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Abstract
We introduce Chern classes in𝑈 (𝑚)-equivariant homotopical bordism that refine the Conner–Floyd–Chern classes
in the MU-cohomology of 𝐵𝑈 (𝑚). For products of unitary groups, our Chern classes form regular sequences that
generate the augmentation ideal of the equivariant bordism rings. Consequently, the Greenlees–May local homology
spectral sequence collapses for products of unitary groups. We use the Chern classes to reprove the MU-completion
theorem of Greenlees–May and La Vecchia.
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Introduction

Complex cobordism MU is arguably the most important cohomology theory in algebraic topology.
It represents the bordism theory of stably almost complex manifolds, and it is the universal complex
oriented cohomology theory; via Quillen’s celebrated theorem [13], MU is the entry gate for the theory
of formal group laws into stable homotopy theory and thus the cornerstone of chromatic stable homotopy
theory.

Tom Dieck’s homotopical equivariant bordism MU𝐺 [17], defined with the help of equivariant
Thom spaces, strives to be the legitimate equivariant refinement of complex cobordism, for compact
Lie groups G. The theory MU𝐺 is the universal equivariantly complex oriented theory, and for abelian
compact Lie groups, the coefficient ring MU∗

𝐺 carries the universal G-equivariant formal group law [7].
Homotopical equivariant bordism receives a homomorphism from the geometrically defined equivariant
bordism theory; due to the lack of equivariant transversality, this homomorphism is not an isomorphism
for nontrivial groups. In general, the equivariant bordism ring MU∗

𝐺 is still largely mysterious; the
purpose of this paper is to elucidate its structure for unitary groups and for products of unitary groups.

Chern classes are important characteristic classes for complex vector bundles that were origi-
nally introduced in singular cohomology. Conner and Floyd [4, Corollary 8.3] constructed Chern
classes for complex vector bundles in complex cobordism; in the universal cases, these yield classes
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2 S. Schwede

𝑐𝑘 ∈ MU2𝑘 (𝐵𝑈 (𝑚)) that are nowadays referred to as Conner–Floyd–Chern classes. Conner and Floyd’s
construction works in much the same way for any complex oriented cohomology theory (see [1, Part
II, Lemma 4.3]); in singular cohomology, it reduces to the classical Chern classes. The purpose of this
note is to define and study Chern classes in𝑈 (𝑚)-equivariant homotopical bordism MU∗

𝑈 (𝑚) that map
to the Conner–Floyd–Chern classes under tom Dieck’s bundling homomorphism [17, Proposition 1.2].
Our classes satisfy the analogous formal properties as their classical counterparts, including the equiv-
ariant refinement of the Whitney sum formula; see Theorem 1.4. Despite the many formal similarities,
there are crucial qualitative differences compared to Chern classes in complex oriented cohomology
theories: Our Chern classes are not characterized by their restriction to the maximal torus, and some of
our Chern classes are zero-divisors; see Remark 1.2.

We will use our Chern classes and the splitting of [15] to prove new structure results about the
equivariant bordism rings MU∗

𝑈 (𝑚) for unitary groups or more generally for products of unitary groups.
To put this into context, we recall that in the special case when G is an abelian compact Lie group,
the graded ring MU∗

𝐺 is concentrated in even degrees and free as a module over the nonequivariant
cobordism ring MU∗ [3, Theorem 5.3], [10], and the bundling homomorphism MU∗

𝐺 → MU∗(𝐵𝐺)
is completion at the augmentation ideal of MU∗

𝐺 [2, Theorem 1.1], [11]. For nonabelian compact Lie
groups G, however, the equivariant bordism rings MU∗

𝐺 are still largely mysterious.
The main result of this note is the following:

Theorem. Let 𝑚 ≥ 1 be a natural number.
(i) The sequence of Chern classes 𝑐 (𝑚)

𝑚 , 𝑐 (𝑚)
𝑚−1, . . . , 𝑐

(𝑚)
1 is a regular sequence that generates the

augmentation ideal of the graded-commutative ring MU∗
𝑈 (𝑚) .

(ii) The completion of MU∗
𝑈 (𝑚) at the augmentation ideal is a graded MU∗-power series algebra in

the above Chern classes.
(iii) The bundling homomorphism MU∗

𝑈 (𝑚) → MU∗(𝐵𝑈 (𝑚)) extends to an isomorphism

(MU∗
𝑈 (𝑚) )

∧
𝐼 → MU∗(𝐵𝑈 (𝑚))

from the completion at the augmentation ideal.
We prove this result as a special case of Theorem 2.2 below; the more general version applies to

products of unitary groups. As we explain in Remark 2.4, the regularity of the Chern classes also implies
that the Greenlees–May local homology spectral sequence converging to MU∗(𝐵𝑈 (𝑚)) degenerates
because the relevant local homology groups vanish in positive degrees. As another application we use
the Chern classes in equivariant bordism to give a reformulation and self-contained proof of work of
Greenlees–May [6] and La Vecchia [8] on the completion theorem for MU𝐺; see Theorem 3.5.

1. Equivariant MU-Chern classes

In this section, we introduce the Chern classes in 𝑈 (𝑚)-equivariant homotopical bordism; see
Definition 1.1. We establish their basic properties in Theorem 1.4, including a Whitney sum formula and
the fact that the bundling homomorphism takes our Chern classes to the Conner–Floyd–Chern classes
in MU-cohomology.

We begin by fixing our notation. For a compact Lie group G, we write MU𝐺 for the G-equivariant
homotopical bordism spectrum introduced by tom Dieck [17]. For our purposes, it is highly relevant
that the theories MU𝐺 for varying compact Lie groups G assemble into a global stable homotopy type;
see [14, Example 6.1.53]. For an integer n, we write MU𝑛𝐺 = 𝜋𝐺−𝑛 (MU) for the G-equivariant coefficient
group in cohomological degree n.

Since MU comes with the structure of a global ring spectrum, it supports graded-commutative
multiplications on MU∗

𝐺 , as well as external multiplication pairings

× : MU𝑘
𝐺 × MU𝑙𝐾 → MU𝑘+𝑙

𝐺×𝐾
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for all pairs of compact Lie groups G and K. We write 𝜈𝑘 for the tautological representation of the
unitary group 𝑈 (𝑘) on C𝑘 ; we denote its Euler class by

𝑒𝑘 = 𝑒(𝜈𝑘 ) ∈ MU2𝑘
𝑈 (𝑘) ,

compare [17, page 347]. We write𝑈 (𝑘, 𝑚− 𝑘) for the block subgroup of𝑈 (𝑚) consisting of matrices of
the form ( 𝐴 0

0 𝐵 ) for (𝐴, 𝐵) ∈ 𝑈 (𝑘) ×𝑈 (𝑚 − 𝑘). We write tr𝑈 (𝑚)
𝑈 (𝑘,𝑚−𝑘)

: MU∗
𝑈 (𝑘,𝑚−𝑘) → MU∗

𝑈 (𝑚) for the
transfer associated to the inclusion 𝑈 (𝑘, 𝑚 − 𝑘) → 𝑈 (𝑚); see, for example, [14, Construction 3.2.22].

Definition 1.1. For 0 ≤ 𝑘 ≤ 𝑚, the k-th Chern class in equivariant complex bordism is the class

𝑐 (𝑚)
𝑘 = tr𝑈 (𝑚)

𝑈 (𝑘,𝑚−𝑘)
(𝑒𝑘 × 1𝑚−𝑘 ) ∈ MU2𝑘

𝑈 (𝑚) ,

where 1𝑚−𝑘 ∈ MU0
𝑈 (𝑚−𝑘)

is the multiplicative unit. We also set 𝑐 (𝑚)
𝑘 = 0 for 𝑘 > 𝑚.

In the extreme cases 𝑘 = 0 and 𝑘 = 𝑚, we recover familiar classes: Since 𝑒0 is the multiplicative unit
in the nonequivariant cobordism ring MU∗, the class 𝑐 (𝑚)

0 = 1𝑚 is the multiplicative unit in MU0
𝑈 (𝑚)

.
In the other extreme, 𝑐 (𝑚)

𝑚 = 𝑒𝑚 = 𝑒(𝜈𝑚) is the Euler class of the tautological 𝑈 (𝑚)-representation.
As we will show in Theorem 1.4 (ii), the classes 𝑐 (𝑚)

𝑘 are compatible in m under restriction to smaller
unitary groups.

Remark 1.2. We alert the reader that the restriction homomorphism

res𝑈 (𝑚)
𝑇𝑚 : MU∗

𝑈 (𝑚) → MU∗
𝑇𝑚

is not injective for𝑚 ≥ 2, where 𝑇𝑚 denotes a maximal torus in𝑈 (𝑚). So the Chern classes in MU∗
𝑈 (𝑚)

are not characterized by their restrictions to the maximal torus – in contrast to the nonequivariant
situation for complex oriented cohomology theories. To show this we let N denote the maximal torus
normalizer inside 𝑈 (𝑚). The class

1 − tr𝑈 (𝑚)
𝑁 (1) ∈ MU0

𝑈 (𝑚)

has infinite order because the 𝑈 (𝑚)-geometric fixed point map takes it to the multiplicative unit; in
particular, this class is nonzero. The double coset formula [9, IV Corollary 6.7 (i)]

res𝑈 (𝑚)
𝑇𝑚 (tr𝑈 (𝑚)

𝑁 (1)) = res𝑁𝑇𝑚 (1) = 1

implies that the class 1 − tr𝑈 (𝑚)
𝑁 (1) lies in the kernel of the restriction homomorphism res𝑈 (𝑚)

𝑇𝑚 :
MU0

𝑈 (𝑚)
→ MU0

𝑇𝑚 .
Moreover, the Chern class 𝑐 (2)1 is a zero-divisor in the ring MU∗

𝑈 (2) , also in stark contrast to Chern
classes in complex oriented cohomology theories. Indeed, reciprocity for restriction and transfers [14,
Corollary 3.5.17 (v)] yields the relation

𝑐 (2)1 · (1 − tr𝑈 (2)
𝑁 (1)) = tr𝑈 (2)

𝑈 (1,1) (𝑒1 × 1) · (1 − tr𝑈 (2)
𝑁 (1))

= tr𝑈 (2)
𝑈 (1,1) ((𝑒1 × 1) · res𝑈 (2)

𝑈 (1,1) (1 − tr𝑈 (2)
𝑁 (1))) = 0.

One can also show that the class 1 − tr𝑈 (2)
𝑁 (1) is infinitely divisible by the Euler class 𝑒2 = 𝑐 (2)2 ; so it is

also in the kernel of the completion map at the ideal (𝑒2).

The Chern class 𝑐 (𝑚)
𝑘 is defined as a transfer; so identifying its restriction to a subgroup of 𝑈 (𝑚)

involves a double coset formula. The following double coset formula will take care of all cases we
need in this paper; it ought to be well-known to experts, but I do not know a reference. The case
𝑙 = 1 is established in [16, Lemma 4.2]; see also [14, Example 3.4.13]. The double coset space
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𝑈 (𝑖, 𝑗)\𝑈 (𝑚)/𝑈 (𝑘, 𝑙) is discussed at various places in the literature, for example, [12, Example 3], but
I have not seen the resulting double coset formula spelled out.
Proposition 1.3 (Double coset formula). Let 𝑖, 𝑗 , 𝑘, 𝑙 be positive natural numbers such that 𝑖 + 𝑗 = 𝑘 + 𝑙.
Then

res𝑈 (𝑖+ 𝑗)
𝑈 (𝑖, 𝑗)

◦ tr𝑈 (𝑘+𝑙)
𝑈 (𝑘,𝑙)

=
∑

0,𝑘− 𝑗≤𝑑≤𝑖,𝑘
tr𝑈 (𝑖, 𝑗)
𝑈 (𝑑,𝑖−𝑑,𝑘−𝑑, 𝑗−𝑘+𝑑)

◦𝛾∗𝑑 ◦ res𝑈 (𝑘,𝑙)
𝑈 (𝑑,𝑘−𝑑,𝑖−𝑑,𝑙−𝑖+𝑑)

,

where 𝛾𝑑 ∈ 𝑈 (𝑖 + 𝑗) is the permutation matrix of the shuffle permutation 𝜒𝑑 ∈ Σ𝑖+ 𝑗 given by

𝜒𝑑 (𝑎) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑎 for 1 ≤ 𝑎 ≤ 𝑑,

𝑎 − 𝑑 + 𝑖 for 𝑑 + 1 ≤ 𝑎 ≤ 𝑘,

𝑎 + 𝑑 − 𝑘 for 𝑘 + 1 ≤ 𝑎 ≤ 𝑘 + 𝑖 − 𝑑 and
𝑎 for 𝑎 > 𝑘 + 𝑖 − 𝑑.

Proof. We refer to [9, IV Theorem 6.3] or [14, Theorem 3.4.9] for the general double coset formula for
res𝐺𝐾 ◦ tr𝐺𝐻 for two closed subgroups H and K of a compact Lie group G; we need to specialize it to the
situation at hand. We first consider a matrix 𝐴 ∈ 𝑈 (𝑚) such that the center Z of𝑈 (𝑖, 𝑗) is not contained
in the𝑈 (𝑖, 𝑗)-stabilizer

𝑆𝐴 = 𝑈 (𝑖, 𝑗) ∩ 𝐴𝑈 (𝑘, 𝑙)

of the coset 𝐴 ·𝑈 (𝑘, 𝑙). Then 𝑆𝐴∩𝑍 is a proper subgroup of the center Z of𝑈 (𝑖, 𝑗), which is isomorphic
to𝑈 (1) ×𝑈 (1). So 𝑆𝐴∩ 𝑍 has strictly smaller dimension than Z. Since the center of𝑈 (𝑖, 𝑗) is contained
in the normalizer of 𝑆𝐴, we conclude that the group 𝑆𝐴 has an infinite Weyl group inside 𝑈 (𝑖, 𝑗). All
summands in the double coset formula indexed by such points then involve transfers with infinite Weyl
groups, and hence they vanish.

So all nontrivial contributions to the double coset formula stem from double cosets𝑈 (𝑖, 𝑗) ·𝐴 ·𝑈 (𝑘, 𝑙)

such that 𝑆𝐴 contains the center of 𝑈 (𝑖, 𝑗). In particular, the matrix
(
−𝐸𝑖 0

0 𝐸 𝑗

)
then belongs to 𝑆𝐴. We

write 𝐿 = 𝐴 · (C𝑘 ⊕ 0𝑙), a complex k-plane in C𝑘+𝑙; we consider 𝑥 ∈ C𝑖 and 𝑦 ∈ C 𝑗 such that (𝑥, 𝑦) ∈ 𝐿.
Because

(
−𝐸𝑖 0

0 𝐸 𝑗

)
· 𝐿 = 𝐿, we deduce that (−𝑥, 𝑦) ∈ 𝐿. Since (𝑥, 𝑦) and (−𝑥, 𝑦) belong to L, so do

the vectors (𝑥, 0) and (𝑦, 0). We have thus shown that the k-plane 𝐿 = 𝐴 · (C𝑘 ⊕ 0𝑙) is spanned by the
intersections

𝐿 ∩ (C𝑖 ⊕ 0 𝑗 ) and 𝐿 ∩ (0𝑖 ⊕ C 𝑗 ).

We organize the cosets with this property by the dimension of the first intersection: we define 𝑀𝑑 as the
closed subspace of 𝑈 (𝑚)/𝑈 (𝑘, 𝑙) consisting of those cosets 𝐴 ·𝑈 (𝑘, 𝑙) such that

dimC (𝐿 ∩ (C𝑖 ⊕ 0 𝑗 )) = 𝑑 and dimC(𝐿 ∩ (0𝑖 ⊕ C 𝑗 )) = 𝑘 − 𝑑.

If 𝑀𝑑 is nonempty, we must have 0, 𝑘 − 𝑗 ≤ 𝑑 ≤ 𝑖, 𝑘 . The group 𝑈 (𝑖, 𝑗) acts transitively on 𝑀𝑑 , and
the coset 𝛾𝑑 ·𝑈 (𝑘, 𝑙) belongs to 𝑀𝑑; so 𝑀𝑑 is the 𝑈 (𝑖, 𝑗)-orbit type manifold of 𝑈 (𝑚)/𝑈 (𝑘, 𝑙) for the
conjugacy class of

𝑆𝛾𝑑 = 𝑈 (𝑖, 𝑗) ∩ 𝛾𝑑𝑈 (𝑘, 𝑙) = 𝑈 (𝑑, 𝑖 − 𝑑, 𝑘 − 𝑑, 𝑗 − 𝑘 + 𝑑).

The corresponding orbit space 𝑈 (𝑖, 𝑗)\𝑀𝑑 = 𝑈 (𝑖, 𝑗) · 𝛾𝑑 · 𝑈 (𝑘, 𝑙) is a single point inside the double
coset space, so its internal Euler characteristic is 1. This orbit type thus contributes the summand

tr𝑈 (𝑖, 𝑗)
𝑈 (𝑑,𝑖−𝑑,𝑘−𝑑, 𝑗−𝑘+𝑑)

◦𝛾∗𝑑 ◦ res𝑈 (𝑘,𝑙)
𝑈 (𝑑,𝑘−𝑑,𝑖−𝑑,𝑙−𝑖+𝑑)

to the double coset formula. �
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In [4, Corollary 8.3], Conner and Floyd define Chern classes for complex vector bundles in the
nonequivariant MU-cohomology rings. In the universal cases, these yield classes 𝑐𝑘 ∈ MU2𝑘 (𝐵𝑈 (𝑚))
that are nowadays referred to as Conner–Floyd–Chern classes. The next theorem spells out the key
properties of our Chern classes 𝑐 (𝑚)

𝑘 ; parts (i), (ii) and (iii) roughly say that all the familiar structural
properties of the Conner–Floyd–Chern classes in MU∗(𝐵𝑈 (𝑚)) already hold for our Chern classes in
𝑈 (𝑚)-equivariant MU-theory. Part (iv) of the theorem refers to the bundling maps MU∗

𝐺 → MU∗(𝐵𝐺)
defined by tom Dieck in [17, Proposition 1.2].

Theorem 1.4. The Chern classes in homotopical equivariant bordism enjoy the following properties.

(i) For all 0 ≤ 𝑘 ≤ 𝑚 = 𝑖 + 𝑗 , the relation

res𝑈 (𝑚)
𝑈 (𝑖, 𝑗)

(𝑐 (𝑚)
𝑘 ) =

∑
𝑑=0,...,𝑘

𝑐 (𝑖)𝑑 × 𝑐
( 𝑗)
𝑘−𝑑

holds in the group MU2𝑘
𝑈 (𝑖, 𝑗) .

(ii) The relation

res𝑈 (𝑚)
𝑈 (𝑚−1) (𝑐

(𝑚)
𝑘 ) =

{
𝑐 (𝑚−1)
𝑘 𝑓 𝑜𝑟 0 ≤ 𝑘 ≤ 𝑚 − 1, 𝑎𝑛𝑑

0 𝑓 𝑜𝑟 𝑘 = 𝑚

holds in the group MU2𝑘
𝑈 (𝑚−1) .

(iii) Let 𝑇𝑚 denote the diagonal maximal torus of𝑈 (𝑚). Then the restriction homomorphism

res𝑈 (𝑚)
𝑇𝑚 : MU2𝑘

𝑈 (𝑚) → MU2𝑘
𝑇𝑚

takes the class 𝑐 (𝑚)
𝑘 to the k-th elementary symmetric polynomial in the classes 𝑝∗1 (𝑒1), . . . , 𝑝∗𝑚 (𝑒1),

where 𝑝𝑖 : 𝑇𝑚 → 𝑇 = 𝑈 (1) is the projection to the i-th factor.
(iv) The bundling map

MU∗
𝑈 (𝑚) → MU∗(𝐵𝑈 (𝑚))

takes the class 𝑐 (𝑚)
𝑘 to the k-th Conner–Floyd–Chern class.

Proof. (i) This property exploits the double coset formula for res𝑈 (𝑚)
𝑈 (𝑖, 𝑗)

◦ tr𝑈 (𝑚)
𝑈 (𝑘,𝑚−𝑘)

recorded in
Proposition 1.3, which is the second equation in the following list:

res𝑈 (𝑚)
𝑈 (𝑖, 𝑗)

(𝑐 (𝑚)
𝑘 ) = res𝑈 (𝑚)

𝑈 (𝑖, 𝑗)
(tr𝑈 (𝑚)
𝑈 (𝑘,𝑚−𝑘)

(𝑒𝑘 × 1𝑚−𝑘 ))

=
∑

𝑑=0,...,𝑘
tr𝑈 (𝑖, 𝑗)
𝑈 (𝑑,𝑖−𝑑,𝑘−𝑑, 𝑗−𝑘+𝑑)

(𝛾∗𝑑 (res𝑈 (𝑘,𝑚−𝑘)
𝑈 (𝑑,𝑘−𝑑,𝑖−𝑑, 𝑗−𝑘+𝑑)

(𝑒𝑘 × 1𝑚−𝑘 )))

=
∑

𝑑=0,...,𝑘
tr𝑈 (𝑖, 𝑗)
𝑈 (𝑑,𝑖−𝑑,𝑘−𝑑, 𝑗−𝑘+𝑑)

(𝛾∗𝑑 (𝑒𝑑 × 𝑒𝑘−𝑑 × 1𝑖−𝑑 × 1 𝑗−𝑘+𝑑))

=
∑

𝑑=0,...,𝑘
tr𝑈 (𝑖, 𝑗)
𝑈 (𝑑,𝑖−𝑑,𝑘−𝑑, 𝑗−𝑘+𝑑)

(𝑒𝑑 × 1𝑖−𝑑 × 𝑒𝑘−𝑑 × 1 𝑗−𝑘+𝑑)

=
∑

𝑑=0,...,𝑘
tr𝑈 (𝑖)
𝑈 (𝑑,𝑖−𝑑)

(𝑒𝑑 × 1𝑖−𝑑) × tr𝑈 ( 𝑗)
𝑈 (𝑘−𝑑, 𝑗−𝑘+𝑑)

(𝑒𝑘−𝑑 × 1 𝑗−𝑘+𝑑)

=
∑

𝑑=0,...,𝑘
𝑐 (𝑖)𝑑 × 𝑐

( 𝑗)
𝑘−𝑑 .
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Part (ii) for 𝑘 < 𝑚 follows from part (i) by restriction from𝑈 (𝑚 − 1, 1) to𝑈 (𝑚 − 1):

res𝑈 (𝑚)
𝑈 (𝑚−1) (𝑐

(𝑚)
𝑘 ) = res𝑈 (𝑚−1,1)

𝑈 (𝑚−1) (res𝑈 (𝑚)
𝑈 (𝑚−1,1) (𝑐

(𝑚)
𝑘 ))

= res𝑈 (𝑚−1,1)
𝑈 (𝑚−1) (𝑐 (𝑚−1)

𝑘−1 × 𝑐 (1)1 + 𝑐 (𝑚−1)
𝑘 × 𝑐 (1)0 )

= 𝑐 (𝑚−1)
𝑘−1 × res𝑈 (1)

1 (𝑐 (1)1 ) + 𝑐 (𝑚−1)
𝑘 × res𝑈 (1)

1 (𝑐 (1)0 ) = 𝑐 (𝑚−1)
𝑘 .

We have used that the class 𝑐 (1)1 = 𝑒1 is in the kernel of the augmentation res𝑈 (1)
1 : MU∗

𝑈 (1) → MU∗.
The Euler class 𝑐 (𝑚)

𝑚 = 𝑒(𝜈𝑚) restricts to 0 in MU∗
𝑈 (𝑚−1) because the restriction of the tautological

𝑈 (𝑚)-representation to𝑈 (𝑚 − 1) splits off a trivial one-dimensional summand.
(iii) An inductive argument based on property (i) shows the desired relation:

res𝑈 (𝑚)
𝑇𝑚 (𝑐 (𝑚)

𝑘 ) = res𝑈 (𝑚)
𝑈 (1,...,1) (𝑐

(𝑚)
𝑘 )

=
∑

𝐴⊂{1,...,𝑚}, |𝐴 |=𝑘

∏
𝑎∈𝐴

𝑝∗𝑎 (𝑐
(1)
1 ) ·

∏
𝑏∉𝐴

𝑝∗𝑏 (𝑐
(1)
0 )

=
∑

𝐴⊂{1,...,𝑚}, |𝐴 |=𝑘

∏
𝑎∈𝐴

𝑝∗𝑎 (𝑒1).

(iv) As before, we let 𝑇𝑚 denote the diagonal maximal torus in 𝑈 (𝑚). The splitting principle holds
for nonequivariant complex oriented cohomology theories; see, for example, [5, Proposition 8.10]. In
other words, the right vertical map in the commutative square of graded rings is injective:

MU∗
𝑈 (𝑚)

��

res𝑈 (𝑚)
𝑇𝑚

��

MU∗(𝐵𝑈 (𝑚))

(𝐵𝑖)∗

��
MU∗

𝑇𝑚
�� MU∗(𝐵𝑇𝑚) MU∗�𝑝∗1 (𝑒1), . . . , 𝑝

∗
𝑚(𝑒1)


The k-th Conner–Floyd–Chern class is characterized as the unique element of MU2𝑘 (𝐵𝑈 (𝑚)) that maps
to the k-th elementary symmetric polynomial in the classes 𝑝∗1 (𝑒1), . . . , 𝑝

∗
𝑚 (𝑒1). Together with part (iii),

this proves the claim. �

2. Regularity results

In this section, we use the Chern classes to formulate new structural properties of the equivariant
bordism ring MU∗

𝑈 (𝑚) . In particular, we can say what MU∗
𝑈 (𝑚) looks like after dividing out some of

the Chern classes, and after completing at the Chern classes. The following theorem states these facts
more generally for 𝑈 (𝑚) × 𝐺 instead of 𝑈 (𝑚); by induction on the number of factors, we can then
deduce corresponding results for products of unitary groups, see Theorem 2.2. The results in this section
make crucial use of the splitting theorem for global functors established in [15].

Theorem 2.1. For every compact Lie group G and all 0 ≤ 𝑘 ≤ 𝑚, the sequence of Chern classes

(𝑐 (𝑚)
𝑚 × 1𝐺 , 𝑐 (𝑚)

𝑚−1 × 1𝐺 , . . . , 𝑐 (𝑚)
𝑘+1 × 1𝐺)

is a regular sequence in the graded-commutative ring MU∗
𝑈 (𝑚)×𝐺 that generates the kernel of the

surjective restriction homomorphism

res𝑈 (𝑚)×𝐺
𝑈 (𝑘)×𝐺

: MU∗
𝑈 (𝑚)×𝐺 → MU∗

𝑈 (𝑘)×𝐺 .
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In particular, the sequence of Chern classes (𝑐 (𝑚)
𝑚 , 𝑐 (𝑚)

𝑚−1, . . . , 𝑐
(𝑚)
1 ) is a regular sequence that generates

the augmentation ideal of the graded-commutative ring MU∗
𝑈 (𝑚) .

Proof. We argue by downward induction on k. The induction starts with 𝑘 = 𝑚, where there is nothing
to show. Now, we assume the claim for some 𝑘 ≤ 𝑚, and we deduce it for 𝑘−1. The inductive hypothesis
shows that 𝑐 (𝑚)

𝑚 × 1𝐺 , . . . , 𝑐 (𝑚)
𝑘+1 × 1𝐺 is a regular sequence in the graded-commutative ring MU∗

𝑈 (𝑚)×𝐺 ,
and that the restriction homomorphism res𝑈 (𝑚)×𝐺

𝑈 (𝑘)×𝐺
factors through an isomorphism

MU∗
𝑈 (𝑚)×𝐺/(𝑐

(𝑚)
𝑚 × 1𝐺 , . . . , 𝑐 (𝑚)

𝑘+1 × 1𝐺) � MU∗
𝑈 (𝑘)×𝐺 .

We exploit that the various equivariant bordism spectra MU𝐺 underlie a global spectrum; see [14,
Example 6.1.53]; thus the restriction homomorphism res𝑈 (𝑘)×𝐺

𝑈 (𝑘−1)×𝐺 is surjective by Theorem 1.4 and
Proposition 2.2 of [15]. Hence, the standard long exact sequence unsplices into a short exact sequence
of graded MU∗-modules:

0 → MU∗−2𝑘
𝑈 (𝑘)×𝐺

(𝑒𝑘×1𝐺 ) ·−
−−−−−−−−−→ MU∗

𝑈 (𝑘)×𝐺

res𝑈 (𝑘)×𝐺
𝑈 (𝑘−1)×𝐺

−−−−−−−−−→ MU∗
𝑈 (𝑘−1)×𝐺 → 0.

Because

res𝑈 (𝑚)×𝐺
𝑈 (𝑘)×𝐺

(𝑐 (𝑚)
𝑘 × 1𝐺) = 𝑐 (𝑘)𝑘 × 1𝐺 = 𝑒𝑘 × 1𝐺 ,

we conclude that 𝑐 (𝑚)
𝑘 × 1𝐺 is a non zero-divisor in MU∗

𝑈 (𝑚)×𝐺/(𝑐
(𝑚)
𝑚 × 1𝐺 , 𝑐 (𝑚)

𝑚−1 × 1𝐺 , . . . , 𝑐 (𝑚)
𝑘+1 × 1𝐺)

and that additionally dividing out 𝑐 (𝑚)
𝑘 ×1𝐺 yields MU∗

𝑈 (𝑘−1)×𝐺 . This completes the inductive step. �

We can now identify the completion of MU∗
𝑈 (𝑚) at the augmentation ideal as an MU∗-power series

algebra on the Chern classes. We state this somewhat more generally for products of unitary groups,
which we write as

𝑈 (𝑚1, . . . , 𝑚𝑙) = 𝑈 (𝑚1) × · · · ×𝑈 (𝑚𝑙) ,

for natural numbers 𝑚1, . . . , 𝑚𝑙 ≥ 1. For 1 ≤ 𝑖 ≤ 𝑙, we write

𝑝𝑖 : 𝑈 (𝑚1, . . . , 𝑚𝑙) → 𝑈 (𝑚𝑖)

for the projection to the i-th factor, and we set

𝑐 [𝑖 ]𝑘 = 𝑝∗𝑖 (𝑐
(𝑚𝑖)
𝑘 ) = 1𝑈 (𝑚1 ,...,𝑚𝑖−1) × 𝑐

(𝑚𝑖)
𝑘 × 1𝑈 (𝑚𝑖+1 ,...,𝑚𝑙) ∈ MU2𝑘

𝑈 (𝑚1 ,...,𝑚𝑙)
.

The following theorem was previously known for tori, that is, for 𝑚1 = · · · = 𝑚𝑙 = 1.
Theorem 2.2. Let 𝑚1, . . . , 𝑚𝑙 ≥ 1 be positive integers.

(i) The sequence of Chern classes

𝑐 [1]𝑚1 , . . . , 𝑐
[1]
1 , 𝑐 [2]𝑚2 , . . . , 𝑐

[2]
1 , . . . , 𝑐 [𝑙]𝑚𝑙

, . . . , 𝑐 [𝑙]1 (2.3)

is a regular sequence that generates the augmentation ideal of the graded-commutative ring
MU∗

𝑈 (𝑚1 ,...,𝑚𝑙)
.

(ii) The completion of MU∗
𝑈 (𝑚1 ,...,𝑚𝑙)

at the augmentation ideal is a graded MU∗-power series algebra
in the Chern classes (2.3).

(iii) The bundling map MU∗
𝑈 (𝑚1 ,...,𝑚𝑙)

→ MU∗(𝐵𝑈 (𝑚1, . . . , 𝑚𝑙)) extends to an isomorphism

(MU∗
𝑈 (𝑚1 ,...,𝑚𝑙)

)∧𝐼 → MU∗(𝐵𝑈 (𝑚1, . . . , 𝑚𝑙))

from the completion at the augmentation ideal.
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Proof. Part (i) follows from Theorem 2.1 by induction on the number l of factors.
We prove parts (ii) and (iii) together. We must show that for every 𝑛 ≥ 1, MU∗

𝑈 (𝑚1 ,...,𝑚𝑙)
/𝐼𝑛 is free

as an MU∗-module on the monomials of degree less than n in the Chern classes (2.3). There is nothing
to show for 𝑛 = 1. The short exact sequence

0 → 𝐼𝑛/𝐼𝑛+1 → MU∗
𝑈 (𝑚1 ,...,𝑚𝑙)

/𝐼𝑛+1 → MU∗
𝑈 (𝑚1 ,...,𝑚𝑙)

/𝐼𝑛 → 0

and the inductive hypothesis reduce the claim to showing that 𝐼𝑛/𝐼𝑛+1 is free as an MU∗-module on the
monomials of degree exactly n in the Chern classes (2.3). Since the augmentation ideal I is generated by
these Chern classes, the n-th power 𝐼𝑛 is generated, as a module over MU∗

𝑈 (𝑚1 ,...,𝑚𝑙)
, by the monomials

of degree n. So 𝐼𝑛/𝐼𝑛+1 is generated by these monomials as a module over MU∗.
The bundling map MU∗

𝑈 (𝑚1 ,...,𝑚𝑙)
→ MU∗(𝐵𝑈 (𝑚1, . . . , 𝑚𝑙)) is a homomorphism of augmented

MU∗-algebras, and it takes the Chern class 𝑐 [𝑖 ]𝑘 to the inflation of the k-th Conner–Floyd–Chern class
along the projection to the i-th factor. By the theory of complex orientations, the collection of these
Conner–Floyd–Chern classes are MU∗-power series generators of MU∗(𝐵𝑈 (𝑚1, . . . , 𝑚𝑙)); in particular,
the images of the Chern class monomials are MU∗-linearly independent in MU∗(𝐵𝑈 (𝑚1, . . . , 𝑚𝑙)).
Hence, these classes are themselves linearly independent in 𝐼𝑛/𝐼𝑛+1. �

Remark 2.4. Greenlees and May [6, Corollary 1.6] construct a local homology spectral sequence

𝐸 𝑝,𝑞2 = 𝐻 𝐼−𝑝,−𝑝 (MU∗
𝐺) =⇒ MU𝑝+𝑞 (𝐵𝐺) .

The regularity results about Chern classes from Theorem 2.2 imply that, whenever𝐺 = 𝑈 (𝑚1, . . . , 𝑚𝑙) is
a product of unitary groups, the 𝐸 𝑝,𝑞2 -term vanishes for all 𝑝 ≠ 0, and the spectral sequence degenerates
into the isomorphism

𝐸0,∗
2 = (MU∗

𝑈 (𝑚1 ,...,𝑚𝑙)
)∧𝐼 � MU∗(𝐵𝑈 (𝑚1, . . . , 𝑚𝑙))

of Theorem 2.2 (iii).

Remark 2.5. The previous regularity theorems are special cases of the following more general results
that hold for every global MU-module E:

◦ For every compact Lie group G, the sequence of Chern classes 𝑐 (𝑚)
𝑚 ×1𝐺 , . . . , 𝑐 (𝑚)

1 ×1𝐺 acts regularly
on the graded MU∗

𝑈 (𝑚)×𝐺-module 𝐸∗
𝑈 (𝑚)×𝐺

.
◦ The restriction homomorphism

res𝑈 (𝑚)×𝐺
𝐺 : 𝐸∗

𝑈 (𝑚)×𝐺 → 𝐸∗
𝐺

factors through an isomorphism

𝐸∗
𝑈 (𝑚)×𝐺/(𝑐

(𝑚)
𝑚 × 1𝐺 , . . . , 𝑐 (𝑚)

1 × 1𝐺) � 𝐸∗
𝐺 .

◦ For all 𝑚1, . . . , 𝑚𝑙 ≥ 1, the sequence of Chern classes (2.3) acts regularly on the graded
MU∗

𝑈 (𝑚1 ,...,𝑚𝑙)
-module 𝐸∗

𝑈 (𝑚1 ,...,𝑚𝑙)
.

As in Remark 2.4, the regularity properties also imply the degeneracy of the Greenlees–May local
homology spectral sequence converging to 𝐸∗(𝐵𝑈 (𝑚1, . . . , 𝑚𝑙)).

3. The MU-completion theorem via Chern classes

In this section, we use the Chern classes to reformulate the MU𝐺-completion theorem of Greenlees–
May [6] and La Vecchia [8], for any compact Lie group G, and we give a short and self-contained proof.
We emphasize that the essential arguments of this section are all contained in [6] and [8]; the Chern
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classes let us arrange them in a more conceptual and concise way. The references [6, 8] ask for a finitely
generated ideal of MU∗

𝐺 that is ‘sufficiently large’ in the sense of [6, Definition 2.4]. While we have
no need to explicitly mention sufficiently large ideals, the new insight is that the ideal generated by the
Chern classes of any faithful G-representation is ‘sufficiently large’.

Construction 3.1 (Chern classes of representations). We let V be a complex representation of a compact
Lie group G. We let 𝜌 : 𝐺 → 𝑈 (𝑚) be a continuous homomorphism that classifies V, that is, such that
𝜌∗(𝜈𝑚) is isomorphic to V; here, 𝑚 = dimC(𝑉). The k-th Chern class of V is

𝑐𝑘 (𝑉) = 𝜌∗(𝑐 (𝑚)
𝑘 ) ∈ MU2𝑘

𝐺 .

In particular, 𝑐0 (𝑉) = 1, 𝑐𝑚 (𝑉) = 𝑒(𝑉) is the Euler class, and 𝑐𝑘 (𝑉) = 0 for 𝑘 > 𝑚.

Example 3.2. As an example, we consider the tautological representation 𝜈2 of 𝑆𝑈 (2) on C2. By the
general properties of Chern classes, we have 𝑐0 (𝜈2) = 1, 𝑐2 (𝜈2) = 𝑒(𝜈2) is the Euler class, and 𝑐𝑘 (𝜈2) = 0
for 𝑘 ≥ 3. The first Chern class of 𝜈2 can be rewritten by using a double coset formula as follows:

𝑐1 (𝜈2) = res𝑈 (2)
𝑆𝑈 (2) (𝑐

(2)
1 ) = res𝑈 (2)

𝑆𝑈 (2) (tr
𝑈 (2)
𝑈 (1,1) (𝑒1 × 1))

= tr𝑆𝑈 (2)
𝑇 (res𝑈 (1,1)

𝑇 (𝑒1 × 1)) = tr𝑆𝑈 (2)
𝑇 (𝑒(𝜒)).

Here, 𝑇 = {( 𝜆 0
0 𝜆−1 ) : 𝜆 ∈ 𝑈 (1)} is the diagonal maximal torus of 𝑆𝑈 (2), 𝜒 : 𝑇 � 𝑈 (1) is the character

that projects onto the upper left diagonal entry, and 𝑒(𝜒) ∈ MU2
𝑇 is its Euler class.

Construction 3.3. We recall a specific G-equivariant MU𝐺-module associated to a complex repre-
sentation V of a compact Lie group G. The construction is known as the stable Koszul complex for
the Chern classes 𝑐1(𝑉), . . . , 𝑐𝑚(𝑉), where 𝑚 = dimC(𝑉); in the notation of Greenlees–May [6] and
La Vecchia [8], our 𝐾 (𝐺,𝑉) would appear as Γ𝐼 (MU𝐺), where 𝐼 = (𝑐1 (𝑉), . . . , 𝑐𝑚 (𝑉)) is the ideal
generated by the Chern classes.

For any equivariant homotopy class 𝑥 ∈ MU𝑙𝐺 , we write MU𝐺 [1/𝑥] for the MU𝐺-module localiza-
tion of MU𝐺 with x inverted; in other words, MU𝐺 [1/𝑥] is a homotopy colimit (mapping telescope) in
the triangulated category of the sequence

MU𝐺
−·𝑥
−−−→ Σ𝑙MU𝐺

−·𝑥
−−−→ Σ2𝑙MU𝐺

−·𝑥
−−−→ Σ3𝑙MU𝐺

−·𝑥
−−−→ . . . .

We write 𝐾 (𝑥) for the fiber of the morphism MU𝐺 → MU𝐺 [1/𝑥]. Then we define

𝐾 (𝐺,𝑉) = 𝐾 (𝑐1(𝑉)) ∧MU𝐺 · · · ∧MU𝐺 𝐾 (𝑐𝑚(𝑉)).

The smash product of the morphisms 𝐾 (𝑐𝑖 (𝑉)) → MU𝐺 provides a morphism of G-equivariant MU𝐺-
module spectra

𝜖𝑉 : 𝐾 (𝐺,𝑉) → MU𝐺 .

By general principles, the module 𝐾 (𝐺,𝑉) only depends on the radical of the ideal generated by the
classes 𝑐1 (𝑉), . . . , 𝑐𝑚 (𝑉). But more is true: As a consequence of Theorem 3.5 below,𝐾 (𝐺,𝑉) is entirely
independent, as a G-equivariant MU𝐺-module, of the faithful representation V.

Proposition 3.4. Let V be a faithful complex representation of a compact Lie group G.

(i) The morphism 𝜖𝑉 : 𝐾 (𝐺,𝑉) → MU𝐺 is an equivalence of underlying nonequivariant spectra.
(ii) For every nontrivial closed subgroup H of G, the H-geometric fixed point spectrum Φ𝐻 (𝐾 (𝐺,𝑉))

is trivial.

Proof. (i) We set 𝑚 = dimC(𝑉). The Chern classes 𝑐1 (𝑉), . . . , 𝑐𝑚 (𝑉) belong to the augmentation
ideal of MU∗

𝐺 , so they restrict to 0 in MU∗
{1}, and hence the underlying nonequivariant spectrum
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of MU𝐺 [1/𝑐𝑖 (𝑉)] is trivial for each 𝑖 = 1, . . . , 𝑚. Hence, the morphisms 𝐾 (𝑐𝑖 (𝑉)) → MU𝐺 are
underlying nonequivariant equivalences for 𝑖 = 1, . . . , 𝑚. So also the morphism 𝜖𝑉 is an underlying
nonequivariant equivalence.

(ii) We let H be a nontrivial closed subgroup of G. We set𝑊 = 𝑉 −𝑉𝐻 , the orthogonal complement
of the H-fixed points. This is a complex H-representation with𝑊𝐻 = 0; moreover, W is nonzero because
H acts faithfully on V and 𝐻 ≠ {1}. For 𝑘 = dimC(𝑊), we then have

𝑒(𝑊) = 𝑐𝑘 (𝑊) = 𝑐𝑘 (𝑊 ⊕ 𝑉𝐻 ) = 𝑐𝑘 (res𝐺𝐻 (𝑉)) = res𝐺𝐻 (𝑐𝑘 (𝑉)) ;

the second equation uses the fact that adding a trivial representation leaves Chern classes unchanged,
by part (ii) of Theorem 1.4.

Since 𝑊𝐻 = 0, the geometric fixed point homomorphism Φ𝐻 : MU∗
𝐻 → Φ∗

𝐻 (MU) sends the
Euler class 𝑒(𝑊) = res𝐺𝐻 (𝑐𝑘 (𝑉)) to an invertible element. The functor Φ𝐻 ◦ res𝐺𝐻 commutes with
inverting elements. Since the class Φ𝐻 (res𝐺𝐻 (𝑐𝑘 (𝑉))) is already invertible, the localization morphism
MU𝐺 → MU𝐺 [1/𝑐𝑘 (𝑉)] induces an equivalence on H-geometric fixed points. Since the functor
Φ𝐻 ◦ res𝐺𝐻 is exact, it annihilates the fiber 𝐾 (𝑐𝑘 (𝑉)) of the localization MU𝐺 → MU𝐺 [1/𝑐𝑘 (𝑉)]. The
functor Φ𝐻 ◦res𝐺𝐻 is also strong monoidal in the sense of a natural equivalence of nonequivariant spectra

Φ𝐻 (𝑋 ∧MU𝐺 𝑌 ) � Φ𝐻 (𝑋) ∧Φ𝐻 (MU𝐺 ) Φ
𝐻 (𝑌 ) ,

for all G-equivariant MU𝐺-modules X and Y. Since 𝐾 (𝐺,𝑉) contains 𝐾 (𝑐𝑘 (𝑉)) as a factor (with respect
to ∧MU𝐺 ), we conclude that the spectrum Φ𝐻 (𝐾 (𝐺,𝑉)) is trivial. �

The following ‘completion theorem’ is a reformulation of the combined work of Greenlees–May
[6, Theorem 1.3] and La Vecchia [8]. It is somewhat more precise in that an unspecified ‘sufficiently
large’ finitely generated ideal of MU∗

𝐺 is replaced by the ideal generated by the Chern classes of a
faithful G-representation. The proof is immediate from the properties of 𝐾 (𝐺,𝑉) listed in Proposition
3.4. We emphasize, however, that our proof is just a different way of arranging some arguments from
[6] and [8] while taking advantage of the Chern class formalism.

Since the morphism 𝜖𝑉 : 𝐾 (𝐺,𝑉) → MU𝐺 is a nonequivariant equivalence of underlying spectra,
the morphism 𝐸𝐺+ ∧ MU𝐺 → MU𝐺 that collapses the universal space 𝐸𝐺 to a point admits a unique
lift to a morphism of G-equivariant MU𝐺-modules 𝜓 : 𝐸𝐺+ ∧ MU𝐺 → 𝐾 (𝐺,𝑉) across 𝜖𝑉 .

Theorem 3.5. Let V be a faithful complex representation of a compact Lie group G. Then the morphism

𝜓 : 𝐸𝐺+ ∧ MU𝐺 → 𝐾 (𝐺,𝑉)

is an equivalence of G-equivariant MU𝐺-module spectra.

Proof. Because the underlying space of 𝐸𝐺 is contractible, the composite

𝐸𝐺+ ∧ MU𝐺
𝜓

−−→ 𝐾 (𝐺,𝑉)
𝜖𝑉

−−−→ MU𝐺

is an equivariant equivalence of underlying nonequivariant spectra. Since 𝜖𝑉 is an equivariant equiv-
alence of underlying nonequivariant spectra by Proposition 3.4, so is 𝜓. For all nontrivial closed
subgroups H of G, source and target of 𝜓 have trivial H-geometric fixed points spectra, again by
Proposition 3.4. So the morphism 𝜓 induces an equivalence on geometric fixed point spectra for all
closed subgroup of G, and it is thus an equivariant equivalence. �
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