Verma modules and preprojective algebras

Christof GEISS*, Bernard LECLERC† and Jan SCHRÖER‡

Abstract

We give a geometric construction of the Verma modules of a symmetric Kac-Moody Lie algebra $\mathfrak g$ in terms of constructible functions on the varieties of nilpotent finite-dimensional modules of the corresponding preprojective algebra Λ .

1 Introduction

Let \mathfrak{g} be the symmetric Kac-Moody Lie algebra associated to a finite unoriented graph Γ without loop. Let \mathfrak{n}_- denote a maximal nilpotent subalgebra of \mathfrak{g} . In [**Lu1**, §12], Lusztig has given a geometric construction of $U(\mathfrak{n}_-)$ in terms of certain Lagrangian varieties. These varieties can be interpreted as module varieties for the preprojective algebra Λ attached to the graph Γ by Gelfand and Ponomarev [**GP**]. In Lusztig's construction, $U(\mathfrak{n}_-)$ gets identified with an algebra ($\mathcal{M}, *$) of constructible functions on these varieties, where * is a convolution product inspired by Ringel's multiplication for Hall algebras.

Later, Nakajima gave a similar construction of the highest weight irreducible integrable \mathfrak{g} -modules $L(\lambda)$ in terms of some new Lagrangian varieties which differ from Lusztig's ones by the introduction of some extra vector spaces W_k for each vertex k of Γ , and by considering only stable points instead of the whole variety [Na, §10].

The aim of this paper is to extend Lusztig's original construction and to endow \mathcal{M} with the structure of a Verma module $M(\lambda)$.

To do this we first give a variant of the geometrical construction of the integrable \mathfrak{g} -modules $L(\lambda)$, using functions on some natural open subvarieties of Lusztig's varieties instead of functions on Nakajima's varieties (Theorem 1). These varieties have a simple description in terms of the preprojective algebra Λ and of certain injective Λ -modules q_{λ} .

Having realized the integrable modules $L(\lambda)$ as quotients of \mathcal{M} , it is possible, using the comultiplication of $U(\mathfrak{n}_-)$, to construct geometrically the raising operators $E_i^{\lambda} \in \operatorname{End}(\mathcal{M})$ which make \mathcal{M} into the Verma module $M(\lambda)$ (Theorem 2). Note that we manage in this way to realize Verma modules with arbitrary highest weight (not necessarily dominant).

Finally, we dualize this setting and give a geometric construction of the dual Verma module $M(\lambda)^*$ in terms of the delta functions $\delta_x \in \mathcal{M}^*$ attached to the finite-dimensional nilpotent Λ -modules x (Theorem 3).

^{*}C. Geiss acknowledges support from DGAPA grant IN101402-3.

[†]B. Leclerc is grateful to the GDR 2432 and the GDR 2249 for their support.

[‡]J. Schröer was supported by a research fellowship from the DFG (Deutsche Forschungsgemeinschaft).

2 Verma modules

- **2.1** Let \mathfrak{g} be the symmetric Kac-Moody Lie algebra associated with a finite unoriented graph Γ without loop. The set of vertices of the graph is denoted by I. The (generalized) Cartan matrix of \mathfrak{g} is $A = (a_{ij})_{i,j \in I}$, where $a_{ii} = 2$ and, for $i \neq j$, $-a_{ij}$ is the number of edges between i and j.
- **2.2** Let $\mathfrak{g} = \mathfrak{n} \oplus \mathfrak{h} \oplus \mathfrak{n}_{-}$ be a Cartan decomposition of \mathfrak{g} , where \mathfrak{h} is a Cartan subalgebra and $(\mathfrak{n}, \mathfrak{n}_{-})$ a pair of opposite maximal nilpotent subalgebras. Let $\mathfrak{b} = \mathfrak{n} \oplus \mathfrak{h}$. The Chevalley generators of \mathfrak{n} (resp. \mathfrak{n}_{-}) are denoted by e_i ($i \in I$) (resp. f_i) and we set $h_i = [e_i, f_i]$.
- **2.3** Let α_i denote the simple root of \mathfrak{g} associated with $i \in I$. Let (-; -) be a symmetric bilinear form on \mathfrak{h}^* such that $(\alpha_i; \alpha_j) = a_{ij}$. The lattice of integral weights in \mathfrak{h}^* is denoted by P, and the sublattice spanned by the simple roots is denoted by Q. We put

$$P_{+} = \{ \lambda \in P \mid (\lambda; \alpha_i) \geqslant 0, (i \in I) \}, \qquad Q_{+} = Q \cap P_{+}.$$

2.4 Let $\lambda \in P$ and let $M(\lambda)$ be the Verma module with highest weight λ . This is the induced \mathfrak{g} -module defined by $M(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \mathbb{C} u_{\lambda}$, where u_{λ} is a basis of the one-dimensional representation of \mathfrak{b} given by

$$h u_{\lambda} = \lambda(h) u_{\lambda}, \quad n u_{\lambda} = 0, \qquad (h \in \mathfrak{h}, n \in \mathfrak{n}).$$

As a P-graded vector space $M(\lambda) \cong U(\mathfrak{n}_-)$ (up to a degree shift by λ). $M(\lambda)$ has a unique simple quotient denoted by $L(\lambda)$, which is integrable if and only if $\lambda \in P_+$. In this case, the kernel of the \mathfrak{g} -homomorphism $M(\lambda) \to L(\lambda)$ is the \mathfrak{g} -module $I(\lambda)$ generated by the vectors

$$f_i^{(\lambda;\alpha_i)+1} \otimes u_\lambda, \qquad (i \in I).$$

3 Constructible functions

- **3.1** Let X be an algebraic variety over \mathbb{C} endowed with its Zariski topology. A map f from X to a vector space V is said to be constructible if its image f(X) is finite, and for each $v \in f(X)$ the preimage $f^{-1}(v)$ is a constructible subset of X.
- **3.2** By $\chi(A)$ we denote the Euler characteristic of a constructible subset A of X. For a constructible map $f:X\to V$ one defines

$$\int_{x \in X} f(x) = \sum_{v \in V} \chi(f^{-1}(v)) \, v \in V.$$

More generally, for a constructible subset A of X we write

$$\int_{x \in A} f(x) = \sum_{v \in V} \chi(f^{-1}(v) \cap A) v.$$

2

4 Preprojective algebras

- **4.1** Let Λ be the preprojective algebra associated to the graph Γ (see for example [**Ri**, **GLS**]). This is an associative \mathbb{C} -algebra, which is finite-dimensional if and only if Γ is a graph of type A, D, E. Let s_i denote the simple one-dimensional Λ -module associated with $i \in I$, and let p_i be its projective cover and q_i its injective hull. Again, p_i and q_i are finite-dimensional if and only if Γ is a graph of type A, D, E.
- **4.2** A finite-dimensional Λ -module x is nilpotent if and only if it has a composition series with all factors of the form s_i $(i \in I)$. We will identify the dimension vector of x with an element $\beta \in Q_+$ by setting $\dim(s_i) = \alpha_i$.
- **4.3** Let q be an injective Λ -module of the form

$$q = \bigoplus_{i \in I} q_i^{\oplus a_i}$$

for some nonnegative integers a_i $(i \in I)$.

Lemma 1 Let x be a finite-dimensional Λ -module isomorphic to a submodule of q. If $f_1: x \to q$ and $f_2: x \to q$ are two monomorphisms, then there exists an automorphism $g: q \to q$ such that $f_2 = gf_1$.

Proof — Indeed, q is the injective hull of its socle $b = \bigoplus_{i \in I} s_i^{\oplus a_i}$. Let c_j (j = 1, 2) be a complement of $f_i(\operatorname{socle}(x))$ in b. Then $c_1 \cong c_2$ and the maps

$$h_j := f_j \oplus \mathrm{id}: \quad x \oplus c_j \to q, \qquad (j = 1, 2)$$

are injective hulls. The result then follows from the unicity of the injective hull.

Hence, up to isomorphism, there is a unique way to embed x into q.

4.4 Let \mathcal{M} be the algebra of constructible functions on the varieties of finite-dimensional nilpotent Λ -modules defined by Lusztig [**Lu2**] to give a geometric realization of $U(\mathfrak{n}_{-})$. We recall its definition.

For $\beta = \sum_{i \in I} b_i \alpha_i \in Q_+$, let Λ_β denote the variety of nilpotent Λ -modules with dimension vector β . Recall that Λ_β is endowed with an action of the algebraic group $G_\beta = \prod_{i \in I} GL_{b_i}(\mathbb{C})$, so that two points of Λ_β are isomorphic as Λ -modules if and only if they belong to the same G_β -orbit. Let $\widetilde{\mathcal{M}}_\beta$ denote the vector space of constructible functions from Λ_β to \mathbb{C} which are constant on G_β -orbits. Let

$$\widetilde{\mathcal{M}} = \bigoplus_{\beta \in Q_+} \widetilde{\mathcal{M}}_{\beta}.$$

One defines a multiplication * on $\widetilde{\mathcal{M}}$ as follows. For $f \in \widetilde{\mathcal{M}}_{\beta}$, $g \in \widetilde{\mathcal{M}}_{\gamma}$ and $x \in \Lambda_{\beta+\gamma}$, we have

$$(f * g)(x) = \int_{U} f(x')g(x''), \tag{1}$$

where the integral is over the variety of x-stable subspaces U of x of dimension γ , x'' is the Λ -submodule of x obtained by restriction to U and x' = x/x''. In the sequel in order to simplify

notation, we will not distinguish between the subspace U and the submodule x'' of x carried by U. Thus we shall rather write

$$(f * g)(x) = \int_{x''} f(x/x'')g(x''), \tag{2}$$

where the integral is over the variety of submodules x'' of x of dimension y.

For $i \in I$, the variety Λ_{α_i} is reduced to a single point: the simple module s_i . Denote by $\mathbf{1}_i$ the function mapping this point to 1. Let $\mathcal{G}(i,x)$ denote the variety of all submodules y of x such that $x/y \cong s_i$. Then by (2) we have

$$(\mathbf{1}_i * g)(x) = \int_{y \in \mathcal{G}(i,x)} g(y). \tag{3}$$

Let \mathcal{M} denote the subalgebra of $\widetilde{\mathcal{M}}$ generated by the functions $\mathbf{1}_i$ $(i \in I)$. By Lusztig [**Lu2**], $(\mathcal{M}, *)$ is isomorphic to $U(\mathfrak{n}_-)$ by mapping $\mathbf{1}_i$ to the Chevalley generator f_i .

4.5 In the identification of $U(\mathfrak{n}_-)$ with \mathcal{M} , formula (3) represents the left multiplication by f_i . In order to endow \mathcal{M} with the structure of a Verma module we need to introduce the following important definition. For $\nu \in P_+$, let

$$q_{\nu} = \bigoplus_{i \in I} q_i^{\oplus(\nu; \alpha_i)}.$$

Lusztig has shown [Lu3, $\S 2.1$] that Nakajima's Lagrangian varieties for the geometric realization of $L(\nu)$ are isomorphic to the Grassmann varieties of Λ -submodules of q_{ν} with a given dimension vector.

Let x be a finite-dimensional nilpotent Λ -module isomorphic to a submodule of the injective module q_{ν} . Let us fix an embedding $F: x \to q_{\nu}$ and identify x with a submodule of q_{ν} via F.

Definition 1 For $i \in I$ let $\mathcal{G}(x, \nu, i)$ be the variety of submodules y of q_{ν} containing x and such that y/x is isomorphic to s_i .

This is a projective variety which, by 4.3, depends only (up to isomorphism) on i, ν and the isoclass of x.

5 Geometric realization of integrable irreducible g-modules

- **5.1** For $\lambda \in P_+$ and $\beta \in Q_+$, let $\Lambda_{\beta}^{\lambda}$ denote the variety of nilpotent Λ -modules of dimension vector β which are isomorphic to a submodule of q_{λ} . Equivalently $\Lambda_{\beta}^{\lambda}$ consists of the nilpotent modules of dimension vector β whose socle contains s_i with multiplicity at most $(\lambda ; \alpha_i)$ $(i \in I)$. This variety has been considered by Lusztig [**Lu4**, §1.5]. In particular it is known that $\Lambda_{\beta}^{\lambda}$ is an open subset of Λ_{β} , and that the number of its irreducible components is equal to the dimension of the $(\lambda \beta)$ -weight space of $L(\lambda)$.
- **5.2** Define $\widetilde{\mathcal{M}}_{\beta}^{\lambda}$ to be the vector space of constructible functions on $\Lambda_{\beta}^{\lambda}$ which are constant on G_{β} -orbits. Let $\mathcal{M}_{\beta}^{\lambda}$ denote the subspace of $\widetilde{\mathcal{M}}_{\beta}^{\lambda}$ obtained by restricting elements of \mathcal{M}_{β} to $\Lambda_{\beta}^{\lambda}$.

Put $\widetilde{\mathcal{M}}^{\lambda} = \bigoplus_{\beta} \widetilde{\mathcal{M}}^{\lambda}_{\beta}$ and $\mathcal{M}^{\lambda} = \bigoplus_{\beta} \mathcal{M}^{\lambda}_{\beta}$. For $i \in I$ define endomorphisms E_i, F_i, H_i of $\widetilde{\mathcal{M}}^{\lambda}$ as follows:

$$(E_i f)(x) = \int_{y \in \mathcal{G}(x,\lambda,i)} f(y), \qquad (f \in \widetilde{\mathcal{M}}_{\beta}^{\lambda}, \ x \in \Lambda_{\beta-\alpha_i}^{\lambda}), \tag{4}$$

$$(F_i f)(x) = \int_{y \in \mathcal{G}(i,x)} f(y), \qquad (f \in \widetilde{\mathcal{M}}_{\beta}^{\lambda}, \ x \in \Lambda_{\beta+\alpha_i}^{\lambda}), \tag{5}$$

$$(H_i f)(x) = (\lambda - \beta; \alpha_i) f(x), \qquad (f \in \widetilde{\mathcal{M}}_{\beta}^{\lambda}, \ x \in \Lambda_{\beta}^{\lambda}). \tag{6}$$

Theorem 1 The endomorphisms E_i , F_i , H_i of $\widetilde{\mathcal{M}}^{\lambda}$ leave stable the subspace \mathcal{M}^{λ} . Denote again by E_i , F_i , H_i the induced endomorphisms of \mathcal{M}^{λ} . Then the assignments $e_i \mapsto E_i$, $f_i \mapsto F_i$, $h_i \mapsto H_i$, give a representation of \mathfrak{g} on \mathcal{M}^{λ} isomorphic to the irreducible representation $L(\lambda)$.

- **5.3** The proof of Theorem 1 will involve a series of lemmas.
- **5.3.1** For $\mathbf{i} = (i_1, \dots, i_r) \in I^r$ and $\mathbf{a} = (a_1, \dots, a_r) \in \mathbb{N}^r$, define the variety $\mathcal{G}(x, \lambda, (\mathbf{i}, \mathbf{a}))$ of flags of Λ -modules

$$\mathfrak{f} = (x = y_0 \subset y_1 \subset \cdots \subset y_r \subset q_\lambda)$$

with $y_k/y_{k-1} \cong s_{i_k}^{\oplus a_k}$ $(1 \leqslant k \leqslant r)$. As in Definition 1, this is a projective variety depending (up to isomorphism) only on (\mathbf{i}, \mathbf{a}) , λ and the isoclass of x and not on the choice of a specific embedding of x into q_{λ} .

Lemma 2 Let $f \in \widetilde{\mathcal{M}}^{\lambda}_{\beta}$ and $x \in \Lambda^{\lambda}_{\beta-a_1\alpha_{i_1}-\cdots-a_r\alpha_{i_r}}$. Put $E^{(a)}_i = (1/a!)E^a_i$. We have

$$(E_{i_r}^{(a_r)}\cdots E_{i_1}^{(a_1)}f)(x) = \int_{\mathfrak{f}\in\mathcal{G}(x,\lambda,(\mathbf{i},\mathbf{a}))} f(y_r).$$

The proof is standard and will be omitted.

5.3.2 By [Lu1, 12.11] the endomorphisms F_i satisfy the Serre relations

$$\sum_{p=0}^{1-a_{ij}} (-1)^p F_j^{(p)} F_i F_j^{(1-a_{ij}-p)} = 0$$

for every $i \neq j$. A similar argument shows that

Lemma 3 The endomorphisms E_i satisfy the Serre relations

$$\sum_{p=0}^{1-a_{ij}} (-1)^p E_j^{(p)} E_i E_j^{(1-a_{ij}-p)} = 0$$

for every $i \neq j$.

 $\textit{Proof} \ -- \ \operatorname{Let} \ f \in \widetilde{\mathcal{M}}^{\lambda}_{\beta} \ \text{and} \ x \in \Lambda^{\lambda}_{\beta - \alpha_i - (1 - a_{ij})\alpha_j}. \ \text{By Lemma 2,}$

$$(E_j^{(p)} E_i E_j^{(1-a_{ij}-p)} f)(x) = \int_{\mathfrak{f}} f(y_3)$$

the integral being taken on the variety of flags

$$\mathfrak{f} = (x \subset y_1 \subset y_2 \subset y_3 \subset q_\lambda)$$

with $y_1/x\cong s_j^{\oplus 1-a_{ij}-p},\,y_2/y_1\cong s_i$ and $y_3/y_2\cong s_j^{\oplus p}.$ This integral can be rewritten as

$$\int_{y_2} f(y_3) \, \chi(\mathcal{F}[y_3; p])$$

where the integral is now over all submodules y_3 of q_{λ} of dimension β containing x and $\mathcal{F}[y_3;p]$ is the variety of flags \mathfrak{f} as above with fixed last step y_3 . Now, by moding out the submodule x at each step of the flag, we are reduced to the same situation as in [Lu1, 12.11], and the same argument allows to show that

$$\sum_{p=0}^{1-a_{ij}} \chi(\mathcal{F}[y_3; p]) = 0,$$

which proves the Lemma.

5.3.3 Let $x \in \Lambda^{\lambda}_{\beta}$. Let $\varepsilon_i(x)$ denote the multiplicity of s_i in the head of x. Let $\varphi_i(x)$ denote the multiplicity of s_i in the socle of q_{λ}/x .

Lemma 4 Let $i, j \in I$ (not necessarily distinct). Let y be a submodule of q_{λ} containing x and such that $y/x \cong s_j$. Then

$$\varphi_i(y) - \varepsilon_i(y) = \varphi_i(x) - \varepsilon_i(x) - a_{ij}$$
.

Proof — We have short exact sequences

$$0 \rightarrow x \rightarrow q_{\lambda} \rightarrow q_{\lambda}/x \rightarrow 0, \tag{7}$$

$$0 \rightarrow y \rightarrow q_{\lambda} \rightarrow q_{\lambda}/y \rightarrow 0, \tag{8}$$

$$0 \to x \to y \to s_i \to 0, \tag{9}$$

$$0 \rightarrow s_i \rightarrow q_{\lambda}/x \rightarrow q_{\lambda}/y \rightarrow 0. \tag{10}$$

Clearly, $\varepsilon_i(x) = |\operatorname{Hom}_{\Lambda}(x, s_i)|$, the dimension of $\operatorname{Hom}_{\Lambda}(x, s_i)$. Similarly $\varepsilon_i(y) = |\operatorname{Hom}_{\Lambda}(y, s_i)|$, $\varphi_i(x) = |\operatorname{Hom}_{\Lambda}(s_i, q_{\lambda}/x)|$, $\varphi_i(y) = |\operatorname{Hom}_{\Lambda}(s_i, q_{\lambda}/y)|$. Hence we have to show that

$$|\operatorname{Hom}_{\Lambda}(x, s_i)| - |\operatorname{Hom}_{\Lambda}(y, s_i)| = |\operatorname{Hom}_{\Lambda}(s_i, q_{\lambda}/x)| - |\operatorname{Hom}_{\Lambda}(s_i, q_{\lambda}/y)| - a_{ij}. \tag{11}$$

In our proof, we will use a property of preprojective algebras proved in [CB, $\S 1$], namely, for any finite-dimensional Λ -modules m and n there holds

$$|\operatorname{Ext}^{1}_{\Lambda}(m,n)| = |\operatorname{Ext}^{1}_{\Lambda}(n,m)|. \tag{12}$$

(a) If i = j then $a_{ij} = 2$, $|\text{Hom}_{\Lambda}(s_j, s_i)| = 1$ and $|\text{Ext}_{\Lambda}^1(s_j, s_i)| = 0$ since Γ has no loops. Applying $\text{Hom}_{\Lambda}(-, s_i)$ to (9) we get the exact sequence

$$0 \to \operatorname{Hom}_{\Lambda}(s_i, s_i) \to \operatorname{Hom}_{\Lambda}(y, s_i) \to \operatorname{Hom}_{\Lambda}(x, s_i) \to 0$$

hence

$$|\operatorname{Hom}_{\Lambda}(x, s_i)| - |\operatorname{Hom}_{\Lambda}(y, s_i)| = -1.$$

Similarly applying $\operatorname{Hom}_{\Lambda}(s_i, -)$ to (10) we get an exact sequence

$$0 \to \operatorname{Hom}_{\Lambda}(s_i, s_j) \to \operatorname{Hom}_{\Lambda}(s_i, q_{\lambda}/x) \to \operatorname{Hom}_{\Lambda}(s_i, q_{\lambda}/y) \to 0,$$

hence

$$|\operatorname{Hom}_{\Lambda}(s_i, q_{\lambda}/x)| - |\operatorname{Hom}_{\Lambda}(s_i, q_{\lambda}/y)| = 1,$$

and (11) follows.

(b) If $i \neq j$, we have $|\operatorname{Hom}_{\Lambda}(s_i, s_j)| = 0$ and $|\operatorname{Ext}^1_{\Lambda}(s_i, s_j)| = |\operatorname{Ext}^1_{\Lambda}(s_j, s_i)| = -a_{ij}$. Applying $\operatorname{Hom}_{\Lambda}(s_i, -)$ to (9) we get an exact sequence

$$0 \to \operatorname{Hom}_{\Lambda}(s_i, x) \to \operatorname{Hom}_{\Lambda}(s_i, y) \to 0,$$

hence

$$|\operatorname{Hom}_{\Lambda}(s_i, x)| - |\operatorname{Hom}_{\Lambda}(s_i, y)| = 0. \tag{13}$$

Moreover, by [**Bo**, §1.1], $|\operatorname{Ext}_{\Lambda}^2(s_i, s_j)| = 0$ because there are no relations from i to j in the defining relations of Λ . (Note that the proof of this result in [**Bo**] only requires that $I \subseteq J^2$ (here we use the notation of [**Bo**]). One does not need the additional assumption $J^n \subseteq I$ for some n. Compare also the discussion in [**BK**].)

Since q_{λ} is injective $|\mathrm{Ext}_{\Lambda}^{1}(s_{i},q_{\lambda})|=0$, thus applying $\mathrm{Hom}_{\Lambda}(s_{i},-)$ to (7) we get an exact sequence

$$0 \to \operatorname{Hom}_{\Lambda}(s_i, x) \to \operatorname{Hom}_{\Lambda}(s_i, q_{\lambda}) \to \operatorname{Hom}_{\Lambda}(s_i, q_{\lambda}/x) \to \operatorname{Ext}_{\Lambda}^1(s_i, x) \to 0,$$

hence

$$|\operatorname{Hom}_{\Lambda}(s_i, x)| - |\operatorname{Hom}_{\Lambda}(s_i, q_{\lambda})| + |\operatorname{Hom}_{\Lambda}(s_i, q_{\lambda}/x)| - |\operatorname{Ext}_{\Lambda}^{1}(s_i, x)| = 0.$$
 (14)

Similarly, applying $\operatorname{Hom}_{\Lambda}(s_i, -)$ to (8) we get

$$|\operatorname{Hom}_{\Lambda}(s_i, y)| - |\operatorname{Hom}_{\Lambda}(s_i, q_{\lambda})| + |\operatorname{Hom}_{\Lambda}(s_i, q_{\lambda}/y)| - |\operatorname{Ext}_{\Lambda}^{1}(s_i, y)| = 0.$$
 (15)

Subtracting (14) from (15) and taking into account (12) and (13) we obtain

$$|\operatorname{Ext}_{\Lambda}^{1}(x, s_{i})| - |\operatorname{Ext}_{\Lambda}^{1}(y, s_{i})| = |\operatorname{Hom}_{\Lambda}(s_{i}, q_{\lambda}/x)| - |\operatorname{Hom}_{\Lambda}(s_{i}, q_{\lambda}/y)|. \tag{16}$$

Now applying $\operatorname{Hom}_{\Lambda}(-, s_i)$ to (9) we get the long exact sequence

$$0 \to \operatorname{Hom}_{\Lambda}(y, s_i) \to \operatorname{Hom}_{\Lambda}(x, s_i) \to \operatorname{Ext}^1_{\Lambda}(s_j, s_i) \to \operatorname{Ext}^1_{\Lambda}(y, s_i) \to \operatorname{Ext}^1_{\Lambda}(x, s_i) \to 0,$$

hence

$$|\operatorname{Hom}_{\Lambda}(y,s_i)| - |\operatorname{Hom}_{\Lambda}(x,s_i)| - a_{ij} - |\operatorname{Ext}_{\Lambda}^1(y,s_i)| + |\operatorname{Ext}_{\Lambda}^1(x,s_i)| = 0,$$

thus, taking into account (16), we have proved (11).

Lemma 5 With the same notation we have

$$\varphi_i(x) - \varepsilon_i(x) = (\lambda - \beta; \alpha_i).$$

Proof — We use an induction on the height of β . If $\beta=0$ then x is the zero module and $\varepsilon_i(x)=0$. On the other hand $q_\lambda/x=q_\lambda$ and $\varphi_i(x)=(\lambda;\alpha_i)$ by definition of q_λ . Now assume that the lemma holds for $x\in\Lambda^\lambda_\beta$ and let $y\in\Lambda^\lambda_{\beta+\alpha_j}$ be a submodule of q_λ containing x. Using Lemma 4 we get that

$$\varphi_i(y) - \varepsilon_i(y) = (\lambda - \beta; \alpha_i) - a_{ij} = (\lambda - \beta - \alpha_j; \alpha_i),$$

as required, and the lemma follows.

Lemma 6 Let $f \in \widetilde{\mathcal{M}}_{\beta}^{\lambda}$. We have

$$(E_i F_j - F_j E_i)(f) = \delta_{ij}(\lambda - \beta; \alpha_i) f.$$

Proof — Let $x \in \Lambda_{\beta-\alpha_i+\alpha_i}^{\lambda}$. By definition of E_i and F_j we have

$$(E_i F_j f)(x) = \int_{\mathfrak{p} \in \mathfrak{P}} f(y)$$

where $\mathfrak P$ denotes the variety of pairs $\mathfrak p=(u,y)$ of submodules of q_λ with $x\subset u,y\subset u,u/x\cong s_i$ and $u/y\cong s_j$. Similarly,

$$(F_j E_i f)(x) = \int_{\mathfrak{q} \in \mathfrak{Q}} f(y)$$

where $\mathfrak Q$ denotes the variety of pairs $\mathfrak q=(v,y)$ of submodules of q_λ with $v\subset x, v\subset y, x/v\cong s_j$ and $y/v\cong s_i$.

Consider a submodule y such that there exists in \mathfrak{P} (resp. in \mathfrak{Q}) at least one pair of the form (u,y) (resp. (v,y)). Clearly, the subspaces carrying the submodules x and y have the same dimension d and their intersection has dimension at least d-1. If this intersection has dimension exactly d-1 then there is a unique pair (u,y) (resp. (v,y)), namely (x+y,y) (resp. $(x\cap y,y)$). This means that

$$\int_{\mathfrak{p}\in\mathfrak{P};\;y\neq x}f(y)=\int_{\mathfrak{q}\in\mathfrak{Q};\;y\neq x}f(y).$$

In particular, since when $i \neq j$ we cannot have y = x, it follows that

$$(E_i F_j - F_j E_i)(f) = 0, \qquad (i \neq j).$$

On the other hand if i = j we have

$$((E_iF_i - F_iE_i)(f))(x) = f(x)(\chi(\mathfrak{P}') - \chi(\mathfrak{Q}'))$$

where \mathfrak{P}' is the variety of submodules u of q_{λ} containing x such that $u/x \cong s_i$, and \mathfrak{Q}' is the variety of submodules v of x such that $x/v \cong s_i$. Clearly we have $\chi(\mathfrak{Q}') = \varepsilon_i(x)$ and $\chi(\mathfrak{P}') = \varphi_i(x)$. The result then follows from Lemma 5.

5.3.4 The following relations for the endomorphisms E_i, F_i, H_i of $\widetilde{\mathcal{M}}^{\lambda}$ are easily checked

$$[H_i, H_i] = 0, \quad [H_i, E_i] = a_{ij}E_i, \quad [H_i, F_i] = -a_{ij}F_i.$$

The verification is left to the reader. Hence, using Lemmas 3 and 6, we have proved that the assignments $e_i \mapsto E_i$, $f_i \mapsto F_i$, $h_i \mapsto H_i$, give a representation of \mathfrak{g} on $\widetilde{\mathcal{M}}^{\lambda}$.

Lemma 7 The endomorphisms E_i, F_i, H_i leave stable the subspace \mathcal{M}^{λ} .

Proof — It is obvious for H_i , and it follows from the definition of \mathcal{M}^{λ} for F_i . It remains to prove that if $f \in \mathcal{M}^{\lambda}_{\beta}$ then $E_i f \in \mathcal{M}^{\lambda}_{\beta-\alpha_i}$. We shall use induction on the height of β . We can assume that f is of the form $F_j g$ for some $g \in \mathcal{M}^{\lambda}_{\beta-\alpha_j}$. By induction we can also assume that $E_i g \in \mathcal{M}^{\lambda}_{\beta-\alpha_i-\alpha_i}$. We have

$$E_i f = E_i F_i g = F_i E_i g + \delta_{ij} (\lambda - \beta + \alpha_j; \alpha_i) g$$

and the right-hand side clearly belongs to $\mathcal{M}_{\beta-\alpha_i}^{\lambda}$.

Lemma 8 The representation of \mathfrak{g} carried by \mathcal{M}^{λ} is isomorphic to $L(\lambda)$.

Proof — For all $f \in \mathcal{M}_{\beta}$ and all $x \in \Lambda_{\beta+(a_i+1)\alpha_i}^{\lambda}$ we have $f * \mathbf{1}_i^{*(a_i+1)}(x) = 0$. Indeed, by definition of Λ^{λ} the socle of x contains s_i with multiplicity at most a_i . Therefore the left ideal of \mathcal{M} generated by the functions $\mathbf{1}_i^{*(a_i+1)}$ is mapped to zero by the linear map $\mathcal{M} \to \mathcal{M}^{\lambda}$ sending a function f on Λ_{β} to its restriction to $\Lambda_{\beta}^{\lambda}$. It follows that for all β the dimension of $\mathcal{M}_{\beta}^{\lambda}$ is at most the dimension of the $(\lambda - \beta)$ -weight space of $L(\lambda)$.

On the other hand, the function $\mathbf{1}_0$ mapping the zero Λ -module to 1 is a highest weight vector of \mathcal{M}^{λ} of weight λ . Hence $\mathbf{1}_0 \in \mathcal{M}^{\lambda}$ generates a quotient of the Verma module $M(\lambda)$, and since $L(\lambda)$ is the smallest quotient of $M(\lambda)$ we must have $\mathcal{M}^{\lambda} = L(\lambda)$.

This finishes the proof of Theorem 1.

6 Geometric realization of Verma modules

6.1 Let $\beta \in Q_+$ and $x \in \Lambda_{\beta-\alpha_i}$. Let $q = \bigoplus_{i \in I} q_i^{\oplus a_i}$ be the injective hull of x. For every $\nu \in P_+$ such that $(\nu; \alpha_i) \geqslant a_i$ the injective module q_ν contains a submodule isomorphic to x. Hence, for such a weight ν and for any $f \in \mathcal{M}_{\beta}$, the integral

$$\int_{y \in \mathcal{G}(x,\nu,i)} f(y)$$

is well-defined.

Proposition 1 Let $\lambda \in P$ and choose $\nu \in P_+$ such that $(\nu; \alpha_i) \geqslant a_i$ for all $i \in I$. The number

$$\int_{y \in \mathcal{G}(x,\nu,i)} f(y) - (\nu - \lambda; \alpha_i) f(x \oplus s_i)$$
(17)

does not depend on the choice of ν . Denote this number by $(E_i^{\lambda}f)(x)$. Then, the function

$$E_i^{\lambda} f : x \mapsto (E_i^{\lambda} f)(x)$$

belongs to $\mathcal{M}_{\beta-\alpha_i}$.

Denote by E_i^{λ} the endomorphism of \mathcal{M} mapping $f \in \mathcal{M}_{\beta}$ to $E_i^{\lambda}f$. Notice that Formula (5), which is nothing but (3), also defines an endomorphism of \mathcal{M} independent of λ which we again denote by F_i . Finally Formula (6) makes sense for any λ , not necessarily dominant, and any $f \in \mathcal{M}_{\beta}$. This gives an endomorphism of \mathcal{M} that we shall denote by H_i^{λ} .

Theorem 2 The assignments $e_i \mapsto E_i^{\lambda}$, $f_i \mapsto F_i$, $h_i \mapsto H_i^{\lambda}$, give a representation of \mathfrak{g} on \mathcal{M} isomorphic to the Verma module $M(\lambda)$.

The rest of this section is devoted to the proofs of Proposition 1 and Theorem 2.

6.2 Denote by e_i^{λ} the endomorphism of the Verma module $M(\lambda)$ implementing the action of the Chevalley generator e_i . Let \mathcal{E}_i^{λ} denote the endomorphism of $U(\mathfrak{n}_-)$ obtained by transporting e_i^{λ} via the natural identification $M(\lambda) \cong U(\mathfrak{n}_-)$. Let Δ be the comultiplication of $U(\mathfrak{n}_-)$.

Lemma 9 For $\lambda, \mu \in P$ and $u \in U(\mathfrak{n}_{-})$ we have

$$\Delta(\mathcal{E}_i^{\lambda+\mu}u) = (\mathcal{E}_i^{\lambda} \otimes 1 + 1 \otimes \mathcal{E}_i^{\mu})\Delta u.$$

Proof — By linearity it is enough to prove this for u of the form $u = f_{i_1} \cdots f_{i_r}$. A simple calculation in $U(\mathfrak{g})$ shows that

$$e_i f_{i_1} \cdots f_{i_r} = f_{i_1} \cdots f_{i_r} e_i + \sum_{k=1}^r \delta_{ii_k} f_{i_1} \cdots f_{i_{k-1}} h_i f_{i_{k+1}} \cdots f_{i_r}$$

$$= f_{i_1} \cdots f_{i_r} e_i + \sum_{k=1}^r \delta_{ii_k} \left(f_{i_1} \cdots f_{i_{k-1}} f_{i_{k+1}} \cdots f_{i_r} h_i - \left(\sum_{s=k+1}^r a_{ii_s} \right) f_{i_1} \cdots f_{i_{k-1}} f_{i_{k+1}} \cdots f_{i_r} \right).$$

It follows that, for $\nu \in P$,

$$\mathcal{E}_{i}^{\nu}(f_{i_{1}}\cdots f_{i_{r}}) = \sum_{k=1}^{r} \delta_{ii_{k}} \left((\nu; \alpha_{i}) - \sum_{s=k+1}^{r} a_{ii_{s}} \right) f_{i_{1}} \cdots f_{i_{k-1}} f_{i_{k+1}} \cdots f_{i_{r}}.$$

Now, using that Δ is the algebra homomorphism defined by $\Delta(f_i) = f_i \otimes 1 + 1 \otimes f_i$, one can finish the proof of the lemma. Details are omitted.

6.3 We endow $U(\mathfrak{n}_-)$ with the Q_+ -grading given by $\deg(f_i)=\alpha_i$. Let u be a homogeneous element of $U(\mathfrak{n}_-)$. Write $\Delta u=u\otimes 1+u^{(i)}\otimes f_i+A$, where A is a sum of homogeneous terms of the form $u'\otimes u''$ with $\deg(u'')\neq\alpha_i$. This defines $u^{(i)}$ unambiguously.

Lemma 10 For $\lambda, \mu \in P$ we have

$$\mathcal{E}_i^{\lambda+\mu} u = \mathcal{E}_i^{\lambda} u + (\mu; \alpha_i) u^{(i)}.$$

Proof — We calculate in two ways the unique term of the form $E\otimes 1$ in $\Delta(\mathcal{E}_i^{\lambda+\mu}u)$. On the one hand, we have obviously $E\otimes 1=\mathcal{E}_i^{\lambda+\mu}u\otimes 1$. On the other hand, using Lemma 9, we have

$$E \otimes 1 = \mathcal{E}_i^{\lambda} u \otimes 1 + (1 \otimes \mathcal{E}_i^{\mu})(u^{(i)} \otimes f_i) = \mathcal{E}_i^{\lambda} u \otimes 1 + (\mu; \alpha_i) u^{(i)} \otimes 1.$$

Therefore,

$$E = \mathcal{E}_i^{\lambda + \mu} u = \mathcal{E}_i^{\lambda} u + (\mu; \alpha_i) u^{(i)}.$$

6.4 Now let us return to the geometric realization \mathcal{M} of $U(\mathfrak{n}_{-})$. Let E_i^{λ} denote the endomorphism of \mathcal{M} obtained by transporting e_i^{λ} via the identification $M(\lambda) \cong \mathcal{M}$.

Lemma 11 Let $\lambda \in P_+$, $f \in \mathcal{M}_{\beta}$ and $x \in \Lambda_{\beta-\alpha_i}^{\lambda}$. Then

$$(E_i^{\lambda} f)(x) = \int_{y \in \mathcal{G}(x,\lambda,i)} f(y).$$

Proof — Let $r_{\lambda}: \mathcal{M} \to \mathcal{M}^{\lambda}$ be the linear map sending $f \in \mathcal{M}_{\beta}$ to its restriction to $\Lambda^{\lambda}_{\beta}$. By Theorem 1, this is a homomorphism of $U(\mathfrak{n}_{-})$ -modules mapping the highest weight vector of $\mathcal{M} \cong M(\lambda)$ to the highest weight vector of $\mathcal{M}^{\lambda} \cong L(\lambda)$. It follows that r_{λ} is in fact a homomorphism of $U(\mathfrak{g})$ -modules, hence the restriction of $E^{\lambda}_{i}f$ to $\Lambda^{\lambda}_{\beta-\alpha_{i}}$ is given by Formula (4) of Section 5.

Let again $\lambda \in P$ be arbitrary, and pick $f \in \mathcal{M}_{\beta}$. It follows from Lemma 10 that for any $\mu \in P$

$$E_i^{\lambda+\mu} f - (\mu; \alpha_i) f^{(i)} = E_i^{\lambda} f.$$

Let $x \in \Lambda_{\beta-\alpha_i}$. Choose $\nu = \lambda + \mu$ sufficiently dominant so that x is isomorphic to a submodule of q_{ν} . Then by Lemma 11, we have

$$(E_i^{\nu}f)(x) = \int_{y \in \mathcal{G}(x,\nu,i)} f(y).$$

On the other hand, by the geometric description of Δ given in [GLS, §6.1], if we write

$$\Delta f = f \otimes 1 + f^{(i)} \otimes \mathbf{1}_i + A$$

where A is a sum of homogeneous terms of the form $f' \otimes f''$ with $\deg(f'') \neq \alpha_i$, we have that $f^{(i)}$ is the function on $\Lambda_{\beta-\alpha_i}$ given by $f^{(i)}(x) = f(x \oplus s_i)$. Hence we obtain that for $x \in \Lambda_{\beta-\alpha_i}$

$$(E_i^{\lambda} f)(x) = \int_{y \in \mathcal{G}(x,\nu,i)} f(y) - (\nu - \lambda; \alpha_i) f(x \oplus s_i).$$

This proves both Proposition 1 and Theorem 2.

6.5 Let $\lambda \in P_+$. We note the following consequence of Lemma 11.

Proposition 2 Let $\lambda \in P_+$. The linear map $r_{\lambda} : \mathcal{M} \to \mathcal{M}^{\lambda}$ sending $f \in \mathcal{M}_{\beta}$ to its restriction to $\Lambda_{\beta}^{\lambda}$ is the geometric realization of the homomorphism of \mathfrak{g} -modules $M(\lambda) \to L(\lambda)$.

7 Dual Verma modules

7.1 Let S be the anti-automorphism of $U(\mathfrak{g})$ defined by

$$S(e_i) = f_i$$
, $S(f_i) = e_i$, $S(h_i) = h_i$, $(i \in I)$.

Recall that, given a left $U(\mathfrak{g})$ -module M, the dual module M^* is defined by

$$(u\varphi)(m) = \varphi(S(u)m), \qquad (u \in U(\mathfrak{g}), \ m \in M, \ \varphi \in M^*).$$

This is also a left module. If M is an infinite-dimensional module with finite-dimensional weight spaces M_{ν} , we take for M^* the graded dual $M^* = \bigoplus_{\nu \in P} M_{\nu}^*$.

For $\lambda \in P$ we have $L(\lambda)^* \cong L(\lambda)$, hence the quotient map $M(\lambda) \to L(\lambda)$ gives by duality an embedding $L(\lambda) \to M(\lambda)^*$ of $U(\mathfrak{g})$ -modules.

7.2 Let $\mathcal{M}^* = \bigoplus_{\beta \in Q_+} \mathcal{M}^*_{\beta}$ denote the vector space graded dual of \mathcal{M} . For $x \in \Lambda_{\beta}$, we denote by δ_x the delta function given by

$$\delta_x(f) = f(x), \qquad (f \in \mathcal{M}_\beta).$$

Note that the map $\delta: x \mapsto \delta_x$ is a constructible map from Λ_β to \mathcal{M}_β^* . Indeed the preimage of δ_x is the intersection of the constructible subsets

$$\mathcal{M}_{(i_1,...,i_r)} = \{ y \in \Lambda_\beta \mid (\mathbf{1}_{i_1} * \cdots * \mathbf{1}_{i_r})(y) = (\mathbf{1}_{i_1} * \cdots * \mathbf{1}_{i_r})(x) \}, \quad (\alpha_{i_1} + \cdots + \alpha_{i_r} = \beta).$$

7.3 We can now dualize the results of Sections 5 and 6 as follows. For $\lambda \in P$ and $x \in \Lambda_{\beta}$ put

$$(E_i^*)(\delta_x) = \int_{y \in \mathcal{G}(i,x)} \delta_y, \tag{18}$$

$$(F_i^{\lambda*})(\delta_x) = \int_{y \in \mathcal{G}(x,\nu,i)} \delta_y - (\nu - \lambda; \alpha_i) \, \delta_{x \oplus s_i}, \tag{19}$$

$$(H_i^{\lambda*})(\delta_x) = (\lambda - \beta; \alpha_i) \, \delta_x, \tag{20}$$

where in (19) the weight $\nu \in P_+$ is such that x is isomorphic to a submodule of q_{ν} . The following theorem then follows immediately from Theorems 1 and 2.

Theorem 3 (i) The formulas above define endomorphisms E_i^* , $F_i^{\lambda*}$, $H_i^{\lambda*}$ of \mathcal{M}^* , and the assignments $e_i \mapsto E_i^*$, $f_i \mapsto F_i^{\lambda*}$, $h_i \mapsto H_i^{\lambda*}$, give a representation of \mathfrak{g} on \mathcal{M}^* isomorphic to the dual Verma module $M(\lambda)^*$.

(ii) If $\lambda \in P_+$, the subspace $\mathcal{M}^{\lambda*}$ of \mathcal{M}^* spanned by the delta functions δ_x of the finite-dimensional nilpotent submodules x of q_{λ} carries the irreducible submodule $L(\lambda)$. For such a module x, Formula (19) simplifies as follows

$$(F_i^{\lambda*})(\delta_x) = \int_{y \in \mathcal{G}(x,\lambda,i)} \delta_y.$$

Example 1 Let \mathfrak{g} be of type A_2 . Take $\lambda = \varpi_1 + \varpi_2$, where ϖ_i is the fundamental weight corresponding to $i \in I$. Thus $L(\lambda)$ is isomorphic to the 8-dimensional adjoint representation of $\mathfrak{g} = \mathfrak{sl}_3$.

A Λ -module x consists of a pair of linear maps $x_{21}:V_1\to V_2$ and $x_{12}:V_2\to V_1$ such that $x_{12}x_{21}=x_{21}x_{12}=0$. The injective Λ -module $q=q_\lambda$ has the following form :

$$q = \begin{pmatrix} u_1 \longrightarrow u_2 \\ v_1 \longleftarrow v_2 \end{pmatrix}$$

This diagram means that (u_1, v_1) is a basis of V_1 , that (u_2, v_2) is a basis of V_2 , and that

$$q_{21}(u_1) = u_2, \quad q_{21}(v_1) = 0, \quad q_{12}(v_2) = v_1, \quad q_{12}(u_2) = 0.$$

Using the same type of notation, we can exhibit the following submodules of q:

$$x_1 = (v_1), \quad x_2 = (u_2), \quad x_3 = (v_1 \quad u_2), \quad x_4 = (u_1 \longrightarrow u_2), \quad x_5 = (v_1 \longleftarrow v_2),$$

$$x_6 = \begin{pmatrix} u_1 \longrightarrow u_2 \\ v_1 \end{pmatrix}, \qquad x_7 = \begin{pmatrix} u_2 \\ v_1 \longleftarrow v_2 \end{pmatrix}.$$

This is not an exhaustive list. For example, $x_4' = ((u_1 + v_1) \longrightarrow u_2)$ is another submodule, isomorphic to x_4 . Denoting by $\mathbf{0}$ the zero submodule, we see that $\delta_{\mathbf{0}}$ is the highest weight vector of $L(\lambda) \subset M(\lambda)^*$. Next, writing for simplicity δ_i instead of δ_{x_i} and F_i instead of F_i^{λ} , Theorem 3 (ii) gives the following formulas for the action of the F_i 's on $L(\lambda)$.

$$F_1\delta_0 = \delta_1$$
, $F_2\delta_0 = \delta_2$, $F_1\delta_2 = \delta_3 + \delta_4$, $F_2\delta_1 = \delta_3 + \delta_5$,

$$F_1\delta_3 = F_1\delta_4 = \delta_6, \quad F_2\delta_3 = F_2\delta_5 = \delta_7, \quad F_2\delta_3 = F_1\delta_6 = \delta_q, \quad F_1\delta_q = F_2\delta_q = 0.$$

Now consider the Λ -module $x=s_1\oplus s_1$. Since x is not isomorphic to a submodule of q_{λ} , the vector δ_x does not belong to $L(\lambda)$. Let us calculate $F_i\delta_x$ (i=1,2) by means of Formula (19). We can take $\nu=2\varpi_1$. The injective Λ -module q_{ν} has the following form:

$$q_{\nu} = \begin{pmatrix} w_1 & \longleftarrow & w_2 \\ v_1 & \longleftarrow & v_2 \end{pmatrix}$$

It is easy to see that the variety $\mathcal{G}(x,\nu,2)$ is isomorphic to a projective line \mathbb{P}_1 , and that all points on this line are isomorphic to

$$y = \begin{pmatrix} w_1 \\ v_1 \longleftarrow v_2 \end{pmatrix}$$

as Λ -modules. Hence,

$$F_2\delta_x = \chi(\mathbb{P}_1)\,\delta_y - (\nu - \lambda;\alpha_2)\,\delta_{x \oplus s_2} = 2\,\delta_y + \delta_{s_1 \oplus s_1 \oplus s_2}.$$

On the other hand, $\mathcal{G}(x, \nu, 1) = \emptyset$, so that

$$F_1\delta_x = -(\nu - \lambda; \alpha_1) \delta_{x \oplus s_1} = -\delta_{s_1 \oplus s_1 \oplus s_1}$$

References

- [Bo] K. BONGARTZ, Algebras and quadratic forms, J. London Math. Soc. 28 (1983), 461–469.
- [BK] M. C. R. BUTLER, A. D. KING, Minimal resolutions of algebras, J. Algebra 212 (1999), 323–362.
- [CB] W. CRAWLEY-BOEVEY, On the exceptional fibres of Kleinian singularities, Amer. J. Math. 122 (2000), 1027–1037.
- [GLS] C. GEISS, B. LECLERC, J. SCHRÖER, Semicanonical bases and preprojective algebras, Ann. Scient. Éc. Norm. Sup. 38 (2005), 193–253.
- [GP] I. M. GELFAND, V. A. PONOMAREV, Model algebras and representations of graphs, Funct. Anal. Appl. 13 (1980), 157–166.
- [Lu1] G. LUSZTIG, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), 365–421.
- [Lu2] G. LUSZTIG, Semicanonical bases arising from enveloping algebras, Adv. Math. 151 (2000), 129–139.
- [Lu3] G. LUSZTIG, Remarks on quiver varieties, Duke Math. J. 105 (2000), 239–265.
- [Lu4] G. LUSZTIG, Constructible functions on varieties attached to quivers, in Studies in memory of Issai Schur 177–223, Progress in Mathematics 210, Birkhäuser 2003.
- [Na] H. NAKAJIMA, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365–416.
- [Ri] C. M. RINGEL, *The preprojective algebra of a quiver*, in *Algebras and modules* II (Geiranger, 1966), 467–480, CMS Conf. Proc. 24, AMS 1998.

Christof GEISS: Instituto de Matemáticas, UNAM

Ciudad Universitaria, 04510 Mexico D.F., Mexico

email:christof@math.unam.mx

Bernard LECLERC: LMNO, Université de Caen,

14032 Caen cedex, France

email:leclerc@math.unicaen.fr

Jan SCHRÖER: Department of Pure Mathematics, University of Leeds,

Leeds LS2 9JT, England

email:jschroer@maths.leeds.ac.uk