 .
So, in either case, the simplicial set ((𝑆𝐴)∧𝑘)Γ(𝛼) is (|𝐴∕𝐺| + 𝑞 − 1)-connected. Hence, the
simplicial set

(𝑋+ ∧ (𝑆
𝐴)∧𝑘)Γ(𝛼) = 𝑋Γ(𝛼)+ ∧ ((𝑆𝐴)∧𝑘)Γ(𝛼)

is also (|𝐴∕𝐺| + 𝑞 − 1)-connected. Since the Σ𝑘-action on 𝑋 is free, the action of its subgroup
𝐶(𝛼) on𝑋Γ(𝛼) is also free. So, the𝐶(𝛼)-action on (𝑋+ ∧ (𝑆𝐴)∧𝑘)Γ(𝛼) is free away from the basepoint.
Thus, the𝐶(𝛼)-orbits (𝑋+ ∧ (𝑆𝐴)∧𝑘)Γ(𝛼)∕𝐶(𝛼) are also (|𝐴∕𝐺| + 𝑞 − 1)-connected. This concludes
the proof. □

Nowwe come to themain result of this section. The identification provided by Example 8.4, fol-
lowed by the inclusion 𝛾1(ℙ)⟨𝕊⟩⟶𝛾(ℙ)⟨𝕊⟩ = 𝐊gl(ℙ) is a morphism of symmetric spectra

𝑤 ∶ Σ∞+ 𝜌() ⟶ 𝐊gl(ℙ) . (8.6)

Theorem 8.7. Let be a tame-category without objects with empty support. Then the morphism
𝑤 ∶ Σ∞+ 𝜌()⟶ 𝐊gl(ℙ) is a global equivalence of symmetric spectra.
Proof. Since the word length filtration of 𝐊gl(ℙ) arises from a filtration by monomorphisms
of symmetric spectra of simplicial sets, the 𝐺-equivariant homotopy groups of 𝛾𝑘−1(ℙ)⟨𝕊⟩,
𝛾𝑘(ℙ)⟨𝕊⟩ and the 𝑘th subquotient participate in a long exact sequence. So, it suffices to show
that the 𝑘th subquotient of the word-length filtration of 𝐊gl(ℙ) has trivial 𝐺-equivariant stable
homotopy groups for every finite group 𝐺 and all 𝑘 ⩾ 2. We write 𝜇𝑘 for the Γ-Σ𝑘-space defined
by

𝜇𝑘(𝑛+) = |⊠𝑘|+ ∧ (𝑛+)∧𝑘 .



GLOBAL ALGEBRAIC K-THEORY 1425

The functoriality in Γ is only through 𝑛+; the Σ𝑘-action is diagonal, through the permutation
actions on ⊠𝑘 and (𝑛+)∧𝑘. Then

|𝛾𝑘(ℙ)|(𝑛+)∕|𝛾𝑘−1(ℙ)|(𝑛+) ≅ |( × 𝐧)⊠𝑘∕Σ𝑘|+
≅ (|( × 𝐧)⊠𝑘|∕Σ𝑘)+ ≅ 𝜇𝑘(𝑛+)∕Σ𝑘 .

The second homeomorphism exploits the hypothesis that  has no objects with empty support:
this condition guarantees that the permutation action of Σ𝑘 on the category ( × 𝐧)⊠𝑘 is free,
and so passing to Σ𝑘-orbits commutes with taking nerves. These homeomorphisms are natural
for morphisms in Γ, so they constitute an isomorphism of Γ-spaces

|𝛾𝑘(ℙ)|∕|𝛾𝑘−1(ℙ)| ≅ 𝜇𝑘∕Σ𝑘 .

Prolongation of Γ-spaces is an enriched colimit, so it commutes with colimits of Γ-spaces; in par-
ticular, prolongation commutes with quotients, and with orbits by group actions. So, the value of
the 𝑘-subquotient of the word length filtration of𝐊gl(ℙ) is isomorphic to(

𝜇𝑘(𝑆
𝐴)∕Σ𝑘

)
[𝜔𝐴] = (|⊠𝑘[𝜔𝐴]|+ ∧ (𝑆𝐴)∧𝑘)∕Σ𝑘 .

Now we fix a finite group 𝐺, and we let 𝐴 be a finite 𝐺-set with 𝑞 free 𝐺-orbits, for some 𝑞 ⩾ 1.
Since the Σ𝑘-action on the category ⊠𝑘 is free, so is the action on its nerve. So, Proposition 8.5
applies to the nerve of the (𝐺 × Σ𝑘)-category ⊠𝑘[𝜔𝐴], and shows that the fixed point space((

𝜇𝑘(𝑆
𝐴)∕Σ𝑘

)
[𝜔𝐴]

)𝐺
is (|𝐴∕𝐺| + 𝑞 − 1)-connected.
For every subgroup𝐻 of 𝐺, the underlying𝐻-set of 𝐴 has at least 𝑞 free𝐻-orbits. So, the fixed

point space ((𝜇𝑘(𝑆𝐴)∕Σ𝑘)[𝜔𝐴])𝐻 is (|𝐴∕𝐻| + 𝑞 − 1)-connected. On the other hand, the dimension
of the 𝐻-fixed point sphere (𝑆𝐴)𝐻 is |𝐴∕𝐻|. So, as long as 𝑚 is smaller than the number of free
𝐺-orbits of 𝐴, the dimension of the 𝐻-fixed points of 𝑆𝑚+𝐴 is smaller than the connectivity of
the space ((𝜇𝑘(𝑆𝐴)∕Σ𝑘)[𝜔𝐴])𝐻 . Since this holds for all subgroups𝐻 of 𝐺, every based continuous
𝐺-map 𝑆𝑚+𝐴 ⟶ (𝜇𝑘(𝑆

𝐴)∕Σ𝑘)[𝜔
𝐴] is equivariantly null-homotopic, that is, the set

[𝑆𝑚+𝐴,
(
𝜇𝑘(𝑆

𝐴)∕Σ𝑘
)
[𝜔𝐴]]𝐺

has only one element. The 𝐺-sets with at least 𝑚 + 1 free orbits are cofinal in the poset of finite
𝐺-subsets of a universal 𝐺-set 𝐺 . So, the homotopy group 𝜋

𝐺,𝐺
𝑚 ((𝜇𝑘∕Σ𝑘)⟨𝕊⟩) is trivial. Since 𝐺

was any finite group, we have shown that for every 𝑘 ⩾ 2, the 𝑘th subquotient of the word length
filtration of𝐊gl(ℙ) has trivial equivariant homotopy groups. This concludes the proof. □

Remark 8.8. A hypothesis of Theorem 8.7 is that no object of the tame-category  has empty
support. The example of the terminal-category shows that the condition is really necessary, and
not just an artifact of our proof. Indeed, the 𝐈-space 𝜌(∗) associated with the terminal-category
∗ is constant with values a one-point space, so its unreduced suspension spectrum Σ∞+ 𝜌(∗)

is isomorphic to the sphere spectrum.The free parsummable categoryℙ(∗) generated by the termi-
nal-category is discrete and isomorphic to the parsummable category associated to the abelian
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monoid ℕ of natural numbers, compare Example 4.4. Its global K-theory spectrum refines the
Eilenberg–MacLane spectrum of the integers; so the morphism 𝑤 ∶ Σ∞+ 𝜌(∗)⟶ 𝐊gl(ℙ(∗)) is not
even a non-equivariant stable equivalence.

The parsummable category  of finite sets was introduced in Example 4.5; the objects of  are
the finite subsets of 𝜔 = {0, 1, 2, 3, … }, and morphisms in  are all bijections. The global K-theory
of finite sets is the symmetric spectrum

𝐊gl = 𝛾()⟨𝕊⟩
associated with the parsummable category  . As we shall now explain, our Theorem 8.7 applies
to the parsummable category  , and it yields an identification of the global K-theory of finite sets
with the global sphere spectrum.
We write  for the full -subcategory of  whose objects are the one-element subsets of 𝜔.

We write 𝑡 ∶ ⟶∗ for the unique functor to the terminal -category with one object and its
identity morphism. The 𝐈-space 𝜌(∗) is then constant with value the one point space | ∗ |; so its
suspension spectrum Σ∞+ 𝜌(∗) is uniquely isomorphic to the symmetric sphere spectrum 𝕊.

Theorem 8.9. The morphisms of symmetric spectra

𝕊 ≅ Σ∞+ 𝜌(∗)
Σ∞+ 𝜌(𝑡)
←:::::: Σ∞+ 𝜌() 𝑤

:::→ 𝐊gl
are global equivalences.

Proof. The inclusion ⟶  is a morphism of -categories, so it extends uniquely to a mor-
phism of parsummable categories ℙ⟶  from the free parsummable category generated by
. Thismorphism is in fact an isomorphism of parsummable categories, by direct inspection—or
as a special case of Theorem 9.7 (i). Theorem 8.7 thus shows that the morphism 𝑤 ∶ Σ∞+ 𝜌()⟶
𝐊gl is a global equivalence of symmetric spectra.
To complete the proof we show that the morphism Σ∞+ 𝜌(𝑡) ∶ Σ

∞
+ 𝜌()⟶ 𝕊 is even a global

level equivalence in the sense of [15, Definition 2.2]. We let 𝐺 be a finite group and 𝐴 a finite
𝐺-set. The category ([𝜔𝐴])𝐺 consists of 𝐺-invariant subsets of 𝜔𝐴 with one element, and their
isomorphisms. This category is a connected groupoid with trivial automorphism groups, so its
nerve is contractible. Hence, the map(

Σ∞+ 𝜌(𝑡)(𝐴)
)𝐺

∶
(
Σ∞+ 𝜌()(𝐴)

)𝐺
= |[𝜔𝐴]|𝐺+ ∧ (𝑆𝐴)𝐺 ⟶ (𝑆𝐴)𝐺 = (𝕊(𝐴))𝐺

is a weak equivalence. The morphism Σ∞+ 𝜌(𝑡) is thus a global level equivalence by the criterion
[15, Lemma. 2.3], and hence a global equivalence by [15, Example 2.10]. □

Remark 8.10. Hausmann and Ostermayr [16] establish a result of a very similar flavor as our The-
orem 8.9. They study an orthogonal spectrum 𝑘 𝑖𝑛 that also deserves to be called the ‘global
K-theory of finite sets’. While similar in spirit, the two constructions are different: 𝑘 𝑖𝑛 is a com-
mutative orthogonal ring spectrum made from configuration spaces of points in spheres labeled
by orthonormal systems of vectors. Hausmann and Ostermayr show in [16, Corollary 4.2] that the
unit morphism 𝕊⟶ 𝑘 𝑖𝑛 is a global equivalence of orthogonal spectra. So, their theorem lives
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in the full-fledged global homotopy theory of orthogonal spectra, that is, it also has homotopical
content for compact Lie groups, while our Theorem 8.9 only refers to  𝑖𝑛-global homotopy types.
The argument of Hausmann and Ostermayr is based on an analysis of the cardinality filtration of
𝑘 𝑖𝑛, a filtration analogous to our word length filtration.

9 GLOBAL K-THEORY OF 𝑮-SETS

This section is devoted to the global K-theory of finite 𝐺-sets, where 𝐺 is a discrete group, pos-
sibly infinite. The parsummable category 𝐺 of finite 𝐺-sets is, by definition, the category of
𝐺-objects in the parsummable category of finite sets, see Example 9.1. The global K-theory spec-
trum 𝐊gl(𝐺) of finite 𝐺-sets can be completely described in terms of global classifying spaces
of finite groups. Indeed, by Theorem 9.3, the symmetric spectrum 𝐊gl(𝐺) splits, up to global
equivalence, into summands indexed by the conjugacy classes of finite index subgroup of 𝐺. The
summand indexed by a finite index subgroup 𝐻 of 𝐺 can be identified with the global K-theory
of free𝑊𝐺𝐻-sets, where𝑊𝐺𝐻 = (𝑁𝐺𝐻)∕𝐻 is the Weyl group of𝐻 in 𝐺, see Proposition 9.10. An
application of our global Barratt–Priddy–Quillen theorem then identifies the global K-theory of
free𝑊𝐺𝐻-sets with the unreduced suspension spectrum of the global classifying space of𝑊𝐺𝐻,
see Theorem 9.7.
For finite groups 𝐺, the essential mathematical content of Theorem 9.3 could also be obtained

by combining the identification of the global K-theory of finite sets (Theorem 8.9) with Corol-
lary 7.19, the tom Dieck splitting and the Adams isomorphism. Our approach below, based on the
global Barratt–Priddy–Quillen theorem (Theorem 8.7), does not rely on the tomDieck splitting or
the Adams isomorphism, and it works for arbitrary discrete groups.

Example 9.1 (Global K-theory of finite 𝐺-sets). We let 𝐺 be a discrete group, possibly infinite.
For every parsummable category , the category 𝐺 of 𝐺-objects in  inherits a parsummable
structure as discussed in Example 4.12. In essence, the -action and the sum functor on 𝐺
are the given structure on underlying objects, with 𝐺-actions carried along by functoriality. The
support of a 𝐺-object coincides with the support of the underlying -object.
The parsummable category  of finite sets was introduced in Example 4.5; so the category 𝐺

of 𝐺-objects in  forms a parsummable category, the parsummable category of finite 𝐺-sets. By
definition, 𝐺 is the full subcategory of the category of finite 𝐺-sets, with objects those 𝐺-sets
whose underlying set is a subset of 𝜔 = {0, 1, 2, … }. Since  is saturated by Example 7.8, the par-
summable category𝐺 is saturated byExample 7.10.We refer to the symmetric spectrum𝐊gl(𝐺)
as the global K-theory of finite 𝐺-sets.

We will now argue that the parsummable category 𝐺 decomposes as a box product, and its
global K-theory decompose as a wedge, both indexed by conjugacy classes of finite index sub-
groups. For a subgroup 𝐻 of 𝐺 we denote by (𝐺)(𝐻) the full subcategory of 𝐺 whose objects
are finite subsets of 𝜔 equipped with a 𝐺-action such that all isotropy groups are conjugate to 𝐻.
Morphisms in (𝐺)(𝐻) are the 𝐺-equivariant bijections. The category (𝐺)(𝐻) is closed under the-action and the addition in𝐺 , hence (𝐺)(𝐻) is a parsummable category in its own right. If𝐻
has infinite index in 𝐺, then the 𝐺-orbit of any point with isotropy group 𝐻 is infinite; so in this
case, the category (𝐺)(𝐻) has only one object, the empty set. Hence, the parsummable category
(𝐺)(𝐻) is only interesting if𝐻 has finite index in 𝐺.
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The box product is the coproduct of parsummable categories, see Examples 4.10 and 4.18. So,
there is a unique morphism of parsummable categories

⊠(𝐻) (𝐺)(𝐻) ⟶ 𝐺 (9.2)

whose restriction to (𝐺)(𝐻) is the inclusion.
Theorem 9.3. Let 𝐺 be a group. As 𝐻 runs over a set of representatives of the conjugacy classes of
finite index subgroups of 𝐺, the morphism (9.2) is an isomorphism of parsummable categories, and
the canonical morphism ⋁

(𝐻)
𝐊gl((𝐺)(𝐻)) ≃

:::→ 𝐊gl(𝐺) .
is a global equivalence of symmetric spectra.

Proof. Every finite subset of 𝜔 equipped with a 𝐺-action is the disjoint union of its (𝐻)-isotypical
summands, that is, the 𝐺-invariant subset of those elements whose isotropy group is conju-
gate to 𝐻. Moreover, isomorphisms of 𝐺-sets must preserve the isotypical decomposition. So,
the morphism (9.2) is an isomorphism of parsummable categories. Additivity of global K-theory
(Theorem 4.19) then proves the second claim. □

We will now investigate the summands 𝐊gl((𝐺)(𝐻)) appearing in the wedge decomposition
of Theorem 9.3 in more detail. We can handle the extreme case 𝐻 = 𝐺 right away: (𝐺)(𝐺) is the
category of finite subsets of 𝜔 equipped with the trivial 𝐺-action, and the𝐺-equivariant bijections
between these. So, endowing a setwith the trivial𝐺-action is an isomorphismof parsummable cat-
egories  ≅ (𝐺)(𝐺). Hence, the summand𝐊gl((𝐺)(𝐺)) is isomorphic to𝐊gl , and thus globally
equivalent to the global sphere spectrum, by Theorem 8.9.
Our next step is to look at the other extreme𝐻 = {𝑒} of the trivial subgroup, that is, to study the

global K-theory of free 𝐺-sets. Since the isotropy subgroup must have finite index in 𝐺, we must
now restrict to finite groups. For every group 𝐺, the nerve of the category of finitely generated
free 𝐺-sets is equivalent to the free 𝐸∞-space generated by 𝐵𝐺, the classifying space of 𝐺. So, the
generalization of the Barratt–Priddy–Quillen theoremmentioned in the introduction of Section 8
says that the K-theory of finitely generated free 𝐺-sets is stably equivalent to the unreduced sus-
pension spectrum of 𝐵𝐺. In Theorem 9.7 we provide a global equivariant generalization of this
result for finite groups.

Definition 9.4. We let𝐺 be a finite group.We denote bygl𝐺 the full subcategory of𝐺 on those
objects for which the 𝐺-action is free and transitive.

The category gl𝐺 is thus equivalent to the category with a single object with 𝐺 as its
endomorphisms. The category gl𝐺 is invariant under the-action on 𝐺 , and we write

𝐵gl𝐺 = 𝜌(gl𝐺)

for the 𝐈-space associated with the-category gl𝐺, see Construction 8.2.
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The following proposition shows thatgl𝐺 is an incarnation in theworld of-categories of the
global classifying space of 𝐺, as defined in [34, Definition 1.1.27]; this also justifies the notation.
To properly compare things, we have to recall orthogonal spaces and explain how to pass from
orthogonal spaces to 𝐈-spaces.We let𝐋 denote the topological categorywhose objects are all finite-
dimensional real inner product spaces, and with morphisms the linear isometric embeddings,
topologized as Stiefel manifolds. An orthogonal space in the sense of [34, Definition 1.1.1] is a
continuous functor from𝐋 to the category of spaces. Orthogonal spaces are also calledI -functors,
I -spaces or -spaces by other authors. The linearization functor

ℝ[−] ∶ 𝐈 ⟶ 𝐋

takes a finite set𝐴 to the freeℝ-vector spaceℝ[𝐴]with𝐴 as orthonormal basis; injections between
finite sets are ℝ-linearly extended to linear isometric embeddings. The underlying 𝐈-space of an
orthogonal space 𝑋 is simply the composite functor

𝐈
ℝ[−]
::::::→ 𝐋

𝑋
:::→ 𝐓 .

Proposition 9.5. For every finite group 𝐺, the 𝐈-space 𝜌(gl𝐺) is globally equivalent to the
underlying 𝐈-space of the global classifying space 𝐵gl𝐺 as defined in [34, Definition 1.1.27].

Proof. For the course of the proof we write 𝑢(𝑋) = 𝑋 ◦ ℝ[−] for the underlying 𝐈-space of an
orthogonal space𝑋. The𝐺-action onℝ[𝐺] induces a𝐺-action on the represented orthogonal space
𝐋ℝ[𝐺] = 𝐋(ℝ[𝐺], −), and the quotient

𝐵gl𝐺 = 𝐋ℝ[𝐺]∕𝐺

is a global classifying space of 𝐺 in the sense of [34, Definition 1.1.27]. We exhibit a chain of three
global equivalences of 𝐈-spaces

𝜌(gl𝐺)
≃
←::: (𝜌(gl𝐺) × 𝑢(𝐋ℝ[𝐺] ◦ Sym))∕𝐺 (9.6)

≃
:::→ 𝑢(𝐋ℝ[𝐺] ◦ Sym)∕𝐺

≃
←::: 𝑢(𝐋ℝ[𝐺])∕𝐺 = 𝑢(𝐵gl𝐺) .

We start by defining the relevant objects that appear in this chain. We define a 𝐺--category by

gl = 𝐸𝐼(𝐺, 𝜔) ,

the contractible groupoid whose objects are all injections from 𝐺 to 𝜔. The monoidal category
acts by postcomposition; the group 𝐺 acts by translation on the source of the injections. Applying
the functor 𝜌 ∶ 𝐜𝐚𝐭 ⟶ 𝐈𝐓 yields a 𝐺-𝐈-space 𝜌(gl). Since this 𝐺-action on the category gl is
free, taking 𝐺-orbits commutes with the formation of nerves, so(

𝜌(gl𝐺)(𝐴))∕𝐺 = |𝐸𝐼(𝐺, 𝜔𝐴)|∕𝐺 ≅ |(𝐸𝐼(𝐺, 𝜔𝐴))∕𝐺| ≅ |(gl𝐺)[𝜔
𝐴]| = 𝜌(gl𝐺)(𝐴) .
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These isomorphisms are compatible with the structure maps, so they form an isomorphism of
𝐈-spaces

𝜌(gl𝐺)∕𝐺 ≅ 𝜌(gl(𝐺)) .

We write Sym𝑛(𝑉) = 𝑉⊗𝑛∕Σ𝑛 for 𝑛th symmetric power of a real inner product space 𝑉, and
we write Sym(𝑉) =

⨁
𝑛⩾0 Sym

𝑛(𝑉) for the symmetric algebra. As explained in [34, Proposition
6.3.8] (or rather its real analog), the symmetric algebra Sym(𝑉) inherits a specific euclidean inner
product from 𝑉, such that the canonical algebra isomorphism Sym(𝑉) ⊗ Sym(𝑊) ≅ Sym(𝑉 ⊕

𝑊) becomes an isometry. Moreover, the inner product on Sym(𝑉) is natural for linear isometric
embeddings in 𝑉. So, we obtain a 𝐺-orthogonal space by precomposing the 𝐺-orthogonal space
𝐋ℝ[𝐺] with the symmetric algebra functor, that is,

(𝐋ℝ[𝐺] ◦ Sym)(𝑉) = 𝐋(ℝ[𝐺], Sym(𝑉)) .

This concludes the definition of the 𝐈-spaces that occur in the chain (9.6).
Now we let 𝐾 be another finite group, and we let 𝐴 be a finite 𝐾-set with a free 𝐾-orbit. We

claim that then

𝜌(gl𝐺)(𝐴) and 𝑢(𝐋ℝ[𝐺] ◦ Sym)(𝐴)

are universal (𝐾 × 𝐺)-spaces for the family of graph subgroups of 𝐾 × 𝐺. In other words, both
are cofibrant as (𝐾 × 𝐺)-spaces, the 𝐺-actions are free, and the fixed point spaces are contractible
for the graphs of all homomorphisms 𝛼 ∶ 𝐿⟶ 𝐺 defined on some subgroup 𝐿 of 𝐾. On the one
hand, 𝜌(gl𝐺)(𝐴) is (𝐾 × 𝐺)-cofibrant as the realization of a (𝐾 × 𝐺)-simplicial set, and the 𝐺-
action is free. We let 𝛼 ∶ 𝐿⟶ 𝐺 be a homomorphism defined on a subgroup of 𝐾, and we let
Γ(𝛼) be its graph. The Γ(𝛼)-fixed points of 𝜌(gl𝐺)(𝐴) are then given by(

𝜌(gl𝐺)(𝐴))Γ(𝛼) = |𝐸𝐼(𝐺, 𝜔𝐴)|Γ(𝛼) = |𝐸(𝐼(𝐺, 𝜔𝐴)Γ(𝛼))| = |𝐸(𝐼𝐿(𝛼∗(𝐺), 𝜔𝐴))| .
Because𝐴 contains a free 𝐿-orbit,𝜔𝐴 is a universal 𝐿-set. So, the set 𝐼𝐿(𝛼∗(𝐺), 𝜔𝐴) of 𝐿-equivariant
injections from 𝛼∗(𝐺) to 𝜔𝐴 is non-empty, and the above fixed point space is contractible. This
completes the proof that𝜌(gl𝐺)(𝐴) is a universal (𝐾 × 𝐺)-space for the family of graph subgroups.
On the other hand, the (𝐾 × 𝐺)-space 𝑢(𝐋ℝ[𝐺] ◦ Sym)(𝐴) = 𝐋(ℝ[𝐺], Sym(ℝ[𝐴])) is (𝐾 ×

𝐺)-cofibrant by [34, Proposition 1.1.19], and the 𝐺-action is free. The Γ(𝛼)-fixed points of
𝑢(𝐋ℝ[𝐺] ◦ Sym)(𝐴) are given by

𝐋(ℝ[𝐺], Sym(ℝ[𝐴]))Γ(𝛼) = 𝐋𝐿(𝛼∗(ℝ[𝐺]), Sym(ℝ[𝐴])) ,

the space of 𝐿-equivariant linear isometric embeddings from 𝛼∗(ℝ[𝐺]) into the symmetric algebra
of ℝ[𝐴]. Since 𝐴 has a free 𝐿-orbit, the 𝐿-action on 𝐴 is faithful, and Sym(ℝ[𝐴]) is a complete 𝐿-
universe by [34, Remark 6.3.22]. So, the space 𝐋𝐿(𝛼∗(ℝ[𝐺]), Sym(ℝ[𝐴])) is contractible by [34,
Proposition 1.1.21]. This completes the proof that 𝑢(𝐋ℝ[𝐺] ◦ Sym)(𝐴) is a universal (𝐾 × 𝐺)-space
for the family of graph subgroups.
Because 𝜌(gl𝐺)(𝐴) and 𝑢(𝐋ℝ[𝐺] ◦ Sym)(𝐴) are universal (𝐾 × 𝐺)-spaces for the same family

of subgroups, the two projections from 𝜌(gl𝐺)(𝐴) × 𝑢(𝐋ℝ[𝐺] ◦ Sym)(𝐴) to each factor are (𝐾 ×
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𝐺)-homotopy equivalences. Passing to 𝐺-orbit spaces thus yields two 𝐾-homotopy equivalences

𝜌(gl𝐺)(𝐴) ≅ 𝜌(gl𝐺)(𝐴)∕𝐺 ≃
←:::

(
𝜌(gl𝐺)(𝐴) × 𝑢(𝐋ℝ[𝐺] ◦ Sym)(𝐴)

)
∕𝐺

≃
:::→ 𝑢(𝐋ℝ[𝐺] ◦ Sym)(𝐴)∕𝐺 .

Since this holds for all finite groups 𝐾 and all finite 𝐾-sets with a free orbit, the left and middle
morphism in (9.6) are global equivalences of 𝐈-spaces.
The right morphism 𝑢(𝐋ℝ[𝐺])∕𝐺 ⟶ 𝑢(𝐋ℝ[𝐺] ◦ Sym)∕𝐺 in (9.6) is induced by the natural

linear isometric embedding 𝑉 ⟶ Sym(𝑉) as the linear summand in the symmetric algebra.
Because𝐋ℝ[𝐺](Sym(𝑉))∕𝐺 is the colimit, along closed embeddings, of𝐋ℝ[𝐺](

⨁
Sym⩽𝑛(𝑉))∕𝐺, the

embedding 𝐵gl𝐺 = 𝐋ℝ[𝐺]∕𝐺 ⟶ (𝐋ℝ[𝐺] ◦ Sym))∕𝐺 is a global equivalence of orthogonal spaces
by [34, Proposition 1.1.9(ix) and Theorem 1.1.10]. □

The category gl𝐺 is contained in the full parsummable subcategory

(𝐺)f ree = (𝐺)(𝑒)
of 𝐺 consisting of the free 𝐺-sets. Since the inclusion gl𝐺 ⟶ (𝐺)f ree is a morphism of-
categories, it freely extends to a morphism of parsummable categories

𝜄♯ ∶ ℙ(gl𝐺) ⟶ (𝐺)f ree .
The morphism of symmetric spectra

𝑤 ∶ Σ∞+ 𝐵gl𝐺 = Σ∞+ 𝜌(gl𝐺) ⟶ 𝐊gl(ℙ(gl𝐺))

was defined in (8.6).

Theorem 9.7. Let 𝐺 be a finite group.

(i) The morphism of parsummable categories 𝜄♯ ∶ ℙ(gl𝐺)⟶ (𝐺)f ree is an isomorphism.
(ii) The morphism of symmetric spectra

𝐊gl(𝜄
♯) ◦ 𝑤 ∶ Σ∞+ 𝐵gl𝐺 ⟶ 𝐊gl((𝐺)f ree)

is a global equivalence.

Proof.

(i) The support of every object of gl𝐺 is non-empty, so the Σ𝑚-action on (gl𝐺)
⊠𝑚 is free.

Hence, the objects of (gl𝐺)
⊠𝑚∕Σ𝑚 are Σ𝑚-equivalence classes of objects in (gl𝐺)

⊠𝑚, that
is, unordered 𝑚-tuples of pairwise disjoint subsets of 𝜔, each equipped with a free and tran-
sitive 𝐺-action. The functor 𝜄♯ sends such an equivalence class (𝐴1, … ,𝐴𝑚) ⋅ Σ𝑚 to the set
𝐴1 ∪⋯ ∪ 𝐴𝑛, endowed with the induced free 𝐺-action. Every finite free 𝐺-set is the disjoint
union of its 𝐺-orbits, so the functor 𝑖♯ is bijective on objects.
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The source and target of the functor 𝜄♯ are groupoids, so it remains to show that 𝜄♯ is an iso-
morphism of automorphism groups. Since theΣ𝑚-action on (gl𝐺)

⊠𝑚 is free, endomorphisms
of (𝐴1, … ,𝐴𝑚) ⋅ Σ𝑚 in the orbit category (gl𝐺)

⊠𝑚∕Σ𝑚 are pairs (𝜎, 𝑓) consisting of a per-
mutation 𝜎 ∈ Σ𝑚 and a morphism 𝑓 ∶ (𝐴1, … ,𝐴𝑚)⟶ (𝐴𝜎−1(𝑎), … , 𝐴𝜎−1(𝑚)) in the category
(gl𝐺)

⊠𝑚. Morphisms between any two objects ofgl𝐺 identify with elements of the group𝐺,
and composition works out in such a way that the automorphism group of (𝐴1, … ,𝐴𝑚) ⋅ Σ𝑚 in
(gl𝐺)

⊠𝑚∕Σ𝑚 is isomorphic to the wreath product Σ𝑚 ≀ 𝐺. Hence, the functor 𝜄♯ is also fully
faithful, and thus an isomorphism of categories. This concludes the proof of claim (i).
Themorphism of symmetric spectra𝐊gl(𝜄

♯) ∶ 𝐊gl(ℙ(gl𝐵))⟶ 𝐊gl((𝐺)f ree) is an isomor-
phism by part (i). The morphism 𝑤 ∶ Σ∞+ 𝐵gl𝐺 ⟶ 𝐊gl(ℙ(gl𝐵)) is a global equivalence of
symmetric spectra by Theorem 8.7. Together, this proves claim (ii). □

Now we return to the more general situation of a finite index subgroup𝐻 of a group 𝐺 (which
can be infinite). We will now argue that the parsummable category (𝐺)(𝐻) of finite 𝐺-sets with
𝐻-isotropy is globally equivalent to the parsummable category ((𝑊𝐺𝐻))f ree of free𝑊𝐺𝐻-sets,
where𝑊𝐺𝐻 = (𝑁𝐺𝐻)∕𝐻 is the Weyl group of 𝐻. Since 𝐻 has finite index in 𝐺, the Weyl group
𝑊𝐺𝐻 is finite, so Theorem 9.7 lets us identify the global K-theory of free 𝑊𝐺𝐻-sets with the
suspension spectrum of 𝐵gl(𝑊𝐺𝐻).

Construction 9.8. We let𝐻 be a finite index subgroup of a group𝐺. We define the ‘𝐻-fixed point’
functor

(−)𝐻 ∶ (𝐺)(𝐻) ⟶ ((𝑊𝐺𝐻))f ree . (9.9)

Objects of (𝐺)(𝐻) are finite subset 𝐴 of 𝜔 equipped with a 𝐺-action with isotropy groups con-
jugate to 𝐻. The functor takes such a 𝐺-set 𝐴 to the 𝐻-fixed set 𝐴𝐻 , which is a finite subset of
𝜔 equipped with a free action of the Weyl group𝑊𝐺𝐻. On morphisms, the functor restricts a 𝐺-
equivariant map 𝑓 ∶ 𝐴⟶ 𝐵 to the 𝐻-fixed points 𝑓𝐻 ∶ 𝐴𝐻 ⟶ 𝐵𝐻 . The functor (9.9) is clearly
a morphism of parsummable categories.

Proposition 9.10. Let𝐻 be a finite index subgroup of a group 𝐺. The𝐻-fixed point functor (9.9) is
a global equivalence of parsummable categories. So, the induced morphism of symmetric spectra

𝐊gl((−)
𝐻) ∶ 𝐊gl((𝐺)(𝐻)) ⟶ 𝐊gl(((𝑊𝐺𝐻))f ree)

is a global equivalence.

Proof. If 𝐾 is another finite group, then objects of 𝐹𝐾((𝐺)(𝐻)) are finite 𝐾-invariant subsets of
𝜔𝐾 , equipped with a commuting 𝐺-action with (𝐻)-isotropy; morphisms are (𝐾 × 𝐺)-equivariant
bijections. Objects of 𝐹𝐾(((𝑊𝐺𝐻))f ree) are finite 𝐾-invariant subsets of 𝜔𝐾 , equipped with a
commuting free𝑊𝐺𝐻-action; morphisms are (𝐾 ×𝑊𝐺𝐻)-equivariant bijections. The functor

𝐹𝐾((−)𝐻) ∶ 𝐹𝐾((𝐺)(𝐻)) ⟶ 𝐹𝐾(((𝑊𝐺𝐻))f ree)
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takes𝐻-fixed points, and it is an equivalence of categories. So, (−)𝐻 is a global equivalence of par-
summable categories. The induced functor of global K-theory spectra is then a global equivalence
by Theorem 4.16. □

Combining the splitting of Theorem 9.3, the global equivalence of Proposition 9.10 and the
global equivalence of Theorem 9.7 yields the following corollary.

Corollary 9.11. For every group𝐺, the global K-theory of finite𝐺-sets𝐊gl(𝐺) is globally equivalent
to thewedge, indexed over conjugacy classes of finite index subgroups𝐻 of𝐺, of the symmetric spectra
Σ∞+ 𝐵gl(𝑊𝐺𝐻), where𝑊𝐺𝐻 = (𝑁𝐺𝐻)∕𝐻 is the Weyl group of𝐻.

Proposition 9.10 implies that for every finite index subgroup𝐻 of a group 𝐺, the morphism

𝜋0(𝐊gl((−)
𝐻)) ∶ 𝜋0(𝐊gl((𝐺)(𝐻))) ⟶ 𝜋0(𝐊gl(((𝑊𝐺𝐻))f ree))

is an isomorphism of global functors. This reduces the calculation of the Swan K-groups of 𝐺-sets
with 𝐻-isotropy to the special case of free actions of finite groups. In this special case, the next
theorem gives a purely algebraic description of this global functor.
Now we exhibit an isomorphism, for finite groups 𝐺, between the homotopy group global

functor 𝜋0(𝐊gl((𝐺)f ree)) and the free global functor 𝐀𝐺 represented by 𝐺, introduced in Exam-
ple 6.6. One line of approach would be to exploit the global equivalence of Theorem 9.7 between
𝐊gl((𝐺)f ree) and the unreduced suspension spectrum of the global classifying space of 𝐺, and
to quote the more general calculation [34, Proposition 4.2.5] of the homotopy group global func-
tor 𝜋0(Σ

∞
+ 𝐵gl𝐺) for compact Lie groups 𝐺. However, a complete argument would require us to

translate the statements of [34] from the world of orthogonal spaces and orthogonal spectra into
statements in the world of 𝐈-spaces and symmetric spectra used here, using Hausmann’s equiva-
lence [15, Theorem 5.3]. While this can certainly be done, we opt for amore direct approach, using
the results of Section 6.
We define a specific equivariant homotopy class 𝑢𝐺 ∈ 𝜋𝐺

0
(𝐊gl((𝐺)f ree)). For g ∈ 𝐺, we let

𝜒g ∶ 𝐺 ⟶ 𝜔

by the indicator function, that is,

𝜒g (ℎ) =

{
1 if g = ℎ, and
0 if g ≠ ℎ.

We endow the set of all indicator functions

𝐼 = {𝜒g ∶ g ∈ 𝐺} ⊂ 𝜔𝐺

with a free and transitive 𝐺-action by 𝛾 ⋅ 𝜒g = 𝜒𝛾g . This makes 𝐼 an object of the category
(𝐺)f ree[𝜔𝐺] = (𝐺[𝜔𝐺])free. Moreover, 𝐼 is also invariant under the 𝐺-action on (𝐺)f ree[𝜔𝐺]
induced by the 𝐺-action on 𝜔𝐺 . So, 𝐼 is in fact an object of the 𝐺-fixed category

𝐹𝐺((𝐺)f ree) = ((𝐺)f ree[𝜔𝐺])𝐺 .
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We let 𝑢𝐺 ∈ 𝜋𝐺
0
(𝐊gl[𝐺]) be the image of the class [𝐼] under the homomorphism

𝛽(𝐺) ∶ 𝜋0(𝐹
𝐺((𝐺)f ree)) ⟶ 𝜋𝐺0 (𝐊gl((𝐺)f ree))

defined in (6.20). This means concretely that 𝑢𝐺 is the homotopy class represented by the based
𝐺-map defined as the composite

𝑆𝐺
𝐼∧−
::::→ |𝛾((𝐺)f ree)[𝜔𝐺]| ∧ 𝑆𝐺 assembly

::::::::→ |𝛾((𝐺)f ree)[𝜔𝐺]|(𝑆𝐺) = (𝐊gl((𝐺)f ree))(𝐺) .
As we explained in Example 6.6, the global functor 𝐀𝐺 represents evaluation at 𝐺, with the uni-
versal element being the class of the (𝐺 × 𝐺)-action on 𝐺 by two-sided translation, for which we
write 𝐺𝐺𝐺 .

Theorem 9.12. For every finite group 𝐺, the morphism of global functors

𝑢 ∶ 𝐀𝐺 ⟶ 𝜋0(𝐊gl((𝐺)f ree))
that sends the class [𝐺𝐺𝐺] in 𝐀𝐺(𝐺) to the class 𝑢𝐺 is an isomorphism of global functors.

Proof. We let 𝐾 be another finite group. The objects of the category 𝐹𝐾((𝐺)f ree) =
((𝐺)f ree[𝜔𝐾])𝐾 are finite 𝐾-invariant subsets of the universal 𝐾-set 𝜔𝐾 that are equipped with a
commuting free 𝐺-action. Sending such an object to its isomorphism class induces a bijection

𝑣(𝐾) ∶ 𝜋0(𝐹
𝐾((𝐺)f ree)) ≅

:::→ 𝐀+
𝐺
(𝐾) .

Weomit the straightforward (but somewhat tedious) verification that thesemaps are additive, and
compatiblewith transfers and restrictions as the group𝐾 varies. So, themaps 𝑣(𝐾) forman isomor-
phism of pre-global functors 𝑣 ∶ 𝜋0((𝐺)f ree) ≅ 𝐀+

𝐺
. Moreover, themap 𝑣(𝐺) ∶ 𝜋0(𝐹𝐺(𝐺)f ree) ≅

𝐀+
𝐺
(𝐺) sends the class [𝐼] to the universal class [𝐺𝐺𝐺]. So, the pair (𝜋0((𝐺)f ree), [𝐼]) also

represents evaluation at 𝐺 on the category of pre-global functors. The relation

𝑢(𝑖(𝑣[𝐼])) = 𝑢(𝑖[𝐺𝐺𝐺]) = 𝛽(𝐺)[𝐼]

in 𝜋𝐺
0
(𝐊gl((𝐺)f ree)) thus shows that the composite morphism of global functors

𝜋0((𝐺)f ree)
𝑣
::→
≅

𝐀+
𝐺

𝑖
::→ 𝐀𝐺

𝑢
::→ 𝜋0(𝐊gl((𝐺)f ree))

coincides with 𝛽 ∶ 𝜋0((𝐺)f ree)⟶ 𝜋0(𝐊gl((𝐺)f ree)). Since 𝛽 is a group completion of pre-
global functors by Theorem 6.21 and 𝑣 is an isomorphism, the composite 𝑢 ◦ 𝑖 ∶ 𝐀+

𝐺
⟶

𝜋0(𝐊gl((𝐺)f ree)) is also a group completion of pre-global functors. So, the extension 𝑢 ∶ 𝐀𝐺 ⟶
𝜋0(𝐊gl((𝐺)f ree)) is an isomorphism of global functors. □

Example 9.13. The samemethod of proof as in Theorem 9.12 can also be used to give an algebraic
description of the homotopy group global functor 𝜋0(𝐊gl(𝐺)) of the global K-theory of finite
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𝐺-sets, for every group 𝐺 (possibly infinite). We sketch the argument, leaving some details to
interested readers.
We introduce a global functor 𝐁𝐺 . For a finite group 𝐾, we let 𝐁𝐺(𝐾) be the group completion

(Grothendieck group) of the abelian monoid, under disjoint union, of isomorphism classes of
finite (𝐾 × 𝐺)-sets. A restriction homomorphism 𝛼∗ ∶ 𝐁𝐺(𝐻)⟶ 𝐁𝐺(𝐾) along a homomorphism
𝛼 ∶ 𝐾 ⟶𝐻 between finite groups is induced by restriction of the 𝐻-action along 𝛼. A transfer
homomorphism tr𝐾

𝐿
∶ 𝐁𝐺(𝐿)⟶ 𝐁𝐺(𝐾) for a subgroup inclusion 𝐿 ⩽ 𝐾 is given by inducing up

the 𝐿-action to a𝐾-action. Onemore time we omit the straightforward verification of the fact that
this indeed defines a global functor. We now sketch the construction of an isomorphism of global
functors

𝜋0(𝐊gl(𝐺)) ≅ 𝐁𝐺 .

Theorem 6.23 provides an isomorphism between the global functor 𝜋0(𝐊gl(𝐺)) and the global
functor 𝐊(𝐺), the group completion of the pre-global functor 𝜋0(𝐺). For a finite group 𝐾,
the abelian monoid 𝜋0(𝐹𝐾(𝐺)) consists of isomorphism classes of finite 𝐾-invariant subsets of
𝜔𝐾 endowed with a commuting 𝐺-action. So, 𝜋0(𝐹𝐾(𝐺)) is isomorphic to the monoid of iso-
morphism classes of finite (𝐾 × 𝐺)-sets, and 𝐁𝐺(𝐾) is isomorphic to 𝜋𝐾0 (𝐊gl(𝐺)). Modulo the
verification that the transfer and restriction homomorphisms in 𝐁𝐺 and 𝜋0(𝐹𝐾(𝐺)) correspond
under the previous identification, this constructs the desired isomorphism between 𝜋0(𝐊gl(𝐺))
and 𝐁𝐺 .

10 GLOBAL K-THEORY OF RINGS

In this section,we introduce and discuss the global algebraic K-theory spectrumof a ring𝑅, always
assumed to be associative and unital, but not necessarily commutative. We want to advertise the
global algebraic K-theory spectrum as a compact and very rigid way of packaging the information
that is contained in the ‘representation K-theory’ of 𝑅, that is, in the various K-theory spectra of
𝑅𝐺-lattices, as 𝐺 varies through all finite groups.
The construction is via a certain saturated parsummable category (𝑅) of finitely generated

projective 𝑅-modules, introduced in Construction 10.1. The underlying non-equivariant homo-
topy type of 𝐊gl𝑅 = 𝐊gl(𝑅) is that of the direct sum K-theory of finitely generated projective
𝑅-modules, that is, 𝐊gl𝑅 refines the classical algebraic K-theory spectrum. More generally, for
every finite group 𝐺, the 𝐺-fixed point spectrum 𝐹𝐺(𝐊gl𝑅) has the homotopy type of the direct
sum K-theory spectrum of the category of 𝑅𝐺-modules whose underlying 𝑅-modules are finitely
generated projective, see Theorem 10.3(ii). The global functor 𝜋0(𝐊gl𝑅) that assigns to a finite
group 𝐺 the 0th equivariant homotopy group 𝜋𝐺

0
(𝐊gl𝑅) is naturally isomorphic to the ‘Swan K-

group’ global functor of 𝑅, whose value at𝐺 is the Grothendieck group, with respect to direct sum,
of 𝑅𝐺-modules whose underlying 𝑅-modules are finitely generated projective.
If the ring 𝑅 is commutative then 𝐊gl𝑅 admits the structure of a commutative symmetric ring

spectrum, butwewill not show this here. The strict commutativity of the symmetric ring spectrum
𝐊gl𝑅 provides power operations on the global Green functor 𝜋0(𝐊gl𝑅); under the isomorphism
with the Swan K-group global functor, these homotopical power operations coincide with the
algebraic power operations obtained by raisingmodules to a tensor power (over 𝑅). So, if 𝑅 is com-
mutative, then the commutative multiplication on 𝐊gl𝑅 is a compact and rigid way of packaging
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the multiplicative structure, power operations and norm maps that relate the K-theory spectra of
𝑅𝐺-lattices as 𝐺 varies.

Construction 10.1. Given a ring 𝑅, we define a parsummable category (𝑅) whose underlying
category is equivalent to the category of finitely generated projective 𝑅-modules. Given any set𝑈
we denote by 𝑅{𝑈} the set of functions 𝑓 ∶ 𝑈 ⟶ 𝑅 that are almost always zero, and we give 𝑅{𝑈}
the pointwise 𝑅-module structure; we confuse elements of 𝑈 with their characteristic functions
to view 𝑈 as a subset of 𝑅{𝑈}; then 𝑅{𝑈} is a free 𝑅-module with basis 𝑈.
The objects of the category (𝑅) are all finitely generated 𝑅-submodules 𝑃 of 𝑅{𝜔} such that

the inclusion 𝑃⟶ 𝑅{𝜔} is 𝑅-linearly splittable; morphisms in (𝑅) are 𝑅-module isomorphism.
Since 𝑅{𝜔} is a free 𝑅-module, all the objects of (𝑅) are projective 𝑅-modules.
Given an injection 𝑢 ∈ 𝑀, we define the functor 𝑢∗ ∶ (𝑅)⟶ (𝑅) on objects by

𝑢∗(𝑃) = 𝑅{𝑢}(𝑃) ,

the image of𝑃 under the homomorphism𝑅{𝑢} ∶ 𝑅{𝜔}⟶ 𝑅{𝜔}. Since𝑅{𝑢} is𝑅-linearly splittable,
the module 𝑅{𝑢}(𝑃) is again splittable inside 𝑅{𝜔}. This clearly defines an action of the injection
monoid𝑀 on the object set of (𝑅). We define an isomorphism of 𝑅-modules by

𝑢𝑃◦ = [𝑢, 1]𝑃 = 𝑅{𝑢}|𝑃 ∶ 𝑃 ⟶ 𝑅{𝑢}(𝑃) ,

the restriction of the monomorphism 𝑅{𝑢} to the submodule 𝑃. Then the relation (2.5) holds,
so there is a unique extension of these data to an -action on the category (𝑅), compare
Proposition 2.6.
Every object 𝑃 of (𝑅) is finitely generated, so it is contained in 𝑅{𝐴} for some finite subset 𝐴

of 𝜔. The object 𝑃 is then supported on the set𝐴. So, all objects of(𝑅) are finitely supported, and
the-category (𝑅) is tame.
The addition functor

+ ∶ (𝑅) ⊠ (𝑅) ⟶ (𝑅)
is the internal direct sum. Indeed, if two objects 𝑃 and 𝑄 of (𝑅) are disjointly supported, then
their internal sum inside 𝑅{𝜔} is direct, and the inclusion 𝑃 ⊕ 𝑄⟶ 𝑅{𝜔} is again splittable.

Definition 10.2. The global algebraic K-theory spectrum 𝐊gl𝑅 of a ring 𝑅 is the global K-theory
spectrum of the parsummable category (𝑅), that is,

𝐊gl𝑅 = 𝐊gl(𝑅) .
As a special case of Theorem 4.15, the symmetric spectrum 𝐊gl𝑅 is a restricted global

Ω-spectrum.

Theorem 10.3. Let 𝑅 be a ring.

(i) The parsummable category (𝑅) is saturated.
(ii) For every finite group 𝐺, the 𝐺-fixed point spectrum 𝐹𝐺(𝐊gl𝑅) has the stable homotopy type of

the direct sum K-theory spectrum of the category of finitely generated 𝑅-projective 𝑅𝐺-modules.
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(iii) The homotopy group global functor𝜋0(𝐊gl𝑅) is isomorphic to the Swan K-group global functor.

Proof.

(i) We let 𝐺 be a finite group. The objects of the category 𝐹𝐺((𝑅)) = ((𝑅)[𝜔𝐺])𝐺 are finitely
generated 𝑅𝐺-submodules 𝑃 of 𝑅{𝜔𝐺} such that the inclusion 𝑃⟶ 𝑅{𝜔𝐺} is 𝑅-linearly
splittable. Such modules are projective over 𝑅, but not generally projective as 𝑅𝐺-modules.
Morphisms in 𝐹𝐺((𝑅)) are 𝑅𝐺-linear isomorphisms.
We claim that conversely, every finitely generated and 𝑅-projective 𝑅𝐺-module 𝑃 is iso-

morphic to an object of 𝐹𝐺((𝑅)). Since 𝜔𝐺 is a universal 𝐺-set, it contains arbitrarily many
distinct free𝐺-orbits. So, 𝑅{𝜔𝐺} contains a free 𝑅𝐺-module of arbitrarily high rank as a direct
summand. So, it suffices to show that there is an 𝑅𝐺-linear map 𝑃⟶ 𝐹 to a finitely gen-
erated free 𝑅𝐺-module that has an 𝑅-linear retraction. We let 𝑃∗ = Hom𝑅(𝑃, 𝑅) be the left
𝑅-dual of 𝑃. Then 𝑃∗ is a right 𝑅𝐺-module whose underlying 𝑅-module is finitely generated
projective. So, there is an epimorphism of right𝑅𝐺-modules 𝜖 ∶ 𝐹 ⟶ 𝑃∗ from a finitely gen-
erated free 𝑅𝐺-module 𝐹. Since 𝑃∗ is 𝑅-projective, 𝜖 admits an 𝑅-linear section. Taking right
𝑅-duals again, we arrive at a morphism of left 𝑅𝐺-modules

𝜖∗ ∶ (𝑃∗)∗ ⟶ 𝐹∗

that admits an 𝑅-linear retraction. Since 𝑃 is finitely generated projective over 𝑅, it is 𝑅𝐺-
linearly isomorphic to its double dual (𝑃∗)∗. Moreover, 𝐹∗ is a finitely generated free left
𝑅𝐺-module. So, we can embed any 𝑃 as above into a finitely generated free 𝑅𝐺-module. This
completes the proof that the category 𝐹𝐺((𝑅)) is equivalent to the category of finitely gen-
erated 𝑅-projective 𝑅𝐺-modules and 𝑅𝐺-linear isomorphisms. The latter is equivalent to the
category 𝐺(𝑅) of 𝐺-object in (𝑅), so we have shown that the parsummable category (𝑅)
is saturated.

(ii) We let 𝜑 ∶ 𝟐 × 𝜔⟶ 𝜔 be an injection. The parsummable category (𝑅) is saturated by part
(i); so Corollary 7.19(ii) provides a chain of non-equivariant stable equivalences between
the 𝐺-fixed symmetric spectrum 𝐹𝐺(𝐊gl𝑅) and the K-theory spectrum of the symmetric
monoidal category 𝜑∗(𝐺(𝑅)) = 𝐺(𝜑∗((𝑅))). Because (𝑅) is equivalent to the category
of finite generated projective 𝑅-modules and 𝑅-linear isomorphisms, the category 𝐺(𝑅) is
equivalent to the category of finite generated 𝑅-projective 𝑅𝐺-modules and 𝑅𝐺-linear iso-
morphisms. Under this forgetful equivalence, the symmetric monoidal structure 𝜑∗(𝐺(𝑅))
provided by Proposition 5.6 becomes the direct sum of 𝑅𝐺-modules. This proves the
claim.

(iii) We let 𝐺 be a finite group. As we argued in part (ii), every object of 𝐹𝐺((𝑅)) is a finitely
generated 𝑅-projective 𝑅𝐺-module, and conversely every such 𝑅𝐺-module is isomorphic to
an object in 𝐹𝐺((𝑅)). So, the forgetful map from𝜋0(𝐹

𝐺((𝑅))) to the abelianmonoid of iso-
morphism classes of finitely generated𝑅-projective𝑅𝐺-modules is an isomorphism.We omit
the verification that the restriction and transfer maps in the pre-global functor 𝜋0((𝑅)) cor-
respond to the module-theoretic restriction and transfer maps. Passing from the pre-global
functor 𝜋0((𝑅)) to its group completion𝐊((𝑅)) then proves part (iii). □

Remark 10.4. We let 𝐺 be a finite group, which we let act trivially on the ring 𝑅. Merling [28,
Definition 5.23] defined the equivariant algebraic K-theory spectrum 𝐊𝐺(𝑅) of the 𝐺-ring 𝑅 (with
trivial 𝐺-action), which is an orthogonal 𝐺-spectrum. I expect that the underlying 𝐺-symmetric
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spectrum (𝐊gl𝑅)𝐺 of our global K-theory spectrum is 𝐺-stably equivalent to the underlying 𝐺-
symmetric spectrum of Merling’s𝐊𝐺(𝑅).

Remark 10.5 (Global algebraic K-theory of free modules). The previous discussion admits a vari-
ation with free modules instead of projective modules. Indeed, for a ring 𝑅 we let  f r(𝑅) denote
the full subcategory of(𝑅) consisting of those finitely generated splittable 𝑅-submodules of 𝑅{𝜔}
that are free. This subcategory is preserved by the action of the monoidal category and closed
under the sum functor; so it inherits a parsummable category structure such that the inclusion
 f r(𝑅)⟶ (𝑅) is a morphism of parsummable categories. We let

𝐊fr
gl
𝑅 = 𝐊gl( f r(𝑅))

be the associated restricted globalΩ-spectrum. The difference between free and projective global
K-theory is invisible to higher equivariant homotopy groups. Indeed, for every finite group
𝐺 the inclusion 𝐹𝐺( f r(𝑅))⟶ 𝐹𝐺((𝑅)) of 𝐺-fixed parsummable categories is fully faithful
and cofinal in the sense of [38, section 2]. This implies that the morphism of K-theory spec-
tra 𝐊gl(𝐹

𝐺( f r(𝑅)))⟶ 𝐊gl(𝐹
𝐺((𝑅))) induces an isomorphism of non-equivariant homotopy

groups in positive dimensions, see, for example, [38, Theorem 2.1]. Corollary 4.28 implies that
then the map

𝜋𝐺
𝑘
(𝐊fr

gl
𝑅) ⟶ 𝜋𝐺

𝑘
(𝐊gl𝑅)

is an isomorphism for 𝑘 > 0.

Remark 10.6. Given a ring 𝑅 we can consider the exact sequence K-theory spectra (as opposed to
the direct sumK-theory spectra) of 𝑅-projective finitely generated 𝑅𝐺-modules. As𝐺 varies, these
spectra also have contravariant functoriality in arbitrary group homomorphisms and covariant
functoriality for subgroup inclusions. So, they are candidates for the fixed point spectra of a global
homotopy type. However, our approach relies on Segal’s Γ-spacemachinery, which cannot handle
input of the kind of Waldhausen’s categories with cofibrations and weak equivalences [42]. I do not
know if there is a symmetric spectrum𝐊ex

gl
𝑅 (preferably a restricted globalΩ-spectrum) such that

𝐹𝐺(𝐊ex
gl
𝑅) has the stable homotopy type of the above exact sequence K-theory spectrum.

Remark 10.7 (K-theory of group rings). As we explained, the global algebraic K-theory spectrum
𝐊gl𝑅 keeps track of the algebraic K-theory spectra of the categories of 𝑅-projective finitely gener-
ated 𝑅𝐺-modules for all finite groups 𝐺. There is another prominent family of K-theory spectra
associatedwith a ring𝑅: theK-theory of the group rings𝑅𝐺, that is, finitely generated𝑅𝐺-modules
that are projective over 𝑅𝐺 (and not only over 𝑅). However, these K-theory spectra have the wrong
kind of functoriality in the group 𝐺 to form a global homotopy type.
The issue can already be seen on the level of the 0th equivariant homotopy groups, that is, for

the Grothendieck groups 𝐾0(𝑅𝐺). As we explained in Example 6.17, a global homotopy type rep-
resented by a restricted globalΩ-spectrum𝑋 gives rise to a global functor 𝜋0(𝑋), consisting of the
abelian groups𝜋𝐺

0
(𝑋), indexed by finite groups𝐺, equippedwith restrictionmaps𝛼∗ ∶ 𝜋𝐺

0
(𝑋)⟶

𝜋𝐾
0
(𝑋) for all group homomorphisms 𝛼 ∶ 𝐾 ⟶ 𝐺, and transfermaps tr𝐺

𝐻
∶ 𝜋𝐻

0
(𝑋)⟶ 𝜋𝐺

0
(𝑋) for

subgroup inclusions 𝐻 ⩽ 𝐺. The collection of Grothendieck groups 𝐾0(𝑅𝐺) does have transfers
and restrictions, but for different kinds of homomorphisms. Indeed, the assignment 𝐺 ↦ 𝐾0(𝑅𝐺)

has restrictionmaps along monomorphisms, but not along arbitrary group homomorphisms. The
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issue is that if 𝛼 ∶ 𝐾 ⟶ 𝐺 has a non-trivial kernel, then restriction of scalars along 𝑅𝛼 ∶ 𝑅𝐾 ⟶

𝑅𝐺 may not preserve projective modules. On the other hand, 𝐺 ↦ 𝐾0(𝑅𝐺) has covariant func-
toriality for all group homomorphisms (and not just for monomorphisms). So, for general rings
𝑅, there cannot be a restricted global Ω-spectrum realizing the system of Grothendieck groups
𝐾0(𝑅𝐺). If 𝑅 happens to be an algebra over the rational numbers, then ‘projective over 𝑅𝐺’ is
equivalent to being projective as an underlying𝑅-module, and in this special case our construction
𝐊gl𝑅 realizes the K-theory spectra of the group rings.

11 GLOBAL K-THEORY OF PERMUTATIVE CATEGORIES

We recall that a permutative category is a symmetric monoidal category in which the monoidal
product is strictly associative and unital (and the unit and associativity isomorphisms are iden-
tity maps), see [9, Definition 3.1]. The monoidal product induces an action of the Barratt–Eccles
operad on the geometric realization of the nerve of the permutative category, giving it the structure
of an 𝐸∞-space. On the other hand, Segal’s Construction 5.12 assigns to every permutative cate-
gory a special Γ-category, and hence a (non-equivariant) K-theory spectrum. The link between the
two constructions is that the infinite loop space of the K-theory spectrum is a group completion
of the 𝐸∞-space.
In this section, we offer a construction that turns a permutative category  into a parsummable

category Φ(); our construction is a variation of the ‘rectification’ of the permutative category in
the sense of of Schlichtkrull and Solberg [33, section 7], see Remark 11.3. Moreover, the global
K-theory spectrum 𝐊gl(Φ()sat) rigidifies the K-theory spectra of the permutative categories of
𝐺-objects in  into a single global object, where Φ()sat is the saturation of Φ() in the sense
of Construction 7.25. In particular, the underlying non-equivariant stable homotopy type of
𝐊gl(Φ()sat) agrees with Segal’s K-theory of  .
Construction 11.1. We let  be a permutative category with monoidal functor⊕ and symmetry
isomorphism 𝜏. We denote by 0 the strict unit object, which is uniquely determined.We construct
a parsummable category

Φ() = Φ( ,⊕, 𝜏) .
Objects of the category Φ() are all infinite sequences 𝑎 = (𝑎0, 𝑎1, 𝑎2, … ) of objects of  such that
𝑎𝑖 = 0 (the unit object) for almost all 𝑖 ⩾ 0. For every such sequence 𝑎 we define an -object Σ(𝑎)
by

Σ(𝑎) = 𝑎0 ⊕⋯⊕ 𝑎𝑚 , (11.2)

where 𝑚 is chosen large enough so that 𝑎𝑖 = 0 for all 𝑖 > 𝑚. Since 0 is a strict unit object, this
definition does not depend on the particular choice of 𝑚. The morphisms in the category Φ()
are then defined by

Φ()(𝑎, 𝑏) = (Σ(𝑎), Σ(𝑏)) .
Composition in Φ() is given by composition in  . This finishes the definition of the
category Φ().
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Now we define the -action on Φ(). Given 𝑢 ∈ 𝑀 and an object 𝑎 of Φ(), we define the
object 𝑢∗(𝑎) of Φ() by

𝑢∗(𝑎)𝑘 =

{
𝑎𝑗 if 𝑘 = 𝑢(𝑗), and
0 if 𝑘 is not in the image of 𝑢.

This clearly defines an action of the injection monoid𝑀 on the object set of Φ(). The non-unit
objects that occur in the sequence 𝑢∗(𝑎) are the same, with multiplicities, as the non-unit objects
that occur in the sequence 𝑎; so the objects Σ(𝑢∗(𝑎)) and Σ(𝑎) are isomorphic. Even better, there
is a specific isomorphism

𝑢
𝑎
◦ ∶ Σ(𝑎) ⟶ Σ(𝑢∗(𝑎))

obtained by iterated use of the symmetry isomorphism 𝜏 in order to ‘shuffle’ the letters 𝑎𝑗 into the
appropriate places. In more detail, we choose a number 𝑛 ⩾ 0 such that 𝑎𝑖 = 0 = (𝑢∗(𝑎))𝑖 for all
𝑖 > 𝑛. Then we choose a permutation 𝜎 of the set {0, 1, … , 𝑛} such that 𝜎(𝑖) = 𝑢(𝑖) for all 0 ⩽ 𝑖 ⩽ 𝑛.
With these choices,

Σ(𝑢∗(𝑎)) = Σ(𝜎∗(𝑎)) = 𝑎𝜎−1(0) ⊕ 𝑎𝜎−1(1) ⊕⋯⊕ 𝑎𝜎−1(𝑛) .

We define

𝑢
𝑎
◦ = 𝜎

𝑎
◦ ∶ 𝑎0 ⊕ 𝑎1 ⊕⋯⊕ 𝑎𝑛

≅
:::→ 𝑎𝜎−1(0) ⊕ 𝑎𝜎−1(1) ⊕⋯⊕ 𝑎𝜎−1(𝑛)

as the symmetry isomorphism of the permutative structure corresponding to the permutation 𝜎.
It is routine — but somewhat tedious — to check that the isomorphisms 𝑢𝑎◦ satisfy the relation
(2.5); so Proposition 2.6 provides a unique extension of these data to an-action on the category
Φ(). Every object 𝑎 of Φ() is supported on

supp(𝑎) = {𝑖 ∈ 𝜔∶ 𝑎𝑖 ≠ 0} ,

the set of non-zero coordinates. By definition, this set is finite, so the-category Φ() is tame.
Now we introduce the sum functor

+ ∶ Φ() ⊠ Φ() ⟶ Φ() .
If 𝑎 and 𝑎′ are disjointly supported objects of  , we set

(𝑎 + 𝑎′)𝑖 =

⎧⎪⎨⎪⎩
𝑎𝑖 if 𝑖 ∈ supp(𝑎),
𝑎′
𝑖

if 𝑖 ∈ supp(𝑎′), and
0 otherwise.

The sum of two morphisms 𝑓 ∶ 𝑎⟶ 𝑏 and 𝑓′ ∶ 𝑎′ ⟶ 𝑏′ is the composite

Σ(𝑎 + 𝑎′)
𝜏𝑎,𝑎′

::::→
≅

Σ(𝑎) ⊕ Σ(𝑎′)
𝑓⊕𝑓′

:::::→ Σ(𝑏) ⊕ Σ(𝑏′)

𝜏−1
𝑏,𝑏′

::::→
≅

Σ(𝑏 + 𝑏′) ;
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here 𝜏𝑎,𝑎′ is the shuffle isomorphism that reorders the summands. The distinguished object
of Φ() is the sequence 0 = (0, 0, 0, … ) consisting only of the unit object 0. The verification that
the sum functor is associative and commutative uses the coherence properties of the symmetry
isomorphism 𝜏. More precisely, we must use that the following squares of shuffle isomorphisms
commute for all disjointly supported objects:

This concludes the definition of the parsummable category Φ() associated with a permutative
category ( ,⊕, 𝜏).
Remark 11.3 (Relation to the Schlichtkrull–Solberg rectification). In [33, section 7], Schlichtkrull
and Solberg introduce the rectification of a permutative category. This rectification is a functor
from the category 𝐈 of finite sets and injections to the category of small categories, equipped
with a strictly commutative multiplication for the Day convolution product. The term ‘rectifi-
cation’ refers to the fact that the ‘coherently commutative’ product in the permutative category is
turned into a strictly commutative multiplication, at the expense of enlarging the category to an
𝐈-category.
Every 𝐈-category can be turned into an𝑀-category by forming the colimit over the non-full sub-

category of 𝐈 consisting of the inclusions {1, … , 𝑛}⟶ {1,… ,𝑚} for all 0 ⩽ 𝑛 ⩽ 𝑚. When applied
to the rectification of  , this yields the underlying 𝑀-category of the -category Φ(). More-
over, the colimit over the inclusions turns a commutative multiplication for the Day convolution
product into a partially defined sum functor (that is, defined on the box product). In this sense,
our parsummable category Φ() is the result of taking the colimit over the inclusions of the
Schlichtkrull–Solberg rectification of  .
Remark 11.4. For a permutative category ( ,⊕, 𝜏), we define two functors

𝑐 ∶  ⟶ Φ() and Σ ∶ Φ() ⟶  .
The first functor is given on objects by 𝑐(𝑎) = (𝑎, 0, 0, … ); then Σ(𝑐(𝑎)) = 𝑎. So, we can define the
effect of the functor 𝑐 on a morphism 𝑓 ∶ 𝑎⟶ 𝑏 by 𝑐(𝑓) = 𝑓. The second functor is given on
objects by the sum (11.2), and by the identity on morphisms. The composite Σ ◦ 𝑐 is the identity
functor of  . The composite 𝑐 ◦ Σ is naturally isomorphic to the identity of Φ(). So, 𝑐 and Σ are
mutually inverse equivalences of categories. The square of functors
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does not commute, but the shuffle isomorphisms 𝜏𝑎,𝑎′ ∶ Σ(𝑎 + 𝑎′) ≅ Σ(𝑎) ⊕ Σ(𝑎′) form a natural
isomorphism between the two composites.
We explained in Proposition 5.6 how a parsummable category  gives rise to a symmetric

monoidal category𝜑∗(), depending on a choice of injection𝜑 ∶ 𝟐 × 𝜔⟶ 𝜔.We invite the reader
to perform a reality check, namely that the composite

(permutative categories)
Φ
:::→ 𝐏𝐚𝐫𝐒𝐮𝐦𝐂𝐚𝐭

𝜑∗

:::→ (symmetric monoidal categories)

gives back the original permutative category, up to a strong symmetric monoidal equivalence.
Granted this, Theorem 5.14 and the invariance of K-theory under strong symmetric monoidal
equivalences show that the underlying non-equivariant stable homotopy type of 𝐊glΦ() agrees
with the K-theory of the permutative category  .
Inmore detail, the equivalence of categories 𝑐 ∶  ⟶Φ() defined above can be extended to a

strong symmetric monoidal functor from the permutative category  to the symmetric monoidal
category 𝜑∗(Φ()), as follows. For objects 𝑎 and 𝑏 of  , the object 𝜑∗(𝑐(𝑎), 𝑐(𝑏)) of Φ() is the
sequence with value 𝑎 at 𝜑(1, 0), with value 𝑏 at 𝜑(2, 0), and with value 0 everywhere else. So, the
morphism

𝛽𝑎,𝑏 ∶ Σ(𝜑∗(𝑐(𝑎), 𝑐(𝑏))) ⟶ 𝑎 ⊕ 𝑏 = Σ(𝑐(𝑎 ⊕ 𝑏))

defined by

𝛽𝑎,𝑏 =

{
Id𝑎⊕𝑏 if 𝜑(1, 0) < 𝜑(2, 0), and
𝜏𝑏,𝑎 if 𝜑(1, 0) > 𝜑(2, 0).

is an isomorphism from 𝜑∗(𝑐(𝑎), 𝑐(𝑏)) to 𝑐(𝑎 ⊕ 𝑏) in the category Φ(). We omit the verifica-
tion that the isomorphisms 𝛽𝑎,𝑏 satisfy the associativity, commutativity and unit constraints for a
strong symmetric monoidal functor.

Example 11.5. We recall the permutative category 𝚺 with object set 𝜔 = {0, 1, 2, … }, the set of
natural numbers. There are no morphisms between different numbers and the endomorphism
monoid of 𝑛 is the symmetric group Σ𝑛. The monoidal functor + ∶ 𝚺 × 𝚺⟶ 𝚺 is given by
addition on objects and by ‘concatenation’ on morphisms, that is, for 𝜎 ∈ Σ𝑚 and 𝜅 ∈ Σ𝑛 we set

(𝜎 + 𝜅)(𝑖) =

{
𝜎(𝑖) for 1 ⩽ 𝑖 ⩽ 𝑚, and
𝜅(𝑖 − 𝑚) + 𝑚 for𝑚 + 1 ⩽ 𝑖 ⩽ 𝑚 + 𝑛.

This monoidal structure is strictly associative and unital with unit object 0, and it becomes a
permutative structure with respect to the symmetry isomorphism 𝜏𝑚,𝑛 ∈ Σ𝑚+𝑛 defined by

𝜏𝑚,𝑛(𝑖) =

{
𝑖 + 𝑛 for 1 ⩽ 𝑖 ⩽ 𝑚, and
𝑖 − 𝑚 for𝑚 + 1 ⩽ 𝑖 ⩽ 𝑚 + 𝑛.

The category 𝚺 is a skeleton of the category of finite sets and bijections, with monoidal struc-
ture corresponding to disjoint union. So, it should not come as a surprise that the associated
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parsummable category Φ(𝚺) is equivalent, as a parsummable category, to the parsummable
category  of finite sets, introduced in Example 4.5. An explicit equivalence of parsummable
categories

𝜖 ∶  ⟶ Φ(𝚺)

is given as follows. On objects, 𝜖 sends a finite subset 𝐴 of 𝜔 to its characteristic function
𝜒𝐴 ∶ 𝜔⟶ 𝜔 defined by

𝜒𝐴(𝑖) =

{
0 for 𝑖 ∉ 𝐴, and
1 for 𝑖 ∈ 𝐴.

Then 𝚺(𝜒𝐴) is equal to the cardinality of 𝐴; so there is a unique order preserving bijection

𝜆𝐴 ∶ 𝐧
≅
:::→ 𝐴 .

On morphisms, the functor 𝜖 sends a bijection 𝑓 ∶ 𝐴⟶ 𝐵 between finite subsets of 𝜔 of
cardinality 𝑛 to the permutation

𝜖(𝑓) = 𝜆−1𝐵 ◦ 𝑓 ◦ 𝜆𝐴 ∈ Σ𝑛 .

The functor 𝜖 is clearly an equivalence of categories, and we omit the verification that it is
also a morphism of parsummable categories. Granted this, Proposition 7.11 shows that the
parsummable category Φ(𝚺) is saturated, and that the morphism 𝜖 is a global equivalence.
Theorem 4.16 shows that the induced morphism of symmetric spectra

𝐊gl𝜖 ∶ 𝐊gl ⟶ 𝐊glΦ(𝚺)

is a global equivalence. Hence,𝐊glΦ(𝚺) is also globally equivalent to the global sphere spectrum,
by Theorem 8.9.

Construction 11.6 (Functoriality for strong monoidal functors). We discuss the functoriality of
the assignment  ↦ Φ(). We let𝐹 ∶ ⟶  be a strongmonoidal functor between permutative
categories, and we also require that 𝐹 strictly preserves the zero object. ‘Strong monoidal’ is extra
data (and not a property), namely, an isomorphism 𝜂 ∶ 0 ≅ 𝐹(0) and a natural isomorphism

𝜇𝑑,𝑑′ ∶ 𝐹(𝑑) ⊕ 𝐹(𝑑′) ≅ 𝐹(𝑑 ⊕ 𝑑′)

of functors ×⟶  ; moreover, these isomorphisms are required to be unital, associative, and
commutative, in the sense spelled out in [21, section XI.2]. We say that 𝐹 strictly preserves the zero
object if 𝐹(0) is equal to 0, and moreover 𝜂 is the identity.
We will usually follow the common abuse and drop the natural isomorphism 𝜇 from the nota-

tion. As we shall now explain, the strongmonoidal functor 𝐹 that strictly preserves the zero object
induces a morphism of parsummable categories

Φ(𝐹) = Φ(𝐹, 𝜇) ∶ Φ() ⟶ Φ() .
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On objects, this functor is given by

(Φ(𝐹)(𝑑))𝑖 = 𝐹(𝑑𝑖) .

The coherence properties of the natural isomorphism 𝜇 imply that it extends uniquely to natural
isomorphisms

𝜇𝑑 ∶ Σ(Φ(𝐹)(𝑑)) =
⨁

𝑖⩾0
𝐹(𝑑𝑖)

≅
:::→ 𝐹

(⨁
𝑖⩾0
𝑑𝑖

)
= 𝐹(Σ(𝑑)) .

A morphism 𝑓 ∶ 𝑑⟶ 𝑑′ in Φ() is a -morphism Σ(𝑑)⟶ Σ(𝑑′); the functor Φ(𝐹) sends this
to the morphism Φ(𝐹)(𝑓) ∶ Φ(𝐹)(𝑑)⟶ Φ(𝐹)(𝑑′) defined as the following composite

Σ(Φ(𝐹)(𝑑))
𝜇𝑑
::→ 𝐹(Σ(𝑑))

𝐹(𝑓)
::::→ 𝐹(Σ(𝑑′))

𝜇−1
𝑑′

:::→ Σ(Φ(𝐹)(𝑑′)) .

These definitions clearly make Φ(𝐹) into a functor. We omit the detailed verification that Φ(𝐹) is
a morphism of parsummable categories, and just give a few hints about the facts that enter. For
example, the property that Φ(𝐹) is compatible with the-action amounts to the relations

∙ Φ(𝐹)(𝑢∗(𝑎)) = 𝑢∗(Φ(𝐹)(𝑎)) (obvious from the definitions), and
∙ Φ(𝐹)(𝑢

𝑎
◦ ) = 𝑢

Φ(𝐹)(𝑎)
◦ , which is consequence of the commutativity of the natural isomorphism 𝜇.

The fact that Φ(𝐹) is additive on disjointly supported objects is straightforward from the defini-
tions. The most involved step is probably to check that Φ(𝐹) is additive on morphisms between
disjointly supported objects. After unraveling all definitions, this comes down to the naturality of
the isomorphism 𝜇 ∶ 𝐹 ⊕ 𝐹 ≅ 𝐹 ◦ ⊕ and the commutativity of the following diagram:

This diagram, finally, commutes because the natural isomorphism 𝜇 is commutative.

Proposition 11.7. Let 𝐹 ∶ ⟶  be a strong symmetric monoidal functor between permutative
categories that strictly preserves the zero object. If 𝐹 is an equivalence of underlying categories, then
the functor Φ(𝐹) ∶ Φ()⟶ Φ() is a global equivalence of parsummable categories.
Proof. We consider the commutative square of categories and functors
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The two vertical functors are equivalences by the above, and 𝐹 is an equivalence by hypothesis.
So, the functor Φ(𝐹) is an equivalence of underlying categories. Now we let 𝐺 be a finite group
and a universal 𝐺-set. Because Φ(𝐹) is fully faithful and 𝐺-equivariant, the restriction

(Φ(𝐹)[ ])𝐺 ∶ (Φ()[ ])𝐺 ⟶ (Φ()[ ])𝐺

to 𝐺-fixed subcategories is fully faithful. To see that (Φ(𝐹)[ ])𝐺 is also essentially surjective, we
consider a 𝐺-fixed object 𝑎 of (Φ()[ ])𝐺 . Being 𝐺-fixed means that the coordinates of 𝑎 are con-
stant on the𝐺-orbits of . For every𝐺-orbit𝐺𝑖 we choose an object 𝑏𝐺𝑖 of and an isomorphism
𝑓𝐺𝑖 ∶ 𝑎𝐺𝑖 ⟶ 𝐹(𝑏𝐺𝑖) in  ; we insists that 𝑏𝐺𝑖 = 0 whenever 𝑎𝐺𝑖 = 0. This is possible because 𝐹 is
an equivalence of categories. We let 𝑏 be the object of Φ()[ ] that is constant with value 𝑏𝐺𝑖 on
the orbit 𝐺𝑖. Then 𝑏 is a 𝐺-fixed object of Φ()[ ], and⨁

𝑘⩾0

𝑓𝑘 ∶ Σ(𝑎) ⟶ Σ(𝑏)

is a 𝐺-fixed isomorphism from 𝑎 to Φ(𝐹)[ ](𝑏). This proves that (Φ(𝐹)[ ])𝐺 is essentially
surjective, and hence an equivalence of categories. □

While the parsummable category Φ(𝚺) discussed in Example 11.5 is saturated, this is rather
untypical. To understand this better, we let 𝐺 be a finite group and 𝜆 ∶ 𝜔𝐺 ⟶ 𝜔 an injection.
We investigate which kinds of 𝐺-objects in  are in the image of the fully faithful functor 𝜆♭ ∶
𝐹𝐺(Φ())⟶ 𝐺Φ() defined in (2.24). The functor Σ ∶ Φ()⟶  that sums up the objects in
a tuple is an equivalence of categories, so we may equivalently study the essential image of the
composite functor

𝐹𝐺(Φ()) 𝜆♭
:::→ 𝐺Φ() 𝐺Σ

::::→ 𝐺 . (11.8)

Proposition 11.9. Let be a permutative category,𝐺 a finite group and 𝜆 ∶ 𝜔𝐺 ⟶ 𝜔 and injection.
Then the essential image of the fully faithful functor

(𝐺Σ) ◦ 𝜆♭ ∶ 𝐹𝐺(Φ()) ⟶ 𝐺
consists of all 𝐺-objects that are isomorphic to a finite monoidal product of 𝐺-objects of the form⨁

𝐺∕𝐻 𝑥 for subgroups𝐻 of 𝐺 and objects 𝑥 of  .
Proof. We let 𝑎 = (𝑎0, 𝑎1, … ) be a 𝐺-fixed object of Φ()[𝜔𝐺]. Then 𝑎𝑓 = 𝑎𝑙g (𝑓) for all g ∈ 𝐺 and
𝑓 ∈ 𝜔𝐺 , that is, the coordinate objects must be constant on the 𝐺-orbits of 𝜔𝐺 . We suppose first
that 𝑎 is concentrated on a single 𝐺-orbit 𝐺 ⋅ 𝑓 for some 𝑓 ∈ 𝜔𝐺 . If 𝐻 is the 𝐺-stabilizer group
of 𝑓, then Σ(𝜆♭(𝑎)) is 𝐺-equivariantly isomorphic to the object

⨁
𝐺∕𝐻 𝑎𝑖 . If 𝑎 is concentrated on

several 𝐺-orbits, then the functor (11.8) takes 𝑎 to the monoidal product of 𝐺-objects coming from
the different 𝐺-orbits. This proves the claim. □

As the previous proposition illustrates, the parsummable category Φ() associated with a per-
mutative category  is typically not saturated.We can fix this by applying the saturation procedure
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of Theorem 7.27 and obtain a saturated parsummable category

Φ()sat = 𝐜𝐚𝐭(, Φ())𝜏

and a strict morphism of parsummable categories

𝑠 ∶ Φ() ⟶ Φ()sat .
Moreover, the morphism 𝑠 is an equivalence of underlying categories.

APPENDIX A: TRANSFERS FOR EQUIVARIANT 𝚪-SPACES

In this appendix, we compare two different transfers that arise from a special equivariant Γ-
space: the ‘unstable’ transfers arising from the specialness hypothesis, and the homotopy theoretic
transfer for the associated orthogonal𝐺-spectrum. The precise formulation can be found in Propo-
sition A.3. The results in this appendix ought to be well-known to experts, but I do not know of a
reference. While we only care about finite groups in the body of this paper, the arguments of this
appendix apply just as well for compact Lie groups, and we work in this generality. Also, in con-
trast to themain part of the paper, we nowworkwith orthogonal spectra (as opposed to symmetric
spectra).
We recall that Γ denotes the category with objects the finite based sets 𝑛+ = {0, 1, … , 𝑛}, with

basepoint 0; morphisms in Γ are all based maps. We let 𝐺 be a compact Lie group. A Γ-𝐺-space
is a functor 𝐹 ∶ Γ⟶ 𝐺𝐓 from Γ to the category of 𝐺-spaces which is reduced, that is, 𝐹(0+) is a
one-point 𝐺-space. We may then view 𝐹 as a functor to based 𝐺-spaces, where 𝐹(𝑛+) is pointed
by the image of the map 𝐹(0+)⟶ 𝐹(𝑛+) induced by the unique morphism 0+ ⟶ 𝑛+ in Γ.
We let 𝑆 be a finite set. Given 𝑠 ∈ 𝑆 we denote by 𝑝𝑠 ∶ 𝑆+ ⟶ 1+ = {0, 1} the based map with

𝑝−1𝑠 (1) = {𝑠}. For a Γ-𝐺-space 𝐹, we denote by

𝑃𝑆 ∶ 𝐹(𝑆+) ⟶ map(𝑆, 𝐹(1+))

the map whose 𝑠-component is 𝐹(𝑝𝑠) ∶ 𝐹(𝑆+)⟶ 𝐹(1+).
Now we let the Lie group 𝐺 also act on the finite set 𝑆. It goes without saying that actions of

compact Lie groups are required to be continuous and that the use of the term ‘set’ (as opposed
to ‘space’) implies the discrete topology on the set; so the identity path component of 𝐺 must act
trivially on everyG-set. In this situation, the spaces𝐹(𝑆+) andmap(𝑆, 𝐹(1+))have two commuting
𝐺-actions: the ‘external’ action is the value at 𝑆+ and at 1+ of the 𝐺-action on 𝐹; the ‘internal’
action is induced by the 𝐺-action on 𝑆. In this situation the map 𝑃𝑆 ∶ 𝐹(𝑆+)⟶map(𝑆, 𝐹(1+))

is (𝐺 × 𝐺)-equivariant. We endow 𝐹(𝑆+) and map(𝑆, 𝐹(1+)) with the diagonal 𝐺-action and the
conjugation action, respectively; then the map 𝑃𝑆 ∶ 𝐹(𝑆+)⟶map(𝑆, 𝐹(1+)) is 𝐺-equivariant.

Definition A.1. Let 𝐺 be a compact Lie group. A Γ-𝐺-space 𝐹 is special if for every closed
subgroup𝐻 of 𝐺 and every finite𝐻-set 𝑆 the map

(𝑃𝑆)
𝐻 ∶ 𝐹(𝑆+)

𝐻 ⟶ map𝐻(𝑆, 𝐹(1+))

is a weak equivalence.
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Construction A.2. We recall the algebraic structure on the path components of the fixed point
spaces of a special Γ-𝐺-space 𝐹. We let 𝑝1, 𝑝2 ∶ 2+ ⟶ 1+ denote the two projections. The map

(𝐹(𝑝1)
𝐺, 𝐹(𝑝2)

𝐺) ∶ 𝐹(2+)
𝐺 ⟶ 𝐹(1+)

𝐺 × 𝐹(1+)
𝐺

is a weak equivalence by specialness for the trivial 𝐺-set 𝑆 = {1, 2}. We let ∇ ∶ 2+ ⟶ 1+ denote
the fold map. We obtain a diagram of set maps

𝜋0(𝐹(1+)
𝐺) × 𝜋0(𝐹(1+)

𝐺)
(𝜋0(𝐹(𝑝1)

𝐺),𝜋0(𝐹(𝑝2)
𝐺))

←::::::::::::::::::::::
≅

𝜋0(𝐹(2+)
𝐺)

𝜋0(𝐹(∇)
𝐺)

:::::::::→ 𝜋0(𝐹(1+)
𝐺)

the left of which is bijective. So, the map

+ = 𝜋0(𝐹(∇)
𝐺) ◦ (𝜋0(𝐹(𝑝1)

𝐺),𝜋0(𝐹(𝑝2)
𝐺))

−1
∶

𝜋0(𝐹(1+)
𝐺) × 𝜋0(𝐹(1+)

𝐺)⟶ 𝜋0(𝐹(1+)
𝐺)

is a binary operation on the set 𝜋0(𝐹(1+)𝐺). If 𝜏 ∶ 2+ ⟶ 2+ is the involution that interchanges 1
and 2, then composition with 𝜏 fixes∇ and interchanges 𝑝1 and 𝑝2; this implies that the operation
+ is commutative. Contemplating the differentways to fold and project from the based set 3+ leads
to the proof that the operation is also associative, and hence an abelian monoid structure on the
set 𝜋0(𝐹(1+)𝐺). For every closed subgroup 𝐻 of 𝐺, the underlying Γ-𝐻-space is again special. So,
the same argument provides an abelian monoid structure on 𝜋0(𝐹(1+)𝐻).
If 𝐾 ⩽ 𝐻 ⩽ 𝐺 are nested closed subgroups of 𝐺, then the 𝐻-fixed points 𝐹(1+)𝐻 are contained

in the 𝐾-fixed points 𝐹(1+)𝐾 . The inclusion induces a restriction map

res𝐻𝐾 ∶ 𝜋0(𝐹(1+)
𝐻) ⟶ 𝜋0(𝐹(1+)

𝐾)

which is clearly a monoid homomorphism for the previously defined additions.
For every closed subgroup 𝐻 of 𝐺 and every g ∈ 𝐺, we write 𝐻g = g−1𝐻g for the conjugate

subgroup. Left multiplication by g is then a homeomorphism

𝑙g ∶ 𝐹(1+)
𝐻g ≅

:::→ 𝐹(1+)
𝐻 , 𝑙g (𝑥) = g𝑥 .

The conjugation homomorphism

g⋆ = 𝜋0(𝑙
g ) ∶ 𝜋0(𝐹(1+)

𝐻g
) ⟶ 𝜋0(𝐹(1+)

𝐻)

is the induced map on path components. We omit the verification that the conjugation
homomorphism is indeed additive.
Now we consider nested closed subgroups 𝐾 ⩽ 𝐻 ⩽ 𝐺, and we also assume that 𝐾 has finite

index in 𝐻. In this situation, there is also a transfer homomorphism from 𝜋0(𝐹(1+)
𝐾) to

𝜋0(𝐹(1+)
𝐻), defined as follows. Specialness for the finite 𝐻-set𝐻∕𝐾 shows that the map

(𝑃𝐻∕𝐾)
𝐻 ∶ 𝐹(𝐻∕𝐾+)

𝐻 ⟶ map𝐻(𝐻∕𝐾, 𝐹(1+))
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is a weak equivalence. Evaluation at the preferred coset 𝑒𝐾 identifies the target with the space
𝐹(1+)

𝐾 . Hence, the map Ψ = 𝑝𝑒𝐾 ∶ 𝐻∕𝐾+ ⟶ 1+ induces a weak equivalence

𝐹(Ψ)𝐻 ∶ 𝐹(𝐻∕𝐾+)
𝐻 ≃
:::→ 𝐹(1+)

𝐾 .

We let ∇ ∶ 𝐻∕𝐾+ ⟶ 1+ denote the fold map. We obtain a diagram of set maps

𝜋0(𝐹(1+)
𝐾)

𝜋0(𝐹(Ψ)
𝐻)

←:::::::::
≅

𝜋0(𝐹(𝐻∕𝐾+)
𝐻)

𝜋0(𝐹(∇)
𝐻)

:::::::::→ 𝜋0(𝐹(1+)
𝐻)

the left of which is bijective. The transfer is the map

tr𝐻𝐾 = 𝜋0(𝐹(∇)
𝐻) ◦ 𝜋0(𝐹(Ψ)

𝐻)−1 ∶ 𝜋0(𝐹(1+)
𝐾) ⟶ 𝜋0(𝐹(1+)

𝐻) .

We omit the verification that these finite index transfer maps are homomorphisms of abelian
monoids, that they are transitive, compatible with conjugation, and that they satisfy a double
coset formula with respect to restriction maps.

We let 𝐺 be a compact Lie group and 𝐹 a Γ-𝐺-space. We write 𝐹(𝕊) for the orthogonal 𝐺-
spectrum obtained by evaluating the prolongation of 𝐹 on spheres. So, the value of 𝐹(𝕊) at an
inner product space 𝑉 is the space 𝐹(𝑆𝑉), the value of 𝐹 at the sphere 𝑆𝑉 . The structure map
𝜎𝑉,𝑊 ∶ 𝐹(𝕊)(𝑉) ∧ 𝑆𝑊 ⟶ 𝐹(𝕊)(𝑉 ⊕𝑊) is the composite of the assemblymap (3.2) and the effect
of the canonical homeomorphism 𝑆𝑉 ∧ 𝑆𝑊 ≅ 𝑆𝑉⊕𝑊 .
The collection of equivariant homotopy groups of an orthogonal 𝐺-spectrum also support

restriction, transfer and conjugation maps, see, for example, [34, Construction 3.1.5, Construc-
tion 3.2.22 and Remark 3.1.7], respectively. We wish to compare these homotopy operations for
the orthogonal 𝐺-spectrum 𝐹(𝕊) with the previous operations for the Γ-𝐺-space 𝐹. We let 𝐻 be
a closed subgroup of 𝐺. We identify 1+ ≅ 𝑆0 by the unique isomorphism of based sets. We write
𝛽(𝐻) ∶ 𝜋0(𝐹(1+)

𝐻)⟶ 𝜋𝐻
0
(𝐹(𝕊)) for the canonical map

𝜋0(𝐹(1+)
𝐻) = [𝑆0, 𝐹(𝑆0)]𝐻 ⟶ colim𝑉 [𝑆

𝑉, 𝐹(𝑆𝑉)]𝐻 = 𝜋𝐻0 (𝐹(𝕊)) ;

the colimit is over the poset of finite-dimensional𝐺-subrepresentations of a complete𝐺-universe.
To gain homotopical control over the values of a prolonged Γ-𝐺-space, we impose a mild non-

degeneracy condition, following [34, Definition B.33]. We say that a Γ-𝐺-space 𝐹 is 𝐺-cofibrant if
for every 𝑛 ⩾ 1 the latching map

colim𝑈⊊{1,…,𝑛} 𝐹(𝑈+) ⟶ 𝐹(𝑛+)

is a (𝐺 × Σ𝑛)-cofibration. Here the colimit is formed over the poset of proper subsets of the set
{1, … , 𝑛}, that is, over an 𝑛-cube without the terminal vertex.
The following proposition should not be surprising, and must be well-known to the experts;

however, I am unaware of a published reference, so I include a proof here.

Proposition A.3. Let 𝐺 be a compact Lie group, and let 𝐹 be a 𝐺-cofibrant, special Γ-𝐺-space.

(i) For every closed subgroup 𝐻 of 𝐺, the map 𝛽(𝐻) ∶ 𝜋0(𝐹(1+)𝐻)⟶ 𝜋𝐻
0
(𝐹(𝕊)) is additive and

a group completion of abelian monoids.
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(ii) Let 𝐾 ⩽ 𝐻 be nested closed subgroups of 𝐺. Then the following diagram of monoid homomor-
phisms commutes:

(iii) Let 𝐾 ⩽ 𝐻 be nested closed subgroups of 𝐺, such that moreover 𝐾 has finite index in 𝐻. Then
the following diagram of monoid homomorphisms commutes:

(iv) For every closed subgroup 𝐻 of 𝐺 and every element g ∈ 𝐺, the following diagram of monoid
homomorphisms commutes:

Proof. For every closed subgroup𝐻 of𝐺, the underlyingΓ-𝐻-space of𝐹 is𝐻-cofibrant and special,
compare Proposition B.35 and B.50 of [34]. Moreover, the underlying orthogonal 𝐻-spectrum of
𝐹(𝕊) is equal to (res𝐺

𝐻
𝐹)(𝕊𝐻). So, for the proof of parts (i), (ii) and (iii), it is no loss of generality

to assume that 𝐻 = 𝐺.

(i) As a preparation we recall some facts about non-equivariant special Γ-spaces. We let 𝑋 ∶

Γ⟶ 𝐓 be a cofibrant special Γ-space. The adjoint assembly map

𝑋(1+) ⟶ Ω𝑋(𝑆1)

induces a map

𝜋0(𝑋(1+)) ⟶ 𝜋0(Ω𝑋(𝑆
1)) = [𝑆1, 𝑋(𝑆1)] . (A.4)

Because𝑋 is special, the source carries an abelianmonoid structure as explained inConstruc-
tion A.2. The target carries a group structure by concatenation of loops; this group structure
is abelian because𝑋(𝑆1) is itself a loop space (it is weakly equivalent toΩ𝑋(𝑆2)). The fact that
the map (A.4) is an algebraic group completion of abelian monoids essentially goes back to
Segal [35, Proposition 4.1], who required that𝜋0(𝑋(1+))has a cofinal free abelian submonoid;
the general case is implicit in many references, and an explicit reference is [26, Proposition
2.12].
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For showing that the map 𝛽(𝐺) is a group completion of abelian monoids we apply the
previous paragraph to the (non-equivariant) special Γ-space 𝑋𝐺 , defined as the composite

Γ
𝐹
:::→ 𝐺𝐓

(−)𝐺

:::::→ 𝐓 .

We obtain that the canonical map

𝜋0(𝐹(1+)
𝐺) ⟶ [𝑆1, 𝐹𝐺(𝑆1)]

is an algebraic group completion of abelian monoids.
Now we claim that for every based space 𝐾 with trivial 𝐺-action, the canonical map

𝐹𝐺(𝐾)⟶ 𝐹(𝐾)𝐺 is a homeomorphism. Since 𝐹(𝑛+)𝐺 is closed inside 𝐹(𝑛+), Proposition
B.26 (ii) of [34] shows that the inclusion 𝐹𝐺 ⟶ 𝐹 induces a closed embedding (𝐹𝐺)(𝐾)⟶
𝐹(𝐾). The image of this map is contained in 𝐹(𝐾)𝐺 , so it only remains to show that every
𝐺-fixed point of 𝐹(𝐾) is the image of a point in (𝐹𝐺)(𝐾). We consider a point of 𝐹(𝐾) repre-
sented by a tuple (𝑥; 𝑘1, … , 𝑘𝑛) in𝐹(𝑛+) × 𝐾𝑛. We assume that the number 𝑛 has been chosen
minimally, so that 𝑥 is non-degenerate and the entries 𝑘𝑖 are pairwise distinct and different
from the basepoint of 𝐾. If the point [𝑥; 𝑘1, … , 𝑘𝑛] of 𝐹(𝐾) is 𝐺-fixed, then for every group
element g the tuple (g𝑥; 𝑘1, … , 𝑘𝑛) is equivalent to the original tuple. Proposition B.24(iii) of
[34] provides a permutation 𝜎 ∈ Σ𝑛 such that

(g𝑥; 𝑘1, … , 𝑘𝑛) = (𝐹(𝜎−1)(𝑥); 𝑘𝜎(1), … , 𝑘𝜎(𝑛)) .

Since the 𝑘𝑖 are pairwise distinct, this forces 𝜎 to be the identity permutation, and hence
g𝑥 = 𝑥. In other words, the point 𝑥 is 𝐺-fixed. This proves the claim.
By the previous paragraph, the space 𝐹𝐺(𝑆1) maps homeomorphically onto 𝐹(𝑆1)𝐺 ; so

the group of non-equivariant homotopy classes [𝑆1, 𝐹𝐺(𝑆1)] is the same as the group of
equivariant homotopy classes [𝑆1, 𝐹(𝑆1)]𝐺 . Since the Γ-𝐺-space is special and 𝐺-cofibrant,
the Segal–Shimakawa equivariant Γ-space machine thus shows that 𝐹(𝕊) is a positive 𝐺-Ω-
spectrum, compare [37, Theorem B]; a proof in the form adapted to our purposes can be
found in [34, Theorem B.65]. So, the canonical map

[𝑆1, 𝐹(𝑆1)]𝐺 ⟶ 𝜋𝐺0 (𝐹(𝕊))

is an isomorphism of abelian groups. By combining all the above we conclude that the
homomorphism of abelian monoids 𝛽(𝐺) ∶ 𝜋0(𝐹(1+)𝐺)⟶ 𝜋𝐺

0
(𝐹(𝕊)) is an algebraic group

completion.
(ii) As we argued at the start of the proof, we may assume that 𝐻 = 𝐺. The diagram involving

the restriction maps decomposes into two parts as follows:
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The two right horizontal maps are the canonical maps to the colimits. The left and right
squares each commute, hence so does the composite diagram.

(iii) Again we may assume without loss of generality that𝐻 = 𝐺. As a preparation for the proof,
we define a version of ‘evaluation of 𝐹 on spheres’ with coefficients in a finite based 𝐺-set 𝑇.
We define an orthogonal 𝐺-spectrum 𝐹(𝕊; 𝑇) at an inner product space 𝑉 by

𝐹(𝕊; 𝑇)(𝑉) = 𝐹(𝑆𝑉∧ 𝑇) .

The structure maps are defined in the same way as for 𝐹(𝕊), with the extra 𝑇 acting as a
dummy. For varying 𝑉, the assembly maps (3.2)

𝐹(𝑆𝑉) ∧ 𝑇 ⟶ 𝐹(𝑆𝑉∧ 𝑇) = 𝐹(𝕊; 𝑇)(𝑉)

provide a morphism of orthogonal 𝐺-spectra

𝑎 ∶ 𝐹(𝕊) ∧ 𝑇 ⟶ 𝐹(𝕊; 𝑇)

that is natural for based 𝐺-maps in the variable 𝑇.
Now we let 𝐾 be a closed subgroup of 𝐺 of finite index; then 𝐺∕𝐾 is a finite 𝐺-set. We let

Ψ ∶ 𝐺∕𝐾+ ⟶ 𝑆0 denote the 𝐾-equivariant projection to the distinguished coset, compare
(6.18). The left vertical composite in the following commutative diagram is the Wirthmüller
isomorphism:

(A.5)

We claim that the composite

𝐹(𝕊;Ψ)∗ ◦ res𝐺𝐾 ∶ 𝜋𝐺0 (𝐹(𝕊; 𝐺∕𝐾+)) ⟶ 𝜋𝐾0 (𝐹(𝕊))

is also an isomorphism. To see this we let 𝑉 be a 𝐺-representation. The Wirthmüller map

𝜔𝑆𝑉 ∶ 𝐹(𝕊; 𝐺∕𝐾+)(𝑉) = 𝐹(𝑆𝑉∧ 𝐺∕𝐾+) ⟶ map𝐾(𝐺, 𝐹(𝑆𝑉))

is the 𝐺-equivariant adjoint of the continuous based 𝐾-map

𝐹(𝑆𝑉∧ Ψ) ∶ 𝐹(𝑆𝑉∧ 𝐺∕𝐾+) ⟶ 𝐹(𝑆𝑉) ;

thisWirthmüller map is a𝐺-weak equivalence by [34, Proposition B.54(ii)]. In particular, the
Wirthmüller map induces a bijection

[𝑆𝑉, 𝐹(𝕊; 𝐺∕𝐾+)(𝑉)]
𝐺 ≅
:::→ [𝑆𝑉,map𝐾(𝐺+, 𝐹(𝑆

𝑉))]𝐺 ≅ [𝑆𝑉, 𝐹(𝑆𝑉)]𝐾 .
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Upon passage to colimits over finite-dimensional 𝐺-subrepresentations of a complete
𝐺-universe, this gives an isomorphism

𝜋𝐺0 (𝐹(𝕊; 𝐺∕𝐾+)) = colim𝑉 [𝑆
𝑉, 𝐹(𝕊; 𝐺∕𝐾+)(𝑉)]

𝐺

≅
:::→ colim𝑉 [𝑆

𝑉, 𝐹(𝑆𝑉)]𝐾 ≅ 𝜋𝐾0 (𝐹(𝕊)) .

The last isomorphism exploits that the 𝐾-representations that underlie 𝐺-representations
are cofinal in all 𝐾-representations. The isomorphism agrees with the composite
𝐹(𝕊;Ψ)∗ ◦ res𝐺

𝐾
, by inspection.

For an orthogonal 𝐺-spectrum 𝑋, the transfer tr𝐺
𝐾
∶ 𝜋𝐾

0
(𝑋)⟶ 𝜋𝐺

0
(𝑋) is the composite

𝜋𝐾0 (𝑋)
(Wirth𝐺𝐾)

−1

::::::::::→
≅

𝜋𝐺0 (𝑋 ∧ 𝐺∕𝐾+)
(𝑋∧∇)∗
:::::::→ 𝜋𝐺0 (𝑋) ,

where ∇ ∶ 𝐺∕𝐾+ ⟶ 𝑆0 is the fold map that takes all of 𝐺∕𝐾 to the non-basepoint. In the
special case 𝑋 = 𝐹(𝕊), the second map (𝐹(𝕊) ∧ ∇)∗ in this composite in turn factors as the
composite

𝜋𝐺0 (𝐹(𝕊) ∧ 𝐺∕𝐾+)
𝑎∗
:::→ 𝜋𝐺0 (𝐹(𝕊; 𝐺∕𝐾+))

𝐹(𝕊;∇)∗
:::::::→ 𝜋𝐺0 (𝐹(𝕊)) .

The commutativity of the diagram (A.5) lets us thus express the transfer as the composite

𝜋𝐾0 (𝐹(𝕊))
(𝐹(𝕊;Ψ) ◦ res𝐺

𝐾
)−1

::::::::::::::::→
≅

𝜋𝐺0 (𝐹(𝕊; 𝐺∕𝐾+))
𝐹(𝕊;∇)∗
:::::::→ 𝜋𝐺0 (𝐹(𝕊)) .

Now we contemplate the following commutative diagram:

All vertical maps are stabilization maps. The two squares commute by naturality. So, the
entire diagram commutes, and we have shown the compatibility of the stabilization maps
with transfers.
The compatibility (iv) of the 𝛽-maps with conjugation is straightforward from the

definitions. □
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