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Representation-graded Bredon homology of elementary abelian 2-groups

MARKUS HAUSMANN
STEFAN SCHWEDE

We calculate the representation-graded Bredon homology rings of all elementary abelian 2-groups with
coefficients in the constant mod-2 Mackey functor. We exhibit minimal presentations for these rings as
quotients of the polynomial algebra on the pre-Euler and inverse Thom classes of all nontrivial characters,
subject to an explicit finite list of relations arising from orientability properties. Two corollaries of our
presentation are the calculation, originally due to Holler and Kriz, of the geometric fixed point rings, and
a strengthening of a calculation of Balmer and Gallauer of the localized twisted cohomology ring.

55N091, 55P91, 55Q91

Introduction

In this paper we establish minimal presentations for the representation-graded Bredon homology rings
of all elementary abelian 2-groups, with coefficients in the constant mod-2 Mackey functor [F,. More
specifically, we determine the “effective cone” of the RO-graded Bredon homology ring, ie, the sector
given by the reduced Bredon homology groups of linear representation spheres; we denote this multigraded
ring by H(A, ). The following is our main result, to be proved as Theorem 2.5 below.

Theorem Let A be an elementary abelian 2-group. The IF,-algebra H(A, %) is generated by the pre-Euler
classes a;, and the inverse Thom classes t,, for all nontrivial A-characters A. The ideal of relations among
the classes ay, and t), is generated by the polynomials

Z ap - ( [pl,)

AET weT\{A}

for all minimally dependent sets T' of nontrivial A-characters.

In [5, Theorem 3.5], we use the presentation of H (A, %) to establish a “global” universal property of
mod-2 Bredon homology, ie, of the system of all representation-graded Bredon homology rings of all
elementary abelian 2-groups, including the functoriality in group homomorphisms. In the language of [5],
RO
2

Bredon homology is an initial additively oriented el,~-algebra.

The fact that H (A, ) is generated by the classes a; and ), was previously shown by Holler and Kriz [6].
Our main new contribution is determining the relations between these classes. The relations listed in the the-
orem are minimal, ie, none of them can be omitted. The origin of the relations is the fact that for a minimally
dependent set 7" of nontrivial A-characters, the A-representation €, r A is orientable; see Proposition 1.7.
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4322 Markus Hausmann and Stefan Schwede

We illustrate our result for elementary abelian 2-groups of small rank. When A = C = {£1} is of order 2,
the calculation is classical, originally due to Stong (unpublished), and reproved by several authors. In this
case there is only one nontrivial character, and no relations; so H(C, x) = F5]a, t] is a polynomial algebra
on the pre-Euler class and the inverse Thom class. The ring H(C?, ) was calculated by Ellis-Bloor
in [3, Theorem 4.14]. In this case there are three nontrivial characters p;, p, and u, and all relations are
generated by the single relation

aibty +haxty +tihay, = 0.
So the minimal presentation of H(C?, x) is
2
H(C s *) = Fz[al,az,au, 1,1, ZM]/(allzllL + taszty + lllzaﬂ).

To the best of our knowledge, the presentation of H (A, %) is new when the rank of A4 exceeds two. For
A = C3 we make our presentation of H(C?3, ») completely explicit in Example 2.6. In this case there
are 14 polynomial generators, namely the classes a; and ¢), for each of the seven nontrivial characters A,
and 14 minimal relations. Of these relations, seven are cubic in the generators, and of the same general
form as in the previous example, ie, aqlgty + taagty + tytga, = 0 for all triples of distinct nontrivial
characters that satisfy o - 8- = 1. And there are seven minimal relations that are homogeneous of
degree 4 in the generators, of the form

for quadruples of distinct nontrivial characters that satisfy - -y -§ = 1.

The number of minimal relations grows very quickly in the rank of the elementary abelian 2-group; see
the table in Remark 2.7. However, a basic pattern continues as follows: when A4 has rank r, a new family
of relations appears that has no predecessor for smaller rank, given by homogeneous polynomials of
degree r + 1 in the generators.

We use our presentation of H (A, x) to derive two interesting corollaries. Inverting the pre-Euler classes a;,
for all nontrivial A-characters and restricting to integer gradings yields the A-geometric fixed point
ring <I>>,f1 (HF ) of mod-2 Bredon homology. This ring was previously calculated by Holler and Kriz
in [6, Theorem 2], who also gave a formula for the Poincaré series of the multigraded ring H (A, *)
in [6, Theorem 5], and showed that H(A, x) maps isomorphically onto the subring of de(H F))[ay]
generated by the classes a) and t;, = Xx; - ay for all nontrivial A-characters, with the notation as in
Corollary 3.4. We explain in Corollary 3.4 how our presentation of H(A, x) yields the Holler—Kriz
presentation of <I>f (HT,) upon localization. A noticeable feature is that inverting the pre-Euler classes
makes all polynomial relations of degree at least four redundant.

More generally, we consider a subgroup B of A and determine the “mixed” localization obtained by
inverting the pre-Euler classes of all characters that restrict nontrivially to B, and the inverse Thom classes
of all other characters. The resulting integer-graded ring H(A|B) previously featured in the work of
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Balmer and Gallauer [1] on the Balmer spectrum of the tt-category of permutation modules. We obtain
an explicit presentation of the ring H(A|B) by generators and relations in Theorem 3.2; here, too, all
polynomial relations of degree at least four in the minimal presentation of H (A4, x) become redundant
in the localization. Our calculation improves [1, Theorem 17.13], for the prime 2, from a “presentation
modulo nilpotence” to an actual presentation. The graded ring H(A, ) is a domain, see Theorem 2.2
and Remark 3.5, so its localization H(A|B) is a domain, too.

Acknowledgments The authors are members of the Hausdorff Center for Mathematics at the University
of Bonn (DFG GZ 2047/1, project ID 390685813). A substantial part of the work for this paper was done
while Schwede spent the summer term in 2023 on sabbatical at Stockholm University, with financial
support from the Knut and Alice Wallenberg Foundation; Schwede would like to thank SU for the
hospitality and stimulating atmosphere during this visit.

1 Representation-graded Bredon homology

In this section we review some basic features of Bredon homology in a form adapted for our purposes. This
section does not contain any new mathematics. What is now called Bredon cohomology was introduced by
Bredon in [2] for finite groups and equivariant CW-complexes. The corresponding equivariant homology
theory was introduced by Illman in [7]. Illman develops the theory for arbitrary topological groups, and he
uses singular chains to define the equivariant homology and cohomology groups on arbitrary equivariant
spaces. In many ways, Bredon homology and cohomology are the correct generalizations of singular
(co)homology to the equivariant context, and of fundamental importance in equivariant topology.

Construction 1.1 (Bredon homology) We recall one construction of Bredon homology with coefficients
in a constant Mackey functor. We employ a definition that is naturally isomorphic to the original one of
Bredon and Illman, namely as the equivariant homology theory represented by the Eilenberg—MacLane G-
spectrum H M of the constant Mackey functor M associated to an abelian group M . In other words, we de-
fine the m™ reduced G-equivariant Bredon homology group of a based G-space X with M -coefficients as

HS(X; M) =nS(HM A X).

The groups ﬁf (—; M) form an equivariant homology theory. In particular, they come with a suspension
isomorphism, and a based G-map gives rise to a long exact sequence featuring the Bredon homology
groups of source, target and the reduced mapping cone. We mostly consider [F ,-coefficients in this paper,
and we will drop [ ,-coefficients from the notation.

The commutative G-ring spectrum structure of HIF, gives rise to associative, commutative and bilinear
pairings
. G oG G
Hy(X)xH(Y)— H,, (X AY)

for all based G-spaces X and Y.
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4324 Markus Hausmann and Stefan Schwede

In this paper a representation of a finite group is a finite-dimensional orthogonal representation. Our results
are about the IF »-Bredon homology groups of representation spheres, ie, one-point compactifications S
of such representations V. The following proposition collects some well-known general facts about these;
we give proofs for the readers’ convenience. Part (iii) says that automorphisms of representation spheres
are invisible to the eyes of Bredon homology with F ,-coefficients. This means that we can — and will —
safely ignore the distinction between G-representations and their isomorphism classes.

Proposition 1.2 Let V be a d-dimensional representation of a finite group G.
(i) The group H, kG (SY) is trivial for k < 0 and for k > d, and the restriction homomorphism
reslG: ﬁdG(SV) — ﬁd(SV)
is an isomorphism. Hence the ¥, -vector space ﬁdG (SY) is 1-dimensional.
(ii) IfV is orientable, then the restriction homomorphism for constant integer coefficients
res?: HY(SV;2) — Hy(SV;72)
is an isomorphism. Hence the abelian group ﬁg (SY:Z) is free of rank 1.
(iii) For every based G-homotopy equivalence y: S¥ — SV and every m > 0, the map
S (y): HS(S") - HE(SV)
is the identity.
Proof (i) The groups ﬁf (SY) can be calculated from the reduced cellular chain complex of a G-CW-
structure on SV by taking first G-fixed points and then homology. Since the reduced cellular chain complex
is concentrated in dimensions O through d, the vanishing claims follow. Because the underlying chain
complex calculates the reduced homology of the underlying space SV, the kernel of the top differential

84 Cac,e“(SV; Fy) —» C;e_nl (SV;IF,) is 1-dimensional and necessarily with trivial G-action. So the kernel
of 55: (C;"H(S V.TF,))¢ — (C;‘ill (SY:TF,))C is also 1-dimensional, yielding the second claim.

(i) The argument for constant integer coefficients in (ii) is essentially the same; the orientability
assumption is equivalent to the condition that G acts trivially on the group of d-cycles in the underlying
chain complex.

(iii) Because ¥ : S¥ — SV is a G-homotopy equivalence, its class in the G-equivariant O-stem is a unit.
Because Bredon homology is represented by the commutative G-ring spectrum HF ;, the map ﬁ*G (¥)
equals multiplication by the Hurewicz image of () in ng (HF ). The ring nOG (HF,) is isomorphic
to IF, so 1 is its only unit. a

Construction 1.3 (the representation-graded ring H(G, x)) We introduce notation to deal with the
representation grading. For a finite group G, we let Jg be the abelian monoid, under direct sum, of
isomorphism classes of G-representations with trivial G-fixed points. So Jg is freely generated by the
isomorphism classes of nontrivial irreducible G-representations.
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We choose a representative for each element of Jg. For p € Jg and m > 0, we define
Hy(G, p) = Hy(SV),

where V is the chosen representative of p. Proposition 1.2(iii) guarantees that this definition is independent
of the representative up to preferred isomorphism, induced by any isomorphism of representations.

The pairing of Bredon homology induces an associative, commutative and bilinear pairing
- Hy (G, p) X Hy(G, k) > Hpgn (G, p + k)
for p,x € Jg and m,n > 0. This map is defined as the composite
HS(S"yx HO(S") - HZ (S AS") = HE_,(SY),

where V', W and U are the chosen representatives of p, k and p + k, respectively. The last isomorphism
is induced by a choice of G-equivariant isomorphism V @& W = U; it is independent of the choice by
Proposition 1.2(iii). We emphasize that this multiplication is strictly commutative, ie, for x € Hy, (G, p)
and y € H,(G, k), the classes x - y and y - x are equal in the group Hy4,(G, p+«) = Hyym (G, k + p).
This, one more time, uses that automorphisms of representation spheres are invisible in ﬁf . The
multiplication maps thus make the collection of groups H,,(G, p) into a commutative (N x Jg)-graded
Ir,-algebra. We denote this object by H(G, x) and refer to it as the representation-graded Bredon

homology ring of the group G. We will routinely abuse notation by identifying a G-representation V'
with trivial fixed points with its class in Jg; thus we shall write H,,(G, V) for H, (G,[V]).

Remark 1.4 Bredon homology with coefficients in a Mackey functor is represented by a genuine G-
spectrum, and hence can be extended to a homology theory for G-spaces that is RO(G)-graded. Our
results are only about the “effective cone” of the RO(G)-graded coefficient ring, ie, the sector given by
Bredon homology of representation spheres. The effective cone has a much nicer algebraic structure
than the rest of the RO(G)-graded Bredon homology, which tends to contain many nilpotent classes and
trivial products. The effective cone contains the pre-Euler and inverse Thom classes, so it determines the
geometric fixed points (obtained by inverting all pre-Euler classes), and various other localizations; see
Construction 3.1 below.

We recall two kinds of classes that exist for every G-representation, the pre-Euler class and the inverse
Thom class. Our pre-Euler class is also called “Euler class” by other authors.

Construction 1.5 (pre-Euler and inverse Thom classes) We let V' be a G-representation. The pre-Euler

class
ay € H()(G, V)

is the image of the multiplicative unit 1 € Hy(G, 0) under the homomorphism induced by the based
G-map S° — SV that sends the point 0 to the G-fixed point 0 in S¥. The pre-Euler class can be zero,
for example if V' has nonzero G-fixed points.
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For d = dim(V), the inverse Thom class is the unique nonzero element
ty € Hy(G,V);
compare with Proposition 1.2(i). If W is another G-representation, then

ay-aw =ayew and ty- -ty =tygw
in Ho(G,V & W).

In this paper, a character of a finite group G is a group homomorphism A: G — C = {£1}. We shall
routinely confuse a character A with the 1-dimensional G-representation on R in which g € G acts
by multiplication by A(g). Elementary abelian 2-groups are characterized among finite groups by the
property that all irreducible real representations are 1-dimensional, and hence given by characters.

We will make use of the Bockstein homomorphism
B: HS(X) — HS_ | (X)
associated to the short exact sequence of constant Mackey functors Fy) — Z /4 — F 5.

Example 1.6 Let A: G — C be a nontrivial character with kernel K. The minimal G-CW-structure of

S* with two fixed O-cells and one 1-cell with isotropy K shows that for every abelian group M, the

group ﬁnG (S A+ M) is trivial for n #£ 0, 1. And it yields an exact sequence of Bredon homology groups:
0— HP(S*; M) — HE(G/K; M) - HE(G/G; M) %> HE (S*; M) — 0.

The middle two groups are coefficient groups of the Mackey functor, and thus equal to M. The middle
homomorphism is the transfer from K to G in the Mackey functor M, ie, multiplication by the index
[G : K] =2. So the groups ﬁnG (S*; M) in dimension 1 and 0 are isomorphic to the kernel and cokernel,
respectively, of multiplication by 2 on M. For M = [F, we conclude that H;(G, ) and Hy(G, 1) are
1-dimensional, generated by the inverse Thom class ) and the pre-Euler class a;, , respectively.

We claim that the Bockstein homomorphism takes #; to a;. Indeed, the short exact sequence of Mackey
functors F, — Z/4 — F, yields an exact sequence of Bredon homology groups:

HE (8% F2) £ HY (S%:F2) — HY (8% 2/4) — A (S%:F2) — 0.
Since the four nontrivial groups in this sequence are all cyclic of order 2, exactness implies that the Bock-

stein homomorphism is an isomorphism. Since source and target are spanned by #; and a,, respectively,
the Bockstein satisfies 8(z)) = aj,.

Proposition 1.7 Let G be a finite group.

(1) IfV is an orientable G -representation, then B(ty) = 0.

(i) Let T be a set of G-characters whose product is 1. Then

)3 aA-( 1 zu)zo.

LeT weT\{A}
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Proof (i) If V is orientable, then by Proposition 1.2(ii), the inverse Thom class #j- lifts to a class
in the Bredon homology with constant integral coefficients. So the image of #;» under the Bockstein
homomorphism is trivial.

(i) We let V = @, .7 A be the sum of the characters in the set 7. The determinant of V is the
product of the characters in 7', which is trivial by hypothesis. So the G-representation V is orientable,
and hence f(¢y) = 0 by part (i). The Bockstein homomorphism is a derivation, in the sense that
B(x-y)=B(x)-y+x-B(y) for all classes x € ﬁ,g (X)and y € ﬁf(Y). Applying the derivation
property repeatedly and using that (#) ) = a; shows that

t,,,). i

0=pan)=p( I 1) = %

reT ueT\{A}

2 Bredon homology for elementary abelian 2-groups

In this section we specialize from general finite groups to elementary abelian 2-groups, and we prove our
main result, Theorem 2.5. There we exhibit a presentation of H (A4, x) as the quotient of a polynomial
[F,-algebra on the classes @) and ¢, for all nontrivial A-characters A, by an explicit minimal set of
homogeneous polynomial relations. Along the way, we give an elementary and self-contained proof that
the ring H(A, x) is a domain; see Theorem 2.2.

Many of our arguments involve bootstrapping information about Bredon homology of a subgroup to the
ambient group. In those arguments, we need to restrict representations to subgroups, which typically
creates new fixed points. If V is a G-representation with V¢ = 0, and K a subgroup of G, we set
k =dim(VX), and we let Vg = V — VK be the orthogonal complement of the K-fixed points in V. The
restriction homomorphism

res?: Hu(G,V) — Hyp_ (K, Vi)

is the composite

—~ G ~ _ kKy—1 ~
HG(SY) =K HE(SY) = HE (VK A 8% L B (87K),
The first isomorphism is induced by a choice of K-equivariant isomorphism V = Vi ®R¥; itis independent
of this choice by Proposition 1.2(iii). The second isomorphism is the inverse of the suspension isomorphism.
The restriction homomorphism is multiplicative, and its effect on inverse Thom and pre-Euler classes is
given by
; K
G G ClVK if V& = 0,
resg(fy) =1t and resg(ay) =
x(ty) =ty x(@ap) {0 it VE 20,
Proposition 2.1 Let A be an elementary abelian 2-group and let W be an A-representation with trivial
fixed points.
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(i) For every subgroup B of A, the restriction homomorphism
res: Hy(A, W) — H,,_i(B, Wg)
is surjective, where k = dim(W B).

(i) Suppose that W =V @ A for an A-representation V and a nontrivial A-character A with kernel K.
Then for k = dim(V X)), the following sequence is exact:

0— Hpn(A, V)2 Hy (A, V @) —K> oK, Hyp—1(K, Vi) = 0.

(iii) The IF,-vector space Hy, (A, W) is spanned by the classes ay -ty for all A-representations U and V
such that U & V = W and m = dim(V)).

Proof We prove all three statements together by induction over the rank of A. The induction starts when
A is the trivial group, in which case there is nothing to show. Now we let 4 be a nontrivial elementary
abelian 2-group, and we assume that parts (i)—(iii) hold for all proper subgroups of A4.

We start by proving (i), where we may assume that B is a proper subgroup of A. By part (iii) for B, it
suffices to show that all classes of the form ay - 77 are in the image of the restriction homomorphism,
whenever U and V are B-representations such that U @ V' = Wp and m —k = dim(V'). Because W is a
sum of 1-dimensional A-representations, we may choose an A-equivariant decomposition W =U @V ST
such that resg 40)y~U, resB(V) V, and B acts trivially on 7". Then resg(aﬁ “ty-17) = ay -1y, and
we have shown part (i) for A4.

Now we prove (ii). Smashing the cofiber sequence of based A-spaces
A/K; — S° > S* > 4/K, A S!
with SV and applying A-equivariant Bredon homology yields a long exact sequence:
S Hpy(A V) % Hy(A V@A) - HA (SY AAJK L) > -

The Wirthmiiller and suspension isomorphisms identify the group H, HA (S V'A A/ K ) with the group
H, K i1 (S VY= H,,_ k 1(K, V). Under this identification, the boundary map d becomes the restric-
tion homomorphlsm resK. Hy, (A, V@A) — H,_;_1(K, Vg), which is surjective by (i). So the long
exact sequence decomposes into short exact sequences, showing (ii).

We prove (iii) by induction on the dimension of W. For W = 0, the groups Hx(A,0) consist of a
single copy of I, in dimension 0, spanned by the multiplicative unit 1 = #y. If W is nonzero, we write
W =V @ A for an A-representation V' and a nontrivial A-character A, with kernel K. By part (i), the
restriction map resl“é: H,_1(A,V)— H,_;_1(K, Vg) is surjective. So for every class x € Hy, (A, W),
there is a class z € Hy,,_1(A4, V) such that reslfé (z2) = res;é (x). Then

resé(x t+z-5)= res;} (x) + resj} (z) =0.
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Part (ii) provides a class y € Hy,(A4, V) such that y -a, = x + z - t),. Because the dimension of V is
smaller than that of W, the classes y and z are sums of products of a-classes and ¢-classes. Hence the
same is true for x = y-a) + z -t;, and we have shown (iii). O

Our next result shows that the rings H (A, ) have no zero-divisors. As we explain in Remark 3.5 below,
this can also be proven by combining results of [6; 8], so we make no claim to originality. As a service
to the reader, we record this key structural result explicitly and give an independent, self-contained and
elementary proof.

Theorem 2.2 For every elementary abelian 2-group A, the representation-graded Bredon homology
ring H(A, ) is a domain.

Proof We call an element of H(A, x) regular if multiplication by it is injective. We will show that
all nonzero homogeneous elements of H(A, ) are regular. We argue by induction over the rank of 4.
For A = {1}, the ring is the field I,, hence a domain.

Now we suppose that A is nontrivial. Proposition 2.1(ii) shows that the pre-Euler classes of all nontrivial
A-characters are regular. We show next that all the inverse Thom classes 7, are regular. So we let
y € H,(A, W) be a homogeneous element such that #, - y = 0, for some A-representation W with trivial
fixed points. We argue by induction on the dimension of W. If W = 0 there is nothing to show because
the integer-graded part of Bredon homology is spanned by the multiplicative unit, and 7, # 0. For W # 0
we write W = U @ A for some nontrivial 4-character A, with kernel K. Then

resl“é (tw) -resl“é (y) = resl“é (tu-y)=0.

Because res}‘é (¢y) is either 1 (if A = p), or the inverse Thom class of the restricted character u|g (if A # ),
and because K has smaller rank than A, the class res;é (tx) is nonzero and regular, so res}? (y) =0.
Proposition 2.1(ii) provides a class u € H,(A,U) such that y =wu-ay. Thent,-u-a) =t,-y =0,
so ty -u = 0 because a, is regular. Because U has smaller dimension than W, we deduce that u = 0.
Hence also y = 0, and this concludes the special case.

Now we show that a general nonzero homogeneous element x € H,;,(A4, V') is regular, where V is an
A-representation with trivial fixed points. The assumption that x is nonzero implies that 7 < dim(V").
We argue by induction on dim(V) —m. If m = dim(V), then x = ¢y, and so x is a product of inverse
Thom classes of A-characters. Since all the factors are regular by the special case, so is 7y .

Now we suppose that m < dim(V'). We distinguish two cases. In the first case we suppose that there
is an index 2 subgroup K of A such that resI‘g (x) = 0. We let A be the A-character whose kernel is K.
Then also resl‘? (x -t,) = 0. Proposition 2.1(ii) provides a class u € H,, 1 1(A, V) such that u -a; = x - t),.
Since x # 0 and ¢y, is regular, the class u is nonzero. Because the integer degree of u is larger than that
of x, the induction hypothesis shows that u is regular. Since u, a) and ¢, are regular, so is x.
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In the second case we suppose that for every index 2 subgroup K of A, the restriction resl“é (x) is
nonzero. We consider a homogeneous element y € H,(A, W) such that x - y = 0, where W is another
A-representation with trivial fixed points. We perform another induction on the dimension of W. If W =0,
then y lies in the integer-graded subring, so y = 0 or y = 1, and we are done. For W £ 0 we write
W = U @ A for some nontrivial A-character A, with kernel K. Then

resjé(x) -resl’g(y) = resl’? (x-y)=0.

Because res’l‘é (x) #0and H(K, %) is a domain by induction, this implies resé () = 0. Proposition 2.1(ii)
provides a class u € H,(A,U) such that y = u-ay. Thus x-u-a; = x-y =0. So x -u = 0 because a),
is regular. Because the dimension of U is smaller than the dimension of W, we conclude that u = 0, and
hence also y = 0. O

Now we move on to our main result, the minimal presentation of the representation-graded Bredon
homology ring H (A, ). Proposition 2.1(iii) shows that H (A, *) is generated as an [F,-algebra by the
classes a; and ¢, for all nontrivial A-characters A. If A = C, there is only one nontrivial character, and
then H(C, %) is well known to be a polynomial algebra on the classes @ and ¢. If A is elementary abelian
of rank at least 2, however, there are nontrivial polynomial relations between the pre-Euler classes and
the inverse Thom classes.

In the following, it will be convenient to use the notation
A° =Hom(A4,C)\ {1}

for the set of nontrivial characters of an elementary abelian 2-group.

Definition 2.3 (minimally dependent sets of characters) Let A be an elementary abelian 2-group.
A nonempty subset of A° is dependent if it is linearly dependent as a subset of the vector space Hom(4, C).
The set is minimally dependent if it is dependent, but no proper subset is dependent.

Remark 2.4 If 7 is a minimally dependent subset of A°, then the product of all its elements must be
the trivial character. Indeed, the linear dependence of T" means that some subset of it has product the
trivial character; if this were the case for some proper subset of 7', then that subset would be dependent,
contradicting minimality.

Sets of nontrivial A-characters that have one or two elements have a nontrivial product. So every
dependent set of A-characters has a least three elements. If A has rank r, then every set of r 4 1 nontrivial
A-characters is dependent, and hence has a nonempty subset whose product is the trivial character. So a
minimally dependent set of A-characters has at most r + 1 elements.

The group C? has precisely one minimally dependent set of nontrivial characters, the set of all three
nontrivial characters. In Example 2.6 we enumerate all 14 minimally dependent sets of nontrivial
characters of the group C3. In Remark 2.7 we determine the number of minimally dependent subsets of
A° as a function of the rank of A.
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The next theorem is our main result about representation-graded Bredon homology, providing an explicit
set of homogeneous polynomial relations between the pre-Euler and inverse Thom classes, parameterized
by minimally dependent sets of characters. Moreover, these relations form a minimal generating set
for the ideal of all relations. In [5, Theorem 3.5], we use these presentations of H (A, x) to establish a
“global” universal property of the collection of representation-graded Bredon homology rings: we show
that mod-2 Bredon homology is an initial additively oriented elgo—algebra. Holler and Kriz determined
the Poincaré series of the multigraded ring H(A, %) in [6, Theorem 5]. We have not investigated how to

derive their formula for the Poincaré series from our presentation.

Theorem 2.5 Let A be an elementary abelian 2-group.

(i) The representation-graded Bredon homology ring H(A, x) is generated as an [F,-algebra by the
classes a) andt), for all nontrivial A-characters A.

(i) The kernel of the surjective homomorphism of IF, -algebras
€q:Folay. ty e A°]— H(A, *)
is the ideal generated by the polynomials
rM =Y (I w)
LT weT\{A}
for all minimally dependent subsets T of A°.

(iii) Every set of homogeneous elements that generates the kernel of € 4 contains the polynomials r (T)
for all minimally dependent subsets T of A°.

Proof (i) This was shown in Proposition 2.1(iii), and is repeated here for easier reference.

(ii) For the course of the proof we write /(A) for the ideal of the polynomial ring Flay,t, : n € A°]
generated by the polynomials r(7") for all minimally dependent subsets 7" of A°. Since minimally
dependent sets of characters multiply to 1, Proposition 1.7(ii) shows that 7(A) € ker(e4); so it remains to
show the reverse inclusion.

We argue by induction on the rank of 4. The induction starts with the trivial group, where there is nothing
to show. Now we let 4 be a nontrivial elementary abelian 2-group, and we assume part (ii) for all proper
subgroups of A. In the inductive step, we shall make use of the polynomials
r =Y a-( I )
LeT weT\{A}
for arbitrary subsets 7" of A°, not necessarily minimally dependent; we alert the reader that if the elements
of 7' do not multiply to the trivial character, then the polynomial r(7") will not map to O under €4.

We let A be a nontrivial A-character, with kernel K. We let 7 denote the homogeneous ideal in the ring
Falay,ty : o € A°\ {A}] consisting of those elements y such that resl‘? (e4(»)) = 0. We emphasize that
elements of 7 are polynomials that do not involve the variables a; nor ¢;. We shall prove two properties
of this ideal:
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(a) The ideal J is generated by the polynomials r(7") for all subsets 7" of A°\ {A} such that either T is
minimally dependent, or 7 U {A} is minimally dependent.

(b) In the graded ring Fa[ay, t, : u € A°], the relation #) - 7 C (I(A), a; ) holds.

Proof of (a) We write J4\, for the submonoid of J4 consisting of the classes of A-representations V
that do not involve the character A. Equivalently, J4\; contains the A-representations with trivial A-fixed
points such that VX = 0. The restriction homomorphism res}é: N x Jq\3 — N x Jg lets us inflate
(N x Jg)-graded rings R to (N x J 4\, )-graded rings (res}‘é)*(R) by setting

(resg)*(R)(k, V) = R(k. Vg).
We alert the reader that a grading-inflated polynomial algebra is no longer a polynomial algebra. With
this grading convention, a morphism of (N x J 4\ )-graded IF,-algebras

/)I/é ‘Falay, ty e A%\ {A}] — (resl“é)*(Fz[av, ty:v e K°)
is given by sending ay to a, g and 7, to ¢, g. Moreover, the ideal J is precisely the kernel of the
composite homomorphism
Falay, ty: € A°\ {A}] & (resl‘g)*(IFz[av, ty:v e K°))
(R, ey  (H(K. %),

The kernel of ,01‘? is the ideal generated by the homogeneous polynomials

Aplpn +tuayy = r({s, ph})

for all € A°\ {\}. The set {i, uA} is independent and {u, uA} U {A} is minimally dependent. So the
polynomials r({/t, uA}) are among those of the second kind specified in (a).

By the inductive hypothesis for the subgroup K, the kernel of €x : Fs[a,, 6, : v € K°] — H(K, %) is
generated by the polynomials r(S) for all minimally dependent subsets S of K°. So the kernel of the
homomorphism

(resig)*(ex): (resp)* (Falay, ty 1 v € K°]) — (resg)*(H(K, %))

is the ideal generated by the same polynomials r(S'), but each occurring multiple times in different
degrees, namely for all subsets T of A°\ {A} such that

Dl =P
netT vesS
This condition means that for each character v € S, the set 7" contains exactly one of the two extensions
of v to an A-character. Because S is a minimally dependent subset of K°, the A-character
l_[ i € Hom(A4, C)
ueT
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then restricts to the trivial character on the subgroup K. Hence this product is either 1 or A. In the first
case, T is a minimally dependent subset of A°\ {A}. In the second case, T is an independent subset of
A°\ {A} such that 7" U {A} is minimally dependent.

We have now shown that some of the polynomials #(7) with T as specified in (a) generate the kernel
of ,01“}, and the images of the others under ,oé generate the kernel of (res}‘é)* (ex)- So all those polynomials
together generate the kernel of the composite, and hence the ideal (7. This completes the proof of (a).

Proof of (b) It suffices to show that the two types of generating polynomial for 7 specified in (a) have
the desired property. If 7" is a minimally dependent subset of A°\ {1}, then the polynomial »(7") belongs
to the ideal 7(A). Hence also ¢y -7 (T) € I(A). If T is a subset of A°\ {A} such that 7"U{A} is minimally
dependent, then the relation
bor(T) =r(TU) +ar- [
nerT

holds in the ring Fa[a,, t, : 1 € A°], and witnesses that the left hand side lies in the ideal (1(A4), ay).
This completes the proof of (b).

Now we complete the inductive step, showing that ker(e4) € 1(A). We prove this for all homogeneous
pieces Hy, (A, W), where W is an A-representation with W4 = 0, by induction on the dimension of W .
For W = 0 we are considering integer degrees, where source and target of €4 both consist only of a copy
of IF5 in degree 0.

Now we suppose that W # 0. We let f be a homogeneous polynomial in Fjla,,t, : © € A°] of
degree (k, W) with €4( f) = 0. We choose an A-character A and an A-representation V with W =V @ A.
We let K denote the kernel of A. We write f =t, - y 4+ a), - z for some homogeneous polynomials y, z of
degrees (k — 1, V) and (k, V), respectively. Then

resg (e4(p)) = resp (trea(y) + area(z)) = resg (€4(f)) = 0.

Case 1 The A-character A occurs in W with multiplicity at least 2. Then there is an A-representation U
such that V= U @ A. Because resl“é (e4(y)) =0, thereisaclass u € Hp_1(A,U) such that e4(y) = ay -u.
Then

ay-(ty-u+eq(z)) =t -e4(y) +ay-€q(z) =€4(f) =0.

Because multiplication by a, is injective, we deduce that #, -u = €4(z). We choose a homogeneous
polynomial g in Fplay, t, : n € A°] of degree (k —1,U) such that €4(g) =u. Then y+ajgand z+1, g
lie in the kernel of € 4. Since U @ A = V has smaller dimension than W, the classes y +a) g and z + 1, g
are in the ideal /(A4), by induction. So

f=tyta-z=n-+arg) +ay-(2+0g)
also lies in the ideal 7(A4).
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Case 2 The A-character A occurs in W with multiplicity 1. Then A does not occur in V', and so the
polynomial y does not involve the variable a; nor ¢;. Because res‘é (e4(»)) = 0, the polynomial y
belongs to the ideal 7. By property (b) of the ideal .7, the class #; - y then belongs to the ideal generated
by I(A) and a) . Hence there is a homogeneous polynomial /1 of degree (k, V') such that ¢, - y is congruent
to a; - h modulo the ideal 7/(A). So the polynomial f in the kernel of €4 satisfies

f=t-y+ay-z=ay-(h+z) modulo I(A).
Because /(A) is contained in the kernel of €4, we deduce the relation

ay-eq(h+z)=eg(ay-(h+z)) =e4(f)=0.

Because multiplication by a; is injective, we conclude that € 4 (1 + z) = 0. Since V' has smaller dimension
than W =V @ A, the class /1 + z lies in the ideal 1(A4) by induction. So also a, (4 + z), and hence the
class f, lies in the ideal 7(A). This finishes the inductive step, and hence the proof of part (ii).

(iii) Source and target of the homomorphism €4 are graded by the abelian monoid of isomorphism classes
of A-representations. This abelian monoid is free on the classes of the A-characters and thus admits a
compatible partial order by declaring V' < W if V is isomorphic to a direct summand of W. Hence all
products of a homogeneous polynomial f* with other homogeneous elements of Fs[a,, 7, : © € A°] have
degrees greater or equal than that of f. By (ii), the kernel of €4 is generated in gradings that contain the
sum of a linearly dependent set of characters. So the kernel of €4 is nontrivial only in degrees that contain
the sum of a linearly dependent set of characters. The generating relations r(7) specified in (ii) lie in
degrees that are minimal with this property, and they are the unique nontrivial elements in the kernel of €4
in their degrees. So each of the relations r (7") specified in (ii) is necessary to generate the kernel of €4. O

We take the time to go through the presentation of Theorem 2.5 for elementary abelian 2-groups of rank
at most 3. For the group C with two elements, the representation-graded Bredon homology ring is well
studied, and a polynomial algebra on the classes a and ¢,

H(C, %) = Fafa, 1].

This calculation is originally due to Stong (unpublished) and reproved by several authors; the earliest
published reference we know of is [9, Section 2].

The ring H(C?, ») was calculated by Ellis-Bloor [3, Theorem 4.14]. The group C? has precisely one
dependent set of nontrivial characters, the set { p1, p,, it} of all three nontrivial characters, and this set
is minimally dependent. So the presentation of H(C?, ) given by Theorem 2.5 has only one relation:
the map from [Fs[a;,az,ay, 11,12, t,] that takes the polynomial generators to the classes with the same
names factors through an isomorphism of [F,-algebras

~ 2
Fz[al,az,au, 1, lz,tu]/(alfzfu + taszty + leza“) ~ H(C*, x).
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Example 2.6 (rank 3) As a proof of concept, we make the minimal presentation given by Theorem 2.5
completely explicit for A = C3. In this case there are 14 polynomial generators, namely the classes a;,
and 1, for each of the seven nontrivial characters A, and there is also a total of 14 minimal relations.
Minimally dependent subsets for C* have either three or four elements. There are seven minimally
dependent subsets of cardinality 3; if p; denotes the projection of C? to the i factor, then these sets are

{P1. P2, P1P2y,  AP1.P3. P1P3y.  ADP2.P3.P2P3}.  AP1.P2P3. P1P2D3}
{pP2, P1P3, P1P2p3}s  AP3. P1P2, P1P2P3}.  AP1DP2s P1P3. P2D3}-

This gives seven minimal relations of the form

where {, B, y} runs over the above seven sets. And there are also seven minimally dependent subsets
with four elements, namely

{p1. P2, P3. P1P2P3Y. AP, P2, P1DP3. P2P3}.  AP1. P3. P1DP2: P2P3).  {P2. P3. P1DP2. P1D3}
{pP1. P1P2, P1P3. P1P2DP3}.  AP2. P1DP2, P2P3- P1P2D3}.  AD3. P1DP3. P2P3> P1P2D3}-

Each such set {«, 8, y, §} gives a minimal relation of the form

Remark 2.7 (the number of minimally dependent sets) We let 4 be an elementary abelian 2-group of
rank 7. As we explained in Remark 2.4, minimally dependent subsets of A° have at least 3 elements,
and at most r + 1 elements. We shall now count how many of these there are. We consider 2 <k <r.
Every minimally dependent subset with k + 1 elements is obtained from a linearly independent k-element
subset S of A° by adding to it the product of all its members o = [[; cg A. The resulting minimally
dependent subset S U {o} can be obtained in k + 1 different ways from an unordered linearly independent
k-element set, depending on which of the elements plays the role of the product. An r-dimensional
IF,-vector space has
(25 —1)(2" =2)--- (2" =2k
k!
linearly independent k-element subsets. Hence there are

Q7 —1)(2" =2)--- (2" —=2k-1)
(k +1)!

minimally dependent subsets of A° with & + 1 elements. So the total number of relations in the minimal

presentation of H (A, x) given by Theorem 2.5 is

rk 2r_2i—1
1;::2,1:[1 i+1
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The following table shows the number 2(2” — 1) of polynomial generators of the representation-graded
ring H(A, x), and the above number of minimal relations for small ranks:

rank(A4) \ 1 2 3 4 5 6 7
number of variables | 2 6 14 30 62 126 254
number of relations | 0 1 14 308 20336 4994472 4610816280

While the number of relations grows very quickly with the rank, this is in a sense due to the growing
number of automorphisms. Indeed, the automorphism group of A4 acts transitively on the minimally
dependent sets of nontrivial A-characters of fixed cardinality. So up to automorphisms of A4, there is only
one relation of degree k + 1 for all 2 < k < rank(A).

3 Bredon homology with pre-Euler and inverse Thom classes inverted

In this section we study certain localizations of the representation-graded Bredon homology ring H (A4, *).
We fix a subgroup B of A and consider the ring obtained by inverting all pre-Euler classes that restrict
nontrivially to B, and all inverse Thom classes that restrict trivially to B. Our presentation of H (A4, x)
yields a presentation of the localized ring; see Theorem 3.2.

The localization by inverting all pre-Euler classes is also known as the geometric fixed point ring of
the Eilenberg—MacLane spectrum HF ,; Holler and Kriz [6] previously obtained a presentation of it,
which we recover as the special case B = A. The mixed localizations were considered by Balmer
and Gallauer [1]; we improve their [1, Theorem 17.13], for the prime 2, from a “presentation modulo
nilpotence” to an actual presentation; see Remark 3.3.

Construction 3.1 (localizations) We let B be a subgroup of an elementary abelian 2-group 4. We let
H(A|B) be the integer-graded part of the localization of the representation-graded ring H (A, ) obtained
by inverting the following classes:

e All classes a, for all A-characters A such that A|p is nontrivial.

e All classes ¢, for all A-characters A such that A|p is trivial.

Every element of Hj (A|B) is then of the form x/ayty for some A-representation V with VB =0,
some A-representation W with W4 = 0 on which B acts trivially, and some x € Hy gimwy (4. VO W).
These elements satisfy the relations

Xfaytw = (x-apty)/dyopty ow
for all A-representations V and W with the corresponding properties. The localizations introduce enough

graded units so that the representation grading effectively collapses to an integer grading. In other words,
we are not losing any information by restricting attention to the integer-graded subrings of the localizations.
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The following theorem “localizes” the presentation of the representation-graded ring H (A4, x) from
Theorem 2.5 to a presentation of the integer-graded ring H(A|B). A noticeable feature is that those
relations in the presentation of H (A, %) that involve minimally dependent sets of four or more characters
become redundant in the localization.

Theorem 3.2 For every subgroup B of an elementary abelian 2-group A, the graded ring H(A|B) is a
domain. The ring H(A|B) is generated by

 the homogeneous elements x) = t) /a; of degree 1, for A € A° with A|p # 1, and

e the homogeneous elements e; = ay /t of degree —1, for A € A° withA|gp = 1.
The ideal of relations between these generators is generated by the polynomials

* XqXg+ XqXy + Xgx, for all triples of nontrivial A-characters such thata - -y = 1 and such that
o, f and y are nontrivial on B;

* Xq +Xg+ XgXpgey for all triples of nontrivial A-characters such thate - -y = 1, such that o and
B are nontrivial on B, and y|p = 1;

* eq+eg+ey forall triples of nontrivial A-characters such thata-f-y =1 anda|p=B|p=y|p=1.

Proof The multigraded ring H(A4, x) is a domain by Theorem 2.2, hence so is any localization at a
multiplicative subset of homogeneous elements. Since H(A|B) is a subring of such a localization, it is a
domain, too.

We write x4 ={A € A°:A|p # 1} and x— = {A € A° : A|gp = 1}. If we take the presentation of H(A, %)
given by Theorem 2.5, invert the relevant pre-Euler and inverse Thom classes, and restrict to integer
gradings, we recognize H(A|B) as the quotient of the polynomial ring Fa[x),e, : A € x4, € x—] by
the ideal generated by the polynomials

FO=r/( 1w [ ow)=( > T x)+( ¥ a) I x

neTNx+ ueTNy— AeTNx4+ ne(TNx+)\{A} AeTNy— neTNx+

for all minimally dependent subsets 7" of A°. Among these are the minimally dependent subsets
T = {«, B, y} that have three elements. We note that because « - 8 -y = 1, whenever two of «, 8 and y
are trivial on B, then so is the third. So the relations for minimally dependent subsets with three elements
are the ones from the statement of the theorem.

In the rest of the proof we show that the polynomials 7 (7") for minimally dependent subsets 7" with more
than three elements are in the ideal generated by those with three elements. We argue by induction on the
cardinality of T, and we let T be a minimally dependent subset of A° with at least 4 elements. We pick
two distinct elements o # 8 from 7'; by minimality, the product y = « - § then does not belong to 7.
We set S = T \ {«, B}. We claim that the polynomial 7(7") lies in the ideal generated by 7 (S U {y})
and 7({«, B,y}). The sets S U {y} and {«, B, y} are both minimally dependent, and both have fewer
elements than 7". So by induction, 7(7") belongs to the ideal generated by the ternary relations.
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It remains to prove the claim. We distinguish two cases, depending on whether the restriction of y to B
is trivial or not. If y|p = 1, we exploit the polynomial relation

ty-r(T) =talg-r(SU{yY +rla.Byd- ] i
rES
that holds by inspection. Because the class 7, is among those being inverted, this relation shows that
the polynomial 7(7) lies in the ideal generated by 7(S U {y}) and 7 ({«, B, y}). If y|B # 1, we exploit
the relation

ay -r(T) = (agtp +1qap) - 1(S ULy} + (e, . y}) - r(S)

that also holds by inspection. Because the class a,, is among those being inverted, this relation shows that
the polynomial 7(7T') lies in the ideal generated by 7 (S U {y}) and 7 ({«, B, y}). |

Remark 3.3 (relation to the work of Balmer and Gallauer) In [1], Balmer and Gallauer also study
the representation-graded Bredon homology ring H (A, =) as input for their computation of the Balmer
spectrum of the tt-category of permutation modules; this ring is called the twisted cohomology ring of A
in [1, Definition 12.16], and denoted H**(A). The work of Balmer and Gallauer also covers elementary
abelian p-groups for odd primes p, which we do not consider. The connection to Bredon homology
comes from the fact that the homotopy category of permutation A-modules is equivalent to the homotopy
category of modules in genuine A-spectra over the Eilenberg—MacLane spectrum HF , for the constant
Mackey functor. Under this equivalence, the invertible object u introduced in [1, Definition 12.3]
corresponds to the representation sphere .S A, Using our notation, Balmer and Gallauer prove the relation
aglgty + togagty + tytga, = 0 in [1, Lemma 17.4], for all triples of A-characters whose product is 1.

The localization H(A|B) is introduced as 0% (B) in [1, Definition 14.9]. In [1, Construction 17.5], Balmer
and Gallauer define a ring O%(B) by generators and relations as in the presentation of Theorem 3.2.
Then they show in [1, Theorem 17.13] that the morphism O% (B) — O%(B) becomes an isomorphism
after modding out the respective nilradicals. In the notation of Balmer and Gallauer, the content of our
Theorem 3.2 is that O% (B) — O%(B) is already an isomorphism, without the need to divide out any
ideal. In particular, our theorem confirms the expectation formulated in [1, Remark 17.15].

For every genuine equivariant ring spectrum, the localization of the representation-graded homotopy ring
at the pre-Euler classes of all nontrivial irreducible representations is isomorphic to the so-called geometric
fixed point ring; see [4, Proposition 3.20]. In particular, for every elementary abelian 2-group A, the
localization H (A|A) is isomorphic to the geometric fixed point ring & (HF ,) of the Eilenberg—-MacLane
ring spectrum of the constant Mackey functor [F,. Holler and Kriz gave a presentation of this ring in
[6, Theorem 2]. Their result is the special case A = B of Theorem 3.2:

Corollary 3.4 [6, Theorem 2] Let A be an elementary abelian 2-group. The graded ring ®2(HF,) =
H(A|A) is generated by the homogeneous elements x) = t; /a) of degree 1, for all nontrivial A-
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characters A. The ideal of relations between these generators is generated by the quadratic polynomials
XogXg + XgXy + XgXy

for all triples of nontrivial A-characters such thato - -y = 1.

Remark 3.5 As observed and expanded upon by S Kriz in [8], the ring H(A|A) agrees with the
“reciprocal plane of the arrangement of all nontrivial hyperplanes of A” previously studied in the algebra
literature. We refer to [8] for more information on this point of view. The identification with the reciprocal
plane in particular implies that H(A|A) is a domain. The localization maps Hy, (A, W) — H;,(A|A)
are injective, see [6, Theorem 5 (ii)] or our Proposition 2.1(ii), so H(A, ) is a domain, too, which we
proved more directly in Theorem 2.2.

If we specialize Theorem 3.2 to the other extreme B = {1}, we see that H(A|{1}) is generated by the
Euler classes e; = ay /1t for all nontrivial A-characters A, and the ideal of relations is generated by
the linear polynomials ey + eg = e, for all triples of nontrivial A-characters such that o -8 = y. So
if A has rank », and A1,..., A, is a basis of the vector space of A-characters, then already the Euler
classes ey, ..., ey, generate H(A|{1}), and there are no further relations between these. In other words,
the ring H(A|{1}) obtained by inverting all inverse Thom classes is an [F,-polynomial algebra in the
classes ey, ..., e,,, which agrees with the group cohomology ring H*(A4;F5).
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