March 18, 2016

2-CALABI-YAU TILTED ALGEBRAS

JAN SCHＲØER

CONTENTS

1. 2-Calabi-Yau categories and cluster-tilting objects 1
2. 2-Calabi-Yau tilted algebras 1
3. Cluster-tilted algebras 2
References 2

1. 2-CALABI-YAU CATEGORIES AND CLUSTER-TILTING OBJECTS

Let \mathcal{T} be a triangulated K-category such that all morphism spaces in \mathcal{T} are finite-dimensional.

Then \mathcal{T} is a 2-Calabi-Yau category if for all $M, N \in \mathcal{T}$ there is a functorial isomorphism

$$ \text{Ext}^1_\mathcal{T}(M, N) \cong D \text{Ext}^1_\mathcal{T}(N, M). $$

More generally, for $n \geq 0$, the triangulated category \mathcal{T} is called an n-Calabi-Yau category if for all $M, N \in \mathcal{T}$ we have a functorial isomorphism

$$ \text{Hom}_\mathcal{T}(M, N) \cong D \text{Hom}_\mathcal{T}(N, M[n]). $$

An object T in a 2-Calabi-Yau category \mathcal{T} is a cluster-tilting object if the following hold:

(i) $\text{Ext}^1_\mathcal{T}(T, T) = 0$;
(ii) If $\text{Ext}^1_\mathcal{T}(T, M) = 0$ for some $M \in \mathcal{T}$, then $M \in \text{add}(T)$.

2. 2-CALABI-YAU TILTED ALGEBRAS

A finite-dimensional K-algebra A is a 2-Calabi-Yau tilted algebra if $A \cong \text{End}_\mathcal{T}(T)^{\text{op}}$ for some cluster-tilting object T in a 2-Calabi-Yau category \mathcal{T}.

Theorem 2.1 (Keller, Reiten [KR1]). Let \mathcal{T} be 2-Calabi-Yau, and let T be a cluster-tilting object in \mathcal{T}. Then we have an equivalence of categories

$$ \text{Hom}_\mathcal{T}(T, -): \mathcal{T}/\text{add}(\tau_\mathcal{T}(T)) \to \text{mod}(\text{End}_\mathcal{T}(T)^{\text{op}}) $$

where $\tau_\mathcal{T}$ is the Auslander-Reiten translation in \mathcal{T}.

It is not known in general if the 2-Calabi-Yau tilted algebra $\text{End}_\mathcal{T}(T)^{\text{op}}$ determines \mathcal{T}, see [KR2] for some partial results.
For a finite-dimensional K-algebra A let $\text{sub}(A)$ be the subcategory of $\text{mod}(A)$ with objects all modules M which are isomorphic to submodules of some free A-module. If A is 1-Iwanaga-Gorenstein, then $\text{sub}(A)$ is the Frobenius category of Gorenstein-projective A-modules. In particular, its stable category $\text{sub}(A)$ is a triangulated category.

Theorem 2.2 (Keller, Reiten [KR1]). For a 2-Calabi-Yau tilted algebra A the following hold:

(i) A is a 1-Iwanaga-Gorenstein algebra.
(ii) $\text{gl. dim}(A) \leq 1$ or $\text{gl. dim}(A) = \infty$.
(iii) The triangulated category $\text{sub}(A)$ is 3-Calabi-Yau.

For further information on 2-Calabi-Yau tilted algebras we refer to Reiten’s excellent survey paper [R].

3. Cluster-tilted algebras

Let Q be an acyclic quiver, and let $C_Q := D^b(\text{mod}(KQ))/\tau_{KQ}^{-1} \circ [1]$ be the cluster category associated with Q. Cluster categories were defined in [BMRRT]. Keller proved that C_Q is a triangulated category with all morphism spaces finite-dimensional. Based on this, it is straightforward to check that C_Q is a 2-Calabi-Yau category.

A finite-dimensional K-algebra A is a cluster-tilted algebra if $A \cong \text{End}_{C_Q}(T)^{\text{op}}$ for some cluster-tilting object T in some cluster category C_Q.

Obviously, cluster-tilted algebras are 2-Calabi-Yau tilted algebras. Cluster tilted algebras have been introduced and studied in [BMR].

REFERENCES

