Verma modules and preprojective algebras
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Abstract

We give a geometric construction of the Verma modules of a symmetric Kac-Moody Lie
algebrag in terms of constructible functions on the varieties of nilpotent finite-dimensional
modules of the corresponding preprojective algetra

1 Introduction

Let g be the symmetric Kac-Moody Lie algebra associated to a finite unoriented Gragthout
loop. Letn_ denote a maximal nilpotent subalgebragofIn [Lul, §12], Lusztig has given a
geometric construction df (n_) in terms of certain Lagrangian varieties. These varieties can be
interpreted as module varieties for the preprojective algakattached to the gragh by Gelfand

and Ponomarev@P]. In Lusztig’s construction/ (n_) gets identified with an algebia\1, ) of
constructible functions on these varieties, wheiie a convolution product inspired by Ringel's
multiplication for Hall algebras.

Later, Nakajima gave a similar construction of the highest weight irreducible integgable
modulesL(\) in terms of some new Lagrangian varieties which differ from Lusztig’s ones by the
introduction of some extra vector spad&s for each vertex of I", and by considering only stable
points instead of the whole varietig, §10].

The aim of this paper is to extend Lusztig’s original construction and to entibwith the
structure of a Verma moduli/ (\).

To do this we first give a variant of the geometrical construction of the integgatsiedules
L()), using functions on some natural open subvarieties of Lusztig's varieties instead of functions
on Nakajima’s varieties (Theorem 1). These varieties have a simple description in terms of the
preprojective algebra and of certain injectivé\-modulesg,.

Having realized the integrable modulé$)\) as quotients of\, it is possible, using the co-
multiplication of U (n_), to construct geometrically the raising operatéis € End(M) which
make M into the Verma modulé/ (\) (Theorem 2). Note that we manage in this way to realize
Verma modules with arbitrary highest weight (not necessarily dominant).

Finally, we dualize this setting and give a geometric construction of the dual Verma module
M (XN)* in terms of the delta functions, € M™* attached to the finite-dimensional nilpotekt
modulesz (Theorem 3).
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2 Verma modules

2.1 Letgbe the symmetric Kac-Moody Lie algebra associated with a finite unoriented Graph
without loop. The set of vertices of the graph is denoted byhe (generalized) Cartan matrix of
gis A = (aij)ijer, Wherea; = 2 and, fori # j, —a;; is the number of edges betwegand;.

2.2 Letg =n&bh®n_ bea Cartan decomposition gf wherep is a Cartan subalgebra and
(n,n_) a pair of opposite maximal nilpotent subalgebras.t_et n@ . The Chevalley generators
of n (resp.n_) are denoted by; (i € I) (resp.f;) and we seh; = [e;, fi].

2.3 Letw; denote the simple root gfassociated with € I. Let(— ; —) be a symmetric bilinear
form onbh* such that(«; ; ;) = a;;. The lattice of integral weights ih* is denoted byP, and
the sublattice spanned by the simple roots is denoted.bi/e put

2.4 Let\ € P and letM(\) be the Verma module with highest weight This is the induced
g-module defined by (\) = U(g) @y () Cux, Whereu, is a basis of the one-dimensional
representation df given by

huy = Ah)uy, nuy=0, (hebh, nen).

As a P-graded vector space (\) = U(n_) (up to a degree shift by). M () has a unique simple
quotient denoted by.(\), which is integrable if and only ik € P,.. In this case, the kernel of the
g-homomorphism\/ (\) — L(\) is theg-modulel()\) generated by the vectors

fRE g e,

(2

3 Constructible functions

3.1 Let X be an algebraic variety ovél endowed with its Zariski topology. A mapfrom X
to a vector spac¥ is said to be constructible if its imag# X ) is finite, and for eaclhv € f(X)
the preimagef ~!(v) is a constructible subset of.

3.2 By x(A) we denote the Euler characteristic of a constructible suliseft X. For a con-
structible mapf : X — V one defines

[ s =3 ey,
zeX veV
More generally, for a constructible subsetf X we write

/ @)= w0 A

veV



4 Preprojective algebras

4.1 Let A be the preprojective algebra associated to the gfafdee for exampleRi, GLS]).
This is an associativ€-algebra, which is finite-dimensional if and onlylifis a graph of type
A, D, E. Lets; denote the simple one-dimensiofaimodule associated withe I, and letp; be
its projective cover ang; its injective hull. Again,p; andg; are finite-dimensional if and only if
I' is a graph of typed, D, E.

4.2 A finite-dimensionalA-modulez is nilpotent if and only if it has a composition series with
all factors of the forms; (i € I). We will identify the dimension vector of with an element
0 € Q4+ by settingdim(s;) = «;.

4.3 Letq be an injectiveA-module of the form
1= P
iel
for some nonnegative integets (i € I).

Lemma 1 Letz be a finite-dimensional-module isomorphic to a submodulegfif f; : x — ¢
and fs : x — ¢ are two monomorphisms, then there exists an automorphismm— ¢ such that

fo=gf1.

Proof — Indeed,q is the injective hull of its soclé = @, ; s7*. Lete; (j = 1,2) be a
complement off;(socle(x)) in b. Thenc; = ¢, and the maps

hj:=fi®id: z&c¢; —q, (1 =12
are injective hulls. The result then follows from the unicity of the injective hull. O

Hence, up to isomorphism, there is a unique way to embiedb ¢.

4.4 Let M be the algebra of constructible functions on the varieties of finite-dimensional nilpo-
tent A-modules defined by Lusztig (2] to give a geometric realization @f (n_). We recall its
definition.

For3 = > ..;bia; € Q4, let Ag denote the variety of nilpotent-modules with dimension
vector3. Recall thatA is endowed with an action of the algebraic graip = [[,.; GLs,(C),
so that two points of\ 3 are isomorphic ad-modules if and only if they belong to the sar@ig-
orbit. Let M ; denote the vector space of constructible functions ffgnto C which are constant

on G g-orbits. Let
M= P M.
BeQ+

One defines a multiplication on M as follows. Forf € Mvﬁ, g€ ny andr € Ag,,, we have

(f*g)(x) = /U F(@)g(a"), (1)

where the integral is over the variety ofstable subspacd$ of x of dimensiony, z” is the A-
submodule ofr obtained by restriction t&/ andz’ = z/z”. In the sequel in order to simplify
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notation, we will not distinguish between the subspé@and the submodule”’ of = carried byU.
Thus we shall rather write

(Feg)@) = [ Jlafa")gla"), @)

where the integral is over the variety of submoduté®f = of dimensiomny.

Fori € I, the varietyA,, is reduced to a single point : the simple modsgleDenote byl; the
function mapping this point td. Let G (i, «) denote the variety of all submodulg®f « such that
z/y = s;. Then by (2) we have

(i g)a) = [ 1 3)

Let M denote the subalgebra 6 generated by the functioris (i € I). By Lusztig [Lu2],
(M, %) is isomorphic tdJ (n_) by mappingl; to the Chevalley generatg.

4.5 In the identification ofU (n_) with M, formula (3) represents the left multiplication Ify
In order to endowM with the structure of a Verma module we need to introduce the following
important definition. For € P, , let

@ =EPqg
v i .

el

Lusztig has shownlu3, §2.1] that Nakajima'’s Lagrangian varieties for the geometric realization
of L(v) are isomorphic to the Grassmann varietied efubmodules of, with a given dimension
vector.

Let = be a finite-dimensional nilpoter-module isomorphic to a submodule of the injective
modulegq, . Let us fix an embedding’ : + — ¢, and identifyz with a submodule of, via F'.

Definition 1 For i € I letG(x,v, ) be the variety of submodulgsof ¢, containingz and such
thaty/z is isomorphic tos;.

This is a projective variety which, by 4.3, depends only (up to isomorphisn) emnd the
isoclass ofr.

5 Geometric realization of integrable irreducible g-modules

5.1 For\ e PLandf € Q, let Ag denote the variety of nilpotent-modules of dimension
vector 8 which are isomorphic to a submodule gf. EquivalentIyAg consists of the nilpotent
modules of dimension vectgrwhose socle contains with multiplicity at most(\; «;) (i € I).

This variety has been considered by Lusztig4, §1.5]. In particular it is known thaAg is an

open subset ah g, and that the number of its irreducible components is equal to the dimension of
the (A — 3)-weight space of.(\).

5.2 Defineﬂg to be the vector space of constructible functionsz\cgrwhich are constant on
G g-orbits. Let/\/lg denote the subspace ﬁg obtained by restricting elements 8f(5 to Ag.



Flﬁtﬁp = P; ﬂ/lvg and M* = @4 M. Fori € I define endomorphisms;, F;, H; of M as
ollows:

. _ A AN A
(Eif)(z) = /ljeg(xm)f(y), (f e M,z el ). (%)
Fi Xz = 3 -/K/?\v T AA a; /) S
(Fif) (@) /yeg(i,z)f(y) (f e MY,z e M),y ) (5)
(Hif)(z) = (A—Biaq) flx),  (f e M}, zeA)). (6)

Theorem 1 The endomorphismb;, F;, H; of M? leave stable the subspagd?. Denote again
by E;, F;, H; the induced endomorphisms 6ff*. Then the assignments — E;, f; — Fj,
h; — H;, give a representation @f on M* isomorphic to the irreducible representatidrf\).

5.3 The proof of Theorem 1 will involve a series of lemmas.

5.3.1 Fori= (i1,...,i,) € I"anda = (ay,...,a,) € N", define the varietg(z, A, (i,a)) of
flags of A-modules
f=@=yCy C- Cyr Cqn)
Dag

With vy /yr—1 = Siv (1 < k < r). Asin Definition 1, this is a projective variety depending (up to
isomorphism) only orti, a), A and the isoclass af and not on the choice of a specific embedding
of x into g¢,.

Lemma?2 Letf € Mg andz € A) . PutEi(a) = (1/a!)E?. We have

B—aici) = —aray,

(B ) = [ £
feG(x,A (i,a))
The proof is standard and will be omitted.

5.3.2 By[Lul, 12.11] the endomorphisni§ satisfy the Serre relations

l—aij

l—ai-—
S ()P EP FFT < g
p=0

for everyi # j. A similar argument shows that

Lemma 3 The endomorphismi; satisfy the Serre relations

1—a;j;

l—a;;—
> (B BB =0
p=0

for everyi # j.

Proof — Let f € /\73 andz € A} - BylLemmaz2,

—a;—(1—a;5) o

(EP B EY 7 f)(2) = /f £(us)
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the integral being taken on the variety of flags

f=(@Cy1 Cy2 Cys Cqn)

with g /z =2 s?l_“”_p, Y2 /y1 =2 s; andys/yo = s?p. This integral can be rewritten as

f(ys) x(Flys; p])
Y3
where the integral is now over all submodulgf ¢, of dimensions containingz andF|ys; p| is
the variety of flagg as above with fixed last steg. Now, by moding out the submodulteat each
step of the flag, we are reduced to the same situation dsuih, [12.11], and the same argument
allows to show that

1—ay;

> X(Flysipl) =0,

p=0
which proves the Lemma. O

5.3.3 Letz € Ag. Lete;(x) denote the multiplicity of; in the head ofe. Let ¢;(x) denote the
multiplicity of s; in the socle ofyy /z.

Lemma 4 Leti,j € I (not necessarily distinct). Let be a submodule af, containingz and
such thaty /= = s;. Then

vi(y) —ei(y) = pi(z) —ei(z) — aiy.

Proof — We have short exact sequences

0 — 2 — @ — @/ — 0, (7)
0 — — o — @y — 0, (8)
0 - 2 — y — s — 0, (9)
0 — s = q/r — q/y — 0. (10)

Clearly,e;(z) = |[Homa(z, s;)|, the dimension oHom (z, s;). Similarlye;(y) = |Homa (y, s;)|,
wi(x) = [Homy (si, qr /)|, pi(y) = [Homa (s, g /y)|. Hence we have to show that

|Homp (x, s;)| — [Homa (y, s;)| = |Homa (si, gn/2)| — |[Homa (si,gx/y)| — aij. (12)

In our proof, we will use a property of preprojective algebras prove€B, 1], namely, for any
finite-dimensionaA-modulesm andn there holds

[Ext) (m,n)| = [Extj (n,m)]. (12)

(@) Ifi = j thena;; = 2, [Homy(s;, s;)| = 1 and|Ext} (s;,s;)| = 0 sincel’ has no loops.
Applying Homy (—, s;) to (9) we get the exact sequence

0 — Homy (s, s;) — Homa (y, s;) — Homa (2, s;) — 0,

hence
|Homy (z, s;)| — [Homa (y, s;)| = —1.

6



Similarly applyingHom, (s;, —) to (10) we get an exact sequence
0 — Homy (84, 55) — Homa (54, gx/2) — Homy (84,92 /y) — 0,

hence
‘HOHIA(SZ',Q)\/.T” - |H0mA(Si,Q)\/y)’ = 11

and (11) follows.
(b) If i # j, we have|Homn(s;,s;)| = 0 and |Ext}(si, s;)| = |[Exti(sj,s:)| = —aij.
Applying Homy (s;, —) to (9) we get an exact sequence

0— HomA(si,x) — HOHlA(Suy) — 0,

hence
|Homp (s;, )| — [Homp (s, y)| = 0. (13)

Moreover, by Bo, §1.1], |[Ext3(s;, s;)| = 0 because there are no relations frero j in the
defining relations of\. (Note that the proof of this result iBp] only requires thaf C J? (here
we use the notation oBo]). One does not need the additional assumpti6nC [ for somen.
Compare also the discussion BK].)

Sinceqy, is injective |[Ext} (s;,gx)| = 0, thus applyingHom, (s;, —) to (7) we get an exact
sequence

0— HOmA(Si,ﬂj) - HOHIA(SZ', q/\) - HOHlA(SZ', QA/$) - EXt}X(th) - 07

hence
|Homa (84, )| — [Homp (s, gn)| + |[Homnp (si, gn /)| — \Ext}\(si,xﬂ =0. (14)

Similarly, applyingHomy, (s;, —) to (8) we get

[Homy (s, y)| — [Homa (si, gx)| + [Homa (si, gx /)| — [Extj (si,y)| = 0. (15)
Subtracting (14) from (15) and taking into account (12) and (13) we obtain

[Ext) (2, 5:)| — [Exty(y, si)| = [Homa(si, x /)| — [Homa(si, ax/y)|- (16)
Now applyingHomy (—, s;) to (9) we get the long exact sequence
0 — Homa (y, s;) — Homy(z, s;) — Ext}\(sj, s;) — Exth(y, s;) — Ext}(z,s;) — 0,

hence

[Homy (y, 5:)| — [Homa (z, 5:)| — aij — [Ext) (y, 5:)| + [Extj (2, 5:)| = 0,

thus, taking into account (16), we have proved (11). O

Lemma 5 With the same notation we have

pi(z) —ei(z) = (A = B ).



Proof — We use an induction on the height@fIf 5 = 0 thenx is the zero module and(z) = 0.
On the other hand), /= = ¢, andp;(x) = (\; ;) by definition ofgy. Now assume that the lemma
holds forz € Ag and lety € Ag+aj be a submodule afy containingxz. Using Lemma 4 we get
that

pi(y) —ei(y) = (A = Brai) —aij = (A= B — ajiq4),
as required, and the lemma follows. O

Lemma6 Letf /\73 We have

(Bily — FYE)(f) = 6i(N = B ) £

Proof — Letz ¢ Ag . By definition of E; and F; we have

—ai+aj
(Eil f)(x) = f)
peP

where3 denotes the variety of paips= (u, y) of submodules o withz C u,y C u,u/x = s;
andu/y = s;. Similarly,

(F,Eif)(x) = /q W

whereQQ denotes the variety of paits= (v, y) of submodules of withv C z,v C y, z/v = s;
andy/v = s;.

Consider a submodulg such that there exists i (resp.in Q) at least one pair of the form
(u,y) (resp.(v,y)). Clearly, the subspaces carrying the submodulesndy have the same di-
mensiond and their intersection has dimension at leést 1. If this intersection has dimension
exactlyd — 1 then there is a unique pdit, y) (resp.(v,y)), namely(x + y, y) (resp.(z Ny, y)).

This means that
[ tw=[ 1w
pEP; y#£x qeQ; y#x

In particular, since whefi# j we cannot havg = z, it follows that
(EiFj — FiE)(f) =0, (i # ).
On the other hand if = j we have
(BiFy — FE)(f)(x) = f(z)(x(B) — x(Q)

where¥’ is the variety of submodules of ¢, containingz such thatu/x = s;, andfQ’ is the
variety of submodules of = such thatr /v = s;. Clearly we havey (') = ¢;(x) andx (') =
vi(x). The result then follows from Lemma 5. O

5.3.4 The following relations for the endomorphismis, F;, H; of M are easily checked
[H,L', H]} = 0, [Hl,EJ] = aijEj [H,L, FJ] = —aiij.

The verification is left to the reader. Hence, using Lemmas 3 agg 6, we have proved that the
assignments; — E;, f; — F;, h; — H;, give a representation gfon M*.
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Lemma 7 The endomorphismB;, F;, H; leave stable the subspagd.

Proof — It is obvious for H;, and it follows from the definition of\1* for F;. It remains to
prove that if f € M} thenE;f € Mj_, . We shall use induction on the height 8f We can

assume thaf is of the formF}g for someg < MA_aj. By induction we can also assume that
Eig € MA_%,_%_. We have

E;f = EiFjg = FjEig + 5@'()\ - B+ Qj; Oéi)g,
and the right-hand side clearly belongsﬂmgfai. O

Lemma 8 The representation gf carried by M* is isomorphic taL()\).

Proof — For all f € Mg and allz € A}, ), Wwe havef + 17" () = 0. Indeed, by
definition of A* the socle of: containss; with multiplicity at mosta,. Therefore the left ideal of

M generated by the functior].é‘(“i“) is mapped to zero by the linear mag — M?* sending a
function f on Ag to its restriction toAg. It follows that for all 3 the dimension of/\/lg is at most
the dimension of thé\ — [3)-weight space oL ().

On the other hand, the functidr mapping the zerd-module tol is a highest weight vector
of M* of weight\. Hencel, ¢ M* generates a quotient of the Verma modiifé)\), and since
L()) is the smallest quotient @¥/ (\) we must haveM* = L()\). O

This finishes the proof of Theorem 1.

6 Geometric realization of Verma modules

6.1 Letf € Q4 andzx € Ag_,,. Letq = @, g% be the injective hull ofr. For every
v € Py such that(v; ;) > a; the injective moduley, contains a submodule isomorphic o
Hence, for such a weightand for anyf € Mg, the integral

/ f()
yeG(z,v,i)

Proposition 1 Let A € P and choose’ € P, such that(v; «;) > a; for all ¢ € I. The number

[t - wda) faos) (17)
yeG(z,v,i)

is well-defined.

does not depend on the choiceoDenote this number by f) (). Then, the function
BN ra (B f) ()
belongs taM_,.

Denote byE; the endomorphism af4 mappingf € Mg to E; f. Notice that Formula (5),
which is nothing but (3), also defines an endomorphism\bindependent o which we again
denote byF;. Finally Formula (6) makes sense for aihy not necessarily dominant, and any
f € Mg. This gives an endomorphism gl that we shall denote b .

Theorem 2 The assignments;, — E} fi — F;, hy — H} give a representation gf on M
isomorphic to the Verma moduld ().

The rest of this section is devoted to the proofs of Proposition 1 and Theorem 2.
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6.2 Denote bye? the endomorphism of the Verma modulé(\) implementing the action of
the Chevalley generates. Let 5} denote the endomorphism bf(n_) obtained by transporting
e via the natural identificatiod/ (\) = U(n_). Let A be the comultiplication o/ (n_).

Lemma9 For A\, u € P andu € U(n_) we have

AEM ) = (8 ©1+10 M Au.

Proof — By linearity it is enough to prove this fox of the formu = f;, --- fi.. A simple
calculation inU(g) shows that

eifiy + fio = Fir o fiei > Siigfir - Fiu s hifirn - fi

k=1

= fi, - fi,ei + 25@ <fi1 o i Jigr o finhi — < Z aiis> Jiv o finoy finyn - fir> .

k=1 s=k+1
It follows that, forv € P,

E Sy -+ fir) = D iy, ((V; a)— > aus> Jir - finoa Jign - fin
k=1 s=k+1

Now, using thatA is the algebra homomorphism defined Ayf;) = fi ® 1 + 1 ® f;, one can
finish the proof of the lemma. Details are omitted. O

6.3 We endowU (n_) with the Q- gradlng given bydeg(f;) = «;. Letu be a homogeneous
element of/(n_). Write Au = u ® 1 +u ® f; + A, whereA is a sum of homogeneous terms
of the formu/ @ u” with deg(u”) # ;. This defines:.() unambiguously.

Lemma 10 For A\, u € P we have

ENY = EMu+ (s ) u.

Proof — We calculate in two ways the unique term of the fofhw 1 in A(é’”“ ). On the one

hand, we have obviousl¥ ® 1 = EM”u ® 1. On the other hand, using Lemma 9, we have
E@l=ual+(1e&)u? e fi)=&ual+ (ka)u? @1.

Therefore, '
E =& = &M+ (s 00) ul®.
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6.4 Now let us return to the geometric realizationt of U(n_). Let E? denote the endomor-
phism of M obtained by transporting® via the identificatiomV/ (\) = M.

Lemma 11 LetA € P, f € Mgandz € A*_ai. Then

APy (g) =
(EM)(@) /yeg(wf(m

Proof — Letry : M — M? be the linear map sending € Mg to its restriction toAg.

By Theorem 1, this is a homomorphism &Gfn_)-modules mapping the highest weight vector
of M = M()) to the highest weight vector of4* = L()). It follows thatry is in fact a
homomorphism ot/ (g)-modules, hence the restriction Bf f to Aé_a,- is given by Formula (4)
of Section 5. O

Letagain\ € P be arbitrary, and pick € Mg. It follows from Lemma 10 that for any € P
B (i) fO = B,

Letx € Ag_,,. Chooser = A + p sufficiently dominant so that is isomorphic to a submodule
of ¢,. Then by Lemma 11, we have

ED@= [ f).
yeG(z,v,i)
On the other hand, by the geometric descriptiochajiven in [GLS, §6.1], if we write

Af=feol+fPe1,+A4
where A is a sum of homogeneous terms of the foffw f” with deg(f”) # «;, we have that
£ is the function on\5_,,, given by f()(x) = f(z @ s;). Hence we obtain that far € Ag_,,
EN@=[ ) - - xa)fos).
yeG(z,v,i)

This proves both Proposition 1 and Theorem 2. O

6.5 Let)\ e P,. We note the following consequence of Lemma 11.

Proposition 2 Let \ € P,. The linear map-, : M — M?* sendingf ¢ Mg to its restriction to
Ag is the geometric realization of the homomorphism-ofiodulesi/ (A) — L(\). O

7 Dual Verma modules

7.1 LetS be the anti-automorphism &f(g) defined by
S(ei) = fi, S(fi)=ei S(hi)=hy  (i€]).
Recall that, given a left/(g)-moduleM, the dual module\/* is defined by
(wp)(m) = o(S(uw)m),  (uecU(g), meM, pcM).

This is also a left module. I3/ is an infinite-dimensional module with finite-dimensional weight
spaces\/,, we take forM/* the graded dual/* = @, . p M.

For A € P we haveL(\)* = L(\), hence the quotient maj/ (\) — L(\) gives by duality
an embeddind.(\) — M (\)* of U(g)-modules.
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7.2 LetM* = @5€Q+ M denote the vector space graded duahef Forz € Ag, we denote
by §, the delta function given by

0z(f) = f(x),  (f € Mp).

Note that the map : x — ¢, is a constructible map froms to M. Indeed the preimage of,
is the intersection of the constructible subsets

My =y e | (L %1 )(y) = (L *--- %1, )(2)}, (o +--- 4+, = ).

7.3 We can now dualize the results of Sections 5 and 6 as followsA EoP’ andx € Ag put

EN(6,) = 5, 18

() (52) /yeg(m , (18)

(ENG) = [ 6= = xa) e (19)
yeG(z,v,i)

(HM)(62) = (A= Biai)ds, (20)

where in (19) the weight € P, is such that: is isomorphic to a submodule gf. The following
theorem then follows immediately from Theorems 1 and 2.

Theorem 3 (i) The formulas above define endomorphis‘_‘v‘g‘isF}*, H}* of M*, and the assign-
mentse; — EF, f; — F, h; — H}, give a representation gf on M* isomorphic to the dual
Verma modulé\/ (\)*.

(i) If A € P, the subspaceVi™* of M* spanned by the delta functiods of the finite-
dimensional nilpotent submodulesof ¢, carries the irreducible submodulB()\). For such a
modulex, Formula (19) simplifies as follows

FG)=[ 4

y€G(w,A7)

Example 1 Let g be of typeA;. Take A = w; + ws, wWherew; is the fundamental weight
corresponding té € I. ThusL()\) is isomorphic to the 8-dimensional adjoint representation of
g =sls.

A A-modulezx consists of a pair of linear maps; : V7 — V5 andxio : Vo — V4 such that
x12291 = xo1212 = 0. The injectiveA-moduleq = ¢, has the following form :

_ (ur — ug
1= V] — V9
This diagram means thét, , v, ) is a basis ol/, that(us, v2) is a basis o, and that

@i(ur) =u2, ¢au(vi) =0, q2(v2) =v1, qua(uz) =0.

Using the same type of notation, we can exhibit the following submodulgs of
T = (vl) y X2 = (uz) y L3 = (Ul u2), Tq = (ul — u2) y  Ts = (Ul — vz) )
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Uy — u2 U2
T = N Ty = .
U1 U1 < U2

This is not an exhaustive list. For examplg, = ((u1 + vi) — ug) is another submodule,
isomorphic tar,. Denoting by0 the zero submodule, we see thais the highest weight vector of
L(X\) € M(X\)*. Next, writing for simplicitys; instead of,,, andF; instead off, Theorem 3 (ii)
gives the following formulas for the action of thi&’s on L(\).

Fi00 =61, Fpbo =192, Fioy =03+ 04, Fr01 =093+ 05,

Now consider theA\-modulexz = s; @ s;. Sincez is not isomorphic to a submodule gf, the
vectord, does not belong téd (). Let us calculaté’;o, (i = 1,2) by means of Formula (19). We
can taker = 2w;. The injectiveA-moduleg, has the following form :

w1 < W2
Qv =
V1 < V9

It is easy to see that the variegfy(z, v, 2) is isomorphic to a projective linB;, and that all points
on this line are isomorphic to
_ ("
y= <v1 — Ug)

Fy, = X(Pl) 5y - (V =X\ 042) Oumsy = 25y + 05151 @sa -

asA-modules. Hence,

On the other handj(z, v, 1) = (), so that

Fio, = _(V - >\§O‘1) 5:1:@51 = _58169816951'
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