April 4, 2016

WILD ALGEBRAS

JAN SCHRÖER

Contents
1. Tame algebras 1
2. Wild algebras 1
3. Hierarchy of wild algebras 2
4. Examples 3
References 3

Let K be a field, and let A be a finite-dimensional K-algebra.
I will add more references in the future.

1. Tame algebras

Let K be algebraically closed. The algebra A is tame or of tame representation type if A is not representation-finite, and if for each d there exist finitely many A-$K[X]$-bimodules M_1, \ldots, M_t, which are free of finite rank as right $K[X]$-modules, such that (up to isomorphism) all but finitely many indecomposable d-dimensional A-modules are isomorphic to a module of the form $M_i \otimes_{K[X]} S$ with S a simple $K[X]$-module. In this case, let $\mu(d)$ be the minimal number of such bimodules. (Recall that the simple $K[X]$-modules are of the form $S_\lambda := K[X]/(X - \lambda)$ with $\lambda \in K$, and $S_\lambda \cong S_\mu$ if and only if $\lambda = \mu$.)

2. Wild algebras

Most of this section is just a reformulation of [S]. The K-algebra A is

- **wild** if there exists a faithful exact K-linear functor
 $$\text{mod}(K\langle x, y \rangle) \to \text{mod}(A)$$
 which respects isomorphism classes and indecomposables.
- **fully wild** a.k.a. **strictly wild** if there exists a fully faithful exact K-linear functor
 $$\text{mod}(K\langle x, y \rangle) \to \text{mod}(A).$$
- **Wild** if there exists a faithful exact K-linear functor
 $$\text{Mod}(K\langle x, y \rangle) \to \text{Mod}(A)$$
 which respects isomorphism classes and indecomposables.
• **Fully Wild** a.k.a. **Strictly Wild** if there exists a fully faithful exact K-linear functor
 \[\text{Mod}(K\langle x, y \rangle) \to \text{Mod}(A). \]

• **controlled wild** if there exists a faithful exact K-linear functor
 \[F : \text{mod}(K\langle x, y \rangle) \to \text{mod}(A) \]
 and a class \mathcal{C} of modules in mod(A) such that for all $M, N \in \text{mod}(K\langle x, y \rangle)$ we have
 \[\text{Hom}_A(F(M), F(N)) = F(\text{Hom}_{K\langle x, y \rangle}(M, N)) \oplus \mathcal{C}(F(M), F(N)) \]
 where $\mathcal{C}(F(M), F(N))$ is the subspace of Hom$_A(F(M), F(N))$ consisting of all homomorphisms factoring through a finite direct sum of modules in \mathcal{C}.

• **endo-wild** if for each finite-dimensional K-algebra B there exists some $M \in \text{mod}(A)$ with End$_A(M) \cong B$.

• **Endo-Wild** if for each K-algebra B there exists some $M \in \text{mod}(A)$ with End$_A(M) \cong B$.

• **Corner endo-wild** if for each finite-dimensional K-algebra B there exists some $M \in \text{mod}(A)$ and a nilpotent ideal I of End$_A(M)$ with End$_A(M)/I \cong B$.

• **Corner Endo-Wild** if for each K-algebra B there exists some $M \in \text{mod}(A)$ and a nilpotent ideal I of End$_A(M)$ with End$_A(M)/I \cong B$.

One can show that A is wild if and only if there exists an A-$K\langle X, Y \rangle$-bimodule M, which is free of finite rank as a right $K[X]$-module, such that the functor
 \[M \otimes_{K\langle X, Y \rangle} - : \text{mod}(K\langle X, Y \rangle) \to \text{mod}(A) \]
respects isomorphism classes and indecomposables.

For any finitely generated K-algebra B there exists a fully faithful exact K-linear functor
 \[\text{mod}(B) \to \text{mod}(K\langle x, y \rangle). \]

Theorem 2.1 (Drozd). Let K be algebraically closed, and let A be a finite-dimensional representation infinite K-algebra. Then A is tame or wild, but not both.

The algebra A has **enough large indecomposable modules** if for each infinite cardinal λ there exists an indecomposable A-module of cardinality $\geq \lambda$.

3. Hierarchy of wild algebras

The proof of most of the following implications can be found in [S].

\[\text{fully wild} \quad \downarrow \quad \text{leader wild} \quad \downarrow \quad \text{Fully Wild} \]
\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]
\[\text{endo-wild} \quad \text{controlled wild} \quad \downarrow \quad \text{Endo-Wild} \]
\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]
\[\text{Corner endo-wild} \quad \text{wild} \quad \text{Wild} \quad \text{Corner Endo-Wild} \]
\[\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \]
\[\text{rep. infinite} \leftrightarrow \text{enough large indec.} \]
4. Examples

All wild path algebras are fully wild.

The m-Kronecker algebra with $m \geq 3$ is fully wild and Fully Wild. The 2-Kronecker algebra is Fully Wild, but not wild, see Ringel [R1].

References

Jan Schröer
Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
Germany

E-mail address: Schroer@math.uni-bonn.de