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Summary

In this thesis we study some problems concerning the topology and Hodge the-
ory of smooth complex projective varieties and the geometry of theta divisors
of principally polarized abelian varieties. The thesis contains four parts; the
results have appeared in [74] and [76] and the preprints [75] and [77].

What are the possible Hodge numbers of a smooth complex projective vari-
ety? In the first part of this thesis, we construct enough varieties to show that
many of the Hodge numbers can take all possible values satisfying the con-
straints given by Hodge theory. For example, the k-th cohomology group of a
smooth complex projective variety in dimension n ≥ k + 1 can take arbitrary
Hodge numbers if k is odd; the same result holds for k even as long as the
middle Hodge number is larger than some quadratic bound in k. Our results
answer questions of Kollár and Simpson formulated in [84].

The second part of this thesis is based on joint work with Tasin. We produce
the first examples of smooth manifolds which admit infinitely many complex
algebraic structures such that certain Chern numbers are unbounded. Our ex-
amples allow us to determine all Chern numbers of smooth complex projective
varieties of dimensions ≥ 4 that are bounded by the underlying smooth mani-
fold. Using bordism theory we also obtain an upper bound on the dimension
of the space of linear combinations of Chern numbers with that property. Our
results answer a question of Kotschick [45].

In the third part we study the Hodge structures of conjugate varieties X
and Xσ, where Xσ is obtained from X by applying some field automorphism
σ ∈ Aut(C) to the coefficients of the defining equations of X. We consider the
K-algebra H∗,∗(X,K) of K-rational (p, p)-classes in Betti cohomology, where
K ⊆ C denotes some subfield of the complex numbers. For all subfields K ⊆ C
with K ≠ Q and K ≠ Q[

√
−d], d ∈ N, we show that there are conjugate varieties

X, Xσ with

H∗,∗(X,K) ≇H∗,∗(Xσ,K).

This result is motivated by the Hodge conjecture, which predicts isomorphisms
between H∗,∗(X,K) and H∗,∗(Xσ,K) for K = Q and K = Q[

√
−d]. Concern-

ing the topology of conjugate varieties, we produce in each birational equiva-
lence class of dimension at least 10 two conjugate smooth complex projective
varieties which are nonhomeomorphic. It follows that nonhomeomorphic con-
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jugate varieties exist for all fundamental groups. This answers a question of
Reed [67], who asked for simply connected examples.

In the fourth part of this thesis, we study the Schottky problem, which
asks for criteria that decide whether a principally polarized abelian variety
(ppav) (A,Θ) is isomorphic to the Jacobian (J(C),ΘC) of a smooth projective
curve C. By Riemann’s theorem, the theta divisor ΘC of the Jacobian of a
smooth genus g curve can be written as the (g−1)-fold sum of an Abel–Jacobi
embedded copy of C in J(C), ΘC = C+⋅ ⋅ ⋅+C. We prove the following converse:
let (A,Θ) be an indecomposable ppav with Θ = C + Y , where C and Y are a
curve and a codimension two subvariety in A respectively. Then C is smooth,
(A,Θ) is isomorphic to the Jacobian of C and Y corresponds to a translate
of the Brill–Noether locus Wg−2(C). Slightly weaker versions of this result
have previously been conjectured by Little [56] and Pareschi–Popa [60]. As
an application, we deduce that an irreducible theta divisor is dominated by a
product of curves if and only if the corresponding ppav is isomorphic to the
Jacobian of a smooth curve. This solves a problem of Schoen [70].
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1 Introduction

This thesis consists of four parts, based on [74], [75], [76] and [77]. Each
part constitutes a chapter1 and contains a separate abstract and introduction.
Moreover, each part can be read individually.

In this chapter we give a global introduction, point out the relations among
the different parts of this thesis and present some supplementary material. For
clarity, we divide the introduction into four sections.

1.1 Hodge numbers of algebraic varieties

Hodge theory is one of the most powerful tools in complex algebraic geometry.
It relies on the Hodge decomposition

Hk(X,C) ≃ ⊕
p+q=k

Hp,q(X),

which holds for any Kähler manifold2 X. Here,

Hp,q(X) ≃Hq(X,Ωp
X)

corresponds to the subspace of Hk(X,C) which (in de Rham cohomology) can
be represented by closed (p, q)-forms.

The most basic invariants from Hodge theory are the Hodge numbers

hp,q(X) ∶= dimHp,q(X)

of an n-dimensional Kähler manifold X, where 0 ≤ p, q ≤ n. Complex conjuga-
tion and Serre duality show that these numbers satisfy the Hodge symmetries

hp,q(X) = hq,p(X) = hn−p,n−q(X). (1.1)

Moreover, the Hard Lefschetz theorem implies

hp−1,q−1(X) ≤ hp,q(X) for all p + q ≤ n. (1.2)

1Chapter 2 is based on [76], Chapter 3 is based on joint work with Tasin [77], Chapter 4 is
based on [74] and Chapter 5 is based on [75].

2In this thesis, the term Kähler manifold refers to a compact connected complex manifold
with Kähler metric.
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1 Introduction

The Hodge numbers of an n-dimensional Kähler manifold are usually assembled
in the Hodge diamond as follows.

hn,n

hn,n−1 hn−1,n

hn,n−2 hn−1,n−1 hn−2,n

⋱ ⋮ ⋱

hn,0 h0,n

⋱ ⋮ ⋱

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

(1.3)

In order to get some ideas how the Hodge diamond of a smooth complex
projective variety or a Kähler manifold might look like in practice, let us look
at some examples.

The following table illustrates the Hodge diamond of a smooth projective
curve of genus g:

1
g g

1

This describes all possible Hodge diamonds in dimension one; such a classifi-
cation is open in all other dimensions.

Another interesting example is given by an n-dimensional abelian variety A.
The Hodge numbers of such a variety are given by

hp,q(A) = (
n

p
) ⋅ (

n

q
).

For instance, the following table shows the Hodge diamond of an abelian sur-
face and an abelian threefold respectively.

1
2 2

1 4 1
2 2

1

1
3 3

3 9 3
1 9 9 1

3 9 3
3 3

1

The third family of examples we want to mention here are smooth degree d
hypersurfaces Xd,n in Pn+1. By the Lefschetz hyperplane theorem,

hp,q(Xd,n) = h
p,q(Pn+1)
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1.1 Hodge numbers of algebraic varieties

for all p+q ≤ n−1. Moreover, the Hodge numbers hn−p,p(Xd,n) can be calculated,
either via residues and Griffiths’ work [90, Sec. 6], or via a certain Chern
number calculation involving the Hirzebruch–Riemann–Roch formula for Ωp

X ,
see (1.5) below. For instance, the surface Xd,2 has weight 2 Hodge numbers

h2,0(Xd,2) = (
d − 1

3
),

and

h1,1(Xd,2) =
1

3
⋅ (2d3 − 6d2 + 7d).

Moreover, the threefold Xd,3 has weight 3 Hodge numbers

h3,0(Xd,3) = (
d − 1

4
),

and

h2,1(Xd,3) =
1

24
⋅ (11d4 − 50d3 + 85d2 − 70d + 24).

The following illustrates the special case of the Hodge diamonds of X10,2 and
X10,3 respectively.

1
0 0

84 490 84
0 0

1

1
0 0

0 1 0
126 2826 2826 126

0 1 0
0 0

1

In Chapter 2 we study the question which collections of natural numbers
(hp,q)p,q, satisfying the Hodge symmetries (1.1) and the Lefschetz conditions
(1.2), can actually be realized by a smooth complex projective variety. For
some partial results in dimensions two and three we refer to [6, 14, 37, 61, 69].

In his survey article on the construction problem in Kähler geometry [84],
Simpson raises many aspects of the construction problem for Hodge numbers.
For instance, Kollár and Simpson ask whether the outer Hodge numbers are
always dominated by the middle Hodge numbers, which seemingly agrees with
all known examples, such as those given above. More specifically [84, p. 9]: is
it possible to realize a vector

(hk,0, . . . , h0,k) (1.4)

13



1 Introduction

of weight k Hodge numbers with large numbers at the end and small numbers
in the middle?

The Hodge numbers of a smooth complex projective variety are known to
reflect many of its geometric properties. For instance, if

h2,0(X) ≤ h1,0(X) − 2,

then X fibers over a smooth curve of genus ≥ 2 by Castelnuovo–de Francis’
lemma; generalizations concerning fibrations over higher dimensional bases
were given by Catanese [10]. Only recently, Lazarsfeld–Popa [51] and Lombardi
[57] found many more inequalities among the Hodge numbers of large classes of
irregular complex projective varieties. Most (but not all) of these inequalities
involve the outer Hodge numbers hp,0.

Besides determining the Betti numbers, the Hodge numbers may also restrict
the ring structure of H∗(X,C), hence the topology of the underlying smooth
manifold. Indeed, the Hodge decomposition is compatible with the cup product
which induces a linear map

Hk(X,C)⊗Hm(X,C) //Hk+m(X,C).

The kernel of this map has therefore dimension at least

∑
p+q=k
r+s=m

max(0, hp,q ⋅ hr,s − hp+r,q+s).

For instance, if a variety X has large h2,0, whereas h1,1 and h4,0 are both small,
then the linear map

H2(X,C)⊗H2(X,C) //H4(X,C),

induced by the cup product, has a large kernel.
By the Hirzebruch–Riemann–Roch formula, the Euler characteristics

χp(X) ∶= χ(X,Ωp
X) =∑

i

(−1)ihp,i(X) (1.5)

can be expressed in terms of Chern numbers of X. Since Chern numbers tend
to satisfy certain inequalities, the relations among Hodge and Chern numbers
are one source of potential inequalities among the Hodge numbers of smooth
complex projective varieties.

For instance, using the Bogomolov–Miyaoka–Yau inequality, we observed in
[72] that

h1,1(S) > h2,0(S) (1.6)
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1.1 Hodge numbers of algebraic varieties

for all Kähler surfaces S, see also [76, Prop. 22]. Combining a similar approach
in dimension four with Kollár–Matsusaka’s theorem, we also proved [72] that
the third Betti number b3 of a smooth complex projective fourfold with b2 = 1
can be bounded from above in terms of b4, see also [76, Prop. 32]. These results
show that the known constraints which Hodge theory puts on the Hodge and
Betti numbers of a smooth complex projective variety are not complete.

Chapter 2 contains several main results on the construction problem for
Hodge numbers. The first one answers Kollár–Simpson’s question about the
realizability of certain weight k Hodge numbers (1.4) by a variety.

Theorem 1.1.1 (Theorem 2.1.1). Fix k ≥ 1 and let (hp,q)p+q=k be a symmetric
collection of natural numbers. If k = 2m is even, we assume

hm,m ≥m ⋅ ⌊(m + 3)/2⌋ + ⌊m/2⌋
2
.

Then in each dimension n ≥ k + 1 there exists a smooth complex projective
variety whose Hodge structure of weight k realizes the given Hodge numbers.

The examples which realize the given weight k Hodge numbers in Theorem
1.1.1 have dimension n ≥ k + 1. At least for k = 2, this assumption on the
dimension is necessary by (1.6). However, if the hp,q in Theorem 1.1.1 are
even and hk,0 = 0, then a similar result as in Theorem 1.1.1 also holds for the
k-th cohomology group in dimension n = k, see Corollary 2.5.3. Theorem 1.1.1
might be surprising, as it is known [89, Rem. 10.20] that a very general integral
polarized Hodge structure of weight ≥ 2 (not of K3 type) cannot be realized
by a variety.

The second main result solves the construction problem for large subcollec-
tions of Hodge numbers of the whole Hodge diamond.

Theorem 1.1.2 (Theorem 2.1.3). Fix n ≥ 1 and let (hp,q)p+q<n be a collection
of natural numbers with hp,q = hq,p, hp−1,q−1 ≤ hp,q and h0,0 = 1. Suppose that
the following two additional conditions are satisfied.

1. For p < n/2, the primitive numbers lp,p ∶= hp,p − hp−1,p−1 satisfy

lp,p ≥ p ⋅ (n2 − 2n + 5)/4.

2. The outer numbers hk,0 vanish either for all k = 1, . . . , n − 3, or for all
k ≠ k0 for some k0 ∈ {1, . . . , n − 1}.

Then there exists an n-dimensional smooth complex projective variety X with

hp,q(X) = hp,q,

for all p and q with p + q < n.

15



1 Introduction

For instance, Theorem 1.1.2 implies that any given collection of natural
numbers which lies neither on the boundary nor on the horizontal middle axis
of (1.3) and which satisfies the Hodge symmetries (1.1) and the Lefschetz
conditions (1.2) can be realized by a smooth complex projective variety as
long as the primitive (p, p)-type Hodge numbers are bounded from below by
some constant which depends only on p and n and not on the given collection
(hp,q)p+q<n. In this result, we can additionally choose one Hodge number hk,0

to be arbitrary; all other outer Hodge numbers hp,0 with p ≠ {0, k, n} vanish in
our examples.

Theorem 1.1.2 has interesting consequences concerning possible universal
inequalities3 among the Hodge numbers of smooth complex projective varieties.

Corollary 1.1.3 (Corollary 2.10.2). Any universal inequality among the Hodge
numbers below the horizontal middle axis in (1.3) of n-dimensional smooth
complex projective varieties is a consequence of the Lefschetz conditions (1.2).

Corollary 1.1.3 implies for instance that the Lefschetz conditions (1.2) are
the only universal inequalities which hold in all sufficiently large dimensions
at the same time.

A vector of natural numbers (b0, . . . , b2n) ∈ N2n is called vector of formal
Betti numbers (in dimension n), if

b0 = 1, bk = b2n−k, and b2k+1 ≡ 0 mod 2,

for all k. Theorem 1.1.2 implies that under a mild lower bound on the primitive
even degree Betti numbers, the Betti numbers bk with k ≠ n of any formal
vector of Betti numbers in dimension n can be realized by a variety.

Corollary 1.1.4 (Corollary 2.1.4). Let (b0, . . . , b2n) be a vector of formal Betti
numbers with

b2k − b2k−2 ≥ k ⋅ (n
2 − 2n + 5)/8 for all k < n/2.

Then there exists an n-dimensional smooth complex projective variety X with
bk(X) = bk for all k ≠ n.

Corollary 1.1.4 implies for instance that in even dimensions, the construc-
tion problem for the odd Betti numbers is solvable without any additional
assumptions.

For the proof of Theorems 1.1.1 and 1.1.2 we establish a method which
allows us to manipulate single Hodge numbers below the horizontal middle

3The term “universal inequality” underlines that we are looking for inequalities which hold
for all smooth complex projective varieties.
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1.1 Hodge numbers of algebraic varieties

axis and away from the boundary of (1.3) in a very efficient way, see Section
2.4.2. Our method uses the Lefschetz hyperplane theorem and so we are not
able to control the weight n Hodge numbers of our n-dimensional examples.

Motivated by work of Cynk and Hulek [17], we establish another construction
method which is based on a careful resolution of certain quotient singularities.
This allows us to produce n-dimensional examples with interesting weight n
Hodge numbers. For instance, we prove that for any i = 0, . . . , ⌊n/2⌋, there is
an n-dimensional smooth complex projective variety X such that

hn−i,i(X) = hi,n−i(X)

is arbitrarily large, whereas hp,q(X) = 0 for all other p ≠ q, see Theorem 2.8.1.
Taking products of these examples with projective spaces yields the following.

Corollary 1.1.5 (Corollary 2.10.3). Any universal inequality among the Hodge
numbers away from the vertical middle axis in (1.3) of n-dimensional smooth
complex projective varieties is a consequence of the Lefschetz conditions (1.2).

The above corollary determines all universal inequalities among the Hodge
numbers hp,q with p ≠ q in fixed dimension n. This should be compared to
Corollary 1.1.3, which is the mirrored statement.

Combining all our constructed examples with recent work of Roulleau and
Urzúa [69], we are able to determine all possible dominations among two Hodge
numbers in a fixed dimension.

Corollary 1.1.6 (Corollary 2.9.1). Suppose there are λ1, λ2 ∈ R>0 such that
for all smooth complex projective varieties X of dimension n:

λ1h
r,s(X) + λ2 ≥ h

p,q(X). (1.7)

Then λ1 ≥ 1 and (1.7) is either a consequence of the Lefschetz conditions (1.2),
or n = 2 and it is a consequence of (1.6).

Let us explain why in our approach to Theorems 1.1.1 and 1.1.2, lower
bounds on the primitive (p, p)-type Hodge numbers lp,p are necessary. The
reason comes from the existence of the cycle class map

clp ∶ CHp
(X)⊗Z Q //H2p(X,Q), (1.8)

whose image is contained in the group of rational Hodge classes

Hp,p(X,Q) ∶=Hp,p(X) ∩H2p(X,Q).

It follows for instance that the Picard number ρ(X) is bounded from above by
h1,1(X). More generally, if hp,p(X) is small then the image of the codimension

17



1 Introduction

p cycles of X in cohomology is small. In our constructions we need to introduce
one additional line bundle for each Hodge number that we want to manipulate.
Certain intersection products of these line bundles are nonzero in cohomology,
which explains the bound on lp,p in our approach; we do not know if such
bounds are necessary in general.

Using a rather ad hoc implementation of the Godeaux–Serre construction, we
are able to prove that at least for the weight 2 Hodge structure, the optimal
bound h1,1 ≥ 1 can be reached. That is, any weight two Hodge numbers
(h2,0, h1,1, h0,2) with h2,0 = h0,2 and h1,1 ≥ 1 can be realized by a smooth complex
projective variety of dimension n ≥ 3, see Theorem 2.7.1. However, the method
used in that proof is not very flexible and cannot easily be generalized to Hodge
structures of higher weight.

As mentioned above, the lower bound on hp,p in Theorem 1.1.1 stems from
the existence of certain algebraic classes in H2p(X,Q). These classes form a
rational sub-Hodge structure. Taking the orthogonal complement, it follows
that any symmetric vector (hk,0, . . . , h0,k) of natural numbers can be realized
by the Hodge numbers of some rational sub-Hodge structure

V ⊆Hk(X,Q),

where X is a smooth complex projective variety of dimension n ≥ k + 1, see
Corollary 2.5.1. This statement is the main result of Arapura’s paper [3], which
was written after the preprint version of [76] appeared.

1.2 Chern numbers of algebraic structures

The Hodge numbers are in general not topological invariants of the underlying
smooth manifold [48]. However, due to the Hodge decomposition, the Hodge
numbers of a smooth complex algebraic variety are bounded from above by
the Betti numbers and so they are determined up to finite ambiguity by the
underlying smooth manifold.

Similarly, the Chern numbers of a smooth complex projective variety are in
general not determined by the underlying smooth manifold [46, 47]. However,
in contrast to the case of Hodge numbers, it was not known whether the
Chern numbers are determined up to finite ambiguity by the underlying smooth
manifold. This boundedness question was raised by Kotschick in [45].

For instance, the Chern numbers cn and c1cn−1 are linear combinations
of Hodge numbers [54], hence bounded by the underlying smooth manifold.
In particular, the Chern numbers of smooth complex projective surfaces are
bounded by the underlying smooth manifold. Moreover, Kotschick observed

18



1.2 Chern numbers of algebraic structures

that the Chern numbers of minimal smooth projective three- and fourfolds of
general type are also bounded by the underlying smooth manifold.

In a recent preprint [9], Cascini and Tasin use the above boundedness result
and the minimal model program in dimension three to prove that many smooth
complex projective threefolds of general type have all their Chern numbers
bounded by the underlying smooth manifold.

In [42], Kollár proved that a smooth manifold with second Betti number
b2 = 1 carries at most finitely many different deformation equivalence classes of
complex algebraic structures. Since Chern numbers are deformation invariants,
it follows that the Chern numbers of a smooth complex projective variety with
b2 = 1 are determined by the underlying smooth manifold up to finite ambiguity.

Kollár’s result does not generalize to varieties with arbitrary second Betti
number. Indeed, Freedman and Morgan [28] gave an example of a smooth
8-manifold carrying infinitely many complex algebraic structures such that
some of its Chern classes are unbounded; however, the Chern numbers of their
examples are indeed bounded.

Chapter 3 is based on joint work with Tasin [77]. We produce the first
examples of smooth manifolds such that certain Chern numbers with respect
to all possible complex algebraic structures are unbounded. Our construction
works in all complex dimensions at least four; it is flexible enough allowing us
to determine all partitions m of n such that the Chern number cm in complex
dimension n ≥ 4 is bounded by the underlying smooth manifold.

Theorem 1.2.1 (Theorem 3.1.1). In complex dimension 4, the Chern numbers
c4, c1c3 and c2

2 of a smooth complex projective variety are the only Chern num-
bers cm which are determined up to finite ambiguity by the underlying smooth
manifold. In complex dimension n ≥ 5, only cn and c1cn−1 are determined up
to finite ambiguity by the underlying smooth manifold.

For instance, we find that for fourfolds, c4
1 and c2

1c2 are not bounded by the
underlying smooth 8-manifold. This might be surprising, as we recall that at
least the Chern numbers of minimal fourfolds of general type are known to be
bounded. This compares to our result as all of our examples are of negative
Kodaira dimension.

In view of Theorem 1.2.1, very few Chern numbers of smooth complex pro-
jective varieties are determined up to finite ambiguity by the underlying smooth
manifold. This changes considerably if we are asking for all linear combinations
of Chern numbers with that property. Indeed, the Euler characteristics χp (see
(1.5) above) as well as the Pontryagin numbers in even complex dimension are
linear combinations of Chern numbers which are bounded by the underlying
smooth manifold.
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1 Introduction

When studying linear combinations of Chern numbers, it is most convenient
to work with the rational complex cobordism ring ΩU

∗ ⊗Q. Its degree n part
ΩU
n ⊗ Q is the group of rational bordism classes of stably almost complex

manifolds of real dimension 2n. This group is known to be generated by smooth
complex projective varieties. The Chern numbers in complex dimension n are
well-defined linear forms on ΩU

n ⊗ Q, which yield in fact a basis of the dual
space of ΩU

n ⊗Q, see [86, p. 117].
Due to the work of Novikov and Milnor [86, p. 128], ΩU

∗ ⊗Q is a polynomial
ring with one generator in each degree. Moreover, a (stably almost) complex
manifold X of real dimension 2n can be taken as generator in degree n if and
only if its Milnor number sn(X) is nonzero.

In Section 3.6, we consider a sequence (αn)n≥1 of smooth complex projective
varieties, given by α1 = P1, α2 = P2 and

αn ∶= P(OA(1)⊕On−3
A ),

where A denotes an abelian surface with ample line bundle OA(1) and αn is
the projectivization of the rank n− 2 vector bundle OA(1)⊕On−3

A on A. Using
Lemma 2.3 in [73], one computes sn(αn) ≠ 0 and so we have a sequence of ring
generators:

ΩU
∗ ⊗Q = Q[α1, α2, . . .].

Using this presentation, we consider the ideal

I∗ ∶= ⟨α1αk ∣ k ≥ 3⟩

in ΩU
∗ ⊗Q, generated by all α1αk with k ≥ 3. The degree n part of this ideal is

denoted by In.
Our second main result in Chapter 3 is as follows.

Theorem 1.2.2 (Theorem 3.6.1). Any linear combination of Chern numbers
in dimension n, which on smooth complex projective varieties is bounded by
the underlying smooth manifold vanishes on In.

By Theorem 1.2.2, any linear combination of Chern numbers in dimension
n which on smooth complex projective varieties is bounded by the underlying
smooth manifold descends to the quotient

(ΩU
n ⊗Q)/In. (1.9)

Denoting by p(n) the number of partitions of n by positive integers, we there-
fore obtain the following.

20



1.3 Hodge structures of conjugate varieties

Corollary 1.2.3 (Corollary 3.6.3). In dimension n ≥ 4, the space of rational
linear combinations of Chern numbers which on smooth complex projective
varieties are bounded by the underlying smooth manifold is a quotient of the
dual space of (1.9); its dimension is therefore at most

dim(ΩU
n ⊗Q) − dim(In) = p(n) − p(n − 1) + ⌊

n + 1

2
⌋ .

In order to compare the above upper bound with the known lower bound,
given by the Euler characteristics χp and the Pontryagin numbers in even
complex dimensions, we consider the ideal

J ∗ ∶= ⟨α2k+1 ∣ k ≥ 1⟩ + ⟨α1α2k ∣ k ≥ 2⟩

in ΩU
∗ ⊗Q. We explain in Section 3.6 that the degree n part J n is the kernel

of the span of the Euler characteristics χp and Pontryagin numbers. That is,
the dual space of the quotient

(ΩU
n ⊗Q)/J n

is naturally isomorphic to the span of the Euler characteristics and the Pon-
tryagin numbers in dimension n.

We note that
I4 = J 4.

By Theorem 1.2.2, any linear combination of Chern numbers which on smooth
complex projective fourfolds is bounded by the underlying smooth manifold is
therefore a linear combination of the Euler characteristics χp and the Pontrya-
gin numbers.

Conversely, the inclusion
I∗ ⊆ J ∗

is proper for all n ≠ 4, and so the problem of determining all bounded linear
combinations remains open in all dimensions n ≥ 3 other than n = 4.

1.3 Hodge structures of conjugate varieties

Let X denote a smooth complex projective variety. For a field automorphism
σ ∈ Aut(C) of the complex numbers, we consider the conjugate variety Xσ,
defined by the base change

Xσ

��

// X

��

Spec(C)
σ∗ // Spec(C).
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That is, Xσ is the smooth variety whose defining equations in some projec-
tive space are given by applying σ to the coefficients of the equations of X.
Algebraically defined invariants, such as étale cohomology or the algebraic
fundamental group coincide on X and Xσ. Conversely, Serre [78] produced
the first examples of conjugate varieties with different topological fundamental
groups; many more examples of nonhomeomorphic conjugate varieties were
given later [1, 7, 62, 83].

In 2009, Charles proved the following.

Theorem 1.3.1 (Charles [12]). There exist conjugate smooth complex projec-
tive varieties with distinct real cohomology algebras.

Charles’ result might be surprising, as the `-adic and hence also the com-
plex cohomology algebras of conjugate smooth complex projective varieties are
isomorphic.

The cycle class maps (1.8) fit together to yield a homomorphism of graded
Q-algebras

cl∗ ∶ CH∗
(X)⊗Z Q //H2∗(X,Q).

Although the target of the above map cannot be computed algebraically, its
kernel is still an algebraic invariant of X. In order to see this it suffices to note
that ker(cl∗) is a rational subspace and

ker(cl∗)⊗Q Q` = ker(cl∗⊗QQ`)

can be computed via the cycle class map in étale cohomology with coefficients
in Q`.

Since CH∗
(X) ⊗Z Q and ker(cl∗) can be computed algebraically, the same

holds for (the isomorphism type of) the image im(cl∗). The Hodge conjecture
identifies the latter with the algebra of rational (p, p)-classes, which is a priori
a highly transcendental invariant of X.

Hodge Conjecture. Let X be a smooth complex projective variety. Then

im(cl∗) =H
∗,∗(X,Q) ∶=H∗,∗(X) ∩H2∗(X,Q).

The Hodge conjecture implies that the isomorphism type of H∗,∗(−,Q) co-
incides on conjugate varieties. This implication of the Hodge conjecture goes
back to Deligne; its validity or falsity might be easier to check because it is a
purely Hodge theoretic statement which does not refer anymore to algebraic
cycles.

The above discussion motivates the investigation of the K-algebra

H∗,∗(X,K) ∶=H2∗(X,K) ∩H∗,∗(X)
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1.3 Hodge structures of conjugate varieties

of K-rational (p, p)-classes in Betti cohomology, where K ⊆ C denotes some
subfield of the complex numbers. If K = Q[

√
−d] is an imaginary quadratic

extension of Q, then H∗,∗(X,K) is obtained from H∗,∗(X,Q) by extension of
scalars and so the Hodge conjecture predicts

H∗,∗(X,K) ≃H∗,∗(Xσ,K), (1.10)

for K = Q or K = Q[
√
−d] and all σ ∈ Aut(C).

In Chapter 4 we prove that for all remaining subfields K ⊆ C, the isomor-
phism in (1.10) may fail.

Theorem 1.3.2 (Theorem 4.1.3). Let K ⊆ C be a subfield, different from
Q and different from any imaginary quadratic extension Q[

√
−d] of Q. Then

there exist conjugate smooth complex projective varieties whose graded algebras
of K-rational (p, p)-classes are not isomorphic.

Theorem 1.3.2 is already interesting for K = C, as it shows that the complex
Hodge structure on the complex cohomology algebra of varieties is not an
algebraic invariant. This contrasts the fact that as bigraded ring (and not as
C-algebra),

⊕
p,q
Hp,q(X) =⊕

p,q
Hq(X,Ωp

X)

is clearly an algebraic invariant of X.
The proof of Theorem 1.3.2 is divided into two parts. Firstly, if K ⊆ C

in Theorem 1.3.2 is different from R and C, then we prove that there are
conjugate smooth complex projective varieties X and Xσ whose groups of
K-rational (p, p)-classes have different dimensions

Hp,p(X,K) ≇Hp,p(Xσ,K), (1.11)

see Theorem 4.1.5.
In order to explain the idea of the proof of that statement, let us first look

at an elliptic curve E. Such a curve can be embedded as a plane curve in P2

with affine equation

{y2 = 4x3 − g2x − g3} . (1.12)

This description is useful if we want to compute the conjugate curve Eσ: we
simply apply σ to the coefficients g2 and g3.

Calculating the Hodge structure of E is equivalent to finding an element in
the upper half plane τ ∈ H with

E ≃ C/(Z + τZ).
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1 Introduction

The j-invariant j(E) ∶= j(τ) is a modular form on H which determines the
isomorphism type of E uniquely. In terms of the affine equation (1.12),

j(τ) = 1728 ⋅
g3

2

g3
2 − 27g2

3

.

Hence, the conjugate curve Eσ has j-invariant j(Eσ) = σ(j(E)). It follows that
all elliptic curves E with transcendental j-invariant lie in the same Aut(C)-
orbit.

In order to prove (1.11), one could now try to use products of elliptic curves
whose j-invariants are algebraically independent over Q and prove that among
such products, there are always two examples whose groups of K-rational
(p, p)-classes have different dimensions. This approach works well for special
classes of subfields K ⊆ C. In general, difficulties arise since it is very hard to
control explicitly for which elements in the upper half plane, the corresponding
j-invariants are transcendental over Q. We circumvent these difficulties by the
use of abelian surfaces. Their moduli are parametrized by Riemann’s second
order theta constants and we are able to prove the necessary (and elementary)
transcendence results for these modular forms.

It is worth noting that in order to prove (1.11) for all subfieldsK ⊆ C different
from Q, Q[

√
−d], R and C, the use of varieties defined over transcendental

extensions of Q is necessary. Indeed, there are only countably many varieties
defined over Q, and so there is a countably generated subfield K0 ⊆ C such
that

Hp,p(X,K0)⊗K0 C ≃Hp,p(X,C),

for all smooth complex projective varieties X that can be defined over Q,
see Remark 4.3.5. Since the Hodge numbers are algebraic invariants of X, it
follows that

Hp,p(X,K0) ≃H
p,p(Xσ,K0),

for all σ ∈ Aut(C) and all smooth complex projective varieties X that can be
defined over Q.

The second part of the proof of Theorem 1.3.2 deals with K = R or K = C.
For such K, the algebras of K-rational (p, p)-classes of conjugate varieties X
and Xσ are isomorphic in each degree and so it is really the ring structure that
matters. Here we use the Charles–Voisin method [12, 91], which we briefly
recall in the following.

In [12], Charles starts with an abelian variety A ⊆ PN with special endomor-
phisms and considers the blow-up X of

A ×A × PN
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1.3 Hodge structures of conjugate varieties

along the graphs of certain morphisms between two factors, such as some
endomorphism f ∶ A //A. For certain field automorphisms σ ∈ Aut(C), the
abelian varieties A and Aσ are isomorphic and σ maps the graph of the given
endomorphism f to the graph of the conjugate endomorphism fσ. That is,
X and Xσ are both blow-ups of A ×A × PN , but the endomorphism f whose
graph was blown-up may have changed. The key point, already used in Voisin’s
solution of the Kodaira problem [91], is the fact that the real cohomology
algebra ofX encodes the action of the endomorphism f∗ onH∗(A,R). Roughly
speaking, if f∗ and (fσ)∗ act differently on H∗(A,R), then H∗(X,R) and
H∗(Xσ,R) are nonisomorphic, hence Charles’ result in Theorem 1.3.1.

In the situation of Theorem 1.3.2, difficulties arise because we cannot use
the whole cohomology algebra of an abelian variety A, whose explicit struc-
ture is used in Charles’ and Voisin’s work. In fact, we replace the abelian
variety in Charles’ approach by certain simply connected surfaces with special
automorphisms; the construction of these surfaces is inspired by some con-
structions from Chapter 2. After this replacement, we are able to implement
the Charles–Voisin method in our situation.

The examples we construct via the Charles–Voisin method are simply con-
nected smooth complex projective varieties X and Xσ defined over cyclotomic
number fields. For instance, one pair of examples X and Xσ is defined over
Q[ζ12] and satisfies

H∗,∗(X,Q[
√

3]) ≇H∗,∗(Xσ,Q[
√

3]),

although the dimensions of the above algebras coincide in each degree.

Applying the Lefschetz hyperplane theorem, we are able to cut down the
dimension of our examples to any n ≥ 4. We also analyze the multilinear
intersection forms

H2(X,R)⊗n //R and H2(Xσ,R)⊗n //R,

given by cup product and evaluation on the corresponding fundamental classes.
We prove that these multilinear intersection forms are not (weakly) isomorphic
in our examples, see Theorem 4.1.6. It follows that we have produced the first
known nonhomeomorphic conjugate varieties that are simply connected. This
answers a question of Reed [67].

Once the existence of simply connected nonhomeomorphic conjugate vari-
eties is settled, it is natural to ask for other fundamental groups as well. A
natural generalization of that question asks for nonhomeomorphic conjugate
varieties in a given birational equivalence class. We are able to answer this
question in sufficiently high dimensions.
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Theorem 1.3.3 (Theorem 4.1.7). Any birational equivalence class of com-
plex projective varieties in dimension ≥ 10 contains conjugate smooth complex
projective varieties whose even-degree real cohomology algebras H2∗(−,R) are
nonisomorphic.

Theorem 1.3.3 implies immediately:

Corollary 1.3.4 (Corollary 4.1.8). Let G be the fundamental group of a smooth
complex projective variety. Then there exist conjugate smooth complex projec-
tive varieties with fundamental group G, but nonisomorphic even-degree real
cohomology algebras.

1.4 Geometry of theta divisors and the Schottky
problem

We have explained in Section 1.1 above that the Hodge numbers, or equiva-
lently, the complex Hodge structures, of a smooth complex projective variety
determine several of its geometric properties. One obtains of course finer in-
variants if instead of the complex Hodge structure, one considers the integral
Hodge structure together with a suitable polarization.

For special classes of varieties, such datum actually determines the isomor-
phism type of the variety uniquely. The most prominent such example is the
Torelli theorem for curves4. It states that the isomorphism class of a smooth
curve C is uniquely determined by its Jacobian (J(C),ΘC), which is the prin-
cipally polarized abelian variety (ppav) associated to the integral weight one
Hodge structure on H1(C,Z), together with the polarization that is induced
by the cup product and Poincaré duality. By Riemann’s theorem (see (1.15)
below), the theta divisor ΘC is irreducible, which is equivalent to saying that
(J(C),ΘC) is indecomposable, see [8, p. 75].

By the Torelli theorem,

C � // (J(C),ΘC)

gives rise to an injective map from the moduli stack of smooth projective genus
g curves to the moduli stack of ppav of dimension g. Chapter 5 studies the
Schottky problem, which asks to describe the image of that map. That is,
given an indecomposable ppav (A,Θ), how can we decide whether it is the
Jacobian of a curve?

4If not mentioned otherwise, the term “curve” refers here and in the following to an irre-
ducible complete variety of dimension one over C.
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1.4 Geometry of theta divisors and the Schottky problem

Fixing a point on C, we obtain the Abel–Jacobi embedding C // J(C) whose
image is denoted by W1(C). For 1 ≤ d ≤ g − 1, the d-th Brill–Noether locus

Wd(C) =W1(C) + ⋅ ⋅ ⋅ +W1(C)

is the d-fold sum of W1(C) in J(C). Poincaré’s formula computes the coho-
mology class of Wd(C) [4, p. 25]:

[Wd(C)] =
1

(g − d)!
⋅ [ΘC]

g−d. (1.13)

The most famous characterization of Jacobians among all indecomposable
ppavs is a partial converse of Poincaré’s formula, due to Matsusaka and Hoyt
[36, 58]. It asserts that an indecomposable ppav (A,Θ) is isomorphic to a
Jacobian of a smooth curve if and only if there is a curve C ⊆ A with minimal
class

[C] =
1

(g − 1)!
⋅ [Θ]g−1. (1.14)

Moreover, if (1.14) holds, C is automatically smooth and (A,Θ) is isomorphic
to (J(C),ΘC).

Closely related to the Poincaré formula (1.13) is Riemann’s theorem. It
asserts that the theta divisor ΘC of a smooth genus g curve C can be written
as the (g − 1)-fold sum of the Abel–Jacobi embedded copy W1(C) of C. That
is,

ΘC =Wg−1(C). (1.15)

Riemann’s theorem implies that

ΘC =W1(C) +Wg−2(C)

has a curve summand W1(C). The main result of Chapter 5 is the following
converse of that statement.

Theorem 1.4.1 (Theorem 5.1.1). Let (A,Θ) be an indecomposable ppav of
dimension g. Suppose that there is a curve C and a codimension two subvariety
Y in A such that

Θ = C + Y.

Then C is smooth and there is an isomorphism (A,Θ) ≃ (J(C),ΘC) which
identifies C and Y with translates of W1(C) and Wg−2(C) respectively.
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Our proof uses Welters’ method [95] to reduce Theorem 1.4.1 to Matsusaka–
Hoyt’s criterion mentioned above. A crucial ingredient in our proof is Ein–
Lazarsfeld’s theorem [25], saying that the theta divisor of an indecomposable
ppav is normal with at most rational singularities.

Theorem 1.4.1 has been conjectured by Pareschi and Popa (see Section 5.5),
in connection with their study of generic vanishing sheaves, associated to sub-
varieties of ppavs in [60]. Following Pareschi–Popa, a coherent sheaf F on an
abelian variety A is a generic vanishing sheaf or a GV-sheaf, if for all i its i-th
cohomological support locus

Si(F) ∶= {L ∈ Pic0
(A) ∣H i(A,F ⊗L) ≠ 0}

has codimension ≥ i in Pic0
(A), see [60, p. 212].

A subvariety Z of a ppav (A,Θ) is called GV-subvariety if the twisted ideal
sheaf IZ(Θ) = IZ ⊗OA(Θ) is a GV-sheaf. Pareschi and Popa proved that the
Brill–Noether locus Wd(C) inside the Jacobian of a smooth curve is a GV-
subvariety. Besides Brill–Noether loci, there is only one more example of a
GV-subvariety of dimension 1 ≤ d ≤ g − 2, where g = dim(A), known: the Fano
surface of lines inside the intermediate Jacobian of a smooth cubic threefold is
a 2-dimensional GV-subvariety in a 5-dimensional indecomposable ppav that
is not isomorphic to the Jacobian of a smooth curve [16].

Pareschi–Popa conjectured that these are all examples of geometrically non-
degenerate5 GV-subvarieties of dimension d in g-dimensional ppavs with 1 ≤ d ≤
g−2, see Conjecture 5.5.2. They proved their conjecture for d = 1 and d = g−2.
We use Theorem 1.4.1 and the results in [19] and [60] to prove Pareschi–Popa’s
conjecture for nondegenerate subvarieties with curve summands.

Theorem 1.4.2 (Theorem 5.1.2). Let (A,Θ) be an indecomposable ppav, and
let Z ⊊ A be a geometrically nondegenerate subvariety of dimension d. Suppose
that the following holds:

1. Z = Y +C has a curve summand C ⊆ A,

2. the twisted ideal sheaf IZ(Θ) is a GV-sheaf.

Then C is smooth and there is an isomorphism (A,Θ) ≃ (J(C),ΘC) which
identifies C, Y and Z with translates of W1(C), Wd−1(C) and Wd(C) respec-
tively.

5A subvariety of an abelian variety A is geometrically nondegenerate if and only if it meets
all subvarieties W ⊆ A of complementary dimension, see Section 5.2. Brill Noether loci
Wd(C) as well as the Fano surface of lines of a smooth cubic threefold have this property.
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1.4 Geometry of theta divisors and the Schottky problem

If Z has codimension one, then it is a GV-subvariety of (A,Θ) if and only
if it is a translate of Θ. This explains that Theorem 1.4.1 is a special case of
Theorem 1.4.2. However, in our proof, Theorem 1.4.2 is in fact a consequence
of Theorem 1.4.1. The key ingredient here is a result of Pareschi and Popa
[60] which implies that any geometrically nondegenerate GV-subvariety Z of
a ppav (A,Θ) is a summand of Θ. That is,

Θ = Z +W

for some subvariety W of A. If in this situation Z has a curve summand,
Theorem 1.4.1 applies and so we can use Debarre’s theorem [19] for the precise
determination of C, Y and Z in Theorem 1.4.2.

Our original motivation for Chapter 5 is the study of varieties X which admit
a dominant rational map from a product of curves,

C1 × ⋅ ⋅ ⋅ ×Cn ⇢X.

A variety which admits such a dominant rational map is called DPC. Exam-
ples of DPC varieties include unirational varieties, abelian varieties and Fer-
mat hypersurfaces {xk0 + ⋅ ⋅ ⋅ + x

k
n = 0} ⊆ Pn of arbitrary degree k. Conversely,

answering a question of Grothendieck, Serre [80] constructed the first example
of a smooth complex projective variety which is not DPC.

Later, Deligne [20, Sec. 7] and Schoen [70] found a Hodge theoretic obstruc-
tion, which allowed them to show that a sufficiently ample and very general
hypersurface in any smooth complex projective variety of dimension ≥ 3 is not
DPC. For instance, this result includes the very general hypersurface Xd,n in
Pn+1, n ≥ 2, of degree

d ≥ max (n + 2,5) .

This condition on d excludes Fano hypersurfaces of arbitrary dimension as well
as Calabi-Yau hypersurfaces of dimension two (i.e. K3 surfaces). In fact, it is
not known whether the very general projective K3 surface is DPC, although
special families, such as Kummer surfaces or isotrivial elliptic K3 surfaces are
easily seen to be DPC.

Apart from K3 surfaces, another interesting class of varieties where Delgine–
Schoen’s Hodge theoretic obstruction does not apply is the case of theta divi-
sors of indecomposable ppav. Clearly, the theta divisor of the Jacobian of a
smooth curve is DPC by Riemann’s theorem. Conversely, Schoen found that
his Hodge theoretic obstruction does not prevent the general theta divisor from
being DPC. This led him to ask [70, Sec. 7.4] whether there are theta divisors
which are not DPC.

As an easy corollary of Theorem 1.4.1, we obtain a complete answer to
Schoen’s question.
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Corollary 1.4.3 (Corollary 5.1.3). Let (A,Θ) be an indecomposable ppav. The
theta divisor Θ is DPC if and only if (A,Θ) is isomorphic to the Jacobian of
a smooth curve.
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2 On the construction problem for
Hodge numbers

Abstract. For any symmetric collection (hp,q)p+q=k of natural num-

bers, we construct a smooth complex projective variety X whose weight

k Hodge structure has Hodge numbers hp,q(X) = hp,q; if k = 2m is

even, then we have to impose that hm,m is bigger than some quadratic

bound in m. Combining these results for different weights, we solve

the construction problem for the truncated Hodge diamond under two

additional assumptions. Our results lead to a complete classification of

all nontrivial dominations among Hodge numbers of Kähler manifolds.

2.1 Introduction

For a Kähler manifold X, the Hodge decomposition gives an isomorphism

Hk(X,C) ≃ ⊕
p+q=k

Hp,q(X). (2.1)

As a refinement of the Betti numbers of X, one therefore defines the (p, q)-th
Hodge number hp,q(X) of X to be the dimension of Hp,q(X). This way one
can associate to each n-dimensional Kähler manifold X its collection of Hodge
numbers hp,q(X) with 0 ≤ p, q ≤ n. Complex conjugation and Serre duality
show that such a collection of Hodge numbers (hp,q)p,q in dimension n needs
to satisfy the Hodge symmetries

hp,q = hq,p = hn−p,n−q. (2.2)

Moreover, as a consequence of the Hard Lefschetz Theorem, the Lefschetz
conditions

hp,q ≥ hp−1,q−1 for all p + q ≤ n (2.3)

This chapter is based on [76]; some minor changes are made as follows. Overlaps of the
published article [76] with results of the authors Part III Essay [72] are indicated in this
chapter; the corresponding results are cited from [72] and [76]. Moreover, Corollaries
2.9.1 and 2.10.1 are not contained in [76].
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hold. Given these classical results, the construction problem for Hodge num-
bers asks which collections of natural numbers (hp,q)p,q, satisfying (2.2) and
(2.3), actually arise as Hodge numbers of some n-dimensional Kähler manifold.
In his survey article on the construction problem in Kähler geometry [84], C.
Simpson explains our lack of knowledge on this problem. Indeed, even weak
versions where instead of all Hodge numbers one only considers small subcol-
lections of them are wide open; for some partial results in dimensions two and
three we refer to [6, 14, 37, 61]. Let us also mention the recent progress of Roul-
leau and Urzúa [69] on the geography problem for surfaces, which appeared
after the article [76] on which this chapter is based was written.

This part of the thesis provides three main results on the above construc-
tion problem in the category of smooth complex projective varieties, which is
stronger than allowing arbitrary Kähler manifolds. We present them in the
following three subsections respectively.

2.1.1 The construction problem for weight k Hodge
structures

It follows from Griffiths transversality that a general integral weight k (k ≥ 2)
Hodge structure (not of K3 type) cannot be realized by a smooth complex
projective variety, see [89, Remark 10.20]. This might lead to the expectation
that general weight k Hodge numbers can also not be realized by smooth
complex projective varieties. Our first result shows that this expectation is
wrong. This answers a question in [84].

Theorem 2.1.1. Fix k ≥ 1 and let (hp,q)p+q=k be a symmetric collection of
natural numbers. If k = 2m is even, we assume

hm,m ≥m ⋅ ⌊(m + 3)/2⌋ + ⌊m/2⌋
2
.

Then in each dimension n ≥ k + 1 there exists a smooth complex projective
variety whose Hodge structure of weight k realizes the given Hodge numbers.

The examples which realize given weight k Hodge numbers in the above
theorem have dimension n ≥ k + 1. However, if we assume that the outer
Hodge number hk,0 vanishes and that the remaining Hodge numbers are even,
then we can prove a version of Theorem 2.1.1 also in dimension n = k, see
Corollary 2.5.3 in Section 2.5.

Since any smooth complex projective variety contains a hyperplane class, it
is clear that some kind of bound on hm,m in Theorem 2.1.1 is necessary. For
m = 1, for instance, the bound provided by the above Theorem is h1,1 ≥ 2. In
Section 2.7 we will show that in fact the optimal bound h1,1 ≥ 1 can be reached.
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That is, we will show (Theorem 2.7.1) that any natural numbers h2,0 and h1,1

with h1,1 ≥ 1 can be realised as weight two Hodge numbers of some smooth
complex projective variety. For m ≥ 2, we do not know whether the bound on
hm,m in Theorem 2.1.1 is optimal or not.

2.1.2 The construction problem for the truncated Hodge
diamond

Given Theorem 2.1.1 one is tempted to ask for solutions to the construction
problem for collections of Hodge numbers which do not necessarily correspond
to a single cohomology group. In order to explain our result on this problem,
we introduce the following notion: An n-dimensional formal Hodge diamond
is a table

hn,n

hn,n−1 hn−1,n

hn,n−2 hn−1,n−1 hn−2,n

⋱ ⋮ ⋱

hn,0 h0,n

⋱ ⋮ ⋱

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

(2.4)

of natural numbers hp,q, satisfying the Hodge symmetries (2.2), the Lefschetz
conditions (2.3) and the connectivity condition h0,0 = hn,n = 1. The hp,q are
referred to as Hodge numbers and the sum over all hp,q with p + q = k as k-th
Betti number bk of this formal diamond; the vector (b0, . . . , b2n) is called a
vector of formal Betti numbers. Finally, for p + q ≤ n, the primitive (p, q)-th
Hodge number of the above diamond is defined via

lp,q ∶= hp,q − hp−1,q−1.

Definition 2.1.2. A truncated n-dimensional formal Hodge diamond is a for-
mal Hodge diamond (2.4) as above where the horizontal middle axis, i.e. the
row of Hodge numbers hp,q with p + q = n, is omitted.

We note that for a Kähler manifold X its truncated Hodge diamond together
with all holomorphic Euler characteristics χ(X,Ωp

X), where p = 0, . . . , ⌊n/2⌋, is
equivalent to giving the whole Hodge diamond. It is shown in [48] that a linear
combination of Hodge numbers can be expressed in terms of Chern numbers if
and only if it is a linear combination of these Euler characteristics. Therefore,
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2 On the construction problem for Hodge numbers

the Hodge numbers of the truncated Hodge diamond form a complement to
the space of Hodge numbers which are determined by Chern numbers, cf. [48]
where the Hodge numbers in dimension n are regarded as linear forms on the
weight n part of a certain graded ring.

Our second main result solves the construction problem for the truncated
Hodge diamond under two additional assumptions:

Theorem 2.1.3. Suppose we are given a truncated n-dimensional formal Hodge
diamond whose Hodge numbers hp,q satisfy the following two additional as-
sumptions:

1. For p < n/2, the primitive Hodge numbers lp,p satisfy

lp,p ≥ p ⋅ (n2 − 2n + 5)/4.

2. The outer Hodge numbers hk,0 vanish either for all k = 1, . . . , n − 3, or
for all k ≠ k0 for some k0 ∈ {1, . . . , n − 1}.

Then there exists an n-dimensional smooth complex projective variety whose
truncated Hodge diamond coincides with the given one.

Theorem 2.1.3 has several important consequences. For instance, for the
union of hn−2,0 and hn−1,0 with the collection of all Hodge numbers which nei-
ther lie on the boundary, nor on the horizontal or vertical middle axis of (2.4),
the construction problem is solvable without any additional assumptions. That
is, the corresponding subcollection of any n-dimensional formal Hodge diamond
can be realized by a smooth complex projective variety. The number of Hodge
numbers we omit in this statement from the whole diamond (2.4) grows lin-
early in n, whereas the number of all entries of (2.4) grows quadratically in
n. In this sense, Theorem 2.1.3 yields very good results on the construction
problem in high dimensions.

Theorem 2.1.3 deals with Hodge structures of different weights simultane-
ously. This enables us to extract from it results on the construction problem
for Betti numbers. Indeed, the following corollary rephrases Theorem 2.1.3 in
terms of Betti numbers.

Corollary 2.1.4. Let (b0, . . . , b2n) be a vector of formal Betti numbers with

b2k − b2k−2 ≥ k ⋅ (n
2 − 2n + 5)/8 for all k < n/2.

Then there exists an n-dimensional smooth complex projective variety X with
bk(X) = bk for all k ≠ n.

This corollary says for instance that in even dimensions, the construction
problem for the odd Betti numbers is solvable without any additional assump-
tions.
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2.1 Introduction

2.1.3 Universal inequalities and Kollár–Simpson’s
domination relation

Following Kollár–Simpson [84, p. 9], we say that a Hodge number hr,s dom-
inates hp,q in dimension n, if there exist positive constants λ1, λ2 ∈ R>0 such
that for all n-dimensional smooth complex projective varieties X, the following
holds:

λ1 ⋅ h
r,s(X) + λ2 ≥ h

p,q(X). (2.5)

Moreover, such a domination is called nontrivial if (0,0) ≠ (p, q) ≠ (n,n), and
if (2.5) does not follow from the Hodge symmetries (2.2) and the Lefschetz
conditions (2.3).

In [84] it is speculated that the middle Hodge numbers should probably
dominate the outer ones. In our third main theorem of this part of the thesis,
we classify all nontrivial dominations among Hodge numbers in any given di-
mension. As a result we see that the above speculation is accurate precisely in
dimension two.

Theorem 2.1.5. The Hodge number h1,1 dominates h2,0 nontrivially in di-
mension two and this is the only nontrivial domination in dimension two.
Moreover, there are no nontrivial dominations among Hodge numbers in any
dimension different from two.

Firstly, as an easy consequence of the classification of surfaces and the
Bogomolov–Miyaoka–Yau inequality, we observed in [72] that

h1,1(S) > h2,0(S) (2.6)

holds for all Kähler surfaces S. That is, the middle degree Hodge number h1,1

indeed dominates h2,0 nontrivially in dimension two.
Secondly, in addition to Theorem 2.1.3, the proof of Theorem 2.1.5 will rely

on the following result, see Theorem 2.8.1 in Section 2.8: For all a > b with
a + b ≤ n, there are n-dimensional smooth complex projective varieties whose
primitive Hodge numbers lp,q satisfy la,b >> 0 and lp,q = 0 for all other p > q.

Theorem 2.1.5 deals with universal inequalities of the form (2.5). Apart
from one exception, all such inequalities follow from the Lefschetz conditions.
The exception concerns the nontrivial domination of h2,0 by h1,1 in dimension
two, but Theorem 2.1.5 leaves open the determination of the sharp constants
λ1 and λ2 in that domination. We will use Roulleau–Urzúa’s recent result [69]
on the geography problem for surfaces, to fill this gap, see Corollary 2.9.1.

In Section 2.10 we deduce from the main results of this part of the thesis
further progress on the analogous problem for inequalities in higher dimensions
(Corollaries 2.10.2, 2.10.3 and 2.10.4). For instance, we will see that any
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2 On the construction problem for Hodge numbers

universal inequality among the Hodge numbers of smooth complex projective
varieties which holds in all sufficiently large dimensions at the same time is a
consequence of the Lefschetz conditions.

The problem of determining all universal inequalities among Hodge numbers
of smooth complex projective varieties in a fixed dimension n remains open for
all n ≥ 3.

2.1.4 Some negative results

By(2.6), the constraints which classical Hodge theory puts on the Hodge num-
bers of Kähler manifolds are not complete in dimension two. Indeed, given
weight two Hodge numbers can in general not be realized by a surface – by
Theorem 2.1.1 (resp. Theorem 2.7.1) they can however be realized by higher
dimensional varieties.

In Section 2.11 of this thesis we will prove a similar issue in dimension three:
a threefold with h1,1 = 1 and h3,0 ≥ 2 (such as any complete intersection of
sufficiently high degree in projective space) satisfies

h2,1 ≤ 126 ⋅ h3,0.

Here the bound 126 is certainly not optimal. Moreover, the middle Hodge
number h2,1 is bounded by some multiple of the outer Hodge number h3,0

and not the other way around. Looking at the blow-up of a sufficiently high
degree complete intersection curve in suitable threefolds shows that the above
inequality does not hold for h1,1 ≥ 2.

Further results which demonstrate similar issues in dimensions four can be
found in Section 12 of [76]. These results are already contained in the authors
Part III essay [72] and so they are not inlcuded here. For instance, using
Kollár–Matsusaka’s theorem [50, p. 239] we proved that the third Betti number
b3 of a 4-dimensional Kähler manifold with b2 = 1 is bounded from above in
terms of b4. This cannot be explained with classical Hodge theory, which shows
that even for the Betti numbers of smooth complex projective varieties, the
known constraints are not complete.

2.1.5 Notation and conventions

The natural numbers N ∶= Z≥0 include zero. All Kähler manifolds are compact
and connected, if not mentioned otherwise. A variety is a separated integral
scheme of finite type over C. Using the GAGA principle [79], we usually iden-
tify a smooth projective variety with its corresponding analytic space, which is
a Kähler manifold. If not mentioned otherwise, cohomology means de Rham
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or Betti cohomology with coefficients in C; the cup product on cohomology
will be denoted by ∧.

With a group action G × Y → Y on a variety Y , we always mean a group
action by automorphisms from the left. For any subgroup Γ ⊆ G, the fixed
point set of the induced Γ-action on Y will be denoted by

FixY (Γ) ∶= {y ∈ Y ∣ g(y) = y for all g ∈ Γ} . (2.7)

This fixed point set has a natural scheme structure. If Γ = ⟨φ⟩ is cyclic, then
we will frequently write FixY (Γ) = FixY (φ) for this fixed point set (or scheme).

2.2 Outline of our construction methods

The starting point of our constructions is the observation that there are finite
group actions G × T → T , where T is a product of hyperelliptic curves, such
that the G-invariant cohomology of T is essentially concentrated in a single
(p, q)-type, see Section 2.3.2. In local holomorphic charts, G acts by linear
automorphisms. Thus, by the Chevalley–Shephard–Todd Theorem, T /G is
smooth if and only if G is generated by quasi-reflections, that is, by elements
whose fixed point set is a divisor on T . Unfortunately, it turns out that in
our approach this strong condition can rarely be met. We therefore face the
problem of a possibly highly singular quotient T /G.

One way to deal with this problem is to pass to a smooth model of T /G.
However, only the outer Hodge numbers hk,0 are birational invariants [48].
Therefore, there will be in general only very little relation between the coho-
mology of the smooth model and the G-invariant cohomology of T . Never-
theless, we will find in Section 2.8 examples T /G which admit smooth models
whose cohomology is, apart from (a lot of) additional (p, p)-type classes, in-
deed given by the G-invariants of T . We will overcome technical difficulties by
a general inductive approach which is inspired by work of Cynk–Hulek [17],
see Proposition 2.8.3.

In Theorems 2.1.1 and 2.1.3 we need to construct examples with bounded
hp,p and so the above method does not work anymore. Instead, we will use the
following lemma, known as the Godeaux–Serre construction, cf. [5, 81]:

Lemma 2.2.1. Let G be a finite group whose action on a smooth complex
projective variety Y is free outside a subset of codimension > n. Then Y /G
contains an n-dimensional smooth complex projective subvariety whose coho-
mology below degree n is given by the G-invariant classes of Y .

Proof. A general n-dimensional G-invariant complete intersection subvariety
Z ⊆ Y is smooth by Bertini’s theorem. For a general choice of Z, the G-
action on Z is free and so Z/G is a smooth subvariety of Y /G which by the
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2 On the construction problem for Hodge numbers

Lefschetz hyperplane theorem, applied to Z ⊆ Y , has the property we want in
the Lemma.

Roughly speaking, the construction method which we develop in Section 2.4
(Proposition 2.4.2) and which is needed in Theorems 2.1.1 and 2.1.3 works
now as follows. Instead of a single group action, we will consider a finite
number of finite group actions Gi×Ti → Ti, indexed by i ∈ I. Blowing up all Ti
simultaneously in a large ambient space Y , we are able to construct a smooth
complex projective variety Ỹ which admits an action of the product G =∏i∈I Gi

that is free outside a subset of large codimension and so Lemma 2.2.1 applies.
Moreover, the G-invariant cohomology of Ỹ will be given in terms of the Gi-
invariant cohomology of the Ti. This is a quite powerful method since it allows
us to apply Lemma 2.2.1 to a finite number of group actions simultaneously –
even without assuming that the group actions we started with are free away
from subspaces of large codimension.

2.3 Hyperelliptic curves and group actions

2.3.1 Basics on hyperelliptic curves

In this section, following mostly [82, pp. 214], we recall some basic properties of
hyperelliptic curves, see also [87]. In order to unify our discussion, hyperelliptic
curves of genus 0 and 1 will be P1 and elliptic curves respectively.

For g ≥ 0, let f ∈ C[x] be a degree 2g + 1 polynomial with distinct roots.
Then, a smooth projective model X of the affine curve Y given by

{y2 = f(x)} ⊆ C2

is a hyperelliptic curve of genus g. Although Y is smooth, its projective closure
has for g > 1 a singularity at ∞. The hyperelliptic curveX is therefore explicitly
given by the normalization of this projective closure. It turns out that X is
obtained from Y by adding one additional point at ∞. This additional point
is covered by an affine piece, given by

{v2 = u2g+2 ⋅ f (u−1)} , where x = u−1 and y = v ⋅ u−g−1.

On an appropriate open cover of X, local holomorphic coordinates are given
by x, y, u and v respectively. Moreover, the smooth curve X has genus g and
a basis of H1,0(X) is given by the differential forms

ωi ∶=
xi−1

y
⋅ dx,
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2.3 Hyperelliptic curves and group actions

where i = 1, . . . , g.
Let us now specialize to the situation where f(x) = x2g+1 + 1 and denote

the corresponding hyperelliptic curve of genus g by Cg. It follows from the
explicit description of the two affine pieces of Cg that this curve carries an
automorphism ψg of order 2g + 1 given by

(x, y) � // (ζ ⋅ x, y) and (u, v) � // (ζ−1 ⋅ u, ζg ⋅ v),

where ζ denotes a primitive (2g + 1)-th root of unity. Similarly,

(x, y) � // (x,−y) and (u, v) � // (u,−v),

defines an involution which we denote by multiplication with −1. Moreover, it
follows from the above description of H1,0(Cg) that the ψg-action on H1,0(Cg)
has eigenvalues ζ, . . . , ζg, whereas the involution acts by multiplication with
−1 on H1,0(Cg).

Any smooth curve can be embedded into P3. For the curve Cg, we fix the
explicit embedding which is given by

[1 ∶ x ∶ y ∶ xg+1] = [ug+1 ∶ ug ∶ v ∶ 1].

Obviously, the involution as well as the order (2g + 1)-automorphism ψg of
Cg ⊆ P3 extend to P3 via

[1 ∶ 1 ∶ −1 ∶ 1] and [1 ∶ ζ ∶ 1 ∶ ζg+1]

respectively.

2.3.2 Group actions on products of hyperelliptic curves

Let

T ∶= Ck
g

be the k-fold product of the hyperelliptic curve Cg with automorphism ψg
defined in Section 2.3.1. For a ≥ b with a + b = k, we define for each i = 1,2,3
a subgroup Gi(a, b, g) of Aut(T ) whose elements are called automorphisms of
the i-th kind. The subgroup of automorphisms of the first kind is given by

G1(a, b, g) ∶= {ψj1g ×⋯ × ψja+bg ∣ j1 +⋯ + ja − ja+1 −⋯ − ja+b ≡ 0 mod (2g + 1)} .

In order to define the automorphisms of the second kind, let us consider the
group Sym(a) × Sym(b) × µa+b2 , where µ2 = {1,−1} is the multiplicative group
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2 On the construction problem for Hodge numbers

on two elements. An element (σ, τ, ε), where σ ∈ Sym(a), τ ∈ Sym(b) and
ε = (ε1, . . . , εa+b) is a vector of signs εi ∈ {1,−1}, acts on T via

(x1, . . . , xa, y1, . . . , yb)
� // (ε1 ⋅ xσ(1), . . . , εa ⋅ xσ(a), εa+1 ⋅ yτ(1), . . . , εa+b ⋅ yτ(b)) .

Here, multiplication with −1 means that we apply the involution −1 ∈ Aut(Cg).
We define

G2(a, b, g) ⊆ Sym(a) × Sym(b) × µa+b2

to be the index four subgroup consisting of those elements (σ, τ, ε) which satisfy

sign(σ) ⋅ ε1 ⋅ ⋅ ⋅ ⋅ ⋅ εa = 1 and sign(τ) ⋅ εa+1 ⋅ ⋅ ⋅ ⋅ ⋅ εa+b = 1,

where sign denotes the signum of the corresponding permutation. Via the
above action of Sym(a) × Sym(b) × µa+b2 on T , the group G2(a, b, g) is a finite
subgroup of Aut(T ).

Finally, G3(a, b, g) is trivial, if a ≠ b and if a = b, then it is generated by the
automorphism which interchanges the two factors of T = Ca

g ×C
a
g .

Definition 2.3.1. The group G(a, b, g) is the subgroup of Aut(T ) which is
generated by the union of Gi(a, b, g) for i = 1,2,3.

Automorphisms of different kinds do in general not commute with each other.
However, it is easy to see that each element in G(a, b, g) can be written as a
product φ1 ○ φ2 ○ φ3 such that φi lies in Gi(a, b, g). Therefore, G(a, b, g) is a
finite group which naturally acts on the cohomology of T .

Lemma 2.3.2. If a > b, then the G(a, b, g)-invariant cohomology of T is a
direct sum

V a,b ⊕ V b,a ⊕ (
k

⊕
p=0

V p,p) ,

where V a,b = V b,a is a g-dimensional space of (a, b)-classes and V p,p ≃ V k−p,k−p

is a space of (p, p)-classes of dimension min(p + 1, b + 1), where p ≤ k/2 is
assumed.

Proof. We denote the fundamental class of the j-th factor of T by Ωj ∈H1,1(T ).
Moreover, we pick for j = 1, . . . , k a basis ωj1, . . . , ωjg of (1,0)-classes of the
j-th factor of T in such a way that

ψ∗gωjl = ζ
lωjl

for a fixed (2g + 1)-th root of unity ζ. Then the cohomology ring of T is
generated by the Ωj’s, ωjl’s and their conjugates. Moreover, the involution on
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the j-th curve factor of T acts on ωjl and ωjl by multiplication with −1 and
leaves Ωj invariant.

Suppose that we are given a G(a, b, g)-invariant class which contains the
monomial

Ωi1 ∧⋯ ∧Ωis ∧ ωj1l1 ∧⋯ ∧ ωjrlr ∧ ωjr+1 lr+1 ∧⋯ ∧ ωjt lt (2.8)

nontrivially. Since the product of a (1,0)- and a (0,1)-class of the i-th curve
factor is a multiple of Ωi, and since classes of degree 3 vanish on curves, we
may assume that the indices i1, . . . , is, j1, . . . , jt are pairwise distinct. Therefore,
application of a suitable automorphism of the first kind shows t = 0 if s ≥ 1
and t = a + b if s = 0. In the latter case, suppose that there are indices i1 and
i2 with either i1, i2 ≤ r or i1, i2 > r, such that ji1 ≤ a and ji2 > a holds. Then,
application of a suitable automorphism of the first kind yields li1 + li2 = 0 in
Z/(2g + 1)Z, which contradicts 1 ≤ li ≤ g. This shows

{j1, . . . , jr} = {1, . . . , a} or {j1, . . . , jr} = {a + 1, . . . , a + b} .

By applying suitable automorphisms of the first kind once more, one obtains
l1 = ⋯ = lt. Thus, we have just shown that a G(a, b, g)-invariant class of T is
either a polynomial in the Ωj’s, or a linear combination of

ωl ∶= ω1l ∧⋯ ∧ ωal ∧ ωa+1 l ∧⋯ ∧ ωa+b l, (2.9)

or their conjugates, where l = 1, . . . , g. Note that ωl is of (a, b)-type whereas
any polynomial in the Ωj’s is a sum of (p, p)-type classes. Moreover, by the
definition of G1(a, b, g) and G2(a, b, g), both groups act trivially on ωl and ωl.
Since a > b, the group G3(a, b, g) is trivial and so it follows that each ωl and ωl
is G(a, b, g)-invariant. Therefore, the span of ω1, . . . , ωg yields a g-dimensional

space V a,b of G(a, b, g)-invariant (a, b)-classes. Its conjugate V b,a ∶= V a,b is
spanned by the G(a, b, g)-invariant (b, a)-classes ω1, . . . , ωg.

Next, we define V p,p to consist of all G(a, b, g)-invariant homogeneous degree
p polynomials in Ω1, . . . ,Ωa+b. Application of a suitable automorphism of the
second kind shows that any element Θ in V p,p is a polynomial in the elementary
symmetric polynomials in Ω1, . . . ,Ωa and Ωa+1, . . . ,Ωa+b. By standard facts
about symmetric polynomials, it follows that Θ can be written as a polynomial
in

a

∑
j=1

Ωj
i and

a+b
∑
j=a+1

Ωj
i

for i ≥ 0. Since Ω2
j vanishes for all j, we see that a basis of V p,p is given by the

elements
(Ω1 +⋯ +Ωa)

p−i
∧ (Ωa+1 +⋯ +Ωa+b)

i
,
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where 0 ≤ p − i ≤ a and 0 ≤ i ≤ b. Using a > b, this concludes the Lemma by an
easy counting argument.

Lemma 2.3.3. If a = b, then the G(a, b, g)-invariant cohomology of T is a
direct sum ⊕

k
p=0 V

p,p, where V p,p ≃ V k−p,k−p is a space of (p, p)-classes whose
dimension is given by ⌊p/2⌋ + 1, if p < a, and by ⌊p/2⌋ + g + 1, if p = a.

Proof. We use the same notation as in the proof of Lemma 2.3.2 and put b ∶= a.
Suppose that we are given a G(a, a, g)-invariant cohomology class on T which
contains the monomial (2.8) nontrivial. This monomial is then necessarily
G1(a, a, g)-invariant and the same arguments as in Lemma 2.3.2 show that it
is either a monomial in the Ωj’s, or it coincides with one of the ωl’s and their
conjugates, defined in (2.9).

For each l = 1, . . . , g, the classes ωl and ωl are invariant under the action of
G1(a, a, g) and G2(a, a, g). Moreover, the generator of G3(a, a, g) interchanges
the two factors of T = Ca

g ×C
a
g . Its action on cohomology therefore maps ωl to

(−1)a ⋅ωl. This shows that a linear combination of the ωl’s and their conjugates
is G(a, a, g)-invariant if and only if it is a linear combination of the classes

ωl + (−1)a ⋅ ωl, (2.10)

where l = 1, . . . , g. This yields a g-dimensional space of G(a, a, g)-invariant
(a, a)-classes.

It remains to study which homogeneous polynomials in the Ωj’s areG(a, a, g)-
invariant. As in the proof of Lemma 2.3.2, one shows that any such polynomial
of degree p is necessarily a linear combination of

Ω(p − i, i) ∶= (Ω1 +⋯ +Ωa)
p−i

∧ (Ωa+1 +⋯ +Ω2a)
i
,

where 0 ≤ p − i ≤ a and 0 ≤ i ≤ a. The above monomials are clearly invari-
ant under the action of G1(a, a, g) and G2(a, a, g). Moreover, the generator
of G3(a, a, g) interchanges the two factors of T and hence its action on co-
homology maps Ω(p − i, i) to Ω(i, p − i). We are therefore reduced to linear
combinations of

Ω(i, p − i) +Ω(p − i, i),

where 0 ≤ i ≤ p − i ≤ a. Such linear combinations are certainly G(a, a, g)-
invariant. If p ≤ a, then the condition on the index i means 0 ≤ i ≤ p/2. It
follows that for p ≤ a, the space of those G(a, a, g)-invariant (p, p)-classes which
are given by polynomials in the Ωj’s has dimension ⌊p/2⌋ + 1. Combining this
with our previous observation that the classes in (2.10) span a g-dimensional
space of G(a, a, g)-invariant (a, a)-classes, this concludes the Lemma.

For later applications, we will also need the following:
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Lemma 2.3.4. For all a ≥ b there exists some N > 0 and an embedding of
G(a, b, g) into GL(N + 1) such that a G(a, b, g)-equivariant embedding of Ca+b

g

into PN exists. Moreover, Ca+b
g contains a point which is fixed by G(a, b, g).

Proof. For the first statement, we use the embedding of Cg into P3, constructed
in Section 2.3.1. This yields an embedding of Ca+b

g into (P3)a+b. From the
explicit description of that embedding, it follows that the action of G(a, b, g)
on Ca+b

g extends to an action on (P3)a+b which is given by first multiplying
homogeneous coordinates with some roots of unity and then permuting these
in some way. Using the Segre map, we obtain for some large N an embedding
of G(a, b, g) into GL(N + 1) together with a G(a, b, g)-equivariant embedding

Ca+b
g ↪ PN .

This proves the first statement in the Lemma.
For the second statement, note that the point ∞ of Cg is fixed by both, ψg

as well as the involution. Thus, ∞ yields a point on the diagonal of Ca+b
g which

is fixed by G(a, b, g).

2.4 Group actions on blown-up spaces

2.4.1 Cohomology of blow-ups

Let Y be a Kähler manifold, T a submanifold of codimension r and let

π ∶ Ỹ ∶= BlT (Y ) //Y

be the blow-up of Y along T . Then the exceptional divisor j ∶ E ↪ Ỹ of this
blow-up is a projective bundle of rank r − 1 over T and we denote the dual of
the tautological line bundle on E by OE(1). Then the Hodge structure on Ỹ
is given by the following theorem, see [89, p. 180].

Theorem 2.4.1. We have an isomorphism of Hodge structures

Hk(Y,Z)⊕ (
r−2

⊕
i=0

Hk−2i−2(T,Z)) //Hk (Ỹ ,Z) ,

where on Hk−2i−2(T,Z), the natural Hodge structure is shifted by (i + 1, i + 1).
On Hk(Y,Z), the above morphism is given by π∗ whereas on Hk−2i−2(T,Z) it is
given by j∗○hi○π∣∗E, where h denotes the cup product with c1(OE(1)) ∈H2(E,Z)

and j∗ is the Gysin morphism of the inclusion j ∶ E ↪ Ỹ .
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We will need the following property of the ring structure of H∗(Ỹ ,Z). Note
that the first Chern class of OE(1) coincides with the pullback of

−[E] ∈H2(Ỹ ,Z)

to E. For a class α ∈Hk−2i−2(T,Z), this implies:

(j∗ ○ h
i ○ π∣∗E)(α) = j∗(j

∗(−[E])i ∧ π∣∗E(α)) = (−[E])i ∧ j∗(π∣
∗
E(α)), (2.11)

where we used the projection formula.

2.4.2 Key construction

Let I be a finite nonempty set, and let i0 ∈ I. Suppose that for each i ∈ I, we
are given a representation

Gi → GL(Vi)

of a finite group Gi on a finite dimensional complex vector space Vi. Further,
assume that the induced Gi-action on P(Vi) restricts to an action on a smooth
subvariety Ti ⊆ P(Vi) and that there is a point pi0 ∈ Ti0 which is fixed by Gi0 .
Then we have the following key result.

Proposition 2.4.2. For any n > 0, there exists some complex vector space
V and pairwise disjoint embeddings of Ti into Y ∶= Ti0 × P(V ), such that the
blow-up Ỹ of Y along all Ti with i ≠ i0 inherits an action of G ∶= ∏i∈I Gi

which is free outside a subset of codimension > n. Moreover, Ỹ /G contains an
n-dimensional smooth complex projective subvariety X whose primitive Hodge
numbers are, for all p + q < n, given by

lp,q(X) = dim (Hp,q(Ti0)
Gi0) +∑

i≠i0
dim (Hp−1,q−1(Ti)

Gi) .

Proof. The product
G ∶=∏

i∈I
Gi

acts naturally on the direct sum ⊕i∈I Vi. We pick some k >> 0. Then

V ∶= (⊕
i∈I
Vi)⊕ (⊕

g∈G
g ⋅Ck)

inherits a linear G-action where h ∈ G acts on the second factor by sending
g ⋅Ck canonically to (h ⋅ g) ⋅Ck. Then we obtain G-equivariant inclusions

Ti ↪ P(Vi)↪ P(V ),
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where for j ≠ i, the group Gj acts via the identity on Ti and P(Vi). The product

Y ∶= Ti0 × P(V )

inherits a G-action via the diagonal, where for i ≠ i0 elements of Gi act trivially
on Ti0 .

Using the base point pi0 ∈ Ti0 , we obtain for all i ∈ I disjoint inclusions

Ti ↪ Y,

and we denote the blow-up of Y along the union of all Ti with i ≠ i0 by Ỹ .
Since pi0 ∈ Ti0 is fixed by G, the G-action maps each Ti to itself and hence lifts
to Ỹ .

We want to prove that the G-action on Ỹ is free outside a subset of codimen-
sion > n. For k large enough, the G-action on Y certainly has this property.
Hence, it suffices to check that the induced G-action on the exceptional divisor
Ej above Tj ⊆ Y is free outside a subset of codimension > n.

For ∣I ∣ = 1, this condition is empty. For ∣I ∣ ≥ 2, we fix an index j ∈ I with
j ≠ i0. Then it suffices to show that for a given nontrivial element φ ∈ G the
fixed point set FixEj(φ) has codimension > n in Ej. If tj ∈ Tj is not fixed by
φ, then the fiber of Ej → Tj above tj is moved by φ and hence disjoint from
FixEj(φ). Conversely, if tj is fixed by φ, then φ acts on the normal space

NTj ,tj = TY,tj/TTj ,tj

via a linear automorphism and the projectivization of this vector space is the
fiber of Ej → Tj above tj. The tangent space TY,tj equals

TTi0 ,pi0 ⊕ (L∗ ⊗ (V /L)) ,

where L is the line in V which corresponds to the image of tj under the pro-
jection Y → P(V ). Since φ ≠ id, it follows for large k that the fixed point set
of φ on the fiber of Ej above tj has codimension > n. Hence, FixEj(φ) has
codimension > n in Ej, as we want.

As we have just shown, the G-action on Ỹ is free outside a subset of codimen-
sion > n. Hence, by Lemma 2.2.1, the quotient Ỹ /G contains an n-dimensional
smooth complex projective subvariety X whose cohomology below the middle
degree is given by the G-invariants of Ỹ . In order to calculate the dimension
of the latter, we first note that for all i ∈ I, the divisor Ei on Ỹ is preserved by
G. Since OEi(−1) is given by the restriction of OỸ (Ei) to Ei, it follows that
c1(OEi(1)) is G-invariant. For p+ q < n, the primitive (p, q)-th Hodge number
of X is by Theorem 2.4.1 therefore given by:

lp,q(X) = dim(Hp,q(Y )G) − dim(Hp−1,q−1(Y )G) +∑
i≠i0

dim (Hp−1,q−1(Ti)
Gi) ,
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where H∗(−)G denotes G-invariant cohomology. Since any automorphism of
projective space acts trivially on its cohomology, the Künneth formula implies

dim(Hp,q(Y )G) − dim(Hp−1,q−1(Y )G) = dim (Hp,q(Ti0)
Gi0) .

This finishes the proof of Proposition 2.4.2.

2.5 Proof of Theorem 2.1.1

Proof of Theorem 2.1.1. Fix k ≥ 1 and let (hp,q)p+q=k be a symmetric collection
of natural numbers. In the case where k = 2m is even, we additionally assume

hm,m ≥m ⋅ (m − ⌊
m

2
⌋ + 1) + ⌊

m

2
⌋

2

.

Then we want to construct for n > k an n-dimensional smooth complex pro-
jective variety X with the above Hodge numbers on Hk(X,C).

Let us consider the index set I ∶= {0, . . . , ⌊(k − 1)/2⌋} and put i0 ∶= 0. Then,
for all i ∈ I, we consider the (k − 2i)-fold product

Ti ∶= (Chk−i,i)
k−2i

,

where Chk−i,i denotes the hyperelliptic curve of genus hk−i,i, defined in Section
2.3.1. On Ti we consider the action of

Gi ∶= G(k − 2i ,0 , hk−i,i),

defined in Section 2.3.2.
By Lemma 2.3.4, we may apply the construction method of Section 2.4.2

to the set of data (Ti,Gi, I, i0). Thus, by Proposition 2.4.2, there exists an
n-dimensional smooth complex projective variety X whose primitive Hodge
numbers are for p + q < n given by

lp,q(X) = dim (Hp,q(Ti0)
Gi0) +∑

i≠i0
dim (Hp−1,q−1(Ti)

Gi) .

Lemma 2.3.2 says that for p > q, the only Gi-invariant (p, q)-classes on Ti are
of type (k − 2i,0). Therefore, lp,q(X) vanishes for p > q and p+ q < n in all but
the following cases:

lk,0(X) = dim (Hk,0(Ti0)
Gi0) = hk,0,

and
lk−2i+1,1(X) = dim (Hk−2i,0(Ti)

Gi) = hk−i,i,
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2.5 Proof of Theorem 2.1.1

for all 1 ≤ i < k/2. Using the formula

hk−i,i(X) =
i

∑
s=0

lk−i−s,i−s(X),

we deduce for 0 ≤ i < k/2:
hk−i,i(X) = hk−i,i.

Thus, if k is odd, then the Hodge symmetries imply that the Hodge structure
on Hk(X,C) has Hodge numbers (hk,0, . . . , h0,k).

We are left with the case where k = 2m is even. Since blowing-up a point
increases hm,m by one and leaves hp,q with p ≠ q unchanged, it suffices to prove

hm,m(X) =m ⋅ (m − ⌊
m

2
⌋ + 1) + ⌊

m

2
⌋

2

.

As we have seen:

hm,m(X) =
m

∑
s=0

ls,s(X) (2.12)

=
m

∑
s=0

⎛

⎝
dim (Hs,s(T0)

G0) + ∑
0<i<k/2

dim (Hs−1,s−1(Ti)
Gi)

⎞

⎠
. (2.13)

By Lemma 2.3.2, we have dim (Hs,s(Ti)Gi) = 1 for all 0 ≤ s ≤ 2 ⋅dim(Ti) and so

hm,m(X) =m + 1 +
m−1

∑
s=0

∑
0<i<k/2

dim (Hs,s(Ti)
Gi) .

Since Ti has dimension 2(m − i), we see that

m−1

∑
s=0

dim (Hs,s(Ti)
Gi) =

⎧⎪⎪
⎨
⎪⎪⎩

m, if 2(m − i) >m − 1,

2(m − i) + 1, if 2(m − i) ≤m − 1.

Hence

hm,m(X) =m + 1 +
⌊m/2⌋
∑
i=1

m +
m−1

∑
i=⌊m/2⌋+1

(2(m − i) + 1),

and it is straightforward to check that this simplifies to

hm,m(X) =m ⋅ ⌊(m + 3)/2⌋ + ⌊m/2⌋
2
.

This finishes the proof of Theorem 2.1.1.

The examples constructed above have the following consequence.
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Corollary 2.5.1. Let (hk,0, . . . , h0,k) be a symmetric collection of natural num-
bers. Then there is a smooth complex projective variety X of dimension n ≥ k+1
and a rational sub-Hodge structure V ⊆Hk(X,Q) with

hk−i,i(VC) = h
k−i,i

for all i.

Proof. If k is odd, we take the n-dimensional example X from Theorem 2.1.1
and put V =Hk(X,Q).

If k = 2m is even, then we replace the given hm,m by a sufficiently high
number hm,m + l such that Theorem 2.1.1 yields a n-dimensional example X
with these weight k Hodge numbers. In order to find the rational sub-Hodge
structure V ⊆ Hk(X,Q) we are looking for, it suffices to prove that there is a
Tate-type sub-Hodge structure

W ⊆H2m(X,Q)

of dimension l; V is then given by the orthogonal complement V ∶=W �.
In order to prove the existence of W , it suffices to see that Hm,m(X) is gen-

erated by algebraic classes. Up to the classes introduced by blow-ups of points,
Hm,m(X) is by (2.13) generated by the images of Hs,s(T0)

G0 and Hs−1,s−1(Ti)Gi

under certain algebraic correspondences. By Lemma 2.3.2, Hs,s(T0)
G0 and

Hs−1,s−1(Ti)Gi are one-dimensional, generated by the power of a G0- respec-
tively Gi-invariant ample class. This concludes Corollary 2.5.1.

Remark 2.5.2. Corollary 2.5.1 is not stated in [76]. We mention it here
because it is the main result of Arapura’s paper [3], which was written after
the preprint version of [76] appeared on the arXiv.

In Theorem 2.1.1 we have only dealt with Hodge structures below the middle
degree. Under stronger assumptions, the following corollary of Theorem 2.1.1
deals with Hodge structures in the middle degree. We will use this corollary
in the proof of Theorem 2.1.5 in Section 2.9.

Corollary 2.5.3. Let (hn,0, . . . , h0,n) be a symmetric collection of even natural
numbers such that hn,0 = 0. If n = 2m is even, then we additionally assume

hm,m ≥ 2 ⋅ (m − 1) ⋅ ⌊(m + 2)/2⌋ + 2 ⋅ ⌊(m − 1)/2⌋
2
.

Then there exists an n-dimensional smooth complex projective variety X whose
Hodge structure of weight n realizes the given Hodge numbers.

48



2.6 Proof of Theorem 2.1.3

Proof. For n = 1 we may put X = P1 and for n = 2 the blow-up of P2 in h1,1 − 1
points does the job. It remains to deal with n ≥ 3. Here, by Theorem 2.1.1
there exists an (n−1)-dimensional smooth complex projective variety Y whose
Hodge decomposition on Hn−2(Y,C) has Hodge numbers

(
1

2
⋅ hn−1,1, . . . ,

1

2
⋅ h1,n−1).

By the Künneth formula, the product X ∶= Y × P1 has Hodge numbers

hp,q(X) = hp,q(Y ) + hp−1,q−1(Y ).

Using the Hodge symmetries on Y , Corollary 2.5.3 follows.

2.6 Proof of Theorem 2.1.3

In this section we prove Theorem 2.1.3; we will follow the same lines as in the
proof of Theorem 2.1.1 in Section 2.5.

Proof of Theorem 2.1.3. Given a truncated n-dimensional formal Hodge dia-
mond whose Hodge numbers (resp. primitive Hodge numbers) are denoted by
hp,q (resp. lp,q). Suppose that one of the following two additional conditions
holds:

(C1) The number hk,0 vanishes for all k ≠ k0 for some k0 ∈ {1, . . . , n − 1}.

(C2) The number hk,0 vanishes for all k = 1, . . . , n − 3.

We will construct universal constants C(p, n) such that under the additional
assumption lp,p ≥ C(p, n) for all 1 ≤ p < n/2, an n-dimensional smooth complex
projective variety X with the given truncated Hodge diamond exists. Then
Theorem 2.1.3 follows as soon as we have shown C(p, n) ≤ p ⋅ (n2 − 2n + 5)/4.

Since blowing-up a point on X increases the primitive Hodge number l1,1(X)

by one and leaves the remaining primitive Hodge numbers unchanged, it suf-
fices to deal with the case where l1,1 = C(1, n) is minimal.

To explain our construction, let us for each r ≥ s > 0 with 2 < r + s < n
consider the (r + s − 2)-fold product

Tr,s ∶= (Clr,s)
r+s−2

,

where Clr,s is the hyperelliptic curve of genus lr,s, constructed in Section 2.3.1.
On Tr,s we consider the group action of

Gr,s ∶= G(r − 1, s − 1, lr,s),
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defined in Section 2.3.2.
At this point we need to distinguish between the above cases (C1) and (C2).

We begin with (C1) and consider the index set

I ∶= {(r, s) ∶ r ≥ s > 0, n > r + s > 2} ∪ {i0} ,

and put
Ti0 ∶= (Clk0,0)

k0 and Gi0 ∶= G(k0,0, l
k0,0).

By Lemma 2.3.4, we may apply the construction method of Section 2.4.2 to
the set of data (Ti,Gi, I, i0). Thus, Proposition 2.4.2 yields an n-dimensional
smooth complex projective variety X whose primitive Hodge numbers lp,q(X)

with p + q < n are given by

lp,q(X) = dim (Hp,q(Ti0)
Gi0) + ∑

(r,s)∈I∖{i0}
dim (Hp−1,q−1(Tr,s)

Gr,s) . (2.14)

If p > q, then Lemmas 2.3.2 and 2.3.3 say that

dim (Hp−1,q−1(Tr,s)
Gr,s) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if (r, s) ≠ (p, q),

lp,q if (r, s) = (p, q).
(2.15)

Moreover,

dim (Hp,q(Ti0)
Gi0) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if (k0,0) ≠ (p, q),

lp,q if (k0,0) = (p, q).
(2.16)

In (2.14), the summation condition (r, s) ∈ I ∖ {i0} means r ≥ s > 0 and
n > r + s > 2. It therefore follows from (2.15) and (2.16) that lp,q(X) = lp,q

holds for all p > q with p+ q < n. By the Hodge symmetries on X, lp,q(X) = lp,q

then follows for all p ≠ q with p + q < n.
Next, for p = q, one extracts from (2.14) an explicit formula of the form

lp,p(X) = lp,p +C1(p, n),

where C1(p, n) is a constant which only depends on p and n. Replacing lp,p

by lp,p − C1(p, n) in the above argument then shows that in case (C1), an n-
dimensional smooth complex projective variety with the given truncated Hodge
diamond exists as long as

lp,p ≥ C1(p, n)

holds for all 1 ≤ p < n/2.
In order to find a rough estimation for C1(p, n), we deduce from Lemmas

2.3.2 and 2.3.3 the following inequalities

dim (Hp,p(Ti0)
Gi0) ≤ 1 for all p,
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2.6 Proof of Theorem 2.1.3

and

dim (Hp−1,p−1(Tr,s)
Gr,s) ≤

⎧⎪⎪
⎨
⎪⎪⎩

p if (r, s) ≠ (p, p),

p + lp,p if (r, s) = (p, p).

Using these estimates, (2.14) gives

C1(p, n) ≤ 1 + ∑
r≥s>0
n>r+s>2

p, (2.17)

where we used that (r, s) ∈ I ∖ {i0} is equivalent to r ≥ s > 0 and n > r + s > 2.
If we write ⌊x⌋ for the floor function of x, then (2.17) gives explicitly:

C1(p, n) ≤ p ⋅ n ⋅ ⌊
n − 1

2
⌋ − p ⋅ ⌊

n − 1

2
⌋ ⋅ (⌊

n − 1

2
⌋ + 1) .

If n is odd, then the above right-hand-side equals p ⋅(n−1)2/4 and if n is even,
then it is given by p ⋅ n(n − 2)/4. Hence,

C1(p, n) ≤ p ⋅ (n − 1)2/4.

Let us now turn to case (C2). Here we consider the same index set I as
above, and for all i ≠ i0 we also define Ti and Gi as above. However, for i = i0,
we put

Ti0 ∶= (Cln−1,0)
n−1

× (Cln−2,0)
n−2

and
Gi0 ∶= G(n − 1,0, ln−1,0) ×G(n − 2,0, ln−2,0).

By Lemma 2.3.4, there exist integers N1 and N2 such that Gi0 admits an
embedding into GL(N1+1)×GL(N2+1) in such a way that an Gi0-equivariant
embedding of Ti0 into PN1 × PN2 exists. Using the Segre map, we obtain for
N > 0 an embedding of Gi0 into GL(N + 1) and an Gi0-equivariant embedding
of Ti0 into PN . Moreover, by Lemma 2.3.4, Ti0 contains a point pi0 which is
fixed by Gi0 . Hence, the construction method of Section 2.4.2 can be applied
to the above set of data. Therefore, Proposition 2.4.2 yields an n-dimensional
smooth complex projective variety X whose primitive Hodge numbers lp,q(X)

are given by formula (2.14).
For p > q and p+q < n, the Gi0-invariant cohomology of Ti0 is trivial whenever

(p, q) is different from (n− 2,0) and (n− 1,0). Moreover, for (p, q) = (n− 1,0)
it has dimension ln−1,0 and for (p, q) = (n − 2,0) its dimension equals ln−2,0.
Thus, (2.14) and the Hodge symmetries on X yield lp,q(X) = lp,q for all p ≠ q
with p + q < n. Moreover, as in case (C1), we obtain

lp,p(X) = lp,p +C2(p, n),
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where C2(p, n) is a constant in p and n which can be estimated by

C2(p, n) ≤ p + 1 + ∑
r≥s>0
n>r+s>2

p,

where we used that Hp,p(Ti0)
Gi0 has dimension p + 1. Our estimation for

C1(p, n) shows

C2(p, n) ≤ p ⋅ (n − 1)2/4 + p.

Then, for lp,p ≥ C2(p, n), we may replace lp,p by lp,p − C2(p, n) in the above
argument and obtain an n-dimensional smooth complex projective variety with
the given truncated Hodge diamond.

Let us now define

C(p, n) ∶= max (C1(p, n),C2(p, n)) . (2.18)

Then in both cases, (C1) and (C2), a variety with the desired truncated Hodge
diamond exists if lp,p ≥ C(p, n). Moreover, C(p, n) can roughly be estimated
by

C(p, n) ≤ p ⋅
n2 − 2n + 5

4
.

This finishes the proof of Theorem 2.1.3.

Remark 2.6.1. As we have seen in the above proof, we may replace the given
lower bound on lp,p in assumption 1 of Theorem 2.1.3 by the smaller constant
C(p, n), defined in (2.18).

2.7 Special weight 2 Hodge structures

In this section we show that for weight two Hodge structures, the lower bound
h1,1 ≥ 2 in Theorem 2.1.1 can be replaced by the optimal lower bound h1,1 ≥ 1.
Our proof uses an ad hoc implementation of the Godeaux-Serre construction.
The examples we construct here compare nicely to the results in Section 2.11.
However, since the methods of this section are not used elsewhere in this thesis,
the reader can easily skip this section.

Theorem 2.7.1. Let h2,0 and h1,1 be natural numbers with h1,1 ≥ 1. Then in
each dimension ≥ 3 there exists a smooth complex projective variety X with

h2,0(X) = h2,0 and h1,1(X) = h1,1.
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Proof. Since blowing-up a point increases h1,1 by one and leaves h2,0 un-
changed, in order to prove Theorem 2.7.1, it suffices to construct for given g in
each dimension n > 2 a smooth complex projective variety X with h2,0(X) = g
and h1,1(X) = 1.

We fix some large integers N1 and N2 and consider T ∶= C2
g together with

the subgroups G1(2,0, g) and G2(2,0, g) of Aut(T ), defined in Section 2.3.2.
For j = 1, . . . ,N1, we denote a copy of TN2 by Aj and we put

A ∶= A1 ×⋯ ×AN1 .

That is, A is a (2 ⋅N1 ⋅N2)-fold product of Cg, but we prefer to think of A to
be an N1-fold product of TN2 , where the j-th factor is denoted by Aj.

Next, we explain the construction of a certain subgroup G of automorphisms
of A. This group is generated by five finite subgroups G1, . . . ,G5 in Aut(A).
The first subgroup of Aut(A) is given by

G1 ∶= G
1(2,0, g)×N1 ,

where G1(2,0, g) acts on each Aj via the diagonal action. The second one is

G2 ∶= G
1(2,0, g)×N2 ,

acting on A via the diagonal action. The third one is given by

G3 ∶= G
2(2,0, g),

acting on each Aj as well as on A via the diagonal action. The fourth group
of automorphisms of A equals

G4 ∶= Sym(N1),

which acts on A via permutation of the Aj’s. Finally, we put

G5 ∶= Sym(N2),

which permutes the T -factors of each Aj and acts on A via the diagonal action.
Suppose we are given some elements φi ∈ Gi. Then, φ3 commutes with φ4 and

φ5, and φ3 ○φ1 = φ′1 ○φ3, respectively φ1 ○φ3 = φ3 ○φ′′1 as well as φ3 ○φ2 = φ′2 ○φ3,
respectively φ2 ○ φ3 = φ3 ○ φ′′2 holds for some φ′i, φ

′′
i ∈ Gi, where i = 1,2. Similar

relations can be checked for all products φi ○ φj and so we conclude that each
element φ in the group G ⊆ Aut(A), which is generated by G1, . . . ,G5, can be
written in the form

φ = φ1 ○ φ2 ○ φ3 ○ φ4 ○ φ5,
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where φi lies in Gi.
Suppose that the fixed point set FixA(φ) contains an irreducible component

whose codimension is less than

min (N1/2,2N2) .

Since φ is just some permutation of the 2N1N2 curve factors of A, followed by
automorphisms of each factor, we deduce that φ needs to fix more than

2N1N2 −min(N1,4N2)

curve factors. If φ4 were nontrivial, then φ would fix at most 2(N1 − 2)N2

curve factors, and if φ5 were nontrivial, then φ would fix at most 2N1(N2 − 2)
curve factors. Thus, φ4 = φ5 = id. If φ3 were nontrivial, then its action on a
single factor T = C2

g cannot permute the two curve factors. Thus, φ3 is just
multiplication with −1 on each curve factor. This cannot be canceled with
automorphisms in G1(2,0, g), since the latter is a cyclic group of order 2g + 1.
Therefore, φ3 = id follows as well.

Since φ fixes more than 2N1N2 −N1 curve factors, we see that φ = φ1 ○ φ2

needs to be the identity on at least one Aj0 . Since φ2 acts on each Aj in
the same way, it lies in G1 ∩G2 and so we may assume φ2 = id. Finally, any
nontrivial automorphism in G1 has a fixed point set of codimension ≥ 2N2.
This is a contradiction.

For N1 and N2 large enough, it follows that the G-action on A is free outside
a subset of codimension > n. Then, by Lemma 2.2.1, A/G contains a smooth
n-dimensional subvariety X whose cohomology below degree n is given by the
G-invariants of A.

To conclude Theorem 2.7.1, it remains to show h2,0(X) = g and h1,1(X) = 1.
For this purpose, we denote the fundamental class of the j-th curve factor of
A by

Ωj ∈H
1,1(A).

Moreover, we pick for j = 1, . . . ,2N1N2 a basis ωj1, . . . , ωjg of (1,0)-classes of
the j-th curve factor of A in such a way that

ψ∗gωjl = ζ
lωjl,

for a fixed (2g + 1)-th root of unity ζ holds. Then the cohomology ring of A is
generated by the Ωj’s, ωjl’s and their conjugates.

Suppose that we are given a G-invariant (1,1)-class which contains ωis ∧ωjr
nontrivially. Then application of a suitable automorphism in G1 shows that
after relabeling A1, . . . ,AN1 , we may assume 1 ≤ i, j ≤ 2N2. Moreover, it follows
that i and j have the same parity, since otherwise r + s is zero modulo 2g + 1,
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which contradicts 1 ≤ r, s ≤ g. Finally, application of a suitable element in G2

shows i = j. Since ωis ∧ ωir is a multiple of Ωi, it follows that our G-invariant
(1,1)-class is of the form

λ1 ⋅Ω1 +⋯ + λ2N1N2 ⋅Ω2N1N2 .

Since G acts transitively on the curve factors of A, this class is G-invariant if
and only if λ1 = ⋯ = λ2N1N2 . This proves h1,1(X) = 1.

It remains to show h2,0(X) = g. Therefore, we define for l = 1, . . . , g the
(2,0)-class

ωl ∶=
N1N2

∑
i=1

ω2i−1 l ∧ ω2i l

and claim that these form a basis of the G-invariant (2,0)-classes of A. Clearly,
they are linearly independent and it is easy to see that they are G-invariant.

Conversely, suppose that a G-invariant class contains ωil1 ∧ωjl2 nontrivially.
Then, application of a suitable element in G1 shows that l1 ± l2 is zero modulo
2g + 1. This implies l1 = l2. Therefore, our G-invariant (2,0)-class is of the
form

∑
ijl

λijl ⋅ ωil ∧ ωjl.

For fixed l = 1, . . . , g, we write λij = λijl and note that

∑
ij

λij ⋅ ωil ∧ ωjl

is also G-invariant. We want to show that this class is a multiple of ωl. To
that end we apply suitable elements of G1 to see that the above (2,0)-class is
a sum of (2,0)-classes of the factors A1, . . . ,AN1 . Since this sum is invariant
under the permutation of the factors A1, . . . ,AN1 , it suffices to consider the
class

2N2

∑
i,j=1

λij ⋅ ωil ∧ ωjl

on A1, which is invariant under the induced G2- and G5-action on A1. In this
sum we may assume λij = 0 for all i ≥ j and application of a suitable element
in G2 shows that the above class is given by

N2

∑
i=1

λ2i−1 2i ⋅ ω2i−1 l ∧ ω2i l.

Finally, application of elements of G5 proves that our class is a multiple of

N2

∑
i=1

ω2i−1 l ∧ ω2i l.
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2 On the construction problem for Hodge numbers

This finishes the proof of h2,0(X) = g and thereby establishes Theorem 2.7.1.

Remark 2.7.2. The above construction does not generalize to higher degrees
– at least not in the obvious way.

2.8 Primitive Hodge numbers away from the
vertical middle axis

In this section we produce examples whose primitive Hodge numbers away
from the vertical middle axis of the Hodge diamond (2.4) are concentrated in
a single (p, q)-type. These examples will then be used in the proof of Theorem
2.1.5 in Section 2.9. Our precise result is as follows:

Theorem 2.8.1. For a > b ≥ 0, n ≥ a + b and c ≥ 1, there exists an n-
dimensional smooth complex projective variety whose primitive (p, q)-type co-
homology has dimension (3c−1)/2 if p = a and q = b, and vanishes for all other
p > q.

In comparison with Theorem 2.1.3, the advantage of Theorem 2.8.1 is that it
also controls the Hodge numbers hp,q with p ≠ q and p + q = n. These numbers
lie in the horizontal middle row of the Hodge diamond (2.4) and so they were
excluded in the statement of Theorem 2.1.3.

Using an iterated resolution of (Z/3Z)-quotient singularities whose local de-
scription is given in Section 2.8.1, we explain an inductive construction method
in Section 2.8.2. Using this construction, Theorem 2.8.1 will easily follow in
Section 2.8.3. Our approach is inspired by Cynk–Hulek’s construction of rigid
Calabi-Yau manifolds [17].

2.8.1 Local resolution of Z/3Z-quotient singularities

Fix a primitive third root of unity ξ and choose affine coordinates (x1, . . . , xn)
on Cn. For an open ball Y ⊆ Cn centered at 0 and for some r ≥ 0, we consider
the automorphism φ ∶ Y → Y given by

(x1, . . . , xn)
� // (ξ ⋅ x1, . . . , ξ ⋅ xr, ξ

2 ⋅ xr+1, . . . , ξ
2 ⋅ xn).

Let Y ′ be the blow-up of Y in the origin with exceptional divisor E′ ⊆ Y ′. Then
φ lifts to an automorphism φ′ ∈ Aut(Y ′) and we define Y ′′ to be the blow-up
of Y ′ along FixY ′(φ′). The exceptional divisor of this blow-up is denoted by
E′′ ⊆ Y ′′ and φ′ lifts to an automorphism φ′′ ∈ Aut(Y ′′). In this situation, we
have the following lemma.
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2.8 Primitive Hodge numbers away from the vertical middle axis

Lemma 2.8.2. The fixed point set of φ′′ on Y ′′ equals E′′. Moreover:

1. If r = 0 or r = n, then E′′ ≃ E′ ≃ Pn−1. Otherwise, E′ ≃ Pn−1 and E′′ is a
disjoint union of Pr−1 × Pn−r and Pr × Pn−r−1.

2. The quotient Y ′′/φ′′ is smooth and admits local holomorphic coordinates
(z1, . . . , zn) where each zj comes from a φ-invariant meromorphic func-
tion on Y , explicitly given by a quotient of two monomials in x1, . . . , xn.

Proof. This Lemma is proven by a calculation, similar to that in [41, pp. 84-87],
where the case n = 2 is carried out.

The automorphism φ′ acts on the exceptional divisor E′ ≃ Pn−1 of Y ′ → Y
as follows:

[x1 ∶ ⋅ ⋅ ⋅ ∶ xn]
� // [ξ ⋅ x1 ∶ ⋅ ⋅ ⋅ ∶ ξ ⋅ xr ∶ ξ

2 ⋅ xr+1 ∶ ⋅ ⋅ ⋅ ∶ ξ
2 ⋅ xn].

Hence, if r = 0 or r = n, then FixY ′(φ′) equals E′. Since this is a smooth
divisor on Y ′, the blow-up Y ′′ → Y ′ is an isomorphism and the quotient Y ′′/φ′′

is smooth. Moreover, E′ ≃ E′′ is covered by n charts U1, . . . , Un such that on
Ui, coordinates are given by

(
x1

xi
, . . . ,

xi−1

xi
, xi,

xi+1

xi
, . . . ,

xn
xi

) . (2.19)

The quotient Y ′′/φ′′ is then covered by U1/φ′′, . . . , Un/φ′′. Coordinate functions
on Ui/φ′′ are given by the following φ-invariant rational functions on Y :

(
x1

xi
, . . . ,

xi−1

xi
, x3

i ,
xi+1

xi
, . . . ,

xn
xi

) .

This proves the Lemma for r = 0 or r = n.

If 0 < r < n, then FixY ′(φ′) equals the disjoint union of E′
1 ≃ Pr−1 and

E′
2 ≃ Pn−r−1, sitting inside E′. The exceptional divisor E′ is still covered by the

n-charts U1, . . . , Un, defined above. Moreover, the charts U1, . . . , Ur cover E′
1

and Ur+1, . . . , Un cover E′
2. Fix a chart Ui with coordinate functions (z1, . . . , zn).

If i ≤ r, then φ′ acts on r − 1 of these coordinates by the identity and on the
remaining coordinates by multiplication with ξ. Conversely, if i > r, then φ′

acts on n− r − 1 coordinates by the identity and on the remaining coordinates
by multiplication with ξ2. We are therefore in the situation discussed in the
previous paragraph and the Lemma follows by an application of that result in
dimension n − r + 1 and r + 1 respectively.
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2.8.2 Inductive approach

In this section we explain a general construction method which will allow us
to prove Theorem 2.8.1 by induction on the dimension in Section 2.8.3.

For natural numbers a ≠ b and c ≥ 0, let Sa,bc denote the family of pairs (X,φ),
consisting of a smooth complex projective variety X of dimension a+ b and an
automorphism φ ∈ Aut(X) of order 3c, such that properties (P1)–(P5) below
hold. Here, ζ denotes a fixed primitive 3c-th root of unity and g ∶= (3c − 1)/2:

(P1) The Hodge numbers hp,q of X are given by ha,b = hb,a = g and hp,q = 0 for
all other p ≠ q.

(P2) The action of φ on Ha,b(X) has eigenvalues ζ, . . . , ζg.

(P3) The group Hp,p(X) is for all p ≥ 0 generated by algebraic classes which
are fixed by the action of φ.

(P4) The set FixX (φ3c−1) can be covered by local holomorphic charts such that
φ acts on each coordinate function by multiplication with some power of
ζ.

(P5) For 0 ≤ l ≤ c − 1, the cohomology of FixX (φ3l) is generated by algebraic
classes which are fixed by the action of φ.

For 0 ≤ l ≤ c − 1, we have obvious inclusions

FixX (φ3l) ⊆ FixX (φ3c−1) .

It therefore follows from (P4) that FixX (φ3l) can be covered by local holo-

morphic coordinates on which φ3l acts by multiplication with some power of
ζ3l . In particular, FixX (φ3l) is smooth for all 0 ≤ l ≤ c − 1; its cohomology is
of (p, p)-type, since it is generated by algebraic classes by (P5). We also re-
mark that condition (P3) implies that each variety in Sa,bc satisfies the Hodge
conjecture. Finally, note that (X,φ) ∈ Sa,bc is equivalent to (X,φ−1) ∈ S

b,a
c .

The inductive approach to Theorem 2.8.1 is now given by the following.

Proposition 2.8.3. Let (X1, φ−1
1 ) ∈ S

a1,b1
c and (X2, φ2) ∈ S

a2,b2
c . Then

(X1 ×X2) / ⟨φ1 × φ2⟩

admits a smooth model X such that the automorphism id×φ2 on X1 ×X2 in-
duces an automorphism φ ∈ Aut(X) with (X,φ) ∈ Sa,bc , where a = a1 + a2 and
b = b1 + b2.
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2.8 Primitive Hodge numbers away from the vertical middle axis

Proof. We define the subgroup

G ∶= ⟨φ1 × id, id×φ2⟩

of Aut(X1 ×X2). For i = 1, . . . , c we consider the element

ηi ∶= (φ1 × φ2)
3c−i

of order 3i in G. This element generates a cyclic subgroup

Gi ∶= ⟨ηi⟩ ⊆ G,

and we obtain a filtration

0 = G0 ⊂ G1 ⊂ ⋯ ⊂ Gc = ⟨φ1 × φ2⟩ ,

such that each quotient Gi/Gi−1 is cyclic of order three, generated by the image
of ηi.

By definition, G acts on
Y0 ∶=X1 ×X2.

Using the assumptions that (X1, φ−1
1 ) and (X2, φ2) satisfy (P1)–(P3), it is

easily seen (and we will give the details later in this proof) that the ⟨φ1 × φ2⟩-
invariant cohomology of Y0 has Hodge numbers ha,b = hb,a = g and hp,q ≠ 0 for
all other p ≠ q. The strategy of the proof of Proposition 2.8.3 is now as follows.

We will construct inductively for i = 1, . . . , c smooth models Yi of Y0/Gi,
fitting into the following diagram:

Y ′′
c−1

}} ""

⋯

~~ ��

Y ′′
1

~~   

Y ′′
0

  ~~

Yc Yc−1 Y2 Y1 Y0.

(2.20)

Here, Y ′′
i−1 → Yi will be a 3 ∶ 1 cover, branched along a smooth divisor, and

Y ′′
i → Yi will be the composition Y ′′

i → Y ′
i → Yi of two blow-down maps. This

way we obtain a smooth model

X ∶= Yc

of Y0/ ⟨φ1 × φ2⟩. At each stage of our construction, the group G will act (in
general non-effectively) and we will show that each blow-up and each triple
quotient changes the ⟨φ1 × φ2⟩-invariant cohomology only by algebraic classes
which are fixed by the G-action. Since ⟨φ1 × φ2⟩ acts trivially on X, it follows
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2 On the construction problem for Hodge numbers

that H∗(X,C) is generated by ⟨φ1 × φ2⟩-invariant classes on Y0 together with
algebraic classes which are fixed by the action of G. Hence, X satisfies (P1).
We then define φ ∈ Aut(X) via the action of id×φ2 ∈ G on Yc and show carefully
that the technical conditions (P2)–(P5) are met by (X,φ).

In the following, we give the details of the approach outlined above.
We begin with the explicit construction of diagram (2.20). Firstly, let Y ′

0 be
the blow-up of Y0 along FixY0 (η1). Since G is an abelian group, its action on
Y0 restricts to an action on FixY0 (η1) and so it lifts to an action on the blow-up
Y ′

0 . This allows us to define Y ′′
0 via the blow-up of Y ′

0 along FixY ′

0
(η1). Again,

G lifts to Y ′′
0 since it is abelian. Using this action, we define

Y1 ∶= Y
′′

0 / ⟨η1⟩ ,

where by abuse of notation, ⟨η1⟩ denotes the subgroup of Aut(Y ′′
0 ) which is

generated by the action of η1 ∈ G.
We claim that Y1 is a smooth model of Y0/ ⟨η1⟩. To see this, we define

U0 ∶= Y0 ∖ FixY0(η1)

and note that the preimage of this set under the blow-down maps

Y ′′
0

//Y ′
0

//Y0

gives Zariski open subsets

U ′
0 ⊆ Y

′
0 and U ′′

0 ⊆ Y ′′
0 ,

both isomorphic to U0. The group G acts on these subsets and so

U1 ∶= U
′′
0 / ⟨η1⟩

is a Zariski open subset in Y1 which is isomorphic to the Zariski open subset

U0/ ⟨η1⟩ ⊆ Y0/ ⟨η1⟩ .

The latter is smooth since η1 acts freely on U0 and so it remains to see that
Y1 is smooth at points of the complement of U1 ⊆ Y1. To see this, note that by
(P4),

FixY0 (η1) = FixX1(φ
3c−1

1 ) × FixX2(φ
3c−1

2 )

inside Y0 can be covered by local holomorphic coordinates on which φ1 × φ2

acts by multiplication with some powers of ζ. On these coordinates, η1 acts
by multiplication with some powers of a third root of unity. The local con-
siderations of Lemma 2.8.2 therefore apply and we deduce that Y1 is indeed a
smooth model of Y0/G1.
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Since G is abelian, the G-action on Y ′′
0 descends to a G-action on Y1. The

subgroup G1 ⊆ G acts trivially on Y1 and the induced G/G1-action on Y1 is
effective. Also note that Gi acts freely on U0 ⊆ Y0 and so Gi/G1 acts, for
2 ≤ i ≤ c, freely on the Zariski open subset U1 ⊆ Y1. By (P4), the complement
of U0 in Y0 can be covered by local holomorphic coordinates on which G acts
by multiplication with some roots of unity on each coordinate. It therefore
follows from the second statement in Lemma 2.8.2 that the complement of U1

in Y1 can also be covered by local holomorphic coordinates in which G acts by
multiplication with some roots of unity on each coordinate. This shows that
we can repeat the above construction inductively.

We obtain for i ∈ {1, . . . , c} smooth models

Yi ∶= Y
′′
i−1/ ⟨ηi⟩

of Y0/Gi on which G acts (non-effectively). The smooth model Yi contains a
Zariski open subset

Ui ≃ U0/ ⟨ηi⟩

on which Gl/Gi acts freely for all i + 1 ≤ l ≤ c; explicitly, Ui ∶= U ′′
i−1/ ⟨ηi⟩, where

U ′′
i−1 ⊆ Y ′′

i−1 is isomorphic to Ui−1. The complement of Ui is covered by local
holomorphic coordinates on which G acts by multiplication with some roots of
unity on each coordinate.
Y ′′
i is then defined via the two-fold blow-up

Y ′′
i

//Y ′
i

//Yi, (2.21)

where one blows up the fixed point set of the action of ηi+1 on Yi and Y ′
i

respectively. The preimage of Ui in Y ′
i and Y ′′

i gives Zariski open subsets

U ′
i ⊆ Y

′
i and U ′′

i ⊆ Y ′′
i ,

which are both isomorphic to Ui. Since G is abelian, the G-action on Yi induces
actions on Y ′

i and Y ′′
i and these actions restrict to actions on Ui ≃ U ′

i ≃ U
′′
i . The

complement of U ′
i in Y ′

i (resp. U ′′
i in Y ′′

i ) is by Lemma 2.8.2 covered by local
holomorphic coordinates on which G acts by multiplication with some roots
of unity on each coordinate. Using the local considerations in Lemma 2.8.2, it
follows that Yi+1 = Y ′′

i / ⟨ηi+1⟩ is a smooth model of Y0/Gi+1 which has the above
stated properties. This finishes the inductive construction of diagram (2.20).

Our next aim is to compute the cohomology of Yc. Since Gc acts trivially
on Yc, we may as well compute the Gc-invariant cohomology of Yc. This point
of view has the advantage that it allows an inductive approach, since for i =
0, . . . , c − 1, the Gc-invariant cohomology of Yi is easier to compute than its
ordinary cohomology.
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2 On the construction problem for Hodge numbers

Before we can carry out these calculations, we have to study the action of
arbitrary subgroups Γ ⊆ G on Yi, Y ′

i and Y ′′
i . Since G is an abelian group, it

follows that it acts on the fixed point sets FixYi(Γ), FixY ′

i
(Γ) and FixY ′′

i
(Γ),

defined in (2.7). These actions have the following important properties, where
as usual, cohomology means singular cohomology with coefficients in C (see
our conventions in Section 2.1.5).

Lemma 2.8.4. Let Γ ⊆ G be a subgroup which is not contained in Gi. Then
FixYi(Γ), FixY ′

i
(Γ) and FixY ′′

i
(Γ) are smooth, their G-actions restrict to ac-

tions on each irreducible component and their Gc-invariant cohomology is gen-
erated by G-invariant algebraic classes.

Note that the assumption Γ ⊈ Gi is equivalent to saying that the action of
Γ is nontrivial on each of the spaces Yi, Y ′

i and Y ′′
i .

Proof of Lemma 2.8.4. To begin with, we want to verify the Lemma for

FixY0(Γ),

where Γ ⊆ G is nontrivial. Recall that Y0 =X1×X2 and that each element in Γ
is of the form φj1 × φ

k
2. The fixed point set of such an element is then given by

FixY0(φ
j
1 × φ

k
2) = FixX1(φ

j
1) × FixX2(φ

k
2).

The intersection of sets of the above form is still of the above form and so

FixY0(Γ) = FixX1(φ
j
1) × FixX2(φ

k
2),

for some natural numbers j and k. Since (X1, φ−1
1 ) and (X2, φ2) satisfy (P4), it

follows that FixY0(Γ) is smooth. Also, G acts trivially on H0(FixY0(Γ),C) by
(P5) and so the G-action restricts to an action on each irreducible component
of FixY0(Γ).

Since Γ is not the trivial group, we now assume without loss of generality
that j is not divisible by 3c. Since (X,φ−1

1 ) satisfies (P5), the cohomology
of FixX1(φ

j
1) is then generated by ⟨φ1⟩-invariant algebraic classes. The Gc-

invariant cohomology of FixY0(Γ) is therefore generated by products of these
algebraic classes with ⟨φ2⟩-invariant classes on FixX2(φ

k
2). Since (X2, φ2) sat-

isfies (P1)–(P3) and (P5), the latter are, regardless whether k is divisible by
3c or not, given by ⟨φ2⟩-invariant algebraic classes. This shows that the Gc-
invariant cohomology of FixY0(Γ) is generated by G-invariant algebraic classes,
as we want.

Using induction, let us now assume that the Lemma is true for FixYi(Γ) for
some i ≥ 0 and for all Γ ⊈ Gi. Blowing-up FixYi(ηi+1) on Yi, we obtain the
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following diagram:

FixY ′

i
(Γ)

��

� � // Y ′
i

��

FixYi(Γ)
� � // Yi

and we denote the exceptional divisor of the blow-up Y ′
i → Yi by E′

i ⊆ Y
′
i .

Let us first prove that FixY ′

i
(Γ) is smooth and that G acts on its irreducible

components. To see this, note that away from E′
i, the blow-down map Y ′

i → Yi
is an isomorphism onto its image. Since FixYi(Γ) is smooth, it is then clear
that the intersection of FixY ′

i
(Γ) with Y ′

i ∖ E
′
i is smooth. Also, G acts on

the irreducible components of FixY ′

i
(Γ) which are not contained in E′

i, since
the analogous statement holds for the components of FixYi(Γ). On the other
hand, E′

i can be covered by local holomorphic coordinates on which G acts by
multiplication with roots of unity. In each of these charts, FixY ′

i
(Γ) corresponds

to a linear subspace on which G acts. We conclude that FixY ′

i
(Γ) is smooth

and that G acts on each of its irreducible components.
Next, let P be an irreducible component of FixY ′

i
(Γ). We have to prove the

following

Claim 2.8.5. The Gc-invariant cohomology of P is generated by G-invariant
algebraic classes.

Proof. Let us denote the image of P in Yi by Z. Then Z is contained in
FixYi(Γ) and the proof of the claim is divided into two cases.

In the first case, we suppose that Z is not contained in the intersection

FixYi(⟨Γ, ηi+1⟩) = FixYi(Γ) ∩ FixYi(ηi+1). (2.22)

In this case, P is the strict transform of Z in Y ′
i . Conversely, if Z̃ ⊆ FixYi(Γ)

is any irreducible component, not contained in (2.22), then its strict transform
in Y ′

i is contained in FixY ′

i
(Γ). Hence, Z is in fact an irreducible component

of FixYi(Γ). This implies that FixZ(ηi+1) consists of irreducible components of
(2.22) and so FixZ(ηi+1) is smooth by induction. Moreover, the strict transform
P of Z in Y ′

i can be identified with the blow-up of Z along FixZ(ηi+1). We
denote the exceptional divisor of this blow-up by D and obtain natural maps

f ∶D ↪ P and g ∶D → FixZ(ηi+1),

where f denotes the inclusion and g the projection map respectively. Using
Theorem 2.4.1 and (2.11), we see that the cohomology of P is generated (as a
C-module) by pull-back classes of Z together with products

[D′]j ∧ f∗(g
∗(α)),
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where D′ is an irreducible component of D, j is some natural number and α
is a cohomology class on FixZ(ηi+1).

The image g(D′) is an irreducible component of FixZ(ηi+1). By induction, G
acts on g(D′) and hence also on D′, the projectivization of the normal bundle
of g(D′) in Z. This implies that [D′] ∈ H∗(P,C) is a G-invariant algebraic
class. Moreover, the Gc-invariant cohomology of Z as well as the Gc-invariant
cohomology of FixZ(ηi+1) is generated by G-invariant algebraic classes by in-
duction. It therefore follows from the above description of H∗(P,C) that the
Gc-invariant cohomology of P is indeed generated by G-invariant algebraic
classes.

It remains to deal with the case where the image Z of P in Yi is contained
in (2.22). In this case, around each point of Z there are local holomorphic
coordinates (z1, . . . , zn) on which G acts by multiplication with some roots of
unity. In these local coordinates, the fixed point set of ηi+1 corresponds to the
vanishing set of certain coordinate functions. After relabeling these coordinate
functions if necessary, we may therefore assume that locally, FixYi(ηi+1) cor-
responds to {zm = ⋯ = zn = 0} for some m ≤ n. This yields local homogeneous
coordinates

(z1, . . . , zm−1, [zm ∶ ⋯ ∶ zn]) (2.23)

along the exceptional divisor E′
i of Y ′

i → Yi. After relabeling of the first m − 1
coordinates if necessary, we may assume that Γ acts trivially on z1, . . . , zk−1 and
nontrivially on zk, . . . , zm−1 for some 1 ≤ k ≤ m − 1. After relabeling zm, . . . , zn
if necessary, we may then assume that in the homogeneous coordinates (2.23),
P corresponds to {zk = ⋯ = zh = 0} for some m ≤ h ≤ n. Here, each element
γ ∈ Γ acts trivially on [zh+1 ∶ ⋅ ⋅ ⋅ ∶ zn], that is, γ acts by multiplication with the
same root of unity on zh+1, . . . , zn.

The above local description shows that P → Z is a PGL-subbundle of the
PGL-bundle E′

i ∣Z → Z; explicit bundle charts for P are given by

(z1, . . . , zk−1, [zh+1 ∶ ⋅ ⋅ ⋅ ∶ zn]),

as above. The exceptional divisor E′
i carries the line bundle OE′

i
(1) and we

denote its restriction to P by OP (1). The cohomology of P is then generated
(as a C-module) by products of pull-back classes on the base Z with powers of
c1(OP (1)). The line bundle OE′

i
(1) on the exceptional divisor E′

i is isomorphic
to the restriction of the line bundleOY ′

i
(−E′

i) on Y ′
i . The first Chern class of the

latter line bundle is G-invariant since G acts on E′
i. It follows that c1(OP (1))

is a G-invariant algebraic cohomology class on P .
In the above local coordinates (z1, . . . , zn) on Yi, Z is given by

{zk = ⋯ = zn = 0} .
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The latter set is in fact the fixed point set of ⟨Γ, ηi+1⟩ in this local chart and
so it follows that Z is an irreducible component of (2.22). By induction,
the Gc-invariant cohomology of Z is therefore generated by G-invariant al-
gebraic classes. By the above description of H∗(P,C), we conclude that the
Gc-invariant cohomology of P is generated by G-invariant algebraic classes, as
we want. This finishes the proof of our claim.

Altogether, we see that the Lemma 2.8.4 holds for FixY ′

i
(Γ). Repeating the

above argument, we then deduce the same assertion for FixY ′′

i
(Γ).

Next, let Γ be a subgroup of G, not contained in Gi+1. We denote by

pi ∶ Y
′′
i

//Yi+1

the quotient map. Then,

p−1
i (FixYi+1(Γ)) = {y ∈ Y ′′

i ∣ g(y) ∈ {y, ηi+1(y), η
2
i+1(y)} for all g ∈ Γ} .

If this set is contained in FixY ′′

i
(ηi+1), then it is given by FixY ′′

i
(⟨Γ, ηi+1⟩). The

restriction of pi to FixY ′′

i
(ηi+1) is an isomorphism onto its image and so we

deduce that in this case, FixYi+1(Γ) satisfies the Lemma.
Conversely, if p−1

i (FixYi+1(Γ)) is not contained in FixY ′′

i
(ηi+1), then we pick

some

y ∈ p−1
i (FixYi+1(Γ)) with y ∉ FixY ′′

i
(ηi+1).

Since ηi+1 acts trivially on Yi+1 and since we are interested in FixYi+1(Γ), we
assume without loss of generality that ηi+1 is contained in Γ. Then, Γ acts
transitively on {y, ηi+1(y), η2

i+1(y)}. This gives rise to a short exact sequence

1 //H //Γ //Z/3Z // 1,

where H ⊆ Γ acts trivially on y and where g ∈ Γ is mapped to j+3Z if and only
if g(y) = ηji+1(y). Recall that G ≃ Z/3cZ × Z/3cZ, and so Γ ≃ Z/3kZ × Z/3mZ
for some k,m ≥ 0. In the above short exact sequence, ηi+1 is mapped to a
generator in Z/3Z and so ηi+1 cannot be a multiple of 3 in Γ. That is,

Γ ≃ ⟨ηi+1⟩ × ⟨γ⟩ ,

for some γ ∈ Γ. Since ηi+1 acts trivially on Yi+1, one easily deduces

FixYi+1(Γ) = FixYi+1(γ) =
2

⋃
j=0

pi (FixY ′′

i
(γ ○ ηji+1)) . (2.24)
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The irreducible components of FixYi+1(Γ) are therefore of the form pi(Z) where
Z is an irreducible component of

2

⋃
j=0

FixY ′′

i
(γ ○ ηji+1).

As we have already proven the Lemma on Y ′′
i , we know that the G-action on

Y ′′
i restricts to an action on Z. In particular,

pi(Z) = Z/ ⟨ηi+1⟩ .

Since the abelian group G acts on Z, it also acts on the above quotient.
For the moment we assume that pi(Z) is smooth. Its cohomology is then

given by the ηi+1-invariant classes on Z. Since ηi+1 is contained in Gc, it
follows that the Gc-invariant cohomology of pi(Z) is given by the Gc-invariant
cohomology of Z. Since we know the Lemma on Y ′′

i , the latter is generated by
G-invariant algebraic classes, as we want.

It remains to see that FixYi+1(Γ) is smooth. In the local holomorphic charts
which cover the complement of Ui+1 in Yi+1, this fixed point set is given by
linear subspaces which are clearly smooth. It therefore suffices to prove that
the fixed point set of Γ on Ui+1 is smooth. By (2.24), the latter is given by

FixUi+1(Γ) = (
2

⋃
j=0

FixU ′′

i
(γ ○ ηji+1)) / ⟨ηi+1⟩ .

Since we know the Lemma already on Y ′′
i , the set FixU ′′

i
(γ ○ ηji+1) is smooth

and ηi+1 acts on it. This action is free of order three since Gi+1/Gi acts freely
on U ′′

i . Therefore,
FixU ′′

i
(γ ○ ηji+1)/ ⟨ηi+1⟩

is smooth for all j. The smoothness of FixUi+1(Γ) follows since

FixU ′′

i
(γ ○ ηj1i+1) ∩ FixU ′′

i
(γ ○ ηj2i+1) = ∅

holds for j1 ≢ j2 (mod 3). This concludes Lemma 2.8.4 by induction on i.

Via diagram (2.20), we have constructed a smooth model

X ∶= Yc

of Y0/ ⟨φ1 × φ2⟩. The group G acts on X and the automorphism φ ∈ Aut(X)

which we have to construct in Proposition 2.8.3 is simply given by the action
of id×φ2 ∈ G on X. This automorphism has order 3c since this is true on the

66



2.8 Primitive Hodge numbers away from the vertical middle axis

Zariski open subset Uc ⊆X. By Lemma 2.8.4, the pair (X,φ) satisfies (P5); it
remains to show that (X,φ) satisfies (P1)–(P4).

The cohomology of X. Using Lemma 2.8.4, we are now able to read off
the cohomology of X from diagram (2.20). Indeed, the cohomology of Y ′′

i is
given by the cohomology of Yi (via pullbacks) plus some classes which are in-
troduced by blowing up FixYi(ηi+1) on Yi and FixY ′

i
(ηi+1) on Y ′

i respectively.
By Lemma 2.8.4, these blown-up loci are smooth and their Gc-invariant coho-
mology is generated by G-invariant algebraic classes. Moreover, G acts on each
irreducible component of the blown-up locus and so G acts on each irreducible
component of the exceptional divisors of the blow-ups. In particular, the cor-
responding divisor classes in cohomology are G-invariant. It follows that the
Gc-invariant cohomology of Y ′′

i is given by the Gc-invariant cohomology of Yi
plus some G-invariant algebraic classes. Also, since ηi+1 is contained in Gc, the
quotient map Y ′′

i → Yi+1 induces an isomorphism on Gc-invariant cohomology.
It follows inductively that the Gc-invariant cohomology of X – which coincides
with the whole cohomology of X – is given by the Gc-invariant cohomology of
Y0 plus G-invariant algebraic classes.

Let us now calculate the Gc-invariant cohomology of Y0. For i = 1,2, there
is by assumption on (Xi, φi) a basis ωi1, . . . , ωig of Hai,bi(Xi) with

φ∗1(ω1j) = ζ
−jω1j and φ∗2(ω2j) = ζ

jω2j. (2.25)

This shows that for j = 1, . . . , g, the following linearly independent (a, b)-classes
on Y0 are Gc-invariant:

ωj ∶= ω1j ∧ ω2j.

Since (X1, φ−1
1 ) and (X2, φ2) satisfy (P1), (P2) and (P3), it follows that apart

from the above (a, b)-classes (and their complex conjugates), all Gc-invariant
classes on Yc are generated by products of algebraic classes on X1 and X2.
These products are G-invariant by (P3). Finally, φ acts on ωj by multiplication
with ζj. Altogether, we have just shown that (X,φ) satisfies (P1), (P2) and
(P3).

Charts around FixX (φ3c−1). By our construction, there are holomorphic
charts which cover the complement of Uc in Yc, such that φ acts on each
coordinate function by multiplication with some power of ζ. Therefore, in
order to show that (X,φ) satisfies (P4), it remains to see that around points
of

Wc ∶= FixYc (φ
3c−1) ∩Uc,

the same holds true.
Let us first prove that the preimage of Wc under the 3c ∶ 1 étale covering

π ∶ U0 → Uc coincides with the following set:

W0 ∶= ((FixX1
(φ3c−1

1 ) ×X2) ∪ (X1 × FixX2
(φ3c−1

2 ))) ∩U0.
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Clearly, W0 ⊆ π−1(Wc). Conversely, suppose that (x1, x2) ∈ π−1(Wc). Then
there exists a natural number 1 ≤ k ≤ 3c with

x1 = φ
k
1(x1) and φ3c−1

2 (x2) = φ
k
2(x2).

If x1 is not fixed by φ3c−1

1 , then 3c−1 does not lie in the mod 3c orbit of k. That
is, k is divisible by 3c and we deduce that x2 is fixed by φ3c−1

2 . This shows
(x1, x2) ∈W0, as we want.

Since π ∶ U0 → Uc is an étale covering, local holomorphic charts on U0 give
local holomorphic charts on Uc. Around each point

x ∈ (FixX1
(φ3c−1

1 ) ×X2) ∩U0

we may by assumptions on (X1, φ−1
1 ) choose local holomorphic coordinates

(z1, . . . , zn), such that φ−1
1 ×id acts on each zj by multiplication with some power

of ζ. Moreover, the images of φ−1
1 × id and id×φ2 in the quotient G/Gc coincide

and so the action of φ−1
1 × id on X actually coincides with the automorphism φ.

This shows that (z1, . . . , zn) give local holomorphic coordinates around π(x)
on which φ acts by multiplication with some powers of ζ.

The case

x ∈ (X1 × FixX2
(φ3c−1

2 )) ∩U0

is done similarly and so we conclude that (P4) holds for (X,φ). This finishes
the proof of Proposition 2.8.3.

2.8.3 Proof of Theorem 2.8.1

Proof of Theorem 2.8.1. For a > b ≥ 0, n ≥ a+b and c ≥ 1, we need to construct
an n-dimensional smooth complex projective variety Za,b,n

c whose primitive
(p, q)-type cohomology has dimension (3c−1)/2 if p = a and q = b, and vanishes
for all other p > q. Suppose that we have already settled the case when n = a+b.
Then, for n > a + b, the product

Za,b,n
c ∶= Za,b,a+b

c × Pn−a−b

has the desired properties. In order to prove Theorem 2.8.1, it therefore suffices
to show that the set Sa,bc , defined in Section 2.8.2, is nonempty for all a > b ≥ 0
and c ≥ 1. We will prove the latter by induction on a + b.

We put g = (3c −1)/2 and consider the hyperelliptic curve Cg with automor-
phism ψg from Section 2.3.1. It is then straightforward to check that

(Cg, ψg) ∈ S
1,0
c . (2.26)
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Indeed, it is clear that (Cg, ψg) satisfies (P1)–(P3) in the definition of S1,0
c .

Moreover, the complement of the point ∞ ∈ Cg is given by the affine curve
y2 = x2g+1+1 and ψg acts by multiplication with a primitive 3c-th root of unity
ζ on x. For all 0 ≤ l ≤ c−1, the fixed point set FixCg (ψ

3l
g ) is therefore given by

the points (x, y) = (0,±1) and ∞. These points are ψg-invariant and so their
cohomology is generated by ψg-invariant algebraic classes, which shows that
(P5) holds. It remains to establish (P4). That is, we need to find suitable
holomorphic coordinates around the three fixed points of ψ3c−1

g . Differentiating
the affine equation y2 = x2g+1+1 gives 2y⋅dy = (2g+1)x2g ⋅dx. This shows that dx
spans the cotangent space at (0,±1) and so x is a local coordinate function near
(0,±1). The automorphism ψg acts on this function by multiplication with ζ,
as we want in (P4). In order to find a suitable coordinate function around ∞,
we use the coordinates (u, v), introduced in Section 2.3.1. In these coordinates,
the curve Cg is given by the equation v2 = u + u2g+2 and ∞ corresponds to the
point (u, v) = (0,0). Around this point, the function v yields a coordinate
function on which ψg acts via multiplication with ζg, see Section 2.3.1. This
establishes (2.26) and hence settles the case a + b = 1.

Let now a > b with a + b > 1. If b = 0, then by induction, the sets S1,0
c

and Sa−1,0
c are nonempty and so Proposition 2.8.3 yields an element in Sa,0c , as

desired. If b ≥ 1, then Sa,b−1
c is nonempty by induction. Also, S0,1

c is nonempty
since it contains (Cg, ψ−1

g ) by (2.26). Application of Proposition 2.8.3 then

yields an element in Sa,bc , as we want. This concludes Theorem 2.8.1.

Remark 2.8.6. The variety in Sa,bc which the above proof produces inductively
is easily seen to be a smooth model of the quotient of Ca+b

g by the group action
of G1(a, b, g), defined in Section 2.3.2.

2.9 Proof of Theorem 2.1.5

Proof of Theorem 2.1.5. To begin with, let us recall that we have proven in
[72] that for all Kähler surfaces S,

h1,1(S) > h2,0(S), (2.27)

see also [76, Prop. 22]. Therefore, h1,1 dominates h2,0 in dimension two.
Conversely, let us suppose that the Hodge number hr,s dominates hp,q non-

trivially in dimension n. That is, there are positive constants λ1, λ2 ∈ R>0 such
that for all n-dimensional smooth complex projective varieties X, the following
holds:

λ1 ⋅ h
r,s(X) + λ2 ≥ h

p,q(X). (2.28)
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2 On the construction problem for Hodge numbers

By the Hodge symmetries (2.2), we may assume r ≥ s, p ≥ q, r + s ≤ n and
1 ≤ p+q ≤ n. The nontriviality of the above domination then means that (2.28)
does not follow from the Lefschetz conditions (2.3). In order to prove Theorem
2.1.5, it now remains to show n = 2, r = s = 1 and p = 2.

Suppose that r + s < n. Since (2.28) does not follow from the Lefschetz
conditions (2.3), Theorem 2.1.3 (or Corollary 2.10.2 below) shows p + q = n.
Using the Lefschetz hyperplane theorem and the Hirzebruch–Riemann–Roch
formula, we see however that a smooth hypersurface Vd ⊆ Pn+1 of degree d
satisfies hr,s(Vd) ≤ 1, whereas hp,q(Vd) tends to infinity if d does. This is a
contradiction and so r + s = n holds.

Suppose that r ≠ s. Then, considering a blow-up of Pn in sufficiently many
distinct points proves p ≠ q. Since p ≠ q and r ≠ s, we may then use certain
examples from Theorem 2.8.1 to deduce that (2.28) follows from the Lefschetz
conditions (2.3). This contradicts the nontriviality of our given domination.
Hence, r = s and in particular n = 2r is even.

Suppose that p = q. Considering again a blow-up of Pn in sufficiently many
distinct points then proves λ1 ≥ 1 and so (2.28) follows from the Lefschetz
conditions. This contradicts the nontriviality of (2.28) and so it proves p ≠ q.

Suppose that p + q < n. Using sufficiently high-degree hyperplane sections
of n-dimensional examples from Theorem 2.1.3, one proves that there is a
sequence of (n − 1)-dimensional smooth complex projective varieties (Yj)j≥1

such that hr−1,r−1(Yj) is bounded whereas hp,q(Yj) tends to infinity if j does.
(Note that we used p ≠ q here.) Since n = 2r, we have hr−1,r−1(Yj) = hr,r(Yj)
by the Hodge symmetries. Therefore, the sequence of n-dimensional smooth
complex projective varieties

(Yj × P1)
j≥1

has bounded hr,r but unbounded hp,q. This is a contradiction and hence shows
p + q = n.

Next, using Corollary 2.5.3 from Section 2.5, it follows that p = 2r and q = 0
holds. By what we have shown so far we are thus left with the case where
n = 2r = 2s, p = 2r and q = 0. In order to finish the proof of Theorem 2.1.5, it
therefore suffices to show r = 1. For a contradiction, we assume that r ≥ 2. By
Theorem 2.8.1 there exists a (2r − 1)-dimensional smooth complex projective
variety Y with h2r−1,0(Y ) = h0,2r−1(Y ) = 1 and hp,q(Y ) = 0 for all other p ≠ q.
Since r ≥ 2, this implies for a smooth curve Cg of genus g:

h2r,0(Y ×Cg) = g and hr,r(Y ×Cg) = 2 ⋅ hr−1,r−1(Y ).

Hence, (Y ×Cg)g≥1 is a sequence of 2r-dimensional smooth complex projective
varieties such that hr,r is constant whereas h2r,0 tends to infinity if g does. This
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2.9 Proof of Theorem 2.1.5

is the desired contradiction and hence shows r = 1. This finishes the proof of
Theorem 2.1.5.

The next result combines Theorem 2.1.5 with a very recent result concerning
the geography of surfaces [69].

Corollary 2.9.1. Suppose there are λ1, λ2 ∈ R>0 such that for all smooth com-
plex projective varieties X of dimension n:

λ1h
r,s(X) + λ2 ≥ h

p,q(X). (2.29)

Then λ1 ≥ 1 and (2.29) is either a consequence of the Lefschetz conditions
(2.3), or n = 2 and it is a consequence of (2.27).

Proof. By Theorem 2.1.5, it suffices to prove that any universal inequality of
the form

λ1h
1,1(S) + λ2 ≥ h

2,0(S),

with λ1, λ2 ∈ R>0, which holds for all smooth complex projective surfaces S sat-
isfies λ1 ≥ 1. As we will see in the following, this follows easily from Roulleau–
Urzúa’s work. Indeed, they prove [69, Thm. 1.1] that for any r ∈ [2,3] there
are simply connected smooth complex projective surfaces S of general type
such that the quotient of Chern numbers c2

1(S)/c2(S) is arbitrarily close to
r. In particular, there is a sequence Sn of simply connected smooth complex
projective surfaces with

c2
1(Sn) = (3 − εn)c2(Sn), (2.30)

where εn tends to 0 and c2(Sn) tends to infinity for n→∞.
Since Sn is simply connected, we have

c2(Sn) = 2 + 2h2,0(Sn) + h
1,1(Sn),

and
c2

1(Sn) = 10 + 10h2,0(Sn) − h
1,1(Sn).

By (2.30), this yields

4 + 4h2,0(Sn) − 4h1,1(Sn) = −εn(2 + 2h2,0(Sn) + h
1,1(Sn)).

Hence,

h2,0(Sn) =
4 − εn
4 + 2εn

⋅ h1,1(Sn) − 1. (2.31)
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2 On the construction problem for Hodge numbers

The given universal inequality h2,0 ≤ λ1h1,1 + λ2 thus implies

4 − εn
4 + 2εn

⋅ h1,1(Sn) − 1 ≤ λ1h
1,1(Sn) + λ2. (2.32)

Since Sn is simply connected,

b2(Sn) = c2(Sn) − 2

tends to infinity if n does. By (2.27), b2(Sn) < 3 ⋅ h1,1(Sn), and so h1,1(Sn)
tends to infinity for n→∞. For n→∞, inequality (2.32) therefore implies:

λ1 ≥ 1.

This finishes the proof of Corollary 2.9.1.

Remark 2.9.2. One could of course strengthen Kollár–Simpson’s domina-
tion relation between Hodge numbers by requiring that (2.5) holds for all n-
dimensional Kähler manifolds X. However, since (2.27) holds for all Kähler
surfaces, it is immediate that Theorem 2.1.5 and Corollary 2.9.1 remain true
for this stronger domination relation.

2.10 Inequalities among Hodge numbers

It is a difficult problem to determine all universal inequalities among Hodge
numbers in a fixed dimension. However, in dimension two, one can use recent
work of Roulleau and Urzúa [69] to solve this problem.1

Corollary 2.10.1. Any universal integral linear inequality among the Hodge
numbers of smooth complex projective surfaces is a consequence of h1,1 ≥ h2,0+1.

Proof. Any integral linear inequality among the Hodge numbers of surfaces
can be written in the form

λ1h
1,0 + λ2(h

1,1 − 1) ≥ λ3 + λ4h
2,0,

with λi ∈ Z. For the corollary, it suffices to prove λ1 ≥ 0, λ2 ≥ 0, λ3 ≤ 0 and
λ2 ≥ λ4.

1B. Totaro pointed out to us that instead of [69], one could also use ball quotients associated
to Kottwitz lattices. The main point being that these surfaces have finite covering
spaces T with b1(T ) = 0 (by a result of Rapoport–Zink [66]), c21(T )/c2(T ) = 3 and c2(T )
arbitrarily large.
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Looking at the product of P1 with a smooth projective curve of sufficiently
high genus proves λ1 ≥ 0. The blow-up of P2 in sufficiently many points proves
λ2 ≥ 0. The projective plane P2 proves λ3 ≤ 0.

It remains to prove λ2 ≥ λ4. This follows from the examples constructed in
[69]. Indeed, let us consider the sequence Sn of simply connected surfaces that
we have already used in the proof of Corollary 2.9.1. By (2.31), we obtain

λ2 ⋅ (h
1,1(Sn) − 1) ≥ λ3 + λ4 ⋅ (

4 − εn
4 + 2εn

⋅ h1,1(Sn) − 1) .

Recall that for n → ∞, εn and h1,1(Sn) tend to zero and infinity respectively.
The above inequality therefore implies λ2 ≥ λ4, as we want.

The remaining results in this section are consequences of the main theorems
of this chapter; they are again contained in the published article [76].

Corollary 2.10.2. Any universal inequality among the Hodge numbers below
the horizontal middle axis in (2.4) of n-dimensional smooth complex projective
varieties is a consequence of the Lefschetz conditions (2.3).

Proof. Assume that we are given a universal inequality between the Hodge
numbers of the truncated Hodge diamond of smooth complex projective n-
folds. In terms of the primitive Hodge numbers lp,q, this means that for all
natural numbers p and q with 0 < p + q < n there are real numbers λp,q and a
constant C ∈ R such that

∑
0<p+q<n

λp,q ⋅ l
p,q(X) ≥ C (2.33)

holds for all smooth n-folds X. Using the Hodge symmetries (2.2), we may
further assume that λp,q = λq,p holds for all p and q. If we put X = Pn, then
we see C ≤ 0. Moreover, for any natural numbers p and q with 0 < p + q < n,
there exists by Theorem 2.1.3 a smooth complex projective variety X with
lp,q(X) >> 0, whereas (modulo the Hodge symmetries) all remaining primitive
Hodge numbers of its truncated Hodge diamond are bounded from above, by
n3 say. This proves λp,q ≥ 0. That is, the universal inequality (2.33) is a
consequence of the Lefschetz conditions (2.3), as we want.

As an immediate consequence of the above corollary, we note the following.

Corollary 2.10.3. Any universal inequality among the Hodge numbers of
smooth complex projective varieties which holds in all sufficiently large dimen-
sions at the same time is a consequence of the Lefschetz conditions.
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In the same way we deduced Corollary 2.10.2 from Theorem 2.1.3, one de-
duces the following from Theorem 2.8.1:

Corollary 2.10.4. Any universal inequality among the Hodge numbers away
from the vertical middle axis in (2.4) of n-dimensional smooth complex projec-
tive varieties is a consequence of the Lefschetz conditions (2.3).

Corollary 2.10.2 implies that in dimension n, the Betti numbers bk with k ≠ n
do not satisfy any universal inequalities, other than the Lefschetz conditions

bk ≥ bk−2 for all k ≤ n. (2.34)

Using products of high degree hypersurfaces with projective spaces, one can
easily deduce that in fact any universal inequality among the Betti numbers of
smooth complex projective varieties in any given dimension is a consequence
of the Lefschetz conditions, see [72] and [76, Prop. 27].

2.11 Threefolds with h1,1 = 1

Here we show that in dimension three, the constraints which classical Hodge
theory puts on the Hodge numbers of smooth complex projective varieties are
not complete. Our results apply to threefolds with h1,1 = 1 and h3,0 ≥ 2, such
as any sufficiently high degree complete intersection threefold in a smooth
projective variety with h1,1 = 1. Smooth projective varieties with h1,1 = 1 and
arbitrary h2,0 were constructed in Theorem 2.7.1.

Proposition 2.11.1. Let X be a smooth complex projective threefold with
Hodge numbers hp,q ∶= hp,q(X). If h1,1 = 1 and h3,0 ≥ 2, then

h1,0 = 0, h2,0 < h3,0 and h2,1 < 126 ⋅ h3,0.

Proof. The first two assertions are proven in the authors Part III essay [72],
see also [76, Prop. 28]. Here we will only prove h2,1 < 126 ⋅ h3,0, which is not
contained in [72].

The assumption h1,1 = 1 implies that the canonical class of X is a multiple
of an ample class. Therefore, the assumption h3,0 ≥ 2 ensures that KX is ample
and so Yau’s inequality holds [96]:

c1c2(X) ≤
3

8
c3

1(X). (2.35)

Moreover, the Riemann–Roch formula in dimension three says

c1c2(X) = 24χ(X,OX). (2.36)
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Since KX is ample, Fujita’s conjecture predicts that 6 ⋅KX is very ample,
cf. [50, p. 252]. Although this conjecture is still open, Lee proves in [53] that
10⋅KX is very ample. Thus, the following argument due to Catanese–Schneider
[11] applies: Firstly, the linear series ∣10 ⋅KX ∣ embeds X into some PN and
hence ΩX(20 ⋅KX) is a quotient of ΩPN (2) restricted to X. Since the latter is
globally generated, it is nef and hence ΩX(20 ⋅KX) is nef.

Secondly, by [22, Cor. 2.6], any Chern number of a nef bundle F on an n-
dimensional smooth complex projective variety X is bounded from above by
cn1(F ). In our situation, this yields

c3(Ω
1
X(20 ⋅KX)) ≤ c3

1(Ω
1
X(20 ⋅KX)). (2.37)

A standard computation gives

c3(Ω
1
X(20 ⋅KX)) = −8 400 ⋅ c3

1(X) − 20 ⋅ c1c2(X) − c3(X)

and
c3

1(Ω
1
X(20 ⋅KX)) = −613 ⋅ c3

1(X).

Together with Yau’s inequality (2.35), this yields in (2.37)

1 748 588 ⋅ c1c2(X) ≤ 3 ⋅ c3(X). (2.38)

By the Riemann–Roch formula (2.36), this inequality is in fact one between
the Hodge numbers of threefolds with ample canonical bundle. In our case,
h1,1 = 1 and h1,0 = 0 yield:

6 994 346 + 6 994 346 ⋅ h2,0 + 3 ⋅ h2,1 ≤ 6 994 349 ⋅ h3,0.

Thus, a rough estimation yields

h2,1 < 126 ⋅ h3,0.

This concludes the proof of the Proposition.

Remark 2.11.2. Instead of using [22], but still relying on [53], Chang–Lopez
prove in [15] that there is a computable constant C > 0 such that

C ⋅ c1c2(X) ≤ c3(X),

for all threefolds X with ample canonical bundle. Computing C explicitly shows
that it is about four times smaller then the analogous constant which appears
in (2.38). However, since the explicit extraction of C is slightly tedious and
since this constant is still far from being realistic, we did not try to carry this
out here.
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3 Algebraic structures with
unbounded Chern numbers

Abstract. We determine all Chern numbers of smooth complex pro-

jective varieties of dimension ≥ 4 which are determined up to finite

ambiguity by the underlying smooth manifold. We also give an upper

bound on the dimension of the space of linear combinations of Chern

numbers with that property and prove its optimality in dimension four.

3.1 Introduction

To each n-dimensional complex manifold X and for each partition m of n, one
can associate a Chern number cm(X). In 1954, Hirzebruch [34, Problem 31]
asked which linear combinations of Chern and Hodge numbers are topological
invariants of smooth algebraic varieties. Recently, this problem has been solved
by Kotschick [46, 47] for what concerns the Chern numbers and by Kotschick
and the author [48] in full generality.

Generalizing the Hirzebruch problem, Kotschick asks which Chern numbers
of smooth complex projective varieties are determined up to finite ambiguity by
the underlying smooth manifold [45, pp. 522]. Such a boundedness statement
is known for cn and c1cn−1 in arbitrary dimension n, since these Chern numbers
can be expressed in terms of Hodge numbers [54] and so they are bounded by
the Betti numbers. The first nontrivial instance of Kotschick’s boundedness
question concerns therefore the Chern number c3

1 in dimension 3. In a recent
preprint [9], Cascini and Tasin show that in many cases this number is indeed
bounded by the topology of the smooth projective threefold.

Conversely, there are no known examples of a smooth manifold such that the
set of Chern numbers with respect to all possible complex algebraic structures
is known to be unbounded. In this chapter we produce such examples in
dimensions ≥ 4; our result is as follows.

Theorem 3.1.1. In complex dimension 4, the Chern numbers c4, c1c3 and c2
2

of a smooth complex projective variety are the only Chern numbers cm which

This chapter is based on joint work with Tasin [77].
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are determined up to finite ambiguity by the underlying smooth manifold. In
complex dimension n ≥ 5, only cn and c1cn−1 are determined up to finite ambi-
guity by the underlying smooth manifold.

The dimension four case of the above theorem might be surprising. Indeed,
it was observed by Kotschick that the Chern numbers of a minimal smooth
projective fourfold of general type are bounded by the underlying smooth man-
ifold, see Remark 3.4.3 below. Based on an MMP approach, similar to the one
given in [9] for threefolds, one might expect that this boundedness statement
holds more generally for all fourfolds of general type, which is the largest class
in the Kodaira classification. This compares to Theorem 3.1.1 as the examples
we are using there are of negative Kodaira dimension.

By Theorem 3.1.1, only very few Chern numbers of high dimensional smooth
complex projective varieties are bounded by the underlying smooth manifold.
This changes considerably if we are asking for all linear combinations of Chern
numbers with that property. Indeed, the space of such linear combinations
contains the Euler characteristics χp = χ(X,Ωp

X), as well as all Pontryagin
numbers in even complex dimensions. In dimension four, the Euler character-
istics χp and Pontryagin numbers span a space of codimension one in the space
of all Chern numbers. Therefore, Theorem 3.1.1 implies:

Corollary 3.1.2. Any linear combination of Chern numbers which on smooth
complex projective fourfolds is determined up to finite ambiguity by the under-
lying smooth manifold is a linear combination of the Euler characteristics χp

and the Pontryagin numbers.

Using bordism theory, we provide in Corollary 3.6.3 a nontrivial upper bound
on the dimension of the space of linear combinations of Chern numbers which
are determined up to finite ambiguity by the underlying smooth manifold. Our
upper bound is in general bigger than the known lower bound; determining all
bounded linear combinations therefore remains open in all dimensions n ≥ 3
other than n = 4.

It was known for some time that the boundedness question for Chern num-
bers behaves differently in the non-Kähler setting. Indeed, LeBrun showed
[52] that there is a smooth 6-manifold with infinitely many (non-Kähler) com-
plex structures such that c1c2 is unbounded, which cannot happen for complex
Kähler structures. In Corollary 3.5.1 we use products with LeBrun’s examples
and Theorem 3.1.1 to conclude that in complex dimension n ≥ 4, the topologi-
cal Euler number cn is the only Chern number which on complex manifolds is
bounded by the underlying smooth manifold.

Theorem 3.1.1 is based on the existence of certain projective bundles over
threefolds which admit infinitely many different algebraic structures. An im-
portant observation here is that the Chern numbers of the base do not matter
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3.2 Dolgachev surfaces

too much. To obtain unbounded Chern numbers for the projective bundles it
is enough to have a three-dimensional base with unbounded first Chern class,
its Chern numbers may well be independent of the complex structures chosen.
This is in contrast to Kotschick’s work [47], where bundles over surfaces with
varying signatures are used, see also Remark 3.4.2.

3.2 Dolgachev surfaces

We recall here some basic properties of Dolgachev surfaces. For a detailed
treatment see [23, 30] and [29, Sec. I.3].

Let S ⊆ P2 ×P1 be a generic element of the linear series ∣O(3,1)∣. That is, S
is isomorphic to the blow-up of P2 at the nine intersection points of two generic
degree three curves and the second projection π ∶ S //P1 is an elliptic fibration
with irreducible fibres. For each odd integer q ≥ 3, the Dolgachev surface Sq is
realised applying logarithmic transformations of order 2 and q at two smooth
fibres of π. The surface Sq comes with an elliptic fibration πq ∶ Sq //P1, which
away from the two multiple fibers is isomorphic to the one of S. For a proof
of the following proposition, see [29, Sec. I.3] and the references therein.

Proposition 3.2.1. The Dolgachev surface Sq is a simply connected algebraic
surface with

1. h2,0(Sq) = 0 and b2(Sq) = 10,

2. c2
1(Sq) = 0 and c2(Sq) = 12,

3. c1(Sq) = (q − 2)Gq, where Gq ∈H2(Sq,Z) is a nonzero primitive class,

4. the intersection pairing on H2(Sq,Z) is odd of type (1,9).

Proposition 3.2.1 has two important consequences that we will use in this
chapter. Firstly, since h1,0(Sq) = h2,0(Sq) = 0, it follows that the first Chern
class is an isomorphism

c1 ∶ Pic(Sq)
∼ // H2(Sq,Z).

Hence, every element of H2(Sq,Z) can be represented by a holomorphic line
bundle.

Secondly, let us denote the smooth manifold which underlies Sq by Mq. By
item 4 in Proposition 3.2.1, Wall’s theorem [93] implies the existence of a
smooth h-cobordism Wq between M3 and Mq.

Although we will not need this here, let us mention that the homeomorphism
type of Mq does not depend on q by Freedman’s classification theorem of
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3 Algebraic structures with unbounded Chern numbers

simply connected 4-manifolds. However, generalizing a result of Donaldson,
Friedman–Morgan showed [29] that Mq and Mq′ are never diffeomorphic for
q ≠ q′.

3.3 Chern numbers of projective bundles

In this section we systematically treat the Chern numbers of projective bundles.
Most of the results are taken from the author’s Bachelor thesis [71] and we
will make precise indications where this is the case. We formulate and use
our results for holomorphic vector bundles over complex manifolds, but they
hold more generally for arbitrary complex vector bundles over stably almost
complex manifolds.

Let B be a complex manifold of dimension n+1−k and let E be a holomorphic
vector bundle of rank k on B. The Segre class of E is the inverse of its total
Chern class; we denote it by

α ∶= (1 + c1(E) + ⋅ ⋅ ⋅ + ck(E))−1 ∈H∗(B,Z).

The degree 2k-component of α is denoted by αk ∈H2k(B,Z).
For a = (a1, . . . , ap) ∈ Np, we denote its weight by ∣a∣ = ∑ai. With this

notation in mind, we put

f(a) ∶= ∑
d∈Np

(

p

∏
i=1

(
k − di
k − ai

)cdi(E))α(∣a∣−∣d∣−(k−1)), (3.1)

where d = (d1, . . . , dp), and where we use the convention (
a
b
) = 0, if b < 0 or

a < b. The above definition yields a cohomology class in H2(∣a∣−(k−1))(B,Q),
which can actually be shown to be integral. Its definition in [71] is motivated
by the following result.

Proposition 3.3.1. Let m = (m1, . . . ,mp) be a partition of n = dim(P(E)).
Then the m-th Chern number of the projective bundle P(E) is given by

cm(P(E)) = ∑
j1,...,jp

cj1(B) ⋅ ⋅ ⋅ ⋅ ⋅ cjp(B) ⋅ f(m1 − j1, . . . ,mp − jp),

where the right hand side is identified with its evaluation on the fundamental
class of B.

Proof. A complete proof is given in [71] and [77], we repeat it here for the
convenience of the reader. Let π ∶ P(E) //B be the projection morphism
and Tπ be the tangent bundle along the fibres of π, that is, Tπ = ker(π∗),
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3.3 Chern numbers of projective bundles

where π∗ ∶ TP(E) // π∗TX . By the Whitney formula, the total Chern classes
are related by

c(P(E)) = c(Tπ) ⋅ π
∗c(B).

If OE(−1) denotes the tautological bundle of P(E), then we have the exact
sequence

0 //OE(−1) // π∗E //Tπ ⊗OE(−1) // 0.

It follows that the total Chern classes of Tπ and π∗E⊗OE(1) coincide. Hence,

c(Tπ) =
k

∑
i=0

π∗ci(E)(1 + y)k−i,

where y = c1(OE(1)). From now on, we may ignore the pull-back map π∗ in
the computations. Setting bi ∶= ci(B) and ei ∶= ci(E), we can write

c(P(E)) = (∑
j≥0

bj)(∑
i≥0

ei(1 + y)
k−i) ,

and so

c(P(E)) = ∑
i,j,l≥0

(
k − i

l
)eibjy

l.

The m-th Chern number is hence given by

cm(P(E)) =

p

∏
t=1

∑
it+jt+lt=mt

(
k − it
lt

)eitbjty
lt ,

where it, jt, lt ≥ 0, and where we identify the right hand with its evaluation on
the fundamental class of P(E).

Reordering, we can write

cm(P(E)) = ∑
j1,...,jp

bj1⋯bjp ∑
i1,...,ip

(

p

∏
t=1

(
k − it

k + jt −mt

)eit) y
∑pt=1 lt ,

where we are assuming that lt =mt − jt − it ≥ 0 for t = 1, . . . , p.
For any 0 ≤ m ≤ n and any ω ∈ H2(n−m)(B,Z), the product ωym coincides

with the top-degree component of ωαyk−1, see [73, Lem. 2.2]. This simplifies
the above expression of the m-th Chern number of P(E) to

cm(P(E)) = ∑
j1,...,jp

bj1⋯bjp ∑
i1,...,ip

(

p

∏
t=1

(
k − it

k + jt −mt

)eit)αy
k−1,

where on the right hand side only the term in cohomological degree 2n is con-
sidered. The statement follows since on any fibre of π the class yk−1 evaluates
to 1.
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3 Algebraic structures with unbounded Chern numbers

Proposition 3.3.1 reduces the computation of Chern numbers of projective
bundles to the computation of f(a) defined in (3.1). It is easy to see that f(a)
is invariant under permutations of (a1, . . . , ap). Moreover, f(a) is possibly
nonzero only for k − 1 ≤ ∣a∣ ≤ n and 0 ≤ ai ≤ k, and a simple argument shows
f(a) = 0 for ai = k. For small values of ∣a∣, we are actually able to compute
f(a) explicitly as follows.

Lemma 3.3.2. Let σi be the elementary symmetric polynomial of degree i in
a1, . . . , ap and denote by ei ∶= ci(E) the i-th Chern class of E. Then,

1. f(a) =∏
p
i=1 (

k
ai
) , if ∣a∣ = k − 1,

2. f(a) = 0 , if ∣a∣ = k,

3. f(a) =∏
p
i=1 (

k
ai
) ⋅ (σ2 − k) ⋅ (

1
k2 e

2
1 −

2
k(k−1)e2) , if ∣a∣ = k + 1.

Proof. The first assertion is immediate from the definitions and the second
assertion is proven in [71] by a computation, the third statement is not con-
tained in [71]. We will give an alternative proof of the second statement and
a complete proof of item 3.

For any line bundle L on B, P(E) and P(E ⊗L) are isomorphic. For ∣a∣ = k
the expression f(a) has cohomological degree two and so it is a multiple of e1.
Specializing the base manifold B to an elliptic curve, Proposition 3.3.1 shows
that for any line bundle L on B, f(a) is invariant under replacing E by E⊗L.
The claim follows because no nontrivial multiple of e1 has this property.

It remains to prove (3). Since ∣a∣ = k + 1, we have

f(a) = ∑
∣d∣=0

(

p

∏
i=1

(
k − di
k − ai

)edi)α2+∑
∣d∣=1

(

p

∏
i=1

(
k − di
k − ai

)edi)α1+∑
∣d∣=2

(

p

∏
i=1

(
k − di
k − ai

)edi)α0,

which gives

f(a) =
p

∏
i=1

(
k

ai
)(α2 +

p

∑
s=1

as
k
e1α1 +

p

∑
s=1

as(as − 1)

k(k − 1)
e2α0 + ∑

1≤s<t≤p

asat
k2

e2
1α0) .

Noting that
α1 = −e1 and α2 = e

2
1 − e2,

we can compute f(a) to

p

∏
i=1

(
k

ai
)(( ∑

1≤s<t≤p
asat −

p

∑
s=1

ask + k
2)
e2

1

k2
+ (

p

∑
s=1

as(as − 1) − k(k − 1))
e2

k(k − 1)
) .

Now it is easy to conclude using ∑
p
s=1 a

2
s = σ

2
1 − 2σ2 and σ1 = ∣a∣ = k + 1.
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3.4 Proof of Theorem 3.1.1

In the construction of our examples, we will need the following easy estimate,
which proves positivity of the constant appearing in f(a) for ∣a∣ = k + 1.

Lemma 3.3.3. Let k ≥ 2 be an integer. For any partition a = (a1, . . . , ap) of
k + 1 with 0 ≤ ai ≤ k for all i, the expression

p

∏
i=1

(
k

ai
) ⋅ (σ2 − k) (3.2)

from Lemma 3.3.2 is nonnegative; it is positive if additionally ai < k for all i.

Proof. The product ∏
p
i=1 (

k
ai
) is positive since 0 ≤ ai ≤ k for all i. It thus suffices

to consider

∑
i<j
aiaj − k. (3.3)

Here we may ignore all ai that are zero. After reordering, we may therefore
assume 1 ≤ a1 ≤ a2 ≤ ⋅ ⋅ ⋅ ≤ ap ≤ k.

If p = 2, then
a1 ⋅ a2 − k = a1(k + 1 − a1) − k

is a negatively curved quadratic equation in a1 with zeros at a1 = k and a1 = 1
and so the assertion follows because a1 = 1 implies a2 = k.

If p ≥ 3, then

∑
i<j
aiaj ≥

p

∑
i=2

a1ai + apap−1 ≥

p

∑
i=2

ai + a1 = k + 1 > k.

Thus, (3.3) is positive, which finishes the prove of the lemma.

3.4 Proof of Theorem 3.1.1

In the notation of Section 3.2, for any odd integer q ≥ 3 we have a smooth
h-cobordism Wq between M3 and Mq which induces an isomorphism

H2(S3,Z) ≃H2(Sq,Z).

Using this isomorphism we fix a class

ω ∈H2(S3,Z) ≃H2(Sq,Z),

of positive square. Since the intersection pairing on S3 has type (1,9), it follows
that the orthogonal complement of ω is negative definite. Hence, G2

q = 0 implies

ω ⋅Gq ≠ 0
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3 Algebraic structures with unbounded Chern numbers

for all q. Via the first Chern class, each Sq carries a unique holomorphic line
bundle Lq with c1(Lq) = ω.

Let C be a smooth curve of genus g ≥ 0 and consider the threefold

Yq ∶= Sq ×C.

This threefold carries the holomorphic vector bundle

Eq ∶= (pr∗1(Lq)⊗ pr∗2OC(1))⊕O
⊕r
Yq

(3.4)

of rank r + 1, where OC(1) denotes some degree one line bundle on C. The
projectivization

Xq ∶= P(Eq)

is a smooth complex projective variety of dimension n ∶= r + 3.

Proposition 3.4.1. If n ≥ 3, then the oriented diffeomorphism class of the
smooth manifold which underlies Xq is independent of q. If n = 4, then the
Chern numbers c4

1(Xq) and c2
1c2(Xq) are unbounded in q. If n ≥ 5, then the m’s

Chern number cm(Xq) is unbounded in q for all partitions m = (m1, . . . ,mp) of
n with 1 ≤mi ≤ n − 2 for all i.

Proof. We first prove the assertion concerning the diffeomorphism type of the
manifold which underlies Xq; this part of the proof follows an argument used
in [45] and [47].

Fix an odd integer q ≥ 3 and consider the h-cobordism Wq. It follows from
the exponential sequence for smooth functions that complex line bundles on
Wq are classified by H2(Wq,Z). Hence, we can find a complex line bundle L
on Wq with

c1(L) = ω ∈H2(S3,Z) ≃H2(Wq,Z).

Since the isomorphism H2(S3,Z) ≃H2(Sq,Z) is induced by Wq, it follows that
the restriction of L to each of the boundary components of Wq coincides with
the complex line bundle which underlies the holomorphic line bundle L3 resp.
Lq on S3 resp. Sq.

Let us first consider the case C ≃ P1. The product Wq × P1 is a simply
connected h-cobordism between M3 × P1 and Mq × P1. It carries the complex
vector bundle

E ∶= (pr∗1 L⊗ pr∗2O
1
P(1))⊕C⊕r.

The restrictions of this bundle to the boundary components of Wq×P1 coincide
with the complex vector bundle which underlies the holomorphic vector bundle
in (3.4). Hence, the projectivization P(E) is a simply connected h-cobordism
between the simply connected oriented 2n-manifolds which underly X3 and
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3.4 Proof of Theorem 3.1.1

Xq. It thus follows from the h-cobordism theorem [85] that these smooth
2n-manifolds are orientation-preserving diffeomorphic, as we claimed.

The above argument proves the first assertion in the proposition for g = 0.
For g ≥ 1, one can use the s-cobordism theorem [40]. More precisely, since
π1(Mq ×C) = π1(C) and since the Whitehead group Wh(π1(C)) is trivial [26,
Thm. 1.11], the s-cobordism theorem applies and we can conclude as before.

In order to prove the second assertion, we use the computational tools given
in Proposition 3.3.1 and Lemma 3.3.2 together with the positivity result in
Lemma 3.3.3. Note that it suffices to compute cm(Xq) modulo all terms that
do not depend on q. For ease of notation, we identify cohomology classes on Sq
via pullback with classes on Yq. Using this notation, and fixing a point c ∈ C,
we obtain

c1(Yq) = c1(Sq) + (2 − 2g) ⋅ [Sq × c],

c2(Yq) = c2(Sq) + (2 − 2g) ⋅ c1(Sq) ⋅ [Sq × c],

c3(Yq) = (2 − 2g) ⋅ c2(Sq) ⋅ [Sq × c].

In the above formulas, only c1(Sq) = (q − 2)Gq depends on q.
In the notation of Proposition 3.3.1 and Lemma 3.3.2, the rank of Eq is

denoted by k = r + 1. Recall that for any partition a of r + i the class f(a) is a
cohomology class in H2i(Yq). By Lemma 3.3.2, this class is always independent
of q, and it vanishes if additionally i = 1. For any partition m = (m1, . . . ,mp)

of n = r + 3 with mi ≥ 1 for all i, the m-th Chern number of Xq is computed in
Proposition 3.3.1. Using Lemma 3.3.2, we obtain

cm(Xq) = c1(Yq) ⋅∑
j

f(m1 − j1, . . . ,mp − jp) +O(1), (3.5)

where j = (j1, . . . , jp) runs through all partitions of 1 by nonnegative integers,
and where O(1) denotes a term which does not depend on q. Here we used
that f(a) is independent of q and that it vanishes if a has weight ∣a∣ = k. In
particular, the formula for cm(Xq) has no nontrivial contribution by terms of
the form c1(Yq)2 ⋅ f(a) or c2(Yq) ⋅ f(a). Moreover, we used c1(Yq)3 = 0 and
c1(Yq)c2(Yq) ∈ O(1), which follows from c1(Sq)2 = 0 and the fact that c2(Sq)
does not depend on q.

By construction of Eq, we have c2(Eq) = 0 and

c1(Eq) = ω + [Sq × c].

This implies

c1(Yq) ⋅ c1(Eq)
2 = 2(q − 2)Gq ⋅ ω ⋅ [Sq × c] +O(1).
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3 Algebraic structures with unbounded Chern numbers

This number is unbounded in q since Gq ⋅ ω is nonzero for all q. It follows
from Lemmas 3.3.2 and 3.3.3 that (3.5) is unbounded in q as long as one of
the partitions

a ∶= (m1 − j1, . . . ,mp − jp)

that appears in (3.5) satisfies mi − ji < k = n − 2.
If n > 4, then this condition is equivalent to mi ≤ n − 2 for all i.
If n = 4, then the above condition is only satisfied for c4

1 and c2
1c2, as we want

in the proposition.

Proof of Theorem 3.1.1. Recall that the Chern numbers cn and c1cn−1 are lin-
ear combinations of Hodge numbers [54, Prop. 2.3], which on Kähler manifolds
are bounded in terms of the Betti numbers of the underlying smooth manifold.
Therefore, if n ≥ 5, the theorem follows from Proposition 3.4.1.

In complex dimension n = 4, the second Pontryagin number is given by

p2 = c
2
2 − 2c1c3 + 2c4. (3.6)

This number depends only on the underlying oriented smooth 8-manifold;
changing the orientation changes p2 by a sign. Since c1c3 and c4 are already
known to be bounded by the underlying smooth manifold, the same conclusion
holds for c2

2. By Proposition 3.4.1, c4
1 and c2

1c2 are unbounded, which finishes
the proof of Theorem 3.1.1.

Remark 3.4.2. It easily follows from item 2 in Lemma 3.3.2 that the Chern
numbers of a projective bundle over any surface remain bounded while changing
the algebraic structure of the base. This explains why in our approach we had
to use a base of dimension at least three.

Remark 3.4.3. The examples used in the proof of Theorem 3.1.1 are ruled and
so they have negative Kodaira dimension. This compares to an observation of
Kotschick which implies that in dimensions three and four the Chern numbers
of a minimal projective manifold of general type are bounded by the under-
lying smooth manifold. Using the Miyaoka–Yau inequality, this was proven
by Kotschick [45, p. 522 and p. 525] under the stronger assumption of ample
canonical class. His argument applies because the inequality used holds more
generally for arbitrary minimal projective manifolds of general type [88, 97].

Remark 3.4.4. Kollár [42, Thm. 4.2.3] proved that on a smooth manifold
with b2 = 1, the set of deformation equivalence classes of algebraic structures is
finite, hence the Chern numbers are bounded. Conversely, it was observed by
Friedman and Morgan [28] that the self-product of a Dolgachev surface yields
an example of a smooth 8-manifold where the set of deformation equivalence
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classes of algebraic structures is infinite because the order of divisibility of
the canonical class can become arbitrarily large. The Chern numbers of these
examples are however bounded.

3.5 Some applications

The following corollary combines Theorem 3.1.1 with LeBrun’s examples [52].

Corollary 3.5.1. In complex dimension n ≥ 4, the topological Euler number
cn is the only Chern number which on complex manifolds is bounded by the
underlying smooth manifold.

Proof. The Chern number cn is clearly bounded by the underlying topological
space.

Conversely, LeBrun [52] showed that there is a sequence (Ym)m≥1 of complex
structures on the 6-manifold S2 ×M , where M denotes the 4-manifold which
underlies a complex K3 surface, such that c1c2(Ym) is unbounded, whereas
c3

1(Ym) and c3(Ym) are both bounded. It follows by induction on n that

Ym × (P1)n−3

has unbounded c1cn−1. One also checks that c2
2(Ym × P1) is unbounded. This

finishes the proof of Corollary 3.5.1 by Theorem 3.1.1.

It is not known whether on complex manifolds c3
1 is bounded by the under-

lying smooth manifold. As in the case of smooth complex projective varieties,
c3

1 is the only Chern number where unboundedness remains open.
The next two corollaries generalize an observation of Kotschick [47, Rem.

20], asserting that the Chern number cn1 in dimension n ≥ 3 does not lie in the
span of the Euler characteristics χp.

Corollary 3.5.2. A Chern number cm lies in the span of the Euler character-
istics χp and the Pontryagin numbers if and only if

cm ∈ {c1cn−1, cn} or cm ∈ {c2
2, c1c3, c4} .

Proof. The assertion is clear for n ≤ 2, and it follows for n = 3 because the
space of the Euler characteristics χp is spanned by c1c2 and c3, and there are
no Pontryagin numbers. If n ≥ 4, then it follows immediately from Theorem
3.1.1 and the fact that c1cn−1 and cn lie in the span of the Euler characteristics
χp, and c2

2 lies in the span of the Euler characteristics and Pontryagin numbers
in dimension four.
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Corollary 3.5.3. The Chern numbers c1cn−1 and cn are the only Chern num-
bers that lie in the span of the χp’s. No Chern number in even complex dimen-
sions lies in the span of the Pontryagin numbers.

Proof. The fact that c1cn−1 and cn are the only Chern numbers that lie in
the span of the χp’s, follows from Corollary 3.5.2 and the observation that in
dimension n = 4, the span of the Euler characteristics χp has a basis given by
c4, c1c3 and 3c2

2 + 4c2
1c2 − c4

1, and so it does not contain c2
2.

The assertion about the Pontryagin numbers in dimension n = 2 follows from
p1 = c2

1 − 2c2. For n ≥ 4, it suffices by Corollary 3.5.1 to show that cn is not a
Pontryagin number. This follows for example from [46, Thm. 5] and the fact
that the signature is not a multiple of cn.

3.6 On the space of bounded linear combinations

In this section we give an upper bound on the dimension of the space of linear
combinations of Chern numbers of smooth complex projective varieties that are
bounded by the underlying smooth manifold. For this purpose we determine
the complex cobordism classes of the manifolds Xq constructed in Section 3.4
in terms of suitable generators of ΩU

∗ ⊗ Q. This approach is based on the
fact that in complex dimension n, the Chern numbers are complex cobordism
invariants which form the dual space of ΩU

n ⊗Q, see [86, p. 117].
Consider the elements α1 ∶= P1, α2 ∶= P2 and

αn ∶= P(OA(1)⊕On−2
A ),

where A denotes an abelian surface and OA(1) denotes some ample line bundle
on A. It follows from Lemma 2.3 in [73] that the Milnor number sn(αn) is
nonzero. By the structure theorem of J.W. Milnor and S.P. Novikov [86, p.
128], (αn)n≥1 is therefore a sequence of generators of the complex cobordism
ring with rational coefficients . That is,

ΩU
∗ ⊗Q ≃ Q[α1, α2, . . . ].

Using this presentation, we consider the graded ideal

I∗ ∶= ⟨α1αk ∣ k ≥ 3⟩

in ΩU
∗ ⊗Q. Denoting the degree n-part of this ideal by In, the main result of

this section is the following.

Theorem 3.6.1. Any linear combination of Chern numbers in dimension n,
which on smooth complex projective varieties is bounded by the underlying
smooth manifold vanishes on In.
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Proof. For n ≥ 4, let us consider the bundle Eq on Yq of rank n − 2 and the
corresponding n-dimensional projective bundle Xq ∶= P(Eq) from Section 3.4.
By Proposition 3.4.1, the smooth manifold which underlies Xq does not depend
on q. Theorem 3.6.1 therefore follows from Proposition 3.6.2 below.

Proposition 3.6.2. Let n ≥ 4 and let Xq ∶= P(Eq) be as in Section 3.4. Then
there is an unbounded function gn(q) in q such that the following identity holds
in ΩU

∗ :

Xq = gn(q) ⋅ α1αn−1 +O(1),

where O(1) denotes terms that are bounded when q →∞.

Proof. Let m be a partition of n. By (3.5) and since c1(Yq) = c1(Sq) +O(1),
we have

cm(Xq) = ∑
∣j∣=1

c1(Sq) ⋅ f(m1 − j1, . . . ,mp − jp) +O(1),

where j = (j1, . . . , jp) runs through all partitions of 1 by nonnegative integers.

We claim that up to the bounded summand O(1), the Chern number cm(Xq)

is a multiple of cm(α1αn−1). To see this, let us consider the product B ∶= P1×A
together with the vector bundle pr∗2OA(1)⊕O

n−3
B . The projectivization

P(pr∗2OA(1)⊕O
n−3
B )

has class α1αn−1 in ΩU
∗ . By Proposition 3.3.1 we find

cm(P(pr∗2OA(1)⊕O
n−3
B )) = f(m1, . . . ,mp) +∑

∣j∣=1

c1(B) ⋅ f(m1 − j1, . . . ,mp − jp),

because ci(A) = 0 for all i ≥ 1. In the above calculation, f(m1, . . . ,mp) is a
cohomology class of degree 6 which is actually a pullback from the second factor
of B and hence vanishes. This establishes the existence of gn(q) in Proposition
3.6.2; its unboundedness follows from Proposition 3.4.1 since n ≥ 4.

By Theorem 3.6.1, any linear combination of Chern numbers in dimension
n which on smooth complex projective varieties is bounded by the underlying
smooth manifold descends to the quotient

(ΩU
n ⊗Q)/In. (3.7)

Denoting by p(n) the number of partitions of n by positive natural numbers,
we therefore get the following.
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3 Algebraic structures with unbounded Chern numbers

Corollary 3.6.3. In dimension n ≥ 4, the space of rational linear combinations
of Chern numbers which on smooth complex projective varieties are bounded
by the underlying smooth manifold is a quotient of the dual space of (3.7); its
dimension is therefore at most

dim(ΩU
n ⊗Q) − dim(In) = p(n) − p(n − 1) + ⌊

n + 1

2
⌋ .

Proof. We need to show that

dim(In) = p(n − 1) − ⌊
n + 1

2
⌋ .

Clearly
dim ⟨α1αk ∣ k ≥ 1⟩n = p(n − 1),

and we have to subtract the number of partitions of n− 1 by 1 and 2, which is
⌊n+1

2
⌋ . This concludes the corollary.

Finally, let us compare the upper bound from Corollary 3.6.3 with the lower
bound which is given by all Euler characteristics χp and all Pontryagin numbers
in even complex dimension. For this purpose, consider the ideal

J ∗ ∶= ⟨α2k+1 ∣ k ≥ 1⟩ + ⟨α1α2k ∣ k ≥ 2⟩

in ΩU
∗ ⊗Q which is generated by all α2k+1 with k ≥ 1 and all α1α2k where k ≥ 2.

It is easily seen that the Euler characteristics χp as well as the Pontryagin
numbers vanish on J ∗. By [48, Cor. 4], the signature is the only linear com-
bination of Pontryagin numbers which is contained in the span of the Euler
characteristics χp. A simple dimension count therefore shows that the Euler
characteristics and Pontryagin numbers in dimension n form the dual space of

(ΩU
n ⊗Q)/J n.

We note that the inclusion In ⊆ J n is proper for all n ≥ 3 with the exception
of n = 4, where equality holds.
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4 Hodge structures of conjugate
varieties

Abstract. For any subfield K ⊆ C, not contained in an imaginary

quadratic extension of Q, we construct conjugate varieties whose al-

gebras of K-rational (p, p)-classes are not isomorphic. This compares

to the Hodge conjecture which predicts isomorphisms when K is con-

tained in an imaginary quadratic extension of Q; additionally, it shows

that the complex Hodge structure on the complex cohomology algebra

is not invariant under the Aut(C)-action on varieties. In our proofs, we

find simply connected conjugate varieties whose multilinear intersection

forms on H2
(−,R) are not (weakly) isomorphic. Using these, we detect

nonhomeomorphic conjugate varieties for any fundamental group and

in any birational equivalence class of dimension ≥ 10.

4.1 Introduction

For a smooth complex projective variety X and an automorphism σ of C, the
conjugate variety Xσ is defined via the fiber product diagram

Xσ

��

// X

��

Spec(C)
σ∗ // Spec(C).

To put it another way, Xσ is the smooth variety whose defining equations
in some projective space are given by applying σ to the coefficients of the
equations of X. As abstract schemes – but in general not as schemes over
Spec(C) – X and Xσ are isomorphic. This has several important consequences
for the singular cohomology of conjugate varieties.

Pull-back of forms induces a σ-linear isomorphism between the algebraic
de Rham complexes of X and Xσ. This induces an isomorphism of complex

This chapter is based on [74].
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4 Hodge structures of conjugate varieties

Hodge structures

H∗(X,C)⊗σ C ∼ // H∗(Xσ,C), (4.1)

where ⊗σC means that the tensor product is taken over C, which maps to C
via σ, see [13]. In particular, Hodge and Betti numbers of conjugate varieties
coincide.

The singular cohomology with Q`-coefficients coincides on smooth complex
projective varieties with `-adic étale cohomology. Since étale cohomology does
not depend on the structure morphism to Spec(C), we obtain isomorphisms
of graded Q`-, resp. C-algebras,

H∗(X,Q`)
∼ // H∗(Xσ,Q`) and H∗(X,C)

∼ // H∗(Xσ,C), (4.2)

depending on an embedding Q` ⊆ C. Since the latter isomorphism is C-linear,
it is not induced by (4.1).

Only recently, Charles discovered that there are however aspects of singular
cohomology which are not invariant under conjugation:

Theorem 4.1.1 (Charles [12]). There exist conjugate smooth complex projec-
tive varieties with distinct real cohomology algebras.

4.1.1 Algebras of K-rational (p, p)-classes

For any subfield K ⊆ C, we denote the space of K-rational (p, p)-classes on X
by

Hp,p(X,K) ∶=Hp,p(X) ∩H2p(X,K);

the corresponding graded K-algebra is denoted by H∗,∗(X,K). The Hodge
conjecture predicts that H∗,∗(X,Q) is generated by algebraic cycles. Since
each algebraic cycle Z ⊆ X induces a canonical cycle Zσ ⊆ Xσ and vice versa,
the Hodge conjecture implies

Conjecture 4.1.2. The graded Q-algebra H∗,∗(−,Q) is conjugation invariant.

Apart from the (few) cases where the Hodge conjecture is known, and apart
from Deligne’s result [21] which settles Conjecture 4.1.2 for abelian varieties,
the above conjecture remains wide open, see [13, 92].

The above consequence of the Hodge conjecture motivates the investiga-
tion of potential conjugation invariance of H∗,∗(−,K) for an arbitrary field
of coefficients K ⊆ C. If K = Q(iw) with w2 ∈ N is an imaginary quadratic
extension of Q, then the real part, as well as 1/w times the imaginary part of
a Q(iw)-rational (p, p)-class is Q-rational. Hence,

H∗,∗(−,Q(iw)) ≃H∗,∗(−,Q)⊗Q Q(iw).
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4.1 Introduction

It follows that the Hodge conjecture predicts the conjugation invariance of
H∗,∗(−,K), when K is contained in an imaginary quadratic extension of Q.
In this chapter, we are able to settle all remaining cases:

Theorem 4.1.3. Let K ⊆ C be a subfield, not contained in an imaginary
quadratic extension of Q. Then there exist conjugate smooth complex projective
varieties whose graded algebras of K-rational (p, p)-classes are not isomorphic.

By Theorem 4.1.3, there are conjugate smooth complex projective varieties
X, Xσ with

H∗,∗(X,C) ≇H∗,∗(Xσ,C).

This shows the following:

Corollary 4.1.4. The complex Hodge structure on the complex cohomology al-
gebra of smooth complex projective varieties is not invariant under the Aut(C)-
action on varieties.

Corollary 4.1.4 is in contrast to (4.1) and (4.2) which show that the complex
Hodge structure in each degree, as well as the C-algebra structure of H∗(−,C)

are Aut(C)-invariant. The above corollary also shows that there is no em-
bedding Q` ↪ C which guarantees that the isomorphism (4.2), induced by
isomorphisms between `-adic étale cohomologies, respects the complex Hodge
structures.

Theorem 4.1.3 will follow from Theorems 4.1.5 and 4.1.6 below. Firstly, if
K is different from R and C, then Theorem 4.1.3 follows from

Theorem 4.1.5. Let K ⊆ C be a subfield, not contained in an imaginary
quadratic extension of Q. If K is different from R and C, then there exist for
any p ≥ 1 and in any dimension ≥ p + 1 conjugate smooth complex projective
varieties X, Xσ with

Hp,p(X,K) ≇Hp,p(Xσ,K).

It is worth noting that Theorem 4.1.5 does not remain true if one restricts
to smooth complex projective varieties that can be defined over Q, see Remark
4.3.5.

Next, the case K = R in Theorem 4.1.3 follows from the case where K = C
since

H∗,∗(X,R)⊗RC ≃H∗,∗(X,C)

holds; so it remains to deal with K = C. As the isomorphism type of the C-
vector space Hp,p(−,C) coincides on conjugate varieties, we now really need to
make use of the algebra structure of H∗,∗(−,C). Remarkably, it turns out that
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4 Hodge structures of conjugate varieties

it suffices to use only a very little amount of the latter, namely the symmetric
multilinear intersection form

H1,1(X,C)⊗n //H2n(X,C),

where n = dim(X). We explain our result, Theorem 4.1.6 below, in the next
subsection.

4.1.2 Multilinear intersection forms on H1,1(−,K) and
H2(−,K)

We say that two symmetric K-multilinear forms V ⊗n → K and W⊗n → K on
two given K-vector spaces V and W are (weakly) isomorphic if there exists a
K-linear isomorphism V ≃W which respects the given multilinear forms (up to
a multiplicative constant). If K is closed under taking n-th roots, then weakly
isomorphic intersection forms are already isomorphic.

For a smooth complex projective variety X of dimension n, cup product
defines symmetric multilinear forms

H1,1(X,K)⊗n //H2n(X,K) ≃K and H2(X,K)⊗n //H2n(X,K) ≃K,

where H2n(X,K) ≃ K is the canonical isomorphism that is induced by inte-
grating de Rham classes over X. The weak isomorphism types of the above
multilinear forms are determined by the isomorphism types of the graded K-
algebras H∗,∗(X,K) and H2∗(X,K) respectively.

By the Lefschetz theorem, the Hodge conjecture is true for (1,1)-classes
and so it is known that the isomorphism type of the intersection form on
H1,1(−,Q) is conjugation invariant. Additionally, it follows from (4.2) that
the isomorphism types of the intersection forms on H2(−,Q`) and H2(−,C)

are invariant under conjugation. Our result, which settles the case K = C in
Theorem 4.1.3, contrasts these positive results:

Theorem 4.1.6. There exist in any dimension ≥ 4 simply connected conjugate
smooth complex projective varieties whose R-multilinear intersection forms on
H2(−,R), as well as C-multilinear intersection forms on H1,1(−,C), are not
weakly isomorphic.

The examples we will construct in the proof of Theorem 4.1.6 in Section 4.6
are defined over cyclotomic number fields. For instance, one series of examples
is defined over Q[ζ12]; their complex (1,1)-classes are spanned by Q[

√
3]-

rational ones. This yields examples X, Xσ such that the intersection forms on
the equidimensional vector spaces H1,1(X,Q[

√
3]) and H1,1(Xσ,Q[

√
3]) are

not weakly isomorphic, see Corollary 4.6.3.
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4.1 Introduction

It follows from Theorem 4.1.6 that the even-degree real cohomology alge-
bra H2∗(−,R), as well as the subalgebra SH2(−,R) which is generated by
H2(−,R), is not invariant under conjugation. Since Charles’s examples have
dimension ≥ 12 and fundamental group Z8, Theorem 4.1.6 generalizes Theorem
4.1.1 in several different directions. Another generalization of Theorem 4.1.1,
namely Theorem 4.1.7 below, is explained in the following subsection.

4.1.3 Applications to conjugate varieties with given
fundamental group.

Conjugate varieties are homeomorphic in the Zariski topology but in general
not in the analytic one. Historically, this was first observed by Serre in [78],
who constructed conjugate varieties whose fundamental groups are infinite
but nonisomorphic. The first nonhomeomorphic conjugate varieties with finite
fundamental group were constructed by Abelson [1]. His construction however
only works for nonabelian finite groups which satisfy some strong cohomolog-
ical condition.

Other examples of conjugate varieties which are not homeomorphic (or,
weaker: not deformation equivalent) are constructed in [7, 12, 24, 62, 83].
Again, the fundamental groups of these examples are of special shapes. In
particular, our conjugate varieties in Theorem 4.1.6 are the first known non-
homeomorphic examples which are simply connected. This answers a question,
posed more than 15 years ago by D. Reed in [67]. Reed’s question was our
initial motivation to study conjugate varieties and leads us to the more general
problem of determining those fundamental groups for which nonhomeomorphic
conjugate varieties exist. Since the fundamental group of smooth varieties is
a birational invariant, the problem of detecting nonhomeomorphic conjugate
varieties in a given birational equivalence class refines this problem. Building
upon the examples we will construct in the proof of Theorem 4.1.6, we will be
able to prove the following:

Theorem 4.1.7. Any birational equivalence class of complex projective vari-
eties in dimension ≥ 10 contains conjugate smooth complex projective varieties
whose even-degree real cohomology algebras are nonisomorphic.

Theorem 4.1.7 implies immediately:

Corollary 4.1.8. Let G be the fundamental group of a smooth complex pro-
jective variety. Then there exist conjugate smooth complex projective varieties
with fundamental group G, but nonisomorphic even-degree real cohomology al-
gebras.
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4 Hodge structures of conjugate varieties

In Theorem 4.8.1 in Section 4.8 we show that the examples in Theorem 4.1.7
can be chosen to have nonisotrivial deformations. This is in contrast to the
observation that the previously known nonhomeomorphic conjugate varieties
tend to be rather rigid, cf. Remark 4.8.3.

4.1.4 Constructions and methods of proof.

Using products of special surfaces with projective space, we will prove The-
orem 4.1.5 in Section 4.3. The key idea is to construct real curves in the
moduli space of abelian surfaces, respectively Kummer K3 surfaces, on which
dim(H1,1(−,K)) is constant. Using elementary facts about modular forms, we
then prove that each of our curves contains a transcendental point, i.e. a point
whose coordinates are algebraically independent over Q. The action of Aut(C)

being transitive on the transcendental points of our moduli spaces, Theorem
4.1.5 follows as soon as we have seen that our assumptions on K ensure the
existence of two real curves as above on which dim(Hp,p(−,K)) takes different
(constant) values.

For the proof of Theorem 4.1.6 in Section 4.6 we use the Charles–Voisin
method [12, 91], see Section 4.4. We start with simply connected surfaces
Y ⊆ PN with special automorphisms, constructed in Section 4.5. Then we blow-
up five smooth subvarieties of Y ×Y ×PN , e.g. the graphs of automorphisms of
Y . In order to keep the dimensions low, we then pass to a complete intersection
subvariety T of this blow-up. If dim(T ) ≥ 4, then the cohomology of T encodes
the action of the automorphisms on H2(Y,R) and H1,1(Y,C). The latter can
change under the Aut(C)-action, which will be the key ingredient in our proofs.

In order to prove Theorem 4.1.7 in Section 4.7, we start with a smooth
complex projective variety Z of dimension ≥ 10, representing a given birational
equivalence class. From our previous results, we will be able to pick a four-
dimensional variety T and an automorphism σ of C with Z ≃ Zσ, such that
T and T σ have nonisomorphic even-degree real cohomology algebras. Since
T is four-dimensional, we can embed it into the exceptional divisor of the
blow-up Ẑ of Z in a point and define W = BlT (Ẑ). Then, W σ = BlTσ(Ẑσ)

is birational to Zσ ≃ Z. Moreover, we will be able to arrange that b2(T ) is
larger than b4(Z)+4. This will allow us to show that any isomorphism between
H2∗(W,R) and H2∗(W σ,R) induces an isomorphism between H2∗(T,R) and
H2∗(T σ,R). Theorem 4.1.7 will follow.

4.1.5 Conventions.

All Kähler manifolds are compact and connected, if not mentioned otherwise.
A variety is a separated integral scheme of finite type over C. Using the
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4.2 Preliminaries

GAGA principle [79], we usually identify a smooth projective variety with its
corresponding analytic space, which is a Kähler manifold.

4.2 Preliminaries

4.2.1 Cohomology of blow-ups

In this subsection we recall important properties about the cohomology of
blow-ups, which we will use (tacitly) throughout Sections 4.4, 4.6 and 4.7.
Some of these results were already mentioned in Section 2.4.1 of Chapter 2,
we repeat them here to ensure that each chapter is self contained.

Let Y ⊆X be Kähler manifolds and let X̃ = BlY (X) be the blow-up of X in
Y with exceptional divisor D ⊆ X̃. We then obtain a commutative diagram

D

p

��

j
// X̃

π

��

Y
i // X,

where i denotes the inclusion of Y into X and j denotes the inclusion of the
exceptional divisor D into X̃. Let r denote the codimension of Y in X, then
we have the following, see [89, p. 180].

Theorem 4.2.1. There is an isomorphism of integral Hodge structures

Hk(X,Z)⊕ (
r−2

⊕
i=0

Hk−2i−2(Y,Z))
∼ // Hk (X̃,Z) ,

where on Hk−2i−2(Y,Z), the natural Hodge structure is shifted by (i + 1, i + 1).
On Hk(X,Z), the above morphism is given by π∗. On Hk−2i−2(Y,Z) it is given
by j∗ ○hi ○p∗, where h denotes the cup product with c1(OD(1)) ∈H2(D,Z) and
j∗ is the Gysin morphism of the inclusion j ∶D ↪ X̃.

By the above lemma, each cohomology class of X̃ is a sum of pullback classes
from X and push forward classes from D. The ring structure on H∗(X̃,Z) is
therefore uncovered by the following lemma.

Lemma 4.2.2. Let α,β ∈H∗(D,Z) and η ∈H∗(X,Z). Then,

π∗(η) ∪ j∗(α) = j∗(p
∗(i∗η) ∪ α) and j∗(α) ∪ j∗(β) = −j∗(h ∪ α ∪ β),

where h = c1(OD(1)) ∈H2(D,Z).
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4 Hodge structures of conjugate varieties

Proof. Note first that j satisfies the projection formula in cohomology. That
is,

j∗(ω1 ∪ j
∗ω2) = (j∗ω1) ∪ ω2,

for all ω1 ∈H∗(D,Z) and ω2 ∈H∗(X̃,Z), which can easily be seen on the level
of homology.

Using i ○ p = π ○ j, the first assertion in Lemma 4.2.2 follows immediately
from the projection formula for j.

For the second assertion, one first proves

j∗(α) ∪ j∗(β) = j∗(1) ∪ j∗(α ∪ β) (4.3)

by realizing that the dual statement in homology holds. Note that

j∗(1) = c1(OX̃(D)).

Moreover, the restriction ofOX̃(D) to D is isomorphic toOD(−1). This implies
−h = j∗(j∗(1)) and so the projection formula for j yields:

−j∗(h ∪ α ∪ β) = j∗(1) ∪ j∗(α ∪ β).

This concludes the proof by (4.3).

4.2.2 Eigenvalues of conjugate endomorphisms

Let X be a smooth complex projective variety with endomorphism f and let
σ be an automorphism of C. Via base change, f induces an endomorphism
fσ of Xσ. If an explicit embedding of X into some projective space PN with
homogeneous coordinates z = [z0 ∶ ⋅ ⋅ ⋅ ∶ zN] is given, then fσ is determined by

fσ(σ(z))) = σ(f(z))

for all z ∈ X, where σ acts on each homogeneous coordinate simultaneously.
On cohomology, we obtain linear maps

f∗ ∶Hp,q(X) //Hp,q(X) and (fσ)∗ ∶Hp,q(Xσ) //Hp,q(Xσ).

These maps commute with the σ-linear isomorphism

Hp,q(X)
∼ // Hp,q(Xσ)

induced by (4.1). This observation proves:

Lemma 4.2.3. The set of eigenvalues of (fσ)∗ on Hp,q(Xσ) is given by the
σ-conjugate of the set of eigenvalues of f∗ on Hp,q(X).
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4.2.3 The j-invariant of elliptic curves

Recall that the j-invariant of an elliptic curve E with affine Weierstrass equa-
tion y2 = 4x3 − g2x − g3 equals

j(E) = 1728 ⋅
g3

2

g3
2 − 27g2

3

.

Two elliptic curves are isomorphic if and only if their j-invariants coincide.
From the above formula, we deduce j(Eσ) = σ(j(E)) for all σ ∈ Aut(C). For
an element τ in the upper half plane H, we use the notation

Eτ ∶= C/(Z + τZ) and j(τ) ∶= j(Eτ). (4.4)

Then, j induces an isomorphism between any fundamental domain of the action
of the modular group SL2(Z) on H and C. Moreover, j is holomorphic on H
with a cusp of order one at i ⋅ ∞.

4.2.4 Kummer K3 surfaces and theta constants

Let M ∈M2(C) be a symmetric matrix whose imaginary part is positive defi-
nite. Then,

AM ∶= C2/(Z2 +MZ2)

is a principally polarized abelian surface. The associated Kummer K3 surface
K3(AM) is the quotient of the blow-up of AM at its 16 2-torsion points by the
involution ⋅(−1). Equivalently, K3(AM) is the blow-up of AM/(−1) at its 16
singular points.

Let LM be a line bundle on AM which induces the principal polarization on
AM . The linear series ∣L⊗2

M ∣ then defines a morphism AM //P3. This morphism
induces an isomorphism of AM/(−1) with a degree four hypersurface

{FM = 0} ⊆ P3.

The coefficients of FM are given by homogeneous degree 12 expressions in the
coordinates of Riemann’s second order theta constant Θ2(M) ∈ P3, see [31]
and also [68, Example 1.1]. This constant is defined as

Θ2(M) ∶= [Θ2[0,0](M) ∶ Θ2[1,0](M) ∶ Θ2[0,1](M) ∶ Θ2[1,1](M)]. (4.5)

Here, for δ ∈ {0,1}
2
, the complex number Θ2[δ](M) denotes the Fourier series

Θ2[δ](M) ∶= ∑
n∈Z2

e2πi⋅QM (n+δ/2), (4.6)

where QM(z) is the quadratic form ztMz, associated to M .
The above discussion allows us to calculate conjugates of K3(AM) explicitly.
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4 Hodge structures of conjugate varieties

Lemma 4.2.4. If σ(Θ2(M)) = Θ2(M ′) holds for some automorphism σ ∈

Aut(C), then

K3(AM)σ ≃K3(AM ′).

Proof. As mentioned above, the coefficients of FM and FM ′ are polynomial
expressions in the coordinates of Θ2(M) and Θ2(M ′) respectively. The ac-
tion of σ therefore maps the polynomial FM to FM ′ and hence {FM = 0} to
{FM ′ = 0}. Moreover, this action maps the 16 singular points of {FM = 0} to
the 16 singular points of {FM ′ = 0}. The lemma follows from the above descrip-
tion of K3(AM) and K3(AM ′) as smooth models of {FM = 0} and {FM ′ = 0}
respectively.

Remark 4.2.5. The linear series ∣L⊗3
M ∣ defines an embedding of AM into P8.

It is in principle possible to use this embedding in order to calculate conjugates
AσM of AM . In the preceding section we only presented the analogous (easier)
calculation for the associated Kummer K3 surface which will suffice for our
purposes.

4.3 Proof of Theorem 4.1.5

Proof of Theorem 4.1.5. Let us fix a subfield K ⊆ C, different from R and C,
which is not contained in any imaginary quadratic extension of Q. We then
need to construct for any p ≥ 1 and in any dimension n ≥ p + 1 conjugate
smooth complex projective varieties X, Xσ with Hp,p(X,K) ≇ Hp,p(Xσ,K).
After taking products with Pn−2, it clearly suffices to settle the case p = 1 and
n = 2.

We denote by KR ∶= K ∩ R the maximal real subfield of K. The proof of
Theorem 4.1.5 for p = 1 and n = 2 is now divided into four different cases.
Cases 1 and 2 deal with KR ≠ Q; in Cases 3 and 4 we settle KR = Q.

In Cases 1–3 we will consider for τ ∈ H the elliptic curve Eτ with associated
j-invariant j(τ) from (4.4), and use the following

Lemma 4.3.1. Let L ⊂ C be a subfield. Then we have for any a, b ∈ R>0,

dim(H1,1(Eia×Eib, L)) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

2, if a/b ∉ L and a ⋅ b ∉ L,

3, if a/b ∈ L and a ⋅ b ∉ L, or if a/b ∉ L and a ⋅ b ∈ L,

4, if a/b ∈ L and a ⋅ b ∈ L.

Proof. For j = 1,2, we denote the holomorphic coordinate on the j-th factor
of Eia ×Eib by zj = xj + iyj. Then there are basis elements

α1, β1 ∈H
1(Eia,Z) and α2, β2 ∈H

1(Eib,Z),
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4.3 Proof of Theorem 4.1.5

such that

dz1 = α1 + ia ⋅ β1 ∈H
1,0(Eia) and dz2 = α2 + ib ⋅ β2 ∈H

1,0(Eib).

We deduce that the following four (1,1)-classes form a basis of H1,1(Eia×Eib):

α1 ∪ β1, α2 ∪ β2, α1 ∪ α2 + ab ⋅ β1 ∪ β2 and α1 ∪ β2 + (a/b) ⋅ α2 ∪ β1.

The lemma follows.

Case 1: KR is uncountable.
The restriction of the j-invariant to i ⋅R≥1 is injective. Since KR is uncount-

able, it follows that there is some λ ≥ 1 in KR such that j(iλ) is transcendental.
By assumptions, KR is different from R. The additive action of KR on R

has therefore more than one orbit and so R≥1 ∖KR is uncountable. As above,
it follows that there is some µ ∈ R≥1 ∖KR such that j(iµ) is transcendental.
Hence, there is some σ ∈ Aut(C) with σ(j(iλ)) = j(iµ). Since j(i) = 1, it
follows from the discussion in Section 4.2.3 that

X ∶= Eiλ ×Ei with Xσ ≃ Eiµ ×Ei.

Since λ ∈ K and µ ∉ K, it follows from Lemma 4.3.1 that H1,1(X,K) and
H1,1(Xσ,K) are not equidimensional. This concludes Case 1.

Case 2: KR is countable and KR ≠ Q.
Here we will need the following lemma.

Lemma 4.3.2. Let λ ∈ R>0 be irrational, and let U ⊆ R>0 be an uncountable
subset. Then there is some µ ∈ U such that j(µ) and j(λµ) are algebraically
independent over Q.

Proof. For a contradiction, suppose that j(µ) and j(λµ) are algebraically de-
pendent over Q for all µ ∈ U . Since the polynomial ring in two variables over Q
is countable, whereas U is uncountable, we may assume that j(µ) and j(λµ)
satisfy the same polynomial relation for all µ ∈ U . Any uncountable subset
of R contains an accumulation point. Hence, the identity theorem yields a
polynomial relation between the holomorphic functions j(τ) and j(λτ) in the
variable τ ∈ H. That is,

n

∑
l=0

cl(j(τ)) ⋅ j(λτ)
l = 0,

where cl(j(τ)) is a polynomial in j(τ) which is nontrivial for l = n. We may
assume that n is the minimal integer such that a polynomial relation as above
exists. The modular form j(τ) does not satisfy any nontrivial polynomial
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relation since it has a pole of order one at i∞. Thus, n ≥ 1. For k ∈ Z, we have
j(τ) = j(τ + k) and so the above identity yields

n

∑
l=0

cl(j(τ)) ⋅ (j(λτ)
l − j(λτ + λk)l) = 0,

for all k ∈ Z. Since λ is irrational, λτ and λτ +λk do not lie in the same SL2(Z)

orbit and so j(λτ) − j(λτ + λk) is nonzero for all k ∈ Z. Thus,

n

∑
l=1

cl(j(τ)) ⋅
l−1

∑
h=0

j(λτ)hj(λτ + λk)l−1−h = 0.

If we now choose a sequence of integers (km)m≥1 such that λkm tends to zero
modulo Z, then the above identity tends to the identity

n

∑
l=1

cl(j(τ)) ⋅ l ⋅ j(λτ)
l−1 = 0.

This contradicts the minimality of n. Lemma 4.3.2 follows.

Since KR is countable, it follows that for any t > 0,

Ut ∶= {µ ∈ R≥1 ∣ tµ2 ∉K}

is uncountable. By assumptions in Case 2, KR contains a positive irrational
number λ. Additionally, we pick a positive irrational number λ′ ∉K.

Then, by Lemma 4.3.2, there are elements µ ∈ Uλ and µ′ ∈ Uλ′ such that
j(iµ) and j(iλµ), as well as j(iµ′) and j(iλ′µ′), are algebraically independent
over Q. It follows that for some σ ∈ Aut(C), we have

X ∶= Eiλµ ×Eiµ with Xσ ≃ Eiλ′µ′ ×Eiµ′ .

Since λ ∈K and λµ2, λ′, λ′µ′2 ∉K, it follows from Lemma 4.3.1 thatH1,1(X,K)

and H1,1(Xσ,K) are not equidimensional. This concludes Case 2.
Case 3: K is uncountable and KR = Q.
Since K is uncountable, there are elements τ, τ ′ ∈ H with τ, τ ′ ∈K such that

j(τ) and j(τ ′) are algebraically independent over Q. Also, there are positive
real numbers µ,µ′ ∈ R>0 with µµ′, µ/µ′ ∉ KR = Q such that j(iµ) and j(iµ′)
are algebraically independent over Q. For some σ ∈ Aut(C), we then have

X ∶= Eτ ×Eτ ′ with Xσ ≃ Eiµ ×Eiµ′ .

Since τ, τ ′ ∈K, the space H1,1(X,K) is at least three-dimensional. Conversely,
H1,1(Xσ,K) is two-dimensional by Lemma 4.3.1. This concludes Case 3.
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Case 4: K is countable and KR = Q.
This case is slightly more difficult; instead of products of elliptic curves, we

will use Kummer K3 surfaces and their theta constants, see Section 4.2.4. We
begin with the definition of certain families of such surfaces. For t = t1+ it2 ∈ C
with t1 ≠ 0 and µ ∈ R>0, we consider the symmetric matrix

M(µ, t) ∶= i
µ

2t1
⋅ (

2t1 1
1 ∣t∣2

) .

For a suitable choice of t ∈ C, the matrix −iM(µ, t) is positive definite for all
µ > 0 and so the abelian surface AM(µ,t) as well as its associated Kummer K3

surface exist. For such t, we have the following lemma, where Â denotes the
dual of the abelian surface A.

Lemma 4.3.3. Let L ⊆ C be a subfield, let µ > 0 and let t = t1 + it2 ∈ C such
that −i ⋅M(µ, t) is positive definite. If t1, ∣t∣2 and det(M(µ, t)) do not lie in
L, then

dim(H1,1(K3(ÂM(µ,t)), L)) =

⎧⎪⎪
⎨
⎪⎪⎩

17, if (∣t∣2 + 2t1 ⋅L) ∩L = ∅,

18, otherwise.

Proof. Fix t ∈ C and µ > 0 such that −i ⋅M(µ, t) is positive definite and assume
that t1, ∣t∣2 and det(M(µ, t)) do not lie in L. The rational degree two Hodge
structure of a Kummer surface K3(A) is the direct sum of 16 divisor classes
with the degree two Hodge structure of A. It therefore remains to investigate
the dimension of H1,1(ÂM(µ,t), L).

We denote the holomorphic coordinates on C2 by z = (z1, z2), where

zj = xj + iyj.

The cohomology of ÂM(µ,t) is given by the homology of AM(µ,t) and so

α1 = dx1, α2 = dx2, α3 = µ/(2t1) ⋅ (2t1dy1 + dy2) , α4 = µ/(2t1) ⋅ (dy1 + ∣t∣2dy2)

form a basis of H1(ÂM(µ,t),Q). Next, H1,1(ÂM(µ,t)) has basis

dz1 ∪ dz1, dz1 ∪ dz2, dz2 ∪ dz1 and dz2 ∪ dz2.

This basis can be expressed in terms of αj ∪ αk, where 1 ≤ j < k ≤ 4. Applying

the Gauß algorithm then yields the following new basis of H1,1(ÂM(µ,t)):

Ω1 ∶= α2 ∪ α4 + α1 ∪ α3,

Ω2 ∶= α1 ∪ α4 − ∣t∣2 ⋅ α1 ∪ α3,

Ω3 ∶= α2 ∪ α3 − 2t1 ⋅ α1 ∪ α3,

Ω4 ∶= α3 ∪ α4 − det(M(µ, t)) ⋅ α1 ∪ α2.
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4 Hodge structures of conjugate varieties

From this description it follows that if a linear combination∑λiΩi is L-rational,
then all λi lie in L. Moreover, since det(M(µ, t)) ∉ L, the coefficient λ4 needs
to vanish.

Since t1, ∣t∣2 ∉ L, neither Ω2 nor Ω3 is L-rational. We conclude that

H1,1(ÂM(µ,t), L)

is two-dimensional if ∣t∣2 + 2t1 ⋅ l1 = l2 has a solution l1, l2 ∈ L, and it is one-
dimensional otherwise. The lemma follows.

In the following we will stick to parameters t that are contained in a suffi-
ciently small neighborhood of 1/3 + 3i. For such t, the matrix −i ⋅M(µ, t) is
positive definite. The reason for the explicit choice of the base point 1/3 + 3i
is due to the fact that it slightly simplifies the proof of the subsequent lemma.
In order to state it, we call a point in P3 transcendental if its coordinates in
some standard affine chart are algebraically independent over Q. Equivalently,
z ∈ P3 is transcendental if and only if P (z) ≠ 0 for all nontrivial homogeneous
polynomials P with rational coefficients. That is, the transcendental points of
P3 are those which lie in the complement of the (countable) union of hypersur-
faces which can be defined over Q. It is important to note that Aut(C) acts
transitively on this set of points.

Lemma 4.3.4. There is a neighborhood V ⊆ C of 1/3 + 3i, such that for all
t = t1 + it2 ∈ V with 1, t1 and ∣t∣2 linearly independent over Q, the following
holds. Any uncountable subset U ⊆ R>0 contains a point µ ∈ U with:

1. The matrix −i ⋅M(µ, t) is positive definite.

2. The determinant of M(µ, t) is not rational.

3. The theta constant Θ2(M(µ, t)) is a transcendental point of P3.

Proof. We define the quadratic form

Q(z) ∶= 2t1z
2
1 + 2z1z2 + ∣t∣2z2

2 ,

where z = (z1, z2) ∈ R2. For δ ∈ {0,1}
2
, the homogeneous coordinate

Θ2[δ](M(µ, t))

of the theta constant Θ2(M(µ, t)) is then given by

Θ2[δ](M(µ, t)) = ∑
n∈Z2

exp(−
πµ

t1
⋅Q(n + δ/2)) , (4.7)
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see (4.6). At the point t = 1/3 + 3i, we have

Q(z)∣t=1/3+3i =
2

3
⋅ (z1 + 3z2/2)

2 +
137

18
⋅ z2

2 .

This shows that there is a neighborhood V of 1/3+ 3i such that −i ⋅M(µ, t) is
positive definite for all t ∈ V and all µ > 0. For such t, the function in (4.7) is
a modular form in the variable i ⋅ µ ∈ H, see [27].

Let us now pick some t ∈ V with 1, t1 and ∣t∣2 linearly independent over Q.
Then −i ⋅M(µ, t) is positive definite and so det(M(µ, t)) is a nonzero multiple
of µ2. After possibly removing countably many points of U , we may therefore
assume

det(M(µ, t)) ∉ Q

for all µ ∈ U .
For a contradiction, we now assume that there is no µ ∈ U such that

Θ2(M(µ, t)) is a transcendental point of P3. Since the polynomial ring in
four variables over Q is countable, we may then assume that there is one ho-
mogeneous polynomial P with P (Θ2(M(µ, t))) = 0 for all µ ∈ U . Since U ⊆ R>0

is uncountable, it contains an accumulation point. Then the identity theorem
yields

P (Θ2(M(−iτ, t))) = 0, (4.8)

where the left hand side is considered as holomorphic function in τ ∈ H.
For τ → i∞, the modular form Θ2[δ](M(−iτ, t)) from (4.7) is dominated

by the summand where the exponent Q(n) with n ∈ N2 + δ is minimal. After
possibly shrinking V , these minima nδ ∈ N2 + δ of Q(n) are given as follows:

n0,0 = (0,0), n1,0 = ±(1/2,0), n0,1 = ±(−1,1/2) and n1,1 = ±(−1/2,1/2).

Noting that Q(n0,0) vanishes, we conclude that for τ → i∞, the monomial

Θ2[0,0](M)h ⋅Θ2[1,0](M)j ⋅Θ2[0,1](M)k ⋅Θ2[1,1](M)l,

where we wrote M =M(−iτ, t), is dominated by the summand

2 ⋅ exp(
πiτ

t1
⋅ (j ⋅Q(n1,0) + k ⋅Q(n0,1) + l ⋅Q(n1,1))) .

The left hand side in (4.8) is then dominated by those summands for which

j ⋅Q(n1,0) + k ⋅Q(n0,1) + l ⋅Q(n1,1)

is minimal. We will therefore arrive at a contradiction as soon as we have seen
that this summand is unique. That is, it suffices to see that Q(n1,0), Q(n0,1)
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and Q(n1,1) are linearly independent over Q. In order to see the latter, we
calculate

Q(n1,0) = t1/2, Q(n0,1) = ∣t∣2/4 + 2t1 − 1 and Q(n1,1) = ∣t∣2/4 + t1/2 − 1/2.

The claim is now obvious since 1, t1 and ∣t∣2 are linearly independent over Q
by assumptions. This finishes the proof of the lemma.

We are now able to conclude Case 4. Let V be the neighborhood of 1
3+3i from

Lemma 4.3.4. Since KR = Q and since K is not contained in any imaginary
quadratic extension of Q, we may pick some t = t1 + it2 ∈ K ∩ V which is not
quadratic over Q. Then t1 is not rational since otherwise (t − t1)2 would lie
in KR = Q, which yielded a quadratic relation for t over Q. It follows that 1,
t + t = 2t1 and t ⋅ t = ∣t∣2 are linearly independent over Q, as otherwise t would
lie in K and so t + t = 2t1 ∈ KR = Q were rational. Hence, the assumptions of
Lemma 4.3.4 are satisfied and so there is some µ ∈ R>0 such that the pair (µ, t)
satisfies (1)–(3) in Lemma 4.3.4.

Next, we consider t′ = t′1 + 3i ∈ V with 1, t′1 and t′21 linearly independent over
Q. Since V is a neighborhood of 1/3 + 3i, there are uncountably many values
for t′1 such that t′ has the above property. We claim that we can choose t′1
within this uncountable set such that additionally

2t′1λ1 = λ2 + ∣t′∣2 (4.9)

has no solution λ1, λ2 ∈K. In order to prove this, suppose that t′1 is a solution
of (4.9) for some λ1, λ2 ∈ K. Since ∣t′∣2 is a real number, it follows that t′1 lies
in the set of quotients x/y where x and y are imaginary parts of some elements
of K. Since K is countable, so is the latter set. Our claim follows since we can
choose t′1 within an uncountable set. That is, we have just shown that there
is a point t′ = t′1 + 3i ∈ V with 1, t′1 and ∣t′∣2 linearly independent over Q such
that additionally, (4.9) has no solution in K. Then again the assumptions of
Lemma 4.3.4 are met and so there is some µ′ ∈ R>0 such that the pair (µ′, t′)
satisfies (1)–(3) in Lemma 4.3.4.

Since (µ, t) and (µ′, t′) satisfy Lemma 4.3.4, Θ2(M(µ, t)) and Θ2(M(µ′, t′))
are transcendental points of P3. Because Aut(C) acts transitively on such
points it follows that there is some automorphism σ ∈ Aut(C) with

σ(Θ2(M(µ, t))) = Θ2(M(µ′, t′)).

As the functor A � // Â on the category of abelian varieties commutes with the
Aut(C)-action, it follows from Lemma 4.2.4 that

X ∶=K3(ÂM(µ,t)) with Xσ ≃K3(ÂM(µ′,t′)).
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4.4 The Charles–Voisin construction

By our choices, t1, ∣t∣ and det(M(µ, t)) lie in R∖Q and the same holds for the
pair (µ′, t′). Since KR = Q, it follows that (µ, t) as well as (µ′, t′) satisfy the
assumptions of Lemma 4.3.3. Since (4.9) has no solution in K, whereas

2t1λ1 = λ2 + ∣t∣2

has the solution λ1 = t and λ2 = t2 in K, it follows from Lemma 4.3.3 that
H1,1(X,K) and H1,1(Xσ,K) are not equidimensional. This concludes Case 4
and hence finishes the proof of Theorem 4.1.5.

Remark 4.3.5. Theorem 4.1.5 does not remain true if one restricts to smooth
complex projective varieties which can be defined over Q. Indeed, for each
smooth complex projective variety X there is a finitely generated extension KX

of Q such that for all p ≥ 0 the group Hp,p(X,C) is generated by KX-rational
classes. As there are only countably many varieties over Q, it follows that
there is an extension K0 of Q which is generated by countably many elements
such that for each smooth complex projective variety X over Q and for each
p ≥ 0, the dimension of Hp,p(X,K0) equals hp,p(X). The above claim follows,
since hp,p(X) is invariant under conjugation.

4.4 The Charles–Voisin construction

In this section we carry out a variant of a general construction method due to
Charles and Voisin [12, 91]. The proofs of Propositions 4.4.1 and 4.4.2 below
will then be the technical heart of the proof of Theorem 4.1.6 in Section 4.6.

We start with a smooth complex projective surface Y with b1(Y ) = 0 and
automorphisms f, f ′ ∈ Aut(Y ). Then we pick an embedding

i ∶ Y ↪ PN

and assume that f∗ and f ′∗ fix the pullback i∗h of the hyperplane class h in
H2(PN ,Z).

For a general choice of points u, v, w and t of PN and y of Y , the following
smooth subvarieties of Y × Y × PN are disjoint:

Z1 ∶= Y × y × u, Z2 ∶= ΓidY × v, Z3 ∶= Γf ×w, Z4 ∶= Γf ′ × t, Z5 ∶= y × Γi,
(4.10)

where Γ denotes the graph of a morphism. The blow-up

X ∶= BlZ1∪⋅⋅⋅∪Z5
(Y × Y × PN)
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of Y × Y × PN along the union Z1 ∪ ⋅ ⋅ ⋅ ∪ Z5 is a smooth complex projective
variety. Since b1(Y ) = 0 and dim(Y ) = 2, it follows from the description of the
cohomology of blow-ups, see Section 4.2.1, that the cohomology algebra of X
is generated by degree two classes.

Next, let σ be any automorphism of C. Then the automorphisms f and f ′

of Y induce automorphisms fσ and f ′σ of Y σ. Since conjugation commutes
with blow-ups, we have

Xσ = BlZσ1 ∪⋅⋅⋅∪Zσ5 (Y σ × Y σ × PN) ,

where we identified PN with its conjugate PNσ, and where

Zσ
1 = Y σ×yσ×uσ, Zσ

2 = ΓidY σ ×v
σ, Zσ

3 = Γfσ×w
σ, Zσ

4 = Γf ′σ×t
σ, Zσ

5 = yσ×Γiσ .

Here uσ, vσ, wσ and tσ are points on PN , yσ ∈ Y σ, and iσ ∶ Y σ ↪ PN is the
inclusion, induced by i. The pullback of the hyperplane class via iσ is denoted
by iσ∗hσ.

In the next proposition, we will assume that the surface Y has the following
properties.

(A1) There exist elements α,β ∈H1,1(Y,Q) with α2 = β2 = 0 and α ∪ β ≠ 0.

(A2) The sets of eigenvalues of f∗ and f ′∗ on H2(Y,C) are distinct.

Then, for a smooth complete intersection subvariety

T ⊆X,

with dim(T ) ≥ 4, the following holds.

Proposition 4.4.1. Suppose that (A1) and (A2) hold, and let K ⊆ C be
a subfield. Then any weak isomorphism between the K-multilinear intersec-
tion forms on H2(T,K) and H2(T σ,K) induces an isomorphism of graded
K-algebras

ψ ∶H∗(Y,K)
∼ // H∗(Y σ,K),

with the following two properties:

(P1) In degree two, ψ maps i∗h to a multiple of iσ∗hσ.

(P2) The isomorphism ψ commutes with the induced actions of f and f ′, i.e.

ψ ○ f∗ = (fσ)∗ ○ ψ and ψ ○ (f ′)∗ = (f ′σ)∗ ○ ψ.

Proposition 4.4.1 has an analog for isomorphisms between intersection forms
on H1,1(−,K). In order to state it, we need the following variant of (A2):
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(A3) The sets of eigenvalues of f∗ and f ′∗ on H1,1(Y,C) are distinct and
Aut(C)-invariant.

Note that f∗ and f ′∗ are defined on integral cohomology and so their sets of
eigenvalues on H2(Y,C) – but not on H1,1(Y,C) – are automatically Aut(C)-
invariant. For this reason, we did not have to impose this additional condition
in (A2).

Proposition 4.4.2. Suppose that (A1) and (A3) hold, and let K ⊆ C be a sub-
field which is stable under complex conjugation. Then any weak isomorphism
between the K-multilinear intersection forms on H1,1(T,K) and H1,1(T σ,K)

induces an isomorphism of graded K-algebras

ψ ∶H∗,∗(Y,K)
∼ // H∗,∗(Y σ,K),

which satisfies (P1) and (P2) of Proposition 4.4.1.

Remark 4.4.3. The assumption (A1) in the above propositions is only needed
if dim(T ) = 4.

In the following two subsections we prove Propositions 4.4.1 and 4.4.2 re-
spectively; important steps will be similar to arguments of Charles [12] and
Voisin [91].

4.4.1 Proof of Proposition 4.4.1

Proof of Proposition 4.4.1. Suppose that there is a K-linear isomorphism

φ′ ∶H2(T,K)
∼ // H2(T σ,K), (4.11)

which induces a weak isomorphism between the respective multilinear inter-
section forms.

By the Lefschetz hyperplane theorem, the natural maps

Hk(X,K) //Hk(T,K) and Hk(Xσ,K) //Hk(T σ,K) (4.12)

are isomorphisms for k < n and injective for k = n, where n ∶= dim(T ). Using
this we will identify classes on X and Xσ of degree ≤ n with classes on T and
T σ respectively.

We denote by SH2(−,K) the subalgebra of H∗(−,K) that is generated
by H2(−,K). Its quotient by all elements of degree ≥ r + 1 is denoted by
SH2(−,K)≤r. Since dim(T ) ≥ 4, we obtain from (4.12) canonical isomorphisms

SH2(X,K)≤4 ∼ // SH2(T,K)≤4 and SH2(Xσ,K)≤4 ∼ // SH2(T σ,K)≤4.
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Claim 4.4.4. The isomorphism φ′ from (4.11) induces a unique isomorphism

φ ∶ SH2(X,K)≤4 ∼ // SH2(Xσ,K)≤4

of graded K-algebras.

Proof. In degree two, we define φ to coincide with φ′ from (4.11). Since the
respective algebras are generated in degree two, this determines φ uniquely as
homomorphism of K-algebras; we have to check that it is well-defined though.
In order to see the latter, let α1, . . . , αr and β1, . . . , βr be elements in H2(T,K).
Then we have to prove:

∑
i

αi ∪ βi = 0 ⇒ ∑
i

φ′(αi) ∪ φ
′(βi) = 0.

Let us assume that ∑iαi∪βi = 0. Since φ′ induces a weak isomorphism between
the corresponding intersection forms, this implies

∑
i

φ′(αi) ∪ φ
′(βi) ∪ η = 0 in H2n(T σ,K),

for all η ∈ SH2(T σ,K)2n−4. The class ∑i φ
′(αi)∪φ′(βi)∪ η lies in SH2(T σ,K)

and hence it is a pullback of a class on X. Therefore, the above condition is
equivalent to saying that

∑
i

φ′(αi) ∪ φ
′(βi) ∪ η ∪ [T σ] = 0 in H2N+8(Xσ,K),

for all η ∈ SH2(Xσ,K)2n−4. Since the cohomology of X is generated by degree
two classes, Poincaré duality shows

∑
i

φ′(αi) ∪ φ
′(βi) ∪ [T σ] = 0 in H2N−2n+12(Xσ,K).

Since [T σ] is the (N + 4 − n)-th power of some hyperplane class on Xσ, the
Hard Lefschetz theorem implies

∑
i

φ′(αi) ∪ φ
′(βi) = 0 in H4(Xσ,K),

as we wanted. Similarly, one proves that φ′−1 induces a well-defined inverse of
φ. This finishes the proof of the claim.

From now on, we will work with the isomorphism φ of K-algebras from Claim
4.4.4 instead of the weak isomorphism of intersection forms φ′ from (4.11).

110



4.4 The Charles–Voisin construction

To describe the degree two cohomology of X, we denote by Di ⊆ X the
exceptional divisor above Zi and we denote by h the pullback of the hyperplane
class of PN to X. Then, by Theorem 4.2.1:

H2(X,K) = (
5

⊕
i=1

[Di] ⋅K)⊕H2(Y × Y,K)⊕ h ⋅K. (4.13)

Similarly, we denote by Dσ
i ⊆ X

σ the conjugate of Di by σ and we denote by
hσ the pullback of the hyperplane class of PN to Xσ. This yields:

H2(Xσ,K) = (
5

⊕
i=1

[Dσ
i ] ⋅K)⊕H2(Y σ × Y σ,K)⊕ hσ ⋅K. (4.14)

Next, we pick a base point 0 ∈ Y and consider the projections

Y × Y //Y × 0 and Y × Y // 0 × Y.

Using pullbacks, this allows us to view H∗(Y × 0,K) and H∗(0 × Y,K) as
subspaces ofH∗(Y ×Y,K). By assumption, the first Betti number of Y vanishes
and so we have a canonical identity

H2(Y × Y,K) =H2(Y × 0,K)⊕H2(0 × Y,K), (4.15)

of subspaces of H2(X,K). A similar statement holds on Xσ.

Claim 4.4.5. The isomorphism φ respects the decompositions in (4.13) and
(4.14), that is:

φ(H2(Y × Y,K)) =H2(Y σ × Y σ,K), (4.16)

φ([Di] ⋅K) = [Dσ
i ] ⋅K for all i = 1, . . . ,5, (4.17)

φ(h ⋅K) = hσ ⋅K. (4.18)

Proof. In order to prove (4.16), we define S to be the linear subspace of
H2(X,K) which is spanned by all classes whose square is zero. By the ring
structure of the cohomology of blow-ups (cf. Lemma 4.2.2), S is contained in
H2(Y × Y,K). Furthermore, let S2 be the subspace of H4(X,K) which is
given by products of elements in S. By assumption (A1), this subspace con-
tains H4(Y ×0,K) and H4(0×Y,K). By the ring structure of the cohomology
of X, it then follows that H2(Y ×Y,K) in (4.13) is equal to the linear subspace
of H2(X,K) that is spanned by those classes whose square lies in S2.

By Lefschetz’s theorem on (1,1)-classes, the cohomology of Y σ also satisfies
(A1). Hence, H2(Y σ × Y σ,K) inside SH2(Xσ,K)≤4 has a similar intrinsic
description as we have found for H2(Y × Y,K) inside SH2(X,K)≤4. This
proves (4.16).
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It remains to prove (4.17) and (4.18). For this, we consider for i = 1, . . . ,5
the following kernels:

Fi ∶= ker (∪[Di] ∶H
2(Y × Y,K) //H4(X,K)) . (4.19)

Using Theorem 4.2.1 and Lemma 4.2.2, we obtain the following lemma, which
is the analogue of Charles’s Lemma 7 in [12].

Lemma 4.4.6. Using the identification (4.15), the kernels Fi ⊆H2(Y × Y,K)

are given as follows:

F1 = {(0, β) ∶ β ∈H2(Y,K)} , (4.20)

F2 = {(β,−β) ∶ β ∈H2(Y,K)} , (4.21)

F3 = {(f∗β,−β) ∶ β ∈H2(Y,K)} , (4.22)

F4 = {(f ′∗β,−β) ∶ β ∈H2(Y,K)} , (4.23)

F5 = {(β,0) ∶ β ∈H2(Y,K)} . (4.24)

In addition to the above lemma, we have as in [12] the following.

Lemma 4.4.7. Let α ∈H2(Y × Y,K) be a nonzero class. Then the images of

∪α,∪h,∪[D1], . . . ,∪[D5] ∶H
2(Y × Y,K) //H4(X,K)

are in direct sum, ∪h is injective and

dim(ker(∪α)) < b2(Y ). (4.25)

Proof. Apart from (4.25), the assertions in Lemma 4.4.7 are immediate con-
sequences of the ring structure of the cohomology of blow-ups, see Theorem
4.2.1 and Lemma 4.2.2.

In order to proof (4.25), we write

α = α1 + α2

according to the decomposition (4.15). Without loss of generality, we assume
α1 ≠ 0. Then, ∪α restricted to H2(0×Y,K) is injective. Moreover, by Poincaré
duality there is some β1 ∈H2(Y × 0,K) with

β1 ∪ α1 ≠ 0

Then, β1 ∪ α is nontrivial and does not lie in the image of ∪α restricted to
H2(0 × Y,K). Thus, dim(im(∪α)) > b2(Y ) and (4.25) follows.
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4.4 The Charles–Voisin construction

Of course, the obvious analogues of Lemma 4.4.6 and 4.4.7 hold on Xσ.
Note the following elementary fact from linear algebra. If a finite number

of linear maps l1, . . . , lr between two vector spaces have images in direct sum,
then the kernel of a linear combination ∑λili is given by intersection of all
ker(li) with λi ≠ 0.

By Lemma 4.4.6, each Fi has dimension b2(Y ) and hence the above linear
algebra fact together with Lemma 4.4.7 shows that there is a permutation
ρ ∈ Sym(5) with

φ ([Di] ⋅K) = [Dσ
ρ(i)] ⋅K.

We are now able to prove (4.18). For some real numbers a0, . . . , a5 and for
some class βσ ∈H2(Y σ × Y σ,K) we have

φ(h) = a0h
σ +

5

∑
j=1

aj[D
σ
j ] + β

σ.

For i = 1, . . . ,4, the cup product h ∪ [Di] vanishes and hence

a0h
σ ∪ [Dσ

ρ(i)] +
5

∑
j=1

aj[D
σ
j ] ∪ [Dσ

ρ(i)] + β
σ ∪ [Dσ

ρ(i)] = 0.

Since the cup product [Dσ
j ] ∪ [Dσ

k ] vanishes for j ≠ k, we deduce

a0h
σ ∪ [Dσ

ρ(i)] + aρ(i)[D
σ
ρ(i)]

2 + βσ ∪ [Dσ
ρ(i)] = 0

for all i = 1, . . . ,4. From Theorem 4.2.1, it follows that aρ(i) vanishes for all
i = 1, . . . ,4.

If i is such that ρ(i) ∈ {1, . . . ,4}, then

hσ ∪ [Dσ
ρ(i)] = 0 and so βσ ∪ [Dσ

ρ(i)] = 0.

By Lemma 4.4.6, the intersection ⋂j≠k Fj is zero for each k = 1, . . . ,5. Since
the same holds on Xσ, we deduce that βσ vanishes. Hence,

φ(h) = a0h
σ + aρ(5)[D

σ
ρ(5)].

In H4(X,K) we have the identity

h ∪ [D5] = (i∗h) ∪ [D5] ∈H
2(Y × Y ) ∪ [D5],

and similarly on Xσ. Since (4.16) is already proven, we deduce

a0h
σ ∪ [Dσ

ρ(5)] + aρ(5)[D
σ
ρ(5)]

2 ∈H2(Y σ × Y σ) ∪ [Dσ
ρ(5)].
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4 Hodge structures of conjugate varieties

This implies aρ(5) = 0. Since φ is an isomorphism, a0 ≠ 0 follows, which proves
(4.18).

It remains to prove (4.17). That is, we need to see that ρ ∈ Sym(5) is the
identity. This will be achieved by a similar argument as in [12, Lem. 11].

Note that h∪ [Di] as well as hσ ∪ [Dσ
i ] vanish for i ≠ 5 and are nontrivial for

i = 5. Since (4.18) is already proven, ρ(5) = 5 follows.
By assumption on Y , f∗ and f ′∗ fix i∗h. Therefore, the intersection

F2 ∩ F3 ∩ F4

is nontrivial. Conversely, F1∩Fi = 0 for all i = 2,3,4. Since analogue statements
hold on Xσ, we obtain ρ(1) = 1.

Next, we use that Fi ⊕Fj =H2(Y × Y,K) for all i = 1,5 and j = 2,3,4. This
allows us to define for 2 ≤ j, k ≤ 4 endomorphisms gj,k of F1 via the following
composition:

gj,k ∶ F1 ↪ F5 ⊕ Fj
pr1 //F5 ↪ F1 ⊕ Fk

pr1 //F1.

There is a canonical identification between F1 and H2(Y,K). Using Lemma
4.4.6, a straightforward calculation then shows:

g3,2 = f
∗, g4,2 = f

′∗, g4,3 = (f ′ ○ f−1)∗, gj,j = id and gj,k = g
−1
k,j, (4.26)

for all 2 ≤ j, k ≤ 4.
Analogue to (4.19), we define

F σ
i ∶= ker (∪[Dσ

i ] ∶H
2(Y σ × Y σ,K) //H4(Xσ,K)) .

These subspaces are described by the corresponding statements of Lemma
4.4.6. Thus, the above construction yields for any 2 ≤ j, k ≤ 4 endomorphisms
gσj,k of F σ

1 . Using the canonical identification of F σ
1 with H2(Y σ,K), these

endomorphisms are given by

gσ3,2 = (fσ)∗, gσ4,2 = (f ′σ)∗, gσ4,3 = (f ′ ○ f−1)σ
∗
, gσj,j = id and gσj,k = (gσk,j)

−1,

(4.27)

for all 2 ≤ j, k ≤ 4.
Since φ maps [D1] to a multiple of [Dσ

1 ], it follows that the restriction of φ
to F1 induces a K-linear isomorphism

ψ ∶ F1 =H
2(Y,K)

∼ // H2(Y σ,K) = F σ
1 . (4.28)

Since φ maps Fi isomorphically to F σ
ρ(i), the above isomorphism satisfies

ψ ○ gj,k = g
σ
ρ(j),ρ(k) ○ ψ (4.29)
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4.4 The Charles–Voisin construction

for all 2 ≤ j, k ≤ 4.
We now denote the eigenvalues of gj,k by Eig(gj,k), and similarly for gσj,k.

Since f and f ′ are automorphisms, it follows from (A2) and (4.26) that Eig(g3,2)

and Eig(g4,2) are distinct Aut(C)-invariant sets of roots of unity. By Lemma
4.2.3 and since gj,k = g−1

k,j, we deduce:

Eig(g3,2) = Eig(g2,3) = Eig(gσ3,2) = Eig(gσ2,3),

Eig(g4,2) = Eig(g2,4) = Eig(gσ4,2) = Eig(gσ2,4).

Since g4,3 = g2,3 ○ g4,2 and g3,4 = g2,4 ○ g3,2, it also follows that each of the
sets Eig(g3,4), Eig(g4,3), Eig(gσ3,4) and Eig(gσ4,3) is distinct from Eig(g2,3) and
Eig(g4,2). Therefore, (4.29) implies that ρ respects the subsets {2,3} and
{2,4}. Hence, ρ = id, as we wanted. This finishes the proof of Claim 4.4.5.

Since b1(Y ) = 0 and dim(Y ) = 2, the cohomology algebra H∗(0 × Y,K) is a
subalgebra of SH2(X,K)≤4. Restriction of φ therefore extends the K-linear
isomorphism ψ from (4.28) to an isomorphism

ψ ∶H∗(Y,K)
∼ // H∗(Y σ,K) (4.30)

of graded K-algebras which we denote with the same letter. Since ρ in the
proof of Claim 4.4.5 is the identity, it follows from (4.26), (4.27) and (4.29)
that ψ satisfies (P2).

In order to prove (P1), we note that

ker (∪[D5] ∶ F1 ⊕ h ⋅K //H4(X,K)) = (i∗h − h) ⋅K,

where i∗h ∈ F1 =H2(0×Y,K). A similar statement holds on Xσ. Since φ maps
F1 to F σ

1 , [D5] ⋅K to [Dσ
5 ] ⋅K and h ⋅K to hσ ⋅K, it follows that φ maps i∗h ⋅K

to iσ∗hσ ⋅K. This finishes the proof of Proposition 4.4.1.

4.4.2 Proof of Proposition 4.4.2

Proof of Proposition 4.4.2. As in the proof of Proposition 4.4.1, we use (4.12)
in order to identify classes of degree ≤ n on T with classes on X. Fur-
ther, SH1,1(−,K) denotes the subalgebra of H∗(−,K) that is generated by
H1,1(−,K); its quotient by elements of degree ≥ r + 1 is denoted by

SH1,1(−,K)≤r.

Let us now suppose that there is a K-linear isomorphism

φ′ ∶H1,1(T,K)
∼ // H1,1(T σ,K), (4.31)
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which induces a weak isomorphism between the respective intersection forms.
Then we have the following analogue of Claim 4.4.4 in the proof of Proposition
4.4.1:

Claim 4.4.8. The isomorphism from (4.11) induces a unique isomorphism

φ ∶ SH1,1(X,K)≤4 ∼ // SH1,1(Xσ,K)≤4

of graded K-algebras.

Proof. As in the proof of Claim 4.4.4, this claim reduces to showing the fol-
lowing: Suppose we have K-rational (1,1)-classes α1, . . . , αr and β1, . . . , βr on
T such that

∑
i

φ′(αi) ∪ φ
′(βi) ∪ η ∪ [T σ] = 0 in H2N+8(Xσ,K), (4.32)

for all η ∈ SH1,1(Xσ,K)2n−4. Then, ∑i φ
′(αi) ∪ φ′(βi) vanishes.

In order to prove the latter, let ω be the hyperplane class on Xσ with

[T σ] = ωN+4−n.

With respect to this Kähler class we obtain a decomposition into primitive
pieces:

∑
i

φ′(αi) ∪ φ
′(βi) = δ0 ⋅ ω

2 + δ1 ∪ ω + δ2,

where δj ∈ Hj,j(X,C)pr. Since ω is an integral class, it follows that δj lies in
Hj,j(X,K)pr. The above identity then shows δ2 ∈ SH1,1(X,K).

At this point, we use the assumption in Proposition 4.4.2 which ensures that
K is stable under complex conjugation. Indeed, this assumption allows us to
choose for j = 0,1,2 the following K-rational classes:

ηj ∶= δj ⋅ ω
n−2−j ∈ SH1,1(Xσ,K)2n−4.

For j = 0,1,2, we put η = ηj in (4.32). Then, the Hodge–Riemann bilinear
relations yield δj = 0 for j = 0,1,2. This finishes the proof of Claim 4.4.8.

Exploiting the isomorphism of K-algebras φ from Claim 4.4.8, the proof of
Proposition 4.4.2 is now obtained by changing the notation in the correspond-
ing part of the proof of Proposition 4.4.1. This finishes the proof of Proposition
4.4.2.
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4.5 Some simply connected surfaces with special
automorphisms

In this section we construct for any integer g ≥ 1 a simply connected surface Yg
of geometric genus g and with special automorphisms. In the proof of Theorem
4.1.6 in Section 4.6, we will then apply the construction from Section 4.4 to
these surfaces. In Section 4.7, we will use the examples from Section 4.6 in
order to prove Theorem 4.1.7. It is only the proof of the latter theorem where
it will become important that b2(Yg) tends to infinity if g does.

4.5.1 Hyperelliptic curves with special automorphisms

For g ≥ 1, let Cg denote the hyperelliptic curve with affine equation

y2 = x2g+1 − 1,

see [87] or Section 2.3.1 in Chapter 2. The complement of this affine piece in
Cg is a single point which we denote by ∞. For a primitive (2g + 1)-th root of
unity ζ2g+1, the maps

(x, y) � // (ζ2g+1 ⋅ x, y) and (x, y) � // (x,−y)

induce automorphisms of Cg which we denote by ηg and ι respectively. Then,
ι has the 2g + 2 fixed points

(1,0), (ζ2g+1,0), . . . , (ζ
2g
2g+1,0) and ∞.

The automorphism ηg fixes ∞ and performs a cyclic permutation on the re-
maining fixed points. The corresponding permutation matrix has eigenvalues
1, ζ2g+1, . . . , ζ

2g
2g+1.

The holomorphic 1-forms
xi−1

y
⋅ dx,

where i = 1, . . . , g, form a basis of H1,0(Cg). Therefore, η∗g has eigenvalues
ζ2g+1, . . . , ζ

g
2g+1 on H1,0(Cg). Moreover, ι acts on H1(Cg,Z) by multiplication

with −1.

4.5.2 The elliptic curve Ei

Let Ei be the elliptic curve C/(Z ⊕ iZ), cf. Section 4.2.3. Multiplication by
i and −1 induces automorphisms ηi and ι of Ei respectively. The involution
ι has four fixed points. The action of ηi fixes two of those fixed points and
interchanges the remaining two. On H1,0(Ei), the automorphisms ι and ηi act
by multiplication with −1 and i respectively.
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4.5.3 Products modulo the diagonal involution

For g ≥ 1, we consider the product Cg ×Ei, where Cg and Ei are defined above.
On this product, the involution ι acts via the diagonal. This action has 8g + 8
fixed points. Let C̃g ×Ei be the blow-up of these fixed points. Then,

Yg ∶= C̃g ×Ei/ι (4.33)

is a smooth surface. For instance, Y1 = K3(C1 ×Ei) is a Kummer K3 surface,
see Section 4.2.4.

Lemma 4.5.1. The surface Yg is simply connected.

Proof. It suffices to prove that the normal surface

Y ′
g ∶= (Cg ×Ei)/ι

is simply connected. Projection to the second coordinate induces a map

π ∶ Y ′
g

//P1.

Let U ⊆ P1 be the complement of the 4 branch points of Ei → P1. Then,
restriction of π to V ∶= π−1(U) yields a fiber bundle π∣V ∶ V → U with fiber
Cg. Since U is homotopic to a wedge of 3 circles, the long exact homotopy
sequence yields a short exact sequence

0 // π1(Cg) //π1(V ) // π1(U) // 0 .

Since π has a section, this sequence splits. Since V is the complement of a
divisor in Y ′

g , the natural map π1(V ) → π1(Y ′
g ) is surjective by Proposition

2.10 in [43]. Therefore, the above split exact sequence shows that π1(Y ′
g )

is generated by the fundamental group of a general fiber together with the
image of the fundamental group of a section of π. The latter is clearly trivial.
Furthermore, the inclusion of a general fiber Cg ↪ Y ′

g is homotopic to the
composition of the quotient map Cg //Cg/ι with the inclusion of a special
fiber Cg/ι ≃ P1. Since P1 is simply connected, the inclusion of a general fiber
Cg ↪ Y ′

g is trivial on π1. It follows that the image of π1(Cg)→ π1(Y ′
g ) is trivial.

This proves the lemma.

Definition 4.5.2. Let Yg be as in (4.33). Then we define the automorphisms
f and f ′ of Yg to be induced by ηg × id and id×ηi respectively.

Lemma 4.5.3. The surface Yg with automorphisms f and f ′ as above satisfies
(A1)–(A3).
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Proof. In order to describe the second cohomology of Yg, we denote the excep-
tional P1-curves of Yg by D1, . . . ,D8g+8. Then, for any field K:

H2(Yg,K) =H2(Cg ×Ei,K)⊕ (
8g+8

⊕
i=1

[Di] ⋅K) . (4.34)

It follows from the discussion in Section 4.5.1 (resp. 4.5.2) that the action
of f (resp. f ′) on H2(Yg,C) has eigenvalues 1, ζ2g+1, . . . , ζ

2g
2g+1 (resp. ±1,±i).

Moreover, the same statement holds for their actions on H1,1(Yg,C). This
proves (A2) and (A3).

By (4.34), nontrivial rational (1,1)-classes on Cg and Ei induce classes α and
β in H1,1(Yg,Q) which satisfy (A1). This finishes the prove of the lemma.

4.6 Multilinear intersection forms on H2(−,R) and
H1,1(−,C)

Here we prove Theorem 4.1.6. This will be achieved by Lemma 4.6.1 and
Theorem 4.6.2 below, where more precise statements are proven.

Let n ≥ 4 and g ≥ 1. Moreover, let Yg be the simply connected surface with
automorphisms f and f ′ from Definition 4.5.2. We pick an ample divisor on
Yg which is fixed by f and f ′. A sufficiently large multiple of this divisor gives
an embedding

i ∶ Yg ↪ PN

with n ≤ N + 4 such that the actions of f and f ′ fix the pullback of the
hyperplane class.

Next, let

Xg ∶= BlZ1∪⋅⋅⋅∪Z5
(Yg × Yg × PN)

be the blow-up of Yg ×Yg ×PN along Z1 ∪ ⋅ ⋅ ⋅ ∪Z5, where Zi is defined in (4.10).
Since n ≤ N + 4, Xg contains a smooth n-dimensional complete intersection
subvariety

Tg,n ⊆Xg. (4.35)

Since Yg, f and f ′ are defined over Q[ζ8g+4] = Q[ζ2g+1, i], so is Xg and we may
assume that the same holds true for Tg,n.

Lemma 4.6.1. Let n ≥ 2, then the variety Tg,n from (4.35), as well as each of
its conjugates, is simply connected.
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Proof. Since Yg is simply connected by Lemma 4.5.1, so is Xg. By the Lefschetz
hyperplane theorem, Tg,n is then simply connected for n ≥ 2.

Since the curves Cg and Ei in the definition of Yg are defined over Z, it follows
that Yg is isomorphic to any conjugate Y σ

g . Thus, Y σ
g is simply connected and

the above reasoning shows that the same holds true for T σg,n, as long as n ≥ 2.
This proves the lemma.

The next theorem, which implies Theorem 4.1.6 from the introduction, shows
that certain automorphisms σ ∈ Aut(C) which act nontrivially on Q[ζ8g+4]

change the analytic topology as well as the complex Hodge structure of Tg,n.

Theorem 4.6.2. Let g ≥ 1 and n ≥ 4 be integers and let σ ∈ Aut(C) with
σ(i) = i and σ(ζ2g+1) ≠ ζ2g+1 or vice versa. Then, the R-multilinear intersection
forms on H2(Tg,n,R) and H2(T σg,n,R), as well as the C-multilinear intersection
forms on H1,1(Tg,n,C) and H1,1(T σg,n,C), are not weakly isomorphic.

Proof. For ease of notation, we assume σ(i) = i and σ(ζ2g+1) = ζ−1
2g+1. The

general case is proven similarly.
Since the curves Cg and Ei from Sections 4.5.1 and 4.5.2 are defined over Z, it

follows that the isomorphism type of Yg is invariant under any automorphism of
C. Hence, we may identify Yg with Y σ

g . Under this identification, f ′σ = f ′ since
i is fixed by σ. Moreover, fσ = f−1, since it is induced by the automorphism

η−1
g × id ∈ Aut(Cg ×Ei).

Suppose that the R-multilinear intersection forms on

H2(Tg,n,R) and H2(T σg,n,R)

are weakly isomorphic. By Lemma 4.5.3, Proposition 4.4.1 applies and we
obtain an R-algebra automorphism ofH∗(Yg,R) with properties (P1) and (P2).
By (P1),

ψ(i∗h) = b ⋅ i∗h

for some b ∈ R×. Since the square of i∗h generates H4(Yg,R), it follows that in
degree 4, the automorphism ψ is given by multiplication with a positive real
number.

We extend ψ now C-linearly and obtain an automorphism

ψ ∶H∗(Yg,C)
∼ // H∗(Yg,C),

which we denote by the same letter and which satisfies

ψ ○ f = f−1 ○ ψ and ψ ○ f ′ = f ′ ○ ψ. (4.36)
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Let us now pick nontrivial classes ω ∈ H1,0(Cg) and ω′ ∈ H1,0(Ei) with
η∗gω = ζ2g+1 ⋅ ω and η∗i ω

′ = i ⋅ ω′. Then, ω ∪ ω′ lies in H1,1(Yg) and we consider

ψ(ω∪ω′) in H2(Yg,C). By (4.36), f−1 and f ′ act on this class by multiplication
with ζ2g+1 and −i respectively. We claim that the only class in H2(Yg,C) with
this property is ω ∪ ω′ and so

ψ(ω ∪ ω′) = λ ⋅ ω ∪ ω′ (4.37)

for some nonzero λ ∈ C. Indeed, since ηi interchanges two of the fixed points
of ι on Ei and fixes the remaining two, f ′∗ has eigenvalues ±1 on the subspace
of exceptional divisors in (4.34). Therefore, ψ(ω ∪ ω′) needs to be contained
in H2(Cg ×Ei,C). On this subspace, f−1∗ and f ′∗ are given by (η−1

g × id)∗ and
(id×ηi)∗ respectively. Our claim follows by the explicit description of ηg and
ηi in Sections 4.5.1 and 4.5.2.

Together with its complex conjugate, equation (4.37) shows:

ψ(ω ∪ ω′ ∪ ω ∪ ω′) = −∣λ∣2 ⋅ ω ∪ ω′ ∪ ω ∪ ω′.

Since the above degree four class generates H4(Yg,C), we deduce that ψ is
given in degree four by multiplication with −∣λ∣2. As we have seen earlier, this
number should be positive, which is a contradiction. This finishes the proof of
the first assertion in Theorem 4.6.2.

For the proof of the second assertion, assume that the C-multilinear in-
tersection forms on H1,1(Tg,n,C) and H1,1(T σg,n,C) are weakly isomorphic.
By Lemma 4.5.3 and Proposition 4.4.1, this yields an automorphism ψ of
H1,1(Yg,C) which satisfies (4.36). Then, f−1 and f ′ act on ψ(ω ∪ ω′) by
multiplication with ζ2g+1 and −i respectively. This is a contradiction, since
H1,1(Yg,C) does not contain such a class. This finishes the proof of the theo-
rem.

Recall from (4.35) that Tg,n is defined over the cyclotomic number field
Q[ζ8g+4]. This number field contains the totally real subfield

Kg ∶= Q[ζ8g+4 + ζ
−1
8g+4].

For instance, K1 = Q[
√

3]. From Theorem 4.6.2, we deduce the following

Corollary 4.6.3. Let K ⊆ C be a subfield with Kg ⊆ K, and let σ ∈ Aut(C)

with σ(i) = i and σ(ζ2g+1) ≠ ζ2g+1 or vice versa. Then the intersection forms
on the equidimensional vector spaces H1,1(Tg,n,K) and H1,1(T σg,n,K) are not
weakly isomorphic.
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Proof. By Theorem 4.6.2 it suffices to prove that the (1,1)-classes on Tg,n are
spanned by Kg-rational ones. Modulo divisor classes, H1,1(Tg,n) is given by
H1,1(Yg) ⊕H1,1(Yg). Furthermore, modulo divisors, H1,1(Yg) is given by the
ι-invariant classes on Ei × Cg. The complex Hodge structure of Ei and Cg
is generated by Q[i]- and Q[ζ2g+1]-rational classes respectively, see [87] for
the latter. We may now arrange that the induced generators of H1,1(Yg) are
invariant under complex conjugation and thus lie in the subspace of Kg-rational
classes. This concludes the proof of the corollary.

Remark 4.6.4. Our types of arguments are consistent with Conjecture 4.1.2
in the sense that they cannot detect conjugate varieties with nonisomorphic
algebras of Q-rational (p, p)-classes. This is because the essential ingredient
in the proof of Theorem 4.6.2 is a variety Y with an automorphism whose
action on Hp,p(Y,K) has a set of eigenvalues which is not Aut(C)-invariant.
(In our arguments, this role is played by the surface Yg with the automorphism
f ○f ′.) For K = Q, the characteristic polynomial of such an action has rational
coefficients and so the above situation cannot happen.

Remark 4.6.5. Using Freedman’s classification of simply connected topological
4-manifolds, one can prove that simply connected conjugated smooth complex
projective surfaces are always homeomorphic. On the other hand, Theorem
4.1.6 shows that in any dimension at least 4, there are simply connected con-
jugate smooth complex projective varieties which are not homeomorphic. The
case of dimension three remains open.

4.7 Nonhomeomorphic conjugate varieties in each
birational equivalence class

In this section we prove Theorem 4.1.7. For this purpose, let Z be a given
smooth complex projective variety of dimension ≥ 10. Next, let Tg,4 be the
four-dimensional smooth complex projective variety, defined in (4.35). By
(4.13) and (4.34), the second Betti number of Tg,4 equals 24g + 26. We may
therefore choose an integer g ≥ 1 with

b2(Tg,4) > b4(Z) + 4. (4.38)

From some projective space, Z is cut out by finitely many homogeneous
polynomials. We denote the field extension of Q which is generated by the
coefficients of these polynomials by L. Since L is finitely generated, and after
possibly replacing g by a suitable larger integer, we may pick an automorphism
σ of C which fixes L and i but not ζ2g+1.
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Since Tg,4 has dimension 4, it can be embedded into P9. The assumption
dim(Z) ≥ 10 therefore ensures that we may fix an embedding of Tg,4 into the

exceptional divisor of the blow-up Ẑ of Z in a point p ∈ Z. We then define the
following element in the birational equivalence class of Z:

W ∶= BlTg,4(Ẑ). (4.39)

Since conjugation commutes with blow-ups, the σ-conjugate of W is given
by

W σ = BlTσg,4(Ẑ
σ), (4.40)

where Ẑσ is the blow-up of Zσ in a point pσ ∈ Zσ and T σg,4 is embedded in
the exceptional divisor of this blow-up. Since σ fixes L, we have Zσ ≃ Z.
Therefore, W and W σ are both birational to Z. Hence, Theorem 4.1.7 follows
from the following result.

Theorem 4.7.1. Let W and σ be as above. Then the graded even-degree real
cohomology algebras of W and W σ are nonisomorphic.

Proof. For a contradiction, let us assume that there is an isomorphism

γ ∶H2∗(W,R) //H2∗(W σ,R)

of graded R-algebras. Using pullbacks, we regard H2∗(Z,R) ⊆ H2∗(Ẑ,R) and
H2∗(Zσ,R) ⊆ H2∗(Ẑσ,R) as subalgebras of H2∗(W,R) and H2∗(W σ,R) re-
spectively. By Theorem 4.2.1,

H2(W,R) =H2(Z,R)⊕ [H] ⋅R⊕ [D] ⋅R, (4.41)

H2(W σ,R) =H2(Zσ,R)⊕ [Hσ] ⋅R⊕ [Dσ] ⋅R, (4.42)

where H ⊂ Ẑ and Hσ ⊂ Ẑσ are the exceptional divisors above the blown-up
points, and

j ∶D ↪W and jσ ∶Dσ ↪W σ

are the exceptional divisors of the blow-ups along Tg,4 and T σg,4 respectively.
Any cohomology class of positive degree on Z is Poincaré dual to a homology

class which does not meet the center of the blow-up Ẑ → Z. This shows that
for any η ∈Hk(Z,R), with k ≥ 1, and for any α ∈H∗(D,R),

η ∪ [H] = 0 and η ∪ j∗(α) = 0.

A similar statement holds on W σ and we will use these properties tacitly.
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4 Hodge structures of conjugate varieties

The restriction of −[H] to H ⊂ Ẑ is given by c1(OH(1)); its restriction to
Tg,4 is therefore ample. By Theorem 4.2.1, we have

b4(W ) = b4(Z) + b2(Tg,4) + 2.

It then follows from (4.38) that the second primitive Betti number of Tg,4 is
bigger than b4(W )/2. Since Tg,4 is four-dimensional, and since −[H] restricts to
an ample class on Tg,4, it follows thatH2(Z,R)⊕[H]⋅R insideH2(W,R) is given
by those classes whose multiplication on H4(W,R) has kernel of dimension
bigger than b4(W )/2. A similar statement holds for H2(Zσ,R)⊕[Hσ] ⋅R inside
H2(W σ,R) and so γ needs to take H2(Z,R)⊕ [H] ⋅R to H2(Zσ,R)⊕ [Hσ] ⋅R.
Since γ is an isomorphism, it follows that

γ([D]) = ασ + a ⋅ [Hσ] + b ⋅ [Dσ] (4.43)

holds for some ασ ∈H2(Zσ,R) and b ≠ 0.
Cup product with [D] on H2(W,R) has two-dimensional image, spanned

by [D] ∪ [H] and [D]2. For any βσ ∈ H2(Zσ,R), the following classes are
therefore linearly dependent:

γ([D]) ∪ βσ, γ([D]) ∪ [Hσ] and γ([D]) ∪ [Dσ].

Since b ≠ 0, this is only possible if ασ ∪ βσ = 0 for all βσ. Hence, ασ = 0.
Since ασ = 0, it follows from [D]∪[H] ≠ 0 that γ([H]) ∈H2(Zσ,R)⊕[Hσ] ⋅R

cannot be contained in H2(Zσ,R) and hence

γ([H]) = α̃σ + c ⋅ [Hσ]

for some α̃σ ∈H2(Zσ,R) and c ≠ 0. As cup product with [H] on H2(W,R) has
two-dimensional image, the above argument which showed ασ = 0, also implies
α̃σ = 0. Thus, γ takes [H] ⋅ R to [Hσ] ⋅ R. It follows that γ takes H2(Z,R)

to H2(Zσ,R), since these are the kernels of cup product with [H] and [Hσ]

respectively.
Since Tg,4 is four-dimensional, we have [H]5 ∪ [D] = 0. Then application of

γ yields:
c5 ⋅ [Hσ]5 ∪ (a ⋅ [Hσ] + b ⋅ [Dσ]) = 0.

Since [Hσ]5 ∪ [Dσ] vanishes, whereas [Hσ]6 is nontrivial, it follows from c ≠ 0
that a vanishes. Thus, γ maps [D] ⋅ R to [Dσ] ⋅ R and we conclude that γ
respects the decompositions (4.41) and (4.42).

The latter implies that γ induces an R-linear isomorphism between the ideals
([D]) ⊆ H2∗(W,R) and ([Dσ]) ⊆ H2∗(W σ,R). In order to state the key-
property of this isomorphism, we identify cohomology classes on Tg,4 and T σg,4
with their pullbacks to the exceptional divisors D and Dσ respectively.
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4.7 Nonhomeomorphic conjugate varieties in each birational equivalence class

Lemma 4.7.2. For every α ∈H2k(Tg,4,R), there exists a unique

ασ ∈H2k(T σg,4,R)

with
γ([D] ∪ j∗(α)) = [Dσ] ∪ jσ∗ (α

σ).

Proof. For 0 ≤ k ≤ 2, let us fix some α ∈H2k(Tg,4,R) and note that

H2k+2(W σ,R) =H2k+2(Zσ,R)⊕ [Hσ]k+1 ⋅R⊕ jσ∗ (H
2k(Dσ,R)).

Since γ maps [D] to a multiple of [Dσ], and since products of [Dσ] with
positive-degree classes on Zσ always vanish, the above identity shows

γ([D] ∪ j∗(α)) = [Dσ] ∪ jσ∗ (α
σ) + e ⋅ [Dσ] ∪ [Hσ]k+1 ,

for some ασ ∈H2k(Dσ,R) and e ∈ R.
The restrictions of −[H] to Tg,4 and −[Hσ] to T σg,4 are ample classes

ω ∈H2(Tg,4,R) and ωσ ∈H2(T σg,4,R)

respectively. Now suppose that α in the above formula is primitive with respect
to ω. Then the cup product of the above class with γ([H])5−2k vanishes. Since
γ([H]) is a multiple of [Hσ],

[Dσ] ∪ jσ∗ (α
σ ∪ (ωσ)5−2k) + e ⋅ (−1)k+1jσ∗ ((ω

σ)6−k) = 0.

This implies firstly that e = 0 and secondly that ασ ∪ (ωσ)5−2k vanishes as class
on Dσ. By the Hard Lefschetz Theorem, the latter already implies that ασ,
which a priori is only a class on Dσ, is in fact a primitive class on T σg,4.

For arbitrary α ∈Hk(Tg,4,R), the existence of ασ now follows – since γ takes
[H] ⋅R to [Hσ] ⋅R – from the Lefschetz decompositions with respect to ω and
ωσ; the uniqueness is immediate from Theorem 4.2.1. This concludes Lemma
4.7.2.

By Lemma 4.7.2, we are now able to define an R-linear map

φ ∶H2∗(Tg,4,R) //H2∗(T σg,4,R),

by requiring
γ([D] ∪ j∗(α)) = b ⋅ γ([D]) ∪ jσ∗ (φ(α))

for all α ∈ H∗(Tg,4,R), where b is, as above, the nontrivial constant with
γ([D]) = b ⋅ [Dσ]. Applying the same argument to γ−1, we obtain an R-linear
inverse of φ.
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4 Hodge structures of conjugate varieties

By Theorem 4.6.2, φ cannot be an isomorphism of algebras and so we will
obtain a contradiction as soon as we have seen that φ respects the product
structures. For this purpose, let α and β denote even-degree cohomology
classes on Tg,4. Then, by Theorem 4.2.1 and Lemma 4.2.2, it suffices to prove

b ⋅ γ([D])3 ∪ jσ∗ (φ(α ∪ β)) = b ⋅ γ([D])3 ∪ jσ∗ (φ(α) ∪ φ(β)).

Using (4.3), the latter is seen as follows:

b ⋅ γ([D])3 ∪ jσ∗ (φ(α ∪ β)) = γ([D])2 ∪ γ([D] ∪ j∗(α ∪ β))

= γ([D]2 ∪ j∗(1) ∪ j∗(α ∪ β))

= γ([D] ∪ j∗(α) ∪ [D] ∪ j∗(β))

= b2 ⋅ γ([D])2 ∪ jσ∗ (φ(α)) ∪ j
σ
∗ (φ(β))

= b2 ⋅ γ([D])2 ∪ jσ∗ (1) ∪ j
σ
∗ (φ(α) ∪ φ(β))

= b ⋅ γ([D])3 ∪ jσ∗ (φ(α) ∪ φ(β)).

This concludes the proof of Theorem 4.7.1.

4.8 Examples with nonisotrivial deformations

In this section we prove that the examples in Theorem 4.1.7 may be chosen
to have nonisotrivial deformations. Here, a family (Xs)s∈S of varieties over a
connected base S is called nonisotrivial if there are two points s0, s1 ∈ S with
Xs0 ≇ Xs1 . The idea of the proof is to vary the blown-up point p ∈ Z in the
construction of Section 4.7. In order to state our result, we write X ∼ Y if two
varieties X and Y are birationally equivalent.

Theorem 4.8.1. Let Z be a smooth complex projective variety of dimension
≥ 10. Then there is a nonisotrivial family (Wp)p∈U of smooth complex projective
varieties Wp over some smooth affine variety U , and an automorphism σ ∈

Aut(C) such that for all p ∈ U :

Wp ∼ Z ∼W σ
p and H2∗(Wp,R) ≇H2∗(W σ

p ,R).

Proof. As in Section 4.7, we may pick some σ ∈ Aut(C) and some g ≥ 1 such
that

Z ≃ Zσ, σ(i) = i, σ(ζ2g+1) ≠ ζ2g+1 and b2(Tg,4) > b2(Z) + 4.

Next, let U ⊆ Z be a Zariski open and dense subset with trivial tangent
bundle. Let ∆ ⊆ U × Z be the graph of the inclusion U ↪ Z and consider
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4.8 Examples with nonisotrivial deformations

the blow-up Bl∆(U × Z). The normal bundle of ∆ in U × Z is trivial, since
U has trivial tangent bundle. Hence, the exceptional divisor of Bl∆(U ×Z) is
isomorphic to ∆×Pn−1. Since n ≥ 10, we may fix an embedding of ∆×Tg,4 into
this exceptional divisor and consider the blow-up

Bl∆×Tg,4(Bl∆(U ×Z)).

Projection to the first coordinate then gives a family

(Wp)p∈U

of smooth complex projective varieties, birational to Z. Then, for all p ∈ U ,
the conjugate varieties Wp and W σ

p are as in (4.39) and (4.40) respectively.
Thus, Wp ∼ Z and W σ

p ∼ Zσ. By Theorem 4.7.1 and since Z ≃ Zσ, we obtain
for all p ∈ U :

Wp ∼ Z ∼W σ
p and H2∗(Wp,R) ≇H2∗(W σ

p ,R).

To conclude Theorem 4.8.1, it therefore remains to prove

Claim 4.8.2. After replacing Z by another representative of its birational
equivalence class, and for a suitable choice of U , the family (Wp)p∈U is non-
isotrivial.

Let us prove this claim. By the arguments of Theorem 4.7.1, one sees that
any isomorphism g ∶Wp →Wq induces an isomorphism g∗ on cohomology which
respects the decomposition (4.41). This implies that g respects the exceptional
divisors and thus induces an isomorphism of Z which takes p to q.

The above argument, applied to p = q, shows that Wp admits no automor-
phism which takes points from the exceptional divisors to Z−{p}. In particular,
Wp contains a Zariski open subset with trivial tangent bundle and with two
points that cannot be interchanged by an automorphism of Wp. Since Wp

is birational to Z, we may therefore, after possibly replacing Z by another
representative of its birational equivalence class, assume that U already con-
tains points p and q which cannot be interchanged by any automorphism of Z.
Then, as we have seen, Wp and Wq are not isomorphic. This finishes the proof
of Claim 4.8.2 and so concludes Theorem 4.8.1.

Remark 4.8.3. In contrast to Theorem 4.8.1, most of the previously known
examples of nonhomeomorphic pairs of conjugate varieties tend to be rather
rigid and do in general not occur in nonisotrivial families. This was already
observed by D. Reed in [67]. However, it is often possible to obtain nonisotrivial
families as products of previously known examples with nonrigid varieties, e.g.
one could take products of Serre’s examples [78] with a smooth hypersurface
of degree at least 3 in P3, since the latter are simply connected and come in
nonisotrivial families.
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5 Theta divisors with curve
summands and the Schottky
Problem

Abstract. We prove the following converse of Riemann’s Theorem: let

(A,Θ) be an indecomposable principally polarized abelian variety whose

theta divisor can be written as a sum of a curve and a codimension two

subvariety Θ = C + Y . Then C is smooth, A is the Jacobian of C, and

Y is a translate of Wg−2(C). As applications, we determine all theta

divisors that are dominated by a product of curves and characterize

Jacobians by the existence of a d-dimensional subvariety with curve

summand whose twisted ideal sheaf is a generic vanishing sheaf.

5.1 Introduction

This chapter provides new geometric characterizations of Jacobians inside the
moduli stack of all principally polarized abelian varieties over the complex
numbers. For a recent survey on existing solutions and open questions on
the Schottky Problem, we refer the reader to [32]. By slight abuse of nota-
tion, we will denote a ppav (principally polarized abelian variety) by (A,Θ),
where Θ ⊆ A is a theta divisor that induces the principal polarization on the
abelian variety A; the principal polarization determines Θ ⊆ A uniquely up to
translation.

5.1.1 A converse of Riemann’s theorem

Let (J(C),ΘC) be the Jacobian of a smooth curve C of genus g ≥ 2. We
fix a base point on C and consider the corresponding Abel–Jacobi embedding
C // J(C). Addition of points induces morphisms

AJk ∶ C
(k) // J(C),

This chapter is based on [75].
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5 Theta divisors with curve summands and the Schottky Problem

whose image is denoted by Wk(C). Riemann’s Theorem [4, p. 27] says

ΘC =Wg−1(C).

That is,

ΘC =W1(C) +Wg−2(C)

has a curve summand W1(C) ≃ C. We prove the following converse.

Theorem 5.1.1. Let (A,Θ) be an indecomposable g-dimensional ppav and
suppose that there is a curve C and a codimension two subvariety Y in A such
that

Θ = C + Y.

Then C is smooth and there is an isomorphism (A,Θ) ≃ (J(C),ΘC) which
identifies C and Y with translates of W1(C) and Wg−2(C) respectively.

Recall that a d-dimensional subvariety Z ⊆ A is called geometrically nonde-
generate [65, p. 466] if there is no nonzero decomposable holomorphic d-form
on A which restricts to zero on Z, see also Section 5.2 below. For instance,
Wd(C) inside the Jacobian of a smooth curve is geometrically nondegenerate.

The intermediate Jacobian of a smooth cubic threefold is an indecomposable
ppav which is not isomorphic to the Jacobian of a curve and whose theta
divisor can be written as a sum of two geometrically nondegenerate surfaces
[16, Sec. 13]. One of Pareschi–Popa’s conjectures (Conjecture 5.5.7 below)
predicts that apart from Jacobians of curves, intermediate Jacobians of smooth
cubic threefolds are the only ppavs whose theta divisors have a geometrically
nondegenerate summand of dimension 1 ≤ d ≤ g − 2. Theorem 5.1.1 proves (a
strengthening of) that conjecture if d = 1 or d = g − 2.

5.1.2 Detecting Jacobians via special subvarieties

Recall that a coherent sheaf F on an abelian variety A is a GV-sheaf if for all
i its i-th cohomological support locus

Si(F) ∶= {L ∈ Pic0
(A) ∣H i(A,F ⊗L) ≠ 0}

has codimension ≥ i in Pic0
(A), see [60, p. 212].

Using this definition, we characterizeWd(C) ⊆ J(C) among all d-dimensional
subvarieties of arbitrary ppavs. Our proof combines Theorem 5.1.1 with the
main results in [19] and [60].
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5.1 Introduction

Theorem 5.1.2. Let (A,Θ) be an indecomposable ppav, and let Z ⊊ A be
a geometrically nondegenerate subvariety of dimension d. Suppose that the
following holds:

1. Z = Y +C has a curve summand C ⊆ A,

2. the twisted ideal sheaf IZ(Θ) = IZ ⊗OA(Θ) is a GV-sheaf.

Then C is smooth and there is an isomorphism (A,Θ) ≃ (J(C),ΘC) which
identifies C, Y and Z with translates of W1(C), Wd−1(C) and Wd(C) respec-
tively.

The sum of geometrically nondegenerate subvarieties C,Y ⊊ A of dimension
1 and d − 1 respectively yields a geometrically nondegenerate subvariety of
dimension d, see Lemma 5.2.2 below. Therefore, any abelian variety contains
lots of geometrically nondegenerate subvarieties Z satisfying the first condition
in Theorem 5.1.2.

The point is condition 2 in Theorem 5.1.2. If d = g−1, where g = dim(A), this
is known to be equivalent to Z being a translate of Θ, so we recover Theorem
5.1.1 from Theorem 5.1.2. If 1 ≤ d ≤ g − 2, condition 2 is more mysterious. It
is known to hold for Wd(C) inside the Jacobian J(C), as well as for the Fano
surface of lines inside the intermediate Jacobian of a smooth cubic threefold.
Pareschi–Popa conjectured (Conjecture 5.5.2 below) that up to isomorphisms
these are the only examples; they proved it for subvarieties of dimension one
or codimension two.

5.1.3 The DPC Problem for theta divisors

A variety X is DPC (dominated by a product of curves), if there are curves
C1, . . . ,Cn together with a dominant rational map

C1 × ⋅ ⋅ ⋅ ×Cn ⇢X.1

For instance, unirational varieties, abelian varieties as well as Fermat hyper-
surfaces {xd0 + ⋅ ⋅ ⋅ + x

d
N = 0} ⊆ PN of degree d ≥ 1 are DPC, see [70]. Serre [80]

constructed the first example of a variety which is not DPC. Later, Deligne
[21, Sec. 7] and Schoen [70] used a Hodge theoretic obstruction to produce
many more examples.

On the one hand, the theta divisor of the Jacobian of a smooth curve is DPC
by Riemann’s Theorem. On the other hand, Schoen found [70, p. 544] that
his Hodge theoretic obstruction does not prevent (smooth) theta divisors from

1A priori n ≥ dim(X), but by [70, Lem. 6.1], we may actually assume n = dim(X).
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5 Theta divisors with curve summands and the Schottky Problem

being DPC. This led Schoen [70, Sec. 7.4] to pose the problem of finding theta
divisors which are not DPC, if such exist. The following solves that problem
completely, which was our initial motivation for this chapter.

Corollary 5.1.3. Let (A,Θ) be an indecomposable ppav. The theta divisor Θ
is DPC if and only if (A,Θ) is isomorphic to the Jacobian of a smooth curve.

We prove in fact a strengthened version (Corollary 5.6.3) of Corollary 5.1.3,
in which the DPC condition is replaced by the existence of a dominant rational
map Z1 ×Z2 ⇢ Θ, where Z1 and Z2 are arbitrary varieties of dimension 1 and
g−2 respectively. The latter is easily seen to be equivalent to Θ having a curve
summand and so Theorem 5.1.1 applies.

We discuss further applications of Theorem 5.1.1 in Sections 5.6.1 and 5.6.2.
Firstly, using work of Clemens–Griffiths [16], we prove that the Fano surface of
lines on a smooth cubic threefold is not DPC (Corollary 5.6.5). Secondly, for
a smooth genus g curve C, we determine in Corollary 5.6.6 all possible ways
in which the symmetric product C(k) with k ≤ g − 1 can be dominated by a
product of curves. Our result can be seen as a generalization of a theorem of
Martens’ [59, 64].

5.1.4 Method of proofs

Although Theorem 5.1.1 is a special case of Theorem 5.1.2, it appears to be
more natural to prove Theorem 5.1.1 first. Here we use techniques that origi-
nated in work of Ran and Welters [63, 65, 95]; they are mostly of cohomological
and geometric nature. One essential ingredient is Ein–Lazarsfeld’s result [25]
on the singularities of theta divisors, which allows us to make Welters’ method
[95] unconditional. Eventually, Theorem 5.1.1 will be reduced to Matsusaka–
Hoyt’s criterion [36], asserting that Jacobians of smooth curves are character-
ized among indecomposable g-dimensional ppavs (A,Θ) by the property that
the cohomology class 1

(g−1)![Θ]g−1 can be represented by a curve. Theorem

5.1.2 follows then quickly from Theorem 5.1.1 and work of Debarre [19] and
Pareschi–Popa [60].

5.1.5 Conventions

We work over the field of complex numbers. A variety is a separated integral
scheme of finite type over C; if not mentioned otherwise, varieties are assumed
to be proper over C. A curve is an algebraic variety of dimension one. In
particular, varieties (and hence curves) are reduced and irreducible.

If not mentioned otherwise, a point of a variety is always a closed point. A
general point of a variety is a closed point in some Zariski open and dense set.
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5.2 Nondegenerate subvarieties

For a codimension one subscheme Z of a normal variety X, we denote
by divX(Z) the corresponding effective Weil divisor on X; if Z is not pure-
dimensional, all components of codimension ≥ 2 are ignored in this definition.
Linear equivalence between divisors is denoted by ∼.

For subschemes Z and Z ′ of an abelian variety A, we denote by Z +Z ′ (resp.
Z − Z ′) the image of the addition (resp. difference) morphism Z × Z ′ //A,
equipped with the natural scheme structure. If Z ′ is a point a ∈ A, Z ± Z ′

is also denoted by Z±a. Note that for subvarieties Z and Z ′ of A, the image
Z ±Z ′ is reduced and irreducible, hence a subvariety of A.

If Z ⊆ A is a subvariety, the tangent space at each point of Z is identified
via translation with a subspace of TA,0.

5.2 Nondegenerate subvarieties

Following Ran [65, p. 464], a d-dimensional subvariety Z of a g-dimensional
abelian variety is called nondegenerate if the image of the Gauß map

GZ ∶ Z ⇢ Gr(d, g)

is via the Plücker embedding not contained in any hyperplane. This condition
is stronger then the previously mentioned notion of geometrically nondegener-
ate subvarieties. We will need the following consequence of [65, Lem. II.1].

Lemma 5.2.1. Let (A,Θ) be a ppav and let Z ⊆ A be a codimension k subvari-
ety whose cohomology class is a multiple of 1

k![Θ]k. Then Z is nondegenerate,
hence geometrically nondegenerate.

Ran proved that a d-dimensional subvariety Z ⊆ A is geometrically non-
degenerate if and only if for each abelian subvariety B ⊆ A, the composition
Z //A/B has either d-dimensional image or it is surjective [65, Lem. II.12].
In [18, p. 105], Debarre used Ran’s characterization as definition and proved
the following.

Lemma 5.2.2. Let Z1, Z2 ⊆ A be subvarieties of dimensions d1 and d2 with
d1 + d2 ≤ dim(A) respectively.

1. If Z1 is geometrically nondegenerate, dim(Z1 +Z2) = d1 + d2.

2. If Z1 and Z2 are geometrically nondegenerate, Z1+Z2 ⊆ A is geometrically
nondegenerate.
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5 Theta divisors with curve summands and the Schottky Problem

5.3 A consequence of Ein–Lazarsfeld’s Theorem

The purpose of this section is to prove Lemmas 5.3.2 and 5.3.3 below. Under
the additional assumption

dim(Sing(Θ)) ≤ dim(A) − 4, (5.1)

these were first proven by Ran [63, Cor. 3.3] and Welters [95, Prop. 2] re-
spectively. The general case is a consequence of the following result of Ein–
Lazarsfeld [25].

Theorem 5.3.1 (Ein–Lazarsfeld). Let (A,Θ) be a ppav. If Θ is irreducible,
it is normal and has only rational singularities.

Let (A,Θ) be an indecomposable ppav of dimension ≥ 2. By the Decompo-
sition Theorem [8, p. 75], Θ is irreducible and we choose a desingularization
f ∶ X //Θ. The composition of f with the inclusion Θ ⊆ A is denoted by
j ∶X //A.

Lemma 5.3.2. Pullback of line bundles induces an isomorphism

j∗ ∶ Pic0
(A)

∼ // Pic0
(X).

Proof. By Theorem 5.3.1, f∗OX = OΘ and Rif∗OX = 0 for all i > 0. We
therefore obtain

H1(X,OX) ≃H1(Θ,OΘ) ≃H1(A,OA),

where the first isomorphism follows from the Leray spectral sequence, and the
second one from Kodaira vanishing and the short exact sequence

0 //OA(−Θ) //OA //OΘ = j∗OX // 0. (5.2)

Hence, j∗ ∶ Pic0
(A) // Pic0

(X) is an isogeny.
Tensoring (5.2) by a nontrivial P ∈ Pic0

(A), we obtain

H0(X, j∗P ) ≃H0(A,P ) = 0,

where we applied Kodaira vanishing to OA(−Θ) ⊗ P . It follows that j∗P is
nontrivial. That is, j∗ is an injective isogeny and thus an isomorphism. This
proves Lemma 5.3.2.

Lemma 5.3.3. For any a ≠ 0 in A, j ∶X //A induces an isomorphism

j∗ ∶H0(A,OA(Θa))
∼ // H0(X, j∗(OA(Θa))).

Proof. Following Welters [95, Prop. 2], the assertion follows from (5.2) by
tensoring with OA(Θa), since OA(Θa −Θ) has no cohomology for a ≠ 0.

134
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5.4 Proof of Theorem 5.1.1

Let (A,Θ) be a g-dimensional indecomposable ppav, and suppose that there
is a curve C ⊆ A and a (g − 2)-dimensional subvariety Y ⊆ A such that

Θ = C + Y.

After translation, we may assume Θ = −Θ. We pick a point c0 ∈ C and replace
C and Y by C−c0 and Yc0 . Hence, we may assume 0 ∈ C and so Y = 0 + Y is
contained in Θ.

Since (A,Θ) is indecomposable, Θ is irreducible, hence normal by Theorem
5.3.1. The idea of the proof of Theorem 5.1.1 is to consider the intersection
Θ∩Θc for nonzero c ∈ C. Since Θ induces a principal polarization, Θ∩Θc is a
proper subscheme of Θ for all c ≠ 0. For our purposes it is more convenient to
consider the corresponding Weil divisor on Θ, denoted by

divΘ(Θ ∩Θc).

Clearly, this divisor is just the pullback of the Cartier divisor Θc from A to Θ.
Since Θ = −Θ, the map x � // c − x defines an involution of Θ ∩ Θc. Since

Θ = C + Y , it follows that divΘ(Θ ∩Θc) contains the effective Weil divisors Yc
and −Y . For general c, these divisors are distinct and so we find

divΘ(Θ ∩Θc) = Yc +Z(c) (5.3)

for all c ≠ 0, where Z(c) is an effective Weil divisor on Θ which contains −Y . In
the following proposition, we prove that actually Z(c) = −Y . As a byproduct
of the proof, we will be able to compute the cohomology class of C in terms of
the degree of the addition morphism

F ∶ C × Y //Θ.

Our proof uses Welters’ method [95].

Proposition 5.4.1. Let (A,Θ) be a g-dimensional indecomposable ppav with
Θ = C + Y , Θ = −Θ and 0 ∈ C as above. For any nonzero c ∈ C,

divΘ(Θ ∩Θc) = Yc + (−Y ). (5.4)

Moreover, the cohomology class of C is given by

[C] =
deg(F )

(g − 1)2 ⋅ (g − 2)!
⋅ [Θ]g−1. (5.5)
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5 Theta divisors with curve summands and the Schottky Problem

Proof. We fix a resolution of singularities f ∶X //Θ and denote the composi-
tion of f with the inclusion Θ ⊆ A by j ∶X //A. Moreover, for each a ∈ A, we
fix an effective divisor Θ̃a in the linear series ∣j∗(Θa)∣ on X. For a ≠ 0, ∣j∗(Θa)∣

is zero-dimensional by Lemma 5.3.3. It follows that Θ̃a is unique if a ≠ 0; it is
explicitly given by

Θ̃a = divX(f−1(Θa ∩Θ)). (5.6)

Since Θ is normal, the general point of each component of Θa ∩Θ lies in the
smooth locus of Θ. The above description therefore proves

f∗Θ̃a = divΘ(Θa ∩Θ), (5.7)

for all a ≠ 0 in A.
Next, we would like to find a divisor Ỹc on X whose pushforward to Θ is Yc.

Since Yc is in general not Cartier on Θ, we cannot simply take the pullback.
Instead, we consider the Weil divisor which corresponds to the scheme theoretic
preimage of Yc,

Ỹc ∶= divX(f−1(Yc)). (5.8)

Since Θ is normal, Yc is not contained in the singular locus of Θ. It follows
that f−1(Yc) has a unique component which maps birationally onto Yc and the
remaining components are in the kernel of f∗. Hence,

f∗Ỹc = Yc. (5.9)

For all c ≠ 0 in C, we define

Z̃(c) ∶= Θ̃c − Ỹc. (5.10)

It follows from (5.3), (5.6) and (5.8) that Z̃(c) is effective. Moreover, by (5.3),
(5.7) and (5.9),

f∗Z̃(c) = divΘ(Θ ∩Θc) − Yc = Z(c). (5.11)

By generic flatness, it follows that there is a Zariski dense and open subset
U ⊆ C such that for c ∈ U the preimages f−1(Yc) form the fibers of a flat family
of schemes over U . By the definition of Ỹc in (5.8), Ỹc−Ỹc′ is numerically trivial
on X for all c, c′ ∈ U . Lemma 5.3.2 yields therefore for all c, c′ ∈ U a linear
equivalence

Ỹc − Ỹc′ ∼ j
∗(Θz(c,c′) −Θ) ∼ Θ̃z(c,c′) − Θ̃, (5.12)
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5.4 Proof of Theorem 5.1.1

where z ∶ U ×U //A is the morphism induced by the universal property of

Pic0
(X) ≃ Pic0

(A).

The proof of Proposition 5.4.1 proceeds now in several steps.

Step 1. Let c′ ∈ U and consider the function xc′(c) ∶= z(c, c′) + c′. For all
c ∈ U with xc′(c) ≠ 0, we have

divΘ(Θxc′(c) ∩Θ) = Yc +Z(c′). (5.13)

Moreover, if c′ ∈ U is general, then xc′(c) is nonconstant in c ∈ U .

Proof. Using the theorem of the square [8, p. 33] on A and pulling back this
linear equivalence to X shows Θ̃xc′(c) ∼ Θ̃z(c,c′) − Θ̃ + Θ̃c′ . By (5.12) and the

definition of Z̃(c′) in (5.10), we therefore obtain:

Θ̃xc′(c) ∼ Θ̃z(c,c′) − Θ̃ + Θ̃c′

∼ Ỹc − Ỹc′ + Θ̃c′

∼ Ỹc + Z̃(c′).

That is, Ỹc + Z̃(c′) is an effective divisor linearly equivalent to Θ̃xc′(c). By

Lemma 5.3.3, the linear series ∣Θ̃xc′(c)∣ is zero-dimensional for all xc′(c) ≠ 0,
and so we actually obtain an equality of Weil divisors:

Θ̃xc′(c) = Ỹc + Z̃(c′).

Applying f∗ to this equality, (5.13) follows from (5.7), (5.9) and (5.11).

Using again the theorem of the square on A and pulling back the correspond-
ing linear equivalence to X, we obtain Θ̃z(c,c′) − Θ̃ ∼ Θ̃ − Θ̃−z(c,c′). It therefore
follows from (5.12) that

Θ̃ − Θ̃−z(c,c′) ∼ Yc − Yc′ = −(Yc′ − Yc) ∼ Θ̃ − Θ̃z(c′,c).

Hence, −z(c, c′) = z(c′, c) by Lemma 5.3.2.

For a contradiction, suppose that xc′(c) = z(c, c′) + c′ is constant in c for
general (hence for all) c′ ∈ U . It follows that z(c, c′) is constant in the first
variable. Since z(c, c′) = −z(c′, c), it is also constant in the second variable.
Therefore, for general c′, xc′(c) = z(c, c′)+c′ is nonzero and constant in c. This
contradicts (5.13), because its right hand side is nonconstant in c as C+Y = Θ.
This concludes step 1.
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5 Theta divisors with curve summands and the Schottky Problem

Let us now fix a general point c′ ∈ U . By step 1, the closure of c � //xc′(c) is
a proper irreducible curve D ⊆ A.

We say that a subvariety Z of A is translation invariant under D if

Zx = Zx′

for all x,x′ ∈ D. Equivalently, Z is translation invariant under D if and only
if the corresponding cohomology classes on A satisfy [Z] ∗ [D] = 0, where ∗

denotes the Pontryagin product. That description shows that the notion of
translation invariance depends only on the cohomology classes of Z and D. In
particular, Z is translation invariant under D if and only if the same holds for
±Z or ±D. If Z is not translation invariant under D, we also say that it moves
when translated by D.

We will use that −Y moves when translated by D. Indeed, for x1, x2 ∈ D
with Yx1 = Yx2 , we obtain

Θx1 = C + Yx1 = C + Yx2 = Θx2 .

Hence, x1 = x2 which proves that Y and hence −Y is not translation invariant
under D.

For each c ≠ 0, we decompose the Weil divisor Z(c) on Θ into a sum of
effective divisors

Z(c) = Zmov(c) +Zinv(c), (5.14)

where Zinv(c) contains all the components of Z(c) that are translation invariant
under D and the components of Zmov(c) move when translated by D.

Step 2. We have xc′(c) = c and hence D = C. Moreover, for each c ≠ 0 in U ,

divΘ(Θ ∩Θc) = Yc + (−Y ) +Zinv(c
′). (5.15)

Proof. Let Z ′ be a prime divisor in Zmov(c′). It follows from step 1 that
Z ′
−x ⊆ Θ for general x ∈D, hence for all x ∈D. Since Z ′ moves when translated

by −D, Z ′ −D = Θ and so

−Z ′ +D = −Θ = Θ.

Since −Z ′ ⊆ −Θ = Θ, this equality implies

(−Z ′)x ⊆ Θx ∩Θ

for all nonzero x ∈ D. Therefore, for each c ∈ U with xc′(c) ≠ 0, the prime
divisor (−Z ′)xc′(c) is contained in divΘ(Θxc′(c)∩Θ). Hence, by (5.13) from step
1:

(−Z ′)xc′(c) ≤ Yc +Z(c′),
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5.4 Proof of Theorem 5.1.1

for all c ∈ U with xc′(c) ≠ 0.
Let us now move in the above inequality the point c in C and keep c′ fixed

and general. By step 1, the point xc′(c) moves. Since Z ′ is a component of
Zmov(c′), the translate (−Z ′)xc′(c) must also move. The translate Yc moves
because Y + C = Θ. Clearly, Z(c′) does not move as we keep c′ fixed. The
above inequality of effective Weil divisors therefore shows

(−Z ′)xc′(c) = Yc. (5.16)

Recall that the prime divisor (−Y ) is contained in Z(c′) for all c′. We
have explained above step 2 that this prime divisor is not translation invariant
under D, hence it is contained in Zmov(c′). Equality (5.16) therefore holds for
Z ′ = −Y , which proves Yxc′(c) = Yc. This implies

Θxc′(c) = Yxc′(c) +C = Yc +C = Θc.

Hence,
xc′(c) = c,

which implies D = C.
It remains to prove (5.15). Since xc′(c) = c, equality (5.16) shows that −Y

is actually the only prime divisor in Zmov(c′). Hence,

Zmov(c
′) = λ ⋅ (−Y )

for some positive integer λ. Using xc′(c) = c and (5.14) in the conclusion (5.13)
from step 1, we therefore obtain

divΘ(Θ ∩Θc) = Yc + λ ⋅ (−Y ) +Zinv(c
′).

For (5.15), it now remains to prove λ = 1. By the above equality of Weil
divisors, it suffices to prove that for general points y ∈ Y and c ∈ C, the
intersection Θ ∩ Θc is transverse at the point −y. Recall that Θ is normal
and so it is smooth at −y for y ∈ Y general. It thus suffices to see that the
tangent space TΘ,−y meets TΘc,−y = TΘ,−y−c properly. Since TΘ,−y and TΘ,−y−c
have codimension one in TA,0, it actually suffices to prove

TΘ,−y ≠ TΘ,−y−c

for general c ∈ C and y ∈ Y . In order to see this, it suffices to note that Θ is
irreducible and so the Gauß map

GΘ ∶ Θ⇢ Pg−1

is generically finite [8, Prop. 4.4.2]. Indeed, TΘ,−y = TΘ,−y−c for general c and y
implies that through the general point of Θ (which is of the form −y − c) there
is a curve which is contracted by GΘ. This concludes step 2.
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5 Theta divisors with curve summands and the Schottky Problem

Step 3. We have the following identity in H2g−2(A,Z):

[Θ]2 ∗ [C] = 2 ⋅ deg(F ) ⋅ [Θ], (5.17)

where we recall that F ∶ C × Y //Θ denotes the addition morphism.

Proof. It follows from the conclusion (5.15) in step 2 that Zinv(c′) is actually
independent of the general point c′ ∈ U . We therefore write Zinv = Zinv(c′).

For a contradiction, suppose that there is a prime divisor Z ′ on Θ with
Z ′ ≤ Zinv. Let us think of Z ′ as a codimension two cycle on A. By definition,
Z ′ is translation invariant under D, hence under C by step 2. Therefore,
[Z ′] ∗ [C] = 0 in H2g−2(A,Z). Since this holds for each prime divisor Z ′ in
Zinv,

[Zinv] ∗ [C] = 0.

For c ≠ 0, we may consider Θ ∩ Θc as a pure-dimensional codimension two
subscheme of A. As such it gives rise to an effective codimension two cycle on
A, which is nothing but the pushforward of the cycle DivΘ(Θ∩Θc) from Θ to
A. Mapping this cycle further to cohomology, we obtain [Θ]2 in H2g−4(A,Z).
Conclusion (5.15) in step 2 therefore implies

[Θ]2 ∗ [C] = 2 ⋅ [Y ] ∗ [C] + [Zinv] ∗ [C]

= 2 ⋅ [Y ] ∗ [C]

= 2 ⋅ deg(F ) ⋅ [Θ],

where we used [Y ] = [Yc] = [−Y ] and [Zinv] ∗ [C] = 0.

Step 4. Assertion (5.5) of Proposition 5.4.1 holds.

Proof. We apply the cohomological Fourier–Mukai functor to the conclusion
(5.17) of step 3. Using Lemma 9.23 and Lemma 9.27 in [38], this yields:

2

(g − 2)!
⋅ [Θ]g−2 ∪PD[C] =

2 ⋅ deg(F )

(g − 1)!
⋅ [Θ]g−1, (5.18)

where PD denotes the Poincaré duality operator. Here we used

PD(
1

k!
⋅ [Θ]k) =

1

(g − k)!
⋅ [Θ]g−k

for all 0 ≤ k ≤ g.
By the Hard Lefschetz Theorem, (5.18) implies

[C] =
deg(F )

(g − 1)2 ⋅ (g − 2)!
⋅ [Θ]g−1,

which is precisely assertion (5.5) of Proposition 5.4.1.
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By Lemma 5.2.1, assertion (5.5) of Proposition 5.4.1 implies that C is ge-
ometrically nondegenerate. It follows from Lemma 5.2.2 that no proper sub-
variety of A is translation invariant under C, hence under D by the second
conclusion of step 2. This implies Zinv(c′) = 0 by its definition in (5.14). As-
sertion (5.4) of Proposition 5.4.1 follows therefore from assertion (5.15) in step
2. This finishes the proof of Proposition 5.4.1.

The next step in the proof of Theorem 5.1.1 is the following

Proposition 5.4.2. In the same notation as above, C is smooth, deg(F ) = g−1
and [C] = 1

(g−1)! ⋅ [Θ]g−1.

Proof. Let us first show that C is smooth. Indeed, (5.4) implies by Lemma
5.2.1 that Y is nondegenerate. Via the Plücker embedding, its Gauß image is
therefore not contained in any hyperplane. If c0 ∈ C is a singular point, the sum
of Zariski tangent spaces TC,c0 + TY,y has thus for general y ∈ Y dimension g.
It follows that c0 +Y is contained in the singular locus of Θ, which contradicts
its normality (Theorem 5.3.1). Therefore C is smooth.

In order to prove Proposition 5.4.2, it suffices by (5.5) to show deg(F ) = g−1.
This will be achieved by computing the degree of i∗Θ, where i ∶ C //A denotes
the inclusion, in two ways. On the one hand, (5.5) implies

deg (i∗Θ) = [C] ∪ [Θ] =
deg(F )

(g − 1)2 ⋅ (g − 2)!
[Θ]g =

g ⋅ deg(F )

g − 1
. (5.19)

On the other hand, we may consider the addition morphism

m ∶ C ×C × Y //A.

For y ∈ Y , the restriction of m to C ×C × y will be denoted by

my ∶ C ×C //A.

Since the degree is constant in flat families, we obtain

deg(i∗Θ) = deg(i∗(Θ−c−y)) = deg ((m∗
yΘ) ∣C×c) (5.20)

for all c ∈ C and y ∈ Y .
Let us now fix a general point y ∈ Y . Then the image of my is not contained

in Θ because C + C + Y = A. Therefore, we can pull back the Weil divisor Θ
via

m∗
y(Θ) = divC×C(m

−1
y (Θ)),

where m−1
y (Θ) denotes the scheme-theoretic preimage, whose closed points are

given by
{(c1, c2) ∈ C ×C ∣ c1 + c2 + y ∈ Θ} .
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5 Theta divisors with curve summands and the Schottky Problem

Hence, m∗
y(Θ) contains the prime divisors C×0 and 0×C. We aim to calculate

the right hand side of (5.20) and proceed again in several steps.
Step 1. The multiplicity of C × 0 and 0 ×C in m∗

y(Θ) is one.

Proof. Let λ be the multiplicity of C × 0 in m∗
y(Θ). For c ∈ C general, the

point (c,0) has then multiplicity λ in the 0-dimensional scheme

m−1
y (Θ) ∩ (c ×C).

Since my maps c × C isomorphically to Cc+y, the above scheme is isomorphic
to

Θ ∩my(c ×C) = Θ ∩ (Cc+y),

and c + y ∈ Cc+y has multiplicity λ in that intersection. If λ ≥ 2, then

TC,0 = TCc+y ,c+y ⊆ TΘ,c+y.

Since c + y is a general point of Θ, this inclusion contradicts the previously
mentioned fact that the Gauß map GΘ is generically finite and so the tangent
space of Θ at a general point does not contain a fixed line. This proves that
C × 0 has multiplicity one in m∗

y(Θ). A similar argument shows that the same
holds for 0 ×C, which concludes step 1.

By step 1,

m∗
y(Θ) = divC×C(m

−1
y (Θ)) = (C × 0) + (0 ×C) + Γ (5.21)

for some effective 1-cycle Γ on C ×C which contains neither C × 0 nor 0 ×C.
Step 2. Let Γ′ be a prime divisor in Γ. Then for each (c1, c2) ∈ Γ′,

−c1 − c2 − y ∈ Y. (5.22)

Proof. Condition (5.22) is Zariski closed and so it suffices to prove it for a
general point (c1, c2) ∈ Γ′. Such a point satisfies c1 ≠ 0 ≠ c2 and c1+c2+y ∈ Θ∩Θci

for i = 1,2. We can therefore apply (5.4) in Proposition 5.4.1 and obtain

c1 + c2 + y ∈ supp(Yci + (−Y )),

for i = 1,2, where supp(−) denotes the support of the corresponding effective
Weil divisor. It follows that c1 + c2 + y lies in Yc1 ∩ Yc2 or in (−Y ).

It suffices to rule out c1 + c2 + y ∈ Yc1 ∩Yc2 . But if this is the case, then c1 + y
and c2 + y are both contained in Y . Since y ∈ Y is general, the intersection
(C + y)∩Y is proper and so (c1, c2) is contained in a finite set of points, which
contradicts the assumption that it is a general point of Γ′. This concludes step
2.
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Step 3. The 1-cycle Γ is reduced, i.e. it is a sum of distinct prime divisors.

Proof. We may assume Γ ≠ 0, as otherwise the assertion is trivially true.
In order to see that Γ is reduced, it suffices to prove that the intersections

of m−1
y (Θ) with c × C and C × c are both reduced, where c ∈ C is general.

The other assertion being similar, we will only prove that m−1
y (Θ) ∩ (C × c2)

is reduced, where c2 ∈ C is general. Since my maps (C × c2) isomorphically to
Cc2+y, it suffices to see that the intersection

Cc2+y ∩Θ (5.23)

is transverse.
Let us consider a point c1 ∈ C with c1 + c2 + y ∈ Θ. For c1 = 0, transversality

of (5.23) in c1 + c2 + y was proven in step 1. For c1 ≠ 0, step 2 implies that
y1 ∶= −(c1 + c2 + y) is contained in Y . In order to prove that the intersection
(5.23) is transverse at −y1, we need to see that

TC,c1 = TCc2+y ,−y1 ⊊ TΘ,−y1 . (5.24)

This follows from the fact that c2 and y are general as follows.
Recall the addition map m ∶ C×C×Y //A and consider the scheme theoretic

preimage m−1(−Y ) together with the projections

pr23 ∶m
−1(−Y ) //C × Y and pr3 ∶m

−1(−Y ) //Y.

Let Γ′ be a prime divisor in Γ with (c1, c2) ∈ Γ′. It follows from step 2 that
Γ′ × y is contained in some component Z of m−1(−Y ). The restriction of pr23

to Z is surjective because c2 and y are general. Hence, dim(Z) > dim(Y ) and
so there is a curve in Z passing through (c1, c2, y) which is contracted via m
to y1. This implies that there is some quasi-projective curve T together with a
nonconstant morphism (c̃1, c̃2, ỹ) ∶ T //C ×C × Y , with c̃1(t0) = c1, c̃2(t0) = c2

and ỹ(t0) = y for some t0 ∈ T such that

c̃1(t) + c̃2(t) + ỹ(t) = −y1,

for all t ∈ T . Since c2 ∈ C and y ∈ Y are general, the addition morphism
F ∶ C × Y //Θ is generically finite in a neighbourhood of (c2, y). Hence,

c̃1(t) = −y1 − c̃2(t) − ỹ(t)

is nonconstant in t.
For a contradiction, suppose TC,c1 ⊂ TΘ,−y1 , where we recall −y1 = c1 + c2 + y.

The image of (c̃2, ỹ) ∶ T //C×Y is a curve through the general point (c2, y). It
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follows that (c̃2(t), ỹ(t)) is a general point of C×Y for general t ∈ T . Replacing
(c2, y) by (c̃2(t), ỹ(t)) in the above argument therefore shows

TC,c̃1(t) ⊂ TΘ,−y1

for general (hence all) t ∈ T , since −y1 = c̃1(t) + c̃2(t) + ỹ(t). As c̃1(t) is non-
constant in t, TC,c is contained in the plane TΘ,−y1 for general c ∈ C. Hence, C
is geometrically degenerate, which by Lemma 5.2.1 contradicts (5.5) in Propo-
sition 5.4.1. This contradiction establishes (5.24), which finishes the proof of
step 3.

Step 4. For c2 ∈ C general, deg(Γ∣C×c2) = deg(F ).

Proof. Let c2 ∈ C be general. By step 3, Γ is reduced and so its restriction
to C × c2 is a reduced 0-cycle. Since c2 and y are general, −c2 − y is a general
point of Θ. Therefore, F −1(−c2 − y) is a disjoint union of deg(F ) reduced
points. It thus suffices to construct a bijection between the closed points of
the zero-dimensional reduced schemes supp(Γ) ∩ (C × c2) and F −1(−c2 − y).
This bijection is given by

φ ∶ supp(Γ) ∩ (C × c2) //F −1(−c2 − y),

where φ((c1, c2)) = (c1,−c1− c2−y). The point is here that φ is well-defined by
step 2; its inverse is given by

φ−1((c1, y1)) = (c1,−c1 − y1 − y).

This establishes the assertion in step 4.

By step 4, deg(Γ∣C×c2) = deg(F ) for a general point c2 ∈ C. Using (5.20) and
(5.21), we obtain therefore

deg (i∗Θ) = 1 + deg(Γ∣C×c2) = 1 + deg(F ).

Comparing this with (5.19) yields

g ⋅ deg(F )

g − 1
= 1 + deg(F ),

hence deg(F ) = g − 1, as we want. This finishes the proof of Proposition
5.4.2.
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Proof of Theorem 5.1.1. Let (A,Θ) be an indecomposable ppav with

Θ = C + Y.

As explained in the beginning of Section 5.4, we may assume Θ = −Θ and
0 ∈ C. By Matsusaka–Hoyt’s criterion [36, p. 416], Proposition 5.4.2 implies

that C is smooth and that there is an isomorphism ψ ∶ (A,Θ)
∼ // (J(C),ΘC)

which maps C to a translate of W1(C). Since 0 ∈ C, it follows that

ψ(C) =W1(C) − x2

for some x2 ∈W1(C).
For x1 ∈W1(C) with x1 ≠ x2, Weil [94] proved

divWg−1(C)(Wg−1(C) ∩Wg−1(C)x1−x2) =Wg−2(C)x1 + (−Wg−2(C))−κ−x2 , (5.25)

where κ ∈ J(C) is such that −Wg−1(C) = Wg−1(C)κ. Comparing (5.4) with
(5.25), we conclude that ψ(Y ) is a translate of Wg−2(C). This finishes the
proof of Theorem 5.1.1.

Remark 5.4.3. Welters [95, p. 440] showed that the conclusion of Proposition
5.4.1 implies the existence of a positive-dimensional family of trisecants of the
Kummer variety of (A,Θ). The latter characterizes Jacobians by results of
Gunning’s [33] and Matsusaka–Hoyt’s [36] and could hence be used to circum-
vent Proposition 5.4.2 in the proof of Theorem 5.1.1. We presented Proposition
5.4.2 here because its proof is elementary and purely algebraic, whereas the use
of trisecants involves analytic methods, see [33, 49]. It is hoped that this might
be useful in other situations (e.g. in positive characteristics) as well. We also
remark that Proposition 5.4.2 can be used to avoid the use of Gunning’s results
in Welters’ work [95].

Remark 5.4.4. In [56, p. 254], Little conjectured Theorem 5.1.1 for g = 4; a
proof is claimed if Θ = C + S is a sum of a curve C and a surface S, where
no translate of C or S is symmetric (hence C is non-hyperelliptic) and some
additional nondegeneracy assumptions hold. However, some parts of the proof
seem to be flawed and so further assumptions on C and S are necessary in
[56], see [55].

5.5 GV-sheaves, theta duals and Pareschi–Popa’s
conjectures

The purpose of this section is to prove Theorem 5.1.2 stated in the introduction
and to explain two related conjectures of Pareschi and Popa. We need to recall
some results of Pareschi–Popa’s work [60] first.
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Let (A,Θ) be a ppav of dimension g. By [60, Thm. 2.1], a coherent sheaf F
on A is a GV-sheaf if and only if the complex

RŜ(RHom(F ,OA)) (5.26)

in the derived category of the dual abelian variety Â has zero cohomology
in all degrees i ≠ g. Here, RŜ ∶ Db

(A) // Db
(Â) denotes the Fourier–Mukai

transform with respect to the Poincaré line bundle [38, p. 201].

For a geometrically nondegenerate subvariety Z ⊆ A, Pareschi and Popa
consider the twisted ideal sheaf IZ(Θ) = IZ ⊗ OA(Θ).2 It follows from their
own and Höring’s work respectively [60, p. 210] that this is a GV-sheaf if Z
is a translate of Wd(C) in the Jacobian of a smooth curve or a translate of
the Fano surface of lines in the intermediate Jacobian of a smooth cubic three-
fold. Both examples are known to have minimal cohomology class 1

(g−d)![Θ]g−d.

Pareschi–Popa’s Theorem [60, Thm. B] says that this holds in general.

Theorem 5.5.1 (Pareschi–Popa). Let Z be a d-dimensional geometrically
nondegenerate subvariety of a g-dimensional ppav (A,Θ). If IZ(Θ) is a GV-
sheaf,

[Z] =
1

(g − d)!
[Θ]g−d.

Combining Theorem 5.5.1 with Debarre’s “minimal class conjecture” in [19],
Pareschi and Popa arrive at the following, see [60, p. 210].

Conjecture 5.5.2. Let (A,Θ) be an indecomposable ppav of dimension g and
let Z be a geometrically nondegenerate subvariety of dimension 1 ≤ d ≤ g − 2.
If

IZ(Θ) is a GV-sheaf, (5.27)

then either (A,Θ) is isomorphic to the Jacobian of a smooth curve C and Z
is a translate of Wd(C), or it is isomorphic to the intermediate Jacobian of a
smooth cubic threefold and Z is a translate of the Fano surface of lines.

Pareschi and Popa [60, Thm. C] proved Conjecture 5.5.2 for d = 1 and
d = g − 2. Theorem 5.1.2 stated in the introduction proves it for subvarieties
with curve summands. Before we can explain the proof of Theorem 5.1.2, we
need to recall Pareschi–Popa’s notion of theta duals [60, p. 216].

2In fact, Pareschi and Popa treat the more general case of an equidimensional closed reduced
subscheme Z ⊆ A, but for our purposes the case of subvarieties will be sufficient.
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Definition 5.5.3. Let Z ⊆ A be a subvariety. Its theta dual V(Z) ⊆ Â is the
scheme-theoretic support of the g-th cohomology sheaf of the complex

(−1Â)
∗RŜ(RHom(IZ(Θ),OA))

in the derived category Db
(Â).

From now on, we use Θ to identify Â with A. The theta dual of Z ⊆ A is
then a subscheme V(Z) ⊆ A. For Wd(C) inside a Jacobian of dimension g ≥ 2,
Pareschi and Popa proved [60, Sect. 8.1]

V(Wd(C)) = −Wg−d−1(C), (5.28)

for 1 ≤ d ≤ g − 2. Apart from this example, it is in general difficult to compute
V(Z). However, the reduced scheme V(Z)red can be easily described as follows.

Lemma 5.5.4. Let Z ⊆ A be a subvariety. The components of the reduced
scheme V(Z)red are given by the maximal (with respect to inclusion) subvari-
eties W ⊆ A such that Z −W ⊆ Θ.

Proof. By [60, p. 216], the set of closed points of V(Z) is {a ∈ A ∣ Z ⊆ Θa}.
This proves the lemma.

We will use the following consequence of (5.28) and Lemma 5.5.4.

Lemma 5.5.5. Let C be a smooth curve of genus g ≥ 2 and let Z be a (g−d−1)-
dimensional subvariety of J(C) such that Wd(C)+Z is a translate of the theta
divisor ΘC. Then, Z is a translate of Wg−d−1(C).

Proof. By assumption, there is a point a ∈ J(C) with Wd(C)+Za = ΘC . Hence,
by Lemma 5.5.4 and (5.28),

(−Z)−a ⊆ V(Wd(C)) = −Wg−d−1(C).

Since (−Z)−a is (g−d−1)-dimensional, we deduce Z =Wg−d−1(C)−a, as claimed.

For a geometrically nondegenerate subvariety Z ⊆ A of dimension d,

dim(V(Z)) ≤ g − d − 1 (5.29)

follows from Lemmas 5.2.2 and 5.5.4. Moreover, if equality is attained in
(5.29), then Θ = Z −W for some component W of V(Z)red, and so Θ has Z as
a d-dimensional summand.

Pareschi and Popa proved the following [60, Thm. 5.2(a)].
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5 Theta divisors with curve summands and the Schottky Problem

Proposition 5.5.6. Let Z ⊆ A be a geometrically nondegenerate subvariety.
If IZ(Θ) is a GV-sheaf, equality holds in (5.29).

Motivated by Proposition 5.5.6, Pareschi and Popa conjectured [60, p. 222]
that Conjecture 5.5.2 holds if one replaces (5.27) by the weaker assumption

dim(V(Z)) = g − d − 1. (5.30)

By the above discussion, their conjecture is equivalent to

Conjecture 5.5.7. Let (A,Θ) be an indecomposable ppav of dimension g and
let Z be a geometrically nondegenerate subvariety of dimension 1 ≤ d ≤ g − 2.
Suppose that

Θ = Z +W (5.31)

for some subvariety W ⊆ A. Then, (A,Θ) is either isomorphic to the Jacobian
of a smooth curve C and Z is a translate of Wd(C), or it is isomorphic to the
intermediate Jacobian of a smooth cubic threefold and Z is a translate of the
Fano surface of lines.

Theorem 5.1.1 proves (a strengthening of) Conjecture 5.5.7 for d = 1 and
d = g − 2. This provides the first known evidence for that conjecture.

Remark 5.5.8. Conjecture 5.5.2 is implied by Conjecture 5.5.7, as well as by
Debarre’s “minimal class conjecture” in [19]. Similar implications among the
latter two conjectures are not known.

We end this section with the proof of Theorem 5.1.2.

Proof of Theorem 5.1.2. Let Z ⊊ A be as in Theorem 5.1.2. Since IZ(Θ) is
a GV-sheaf, equality holds in (5.29) by Proposition 5.5.6. The reduced theta
dual V(Z)red contains thus by Lemmas 5.2.2 and 5.5.4 a (g−d−1)-dimensional
component W with Z −W = Θ. By assumption 1 in Theorem 5.1.2, Z = C +Y
has a curve summand C and so we obtain

Θ = C + Y −W.

By Theorem 5.1.1, C is smooth and there is an isomorphism

ψ ∶ (A,Θ)
∼ // (J(C),ΘC)

which identifies C and Y −W with translates of W1(C) and Wg−2(C) respec-
tively. Hence,

ψ(Z) − ψ(W ) = ψ(C) + ψ(Y ) − ψ(W ) =Wg−1(C)a, (5.32)
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for some a ∈ J(C), where ψ(C) and ψ(Y )−ψ(W ) are translates of W1(C) and
Wg−2(C) respectively. It remains to prove that ψ(Y ) is a translate of Wd−1(C),
the assertion concerning ψ(Z) = ψ(C) + ψ(Y ) will then be immediate.

If d = g−1, then ψ(W ) is a point and ψ(Y ) is a translate of Wg−2(C), as we
want. We may therefore assume d ≤ g − 2 in the following. By Theorem 5.5.1,
the GV-condition on IZ(Θ) implies

[Z] =
1

(g − d)!
⋅ [Θ]g−d.

By Debarre’s Theorem [19], ψ(Z) is thus a translate of Wd(C) or −Wd(C).
Case 1: ψ(Z) is a translate of Wd(C).
By (5.32), Wd(C) − ψ(W ) is a translate of Wg−1(C) and so −ψ(W ) is a

translate of Wg−d−1(C) by Lemma 5.5.5. By (5.32), Wg−d(C) +ψ(Y ) is thus a
translate of Wg−1(C). Applying Lemma 5.5.5 again shows then that ψ(Y ) is
a translate of Wd−1(C), as we want.

Case 2: ψ(Z) is a translate of −Wd(C).
By (5.32), Wd(C)+ψ(W ) is in this case a translate of −Wg−1(C) and thus of

Wg−1(C). By Lemma 5.5.5, ψ(W ) is therefore a translate of Wg−d−1(C). Since
1 ≤ d ≤ g − 2, it follows from (5.32) that

Wg−1(C) =W1(C) −W1(C) +W ′, (5.33)

where W ′ is a translate of ψ(Y ) −Wg−d−2(C). By Lemma 5.5.5,

−W1(C) +W ′ =Wg−2(C). (5.34)

Let c0 ∈ C be the preimage of 0 ∈ J(C) under the Abel–Jacobi embedding.
Any point on W ′ is then represented by a divisor D − g ⋅ c0 on C, where D is
effective of degree g. It follows from (5.34) that D − c0 − c is effective for all
c ∈ C. Thus,

D − c0 ∈W
1
g−1(C) ⊆ Picg−1

(C)

is a divisor whose linear series is positive-dimensional. By (5.34), we have
dim(W ′) ≥ g − 3 (in fact equality holds) and so dim(W 1

g−1(C)) ≥ g − 3. A
theorem of Martens [4, p. 191] implies that C is hyperelliptic and so case 1
applies. This concludes the proof.

5.6 Dominations by products

5.6.1 The DPC Problem for theta divisors

We have the following well-known
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5 Theta divisors with curve summands and the Schottky Problem

Lemma 5.6.1. Let A be an abelian variety and let F ∶ Z1×Z2 ⇢ A be a rational
map from a product of smooth varieties Z1 and Z2. Then there are morphisms
fi ∶ Zi //A for i = 1,2 such that F = f1 + f2.

Proof. Since A does not contain rational curves, F is in fact a morphism, which
by the universal property of Albanese varieties factors through

Alb(Z1) ×Alb(Z2).

We conclude as morphisms between abelian varieties are translates of homo-
morphisms.

The following result shows that property 1 in Theorem 5.1.2 is in fact a
condition on the birational geometry of Z.

Corollary 5.6.2. An n-dimensional subvariety Z of an abelian variety A has
a d-dimensional summand if and only if there is a dominant rational map
F ∶ Z1 × Z2 ⇢ Z, where Z1 and Z2 are varieties of dimension d and n − d
respectively.

Proof. If Z has a d-dimensional summand Z1, the decomposition Z = Z1 + Z2

for a suitable Z2 gives rise to a dominant rational map F ∶ Z1 ×Z2 ⇢ Z as we
want. Conversely, if F ∶ Z1 × Z2 ⇢ Z is given, after resolving the singularities
of Z1 and Z2, the assertion follows from Lemma 5.6.1. This proves Corollary
5.6.2.

Corollary 5.1.3 stated in the introduction is an immediate consequence of
Riemann’s Theorem and

Corollary 5.6.3. Let (A,Θ) be an indecomposable g-dimensional ppav. Sup-
pose there is a dominant rational map

F ∶ Z1 ×Z2 ⇢ Θ,

where Z1 and Z2 are varieties of dimension 1 and g − 2 respectively. Then
(A,Θ) is isomorphic to the Jacobian of a smooth curve C. Moreover, if we
identify Θ with Wg−1(C), there are rational maps

f1 ∶ Z1 ⇢W1(C) and f2 ∶ Z2 ⇢Wg−2(C)

with F = f1 + f2.

Proof. After resolving the singularities of Z1 and Z2, we may assume that both
varieties are smooth. By Lemma 5.6.1, F ∶ Z1 × Z2 ⇢ Θ ⊆ A is then a sum of
morphisms f1 ∶ Z1

//A and f2 ∶ Z2
//A. Hence,

f1(Z1) + f2(Z2) = Θ,

and so Corollary 5.6.3 follows from Theorem 5.1.1.
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Remark 5.6.4. For an arbitrary ppav (A,Θ), Corollary 5.1.3 implies that
each component of Θ is DPC if and only if (A,Θ) is a product of Jacobians
of smooth curves. Indeed, if (A,Θ) = (A1,Θ1) × ⋅ ⋅ ⋅ × (Ar,Θr) with indecom-
posable factors (Ai,Θi), then Θ has r components which are isomorphic to
Θi ×∏j≠iAj where i = 1, . . . , r. Since abelian varieties are DPC, it follows that
the components of Θ are DPC if and only if each Θi is DPC, hence the result
by Corollary 5.1.3.

Corollary 5.6.5. The Fano surface of lines on a smooth cubic threefold X ⊆ P4

is not dominated by a product of curves.

Proof. By [16, Thm. 13.4.], the theta divisor of the intermediate Jacobian
(J3(X),Θ) is dominated by the product S × S, where S is the Fano surface
of lines on X. Since (J3(X),Θ) is indecomposable and not isomorphic to the
Jacobian of a smooth curve [16, p. 350], Corollary 5.6.5 follows from Corollary
5.6.3.

5.6.2 Dominations of symmetric products of curves

Theorem 5.1.1 is nontrivial even in the case where (A,Θ) is known to be a
Jacobian. This allows us to classify all possible ways in which the symmetric
product C(k) of a smooth curve C of genus g ≥ k + 1 can be dominated by a
product of curves. Before we explain the result, we should note that

AJk ∶ C
(k) //Wk(C)

is a birational morphism for g ≥ k, and that −Wg−1(C) is a translate of
Wg−1(C). In particular, multiplication by −1 on J(C) induces a nontrivial
birational automorphism

ι ∶ C(g−1) ∼
⇢ C(g−1).

Corollary 5.6.6. Let C be a smooth curve of genus g. Suppose that for some
k ≤ g−1, there are smooth curves C1, . . . ,Ck together with a dominant rational
map

F ∶ C1 × ⋅ ⋅ ⋅ ×Ck ⇢ C(k).

Then there are dominant morphisms fi ∶ Ci //C with the following property:

• If k < g − 1, then F = f1 + ⋅ ⋅ ⋅ + fk.

• If k = g − 1, then F = f1 + ⋅ ⋅ ⋅ + fg−1 or F = ι ○ (f1 + ⋅ ⋅ ⋅ + fg−1).
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5 Theta divisors with curve summands and the Schottky Problem

Proof. We use the birational morphism AJk ∶ C(k) //Wk(C) to identify C(k)

birationally with its image Wk(C) in J(C). By Lemma 5.6.1, the rational map

AJk ○F ∶ C1 × ⋅ ⋅ ⋅ ×Ck ⇢Wk(C)

is a sum of morphisms Ci //Wk(C). If C ′
i denotes the image of Ci in J(C),

then

ΘC = C ′
1 + ⋅ ⋅ ⋅ +C

′
k +Wg−k−1(C) (5.35)

by Riemann’s Theorem. Proposition 5.4.2 yields therefore [C ′
i] =

1
(g−1)![ΘC]

g−1

for all i. It follows for instance from Debarre’s Theorem [19] that each C ′
i is

a translate of C or of −C, where C ⊆ J(C) is identified with its Abel–Jacobi
image. If C is hyperelliptic, Corollary 5.6.6 follows.

Assume now that C is non-hyperelliptic. Then there is some 0 ≤ r ≤ k, such
that Ci is a translate of −C for precisely r many indices i ∈ {1, . . . , k}. By
(5.35), Wg−r−1(C) −Wr(C) is then a translate of ΘC . However, Lemma 5.5 in
[19] yields

[Wg−r−1(C) −Wr(C)] = (
g − 1

r
) ⋅ [ΘC],

which coincides with [ΘC] if and only if r = 0 or r = g−1. This proves Corollary
5.6.6.

Corollary 5.6.6 implies a theorem of Martens [59, 64] asserting that any
birational map

C
(k)
1

∼
⇢ C

(k)
2

between the k-th symmetric products of smooth curves C1 and C2 of genus
g ≥ k + 2 is induced by an isomorphism C1

∼ // C2.
For k ≥ g, the symmetric product C(k) is birational to J(C) × Pk−g. This

shows that Corollary 5.6.6 is sharp as for k ≥ g, the product J(C)×Pk−g admits
a lot of nontrivial dominations. For instance, it is dominated by k−g arbitrary
curves (whose product dominates Pk−g) together with any choice of g curves
in J(C) whose sum is J(C).
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phes, C. R. Acad. Sci. Paris 258 (1964), 4194–4196.
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