Exercises for **Algebraic Topology I**Sheet 1

Exercise 1 (7 points). Let 0 < k < n. Show that the inclusion $\mathbb{R}P^k \hookrightarrow \mathbb{R}P^n$ does not admit a retraction.

Exercise 2 (18 points). 1. Let X, Y be well-pointed spaces such that X is p-connected and Y is q-connected for $p, q \ge 1$. Show that the inclusions induce an isomorphism

$$(i_{1*}, i_{2*}) \colon \pi_k(X) \oplus \pi_k(Y) \xrightarrow{\cong} \pi_k(X \vee Y)$$

for $1 \le k \le p + q$, with inverse induced by the collapse maps

$$c_1 := (\mathrm{id}_X, 0) \colon X \vee Y \to X$$
 $c_2 := (0, \mathrm{id}_Y) \colon X \vee Y \to Y.$

- 2. Show that $(c_{1*}, c_{2*}): \pi_3(S^2 \vee S^2) \to \pi_3(S^2) \oplus \pi_3(S^2)$ is split surjective, but not injective.
- 3. Show that the kernel of the split surjection from the previous subtask is infinite cyclic, and describe a generator of this kernel. In particular, this shows $\pi_3(S^2 \vee S^2) \cong \mathbb{Z}^3$.

Exercise 3 (15 points). Show that $\pi_2(S^1 \vee S^2)$ is a free module of rank 1 over $\mathbb{Z}[\pi_1] \cong \mathbb{Z}[t, t^{-1}]$.

* Exercise 4 (5 bonus points). Show that $\pi_3(S^1 \vee S^2)$ is not finitely generated as a $\mathbb{Z}[\pi_1]$ -module.