
ON THE RATIONALITY PROBLEM FOR QUADRIC BUNDLES

STEFAN SCHREIEDER

Abstract. We classify all positive integers n and r such that (stably) non-rational

complex r-fold quadric bundles over rational n-folds exist. We show in particular that

for any n and r, a wide class of smooth r-fold quadric bundles over Pn are not stably

rational if r ∈ [2n−1 − 1, 2n − 2]. In our proofs we introduce a generalization of the

specialization method of Voisin and Colliot-Thélène–Pirutka which avoids universally

CH0-trivial resolutions of singularities.

1. Introduction

A quadric bundle is a flat morphism of projective varieties f : X //S, whose generic

fibre is a smooth quadric. We will always assume that the base S is a rational variety.

It is then an interesting and old problem, which goes back at least to the work of Artin

and Mumford [2], to decide whether X is rational as well. By Springer’s theorem [35],

X is rational if f admits a rational multisection of odd degree. By a theorem of Lang

[26], such a section exists whenever r > 2n − 2, where r denotes the dimension of the

fibres of f and n = dim(S) denotes the dimension of the base.

On the other hand, quite little is known about the non-rationality of such bundles. For

instance, unless the fibres of f are conic curves or quadric surfaces, no smooth example

is known to be non-rational. Our first result is as follows.

Theorem 1. Let n and r be positive integers. Smooth (stably) non-rational complex

r-fold quadric bundles over rational bases of dimension n exist if and only if r ≤ 2n− 2.

While the rationality problem is solved for many types of conic bundles [1, 2, 6, 7, 8,

16, 41], even for smooth quadric surface bundles, progress has been made only recently

by Hassett, Pirutka and Tschinkel. They proved that the very general fibres of three

families of quadric surface bundles over P2, degenerated over plane octic curves, are

not stably rational [17, 18, 19]. Each family contains a dense set of smooth rational

fourfolds and so they obtained the first examples of non-rational varieties with rational
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1



2 STEFAN SCHREIEDER

deformation types. The next result shows more generally that for any positive integer r,

deformation invariance of rationality fails for r-fold quadric bundles over rational bases.

Theorem 2. Let r be a positive integer. Then there is a smooth complex projective

family π : X //B of smooth complex varieties such that each fibre Xb = π−1(b) is an

r-fold quadric bundle over some complex projective space, satisfying the following:

(1) for very general t ∈ B, the fibre Xt is not stably rational;

(2) the set {b ∈ B | Xb is rational} is dense in B for the analytic topology.

The case r = 1, 2 is due to [17]; the density result is thereby proven via an argument

of Voisin [41]. Even though that argument does not seem to apply to higher-dimensional

quadric bundles, we are able to reduce the above density result to one about quadric

surface bundles over surfaces. The main difficulty lies then in proving the stable non-

rationality assertion.

More explicitly, we discuss now the rationality problem for a natural and interesting

class of r-fold quadric bundles over Pn. We start with a generically non-degenerate line

bundle valued quadratic form q : E //OPn(l), where E :=
⊕r+1

i=0 OPn(−li) is a split vector

bundle on Pn. If qs 6= 0 for all s ∈ Pn, then X := {q = 0} ⊂ P(E) is an r-fold quadric

bundle over Pn. We may identify q with a symmetric matrix A = (aij) of homogeneous

polynomials of degrees |aij| = li + lj + l. Locally over Pn, X is given by

r+1∑
i,j=0

aijzizj = 0.

The deformation type of X depends only on the integers di := 2li + l, which have all the

same parity. We call any such bundle of type (di)0≤i≤r+1, cf. Section 3.5 below. We then

have the following; see Theorem 40 and Remark 41 below for a more general statement.

Theorem 3. Let n, r be positive integers with 2n−1−1 ≤ r ≤ 2n−2, and let d0, . . . , dr+1

be integers of the same parity such that di ≥ 2n + n − 1 for all i. Then a very general

complex r-fold quadric bundle of type (di)0≤i≤r+1 over Pn is not stably rational.

The lower bound 2n + n − 1 on the degrees is bounded from above by n + 2r + 1.

As an example, we thus see that for n, r as above, very general complex hypersurfaces

X ⊂ Pn×Pr+1 of bidegree (d, 2) with d ≥ n+ 2r+ 1 are not stably rational. In contrast,

if r ≥ 2, some smooth hypersurfaces of that kind are rational; in fact, for r ≥ 2, all

examples in Theorem 3 have rational deformation types, see Corollary 21 below.

As another application, we consider singular hypersurfaces X ⊂ PN+1 of degree d. If

X is not a cone and contains a singular point whose multiplicity is roughly as large as the

degree, then X tends to be quite close to being rational, no matter how large d is. For

instance, a single point x ∈ X of multiplicity d− 1 forces X to be rational. In contrast,
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Theorem 3 implies that many degree d hypersurfaces with points of multiplicity d − 2

are not even stably rational.

Corollary 4. Let n and r be positive integers with 2n−1−1 ≤ r ≤ 2n−2. Set N := n+r

and m := 2n + n + 1. Then a very general complex hypersurface X ⊂ PN+1 of degree

d ≥ m and with multiplicity d− 2 along an r-plane is not stably rational.

The above hypersurfaces are birational to r-fold quadric bundles over Pn, cf. Lemma

22. The upper bound r ≤ 2n− 2 is thus sharp by the aforementioned result of Lang [26].

The lower bound m on the degree satisfies m ∈ [N + 3, 2N − n + 3] and it lies on the

boundary of that interval if r = 2n − 2 or r = 2n−1 − 1, respectively.

Building on work of Kollár [24], Totaro showed [37] that a very general smooth complex

hypersurface X ⊂ PN+1 of degree d ≥ d2(N + 2)/3e is not stably rational. Our lower

bounds differ roughly by a factor λ ∈ [3
2
, 3] from those bounds.

The proofs of the above results are based on two main ingredients, which we explain

in the following two subsections respectively.

1.1. Examples à la Artin–Mumford and Colliot-Thélène–Ojanguren in higher

dimensions. For any complex projective variety Y , there are unramified cohomology

groups H i
nr(Y,Z/l), which are stable birational invariants of Y . These invariants have

been introduced by Colliot-Thélène and Ojanguren [10] in their reinterpretation of the

famouse Artin–Mumford example [2]. The results in [2] and [10] show (cf. Lemma 12

below) that for n = 2 and r = 1, 2, or n = 3 and r = 3, 4, 5, 6, there is a singular

unirational r-fold quadric bundle Y over Pn with Hn
nr(Y,Z/2) 6= 0. For n = r = 2,

different examples with the same property have recently been constructed by Pirutka

[31] and Hassett–Pirutka–Tschinkel [17].

Using an algebraic approach of Peyre [29], Asok showed that for arbitrary positive

integers n and r with 2n−1 − 1 ≤ r ≤ 2n − 2, there is a collection of singular unirational

r-fold quadric bundles Y1, . . . , Ys over P2n, with s =
(

2n
n

)
− 1, such that their common

fibre product over P2n has nontrivial unramified cohomology in degree n, see [3, Theorem

4.2] and Lemma 12 below.

For r ≥ 7, r-fold quadric bundles over rational bases with nontrivial unramified coho-

mology are not known. Generalizing [2] and [10], the next result provides such examples

for any r.

Theorem 5. Let n and r be positive integers with 2n−1 − 1 ≤ r ≤ 2n − 2. Then there is

a unirational complex projective r-fold quadric bundle Y //Pn with Hn
nr(Y,Z/2) 6= 0.

While the upper bound r ≤ 2n − 2 is sharp by [26], the lower bound r ≥ 2n−1 − 1 is

not essential; see Theorem 36 for a more general result which works without that bound.

As in [3], the above result relies on Voevodsky’s proof of the Milnor conjecture [39].
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1.2. A specialization method without resolutions. Voisin [41] introduced and Colliot-

Thélène–Pirutka [11] developed further a specialization technique which led to numerous

applications in the study of (stable) rationality properties of rationally connected vari-

eties, see for instance [1, 6, 7, 8, 12, 16, 17, 18, 19, 20, 28, 30, 37]. Roughly speaking,

in order to prove stable non-rationality of a projective variety X, one has to find a de-

generation Y of X which admits both, some obstruction for stable rationality (e.g. non-

trivial unramified cohomology) and a universally CH0-trivial resolution of singularities

τ : Ỹ //Y . In order to check this last property in practice, one has to provide explicit

local charts for the resolution Ỹ and show that all scheme-theoretic fibres of τ have

universally trivial Chow groups of zero-cycles. This is a quite subtle condition, which

occupied main parts in several applications mentioned above, see for instance [12, 17, 18].

In particular, the method applies only to situations where Y has very mild singularities

and resolutions can be described explicitly. For instance, it had been impossible to apply

the method to several (reasonable) special fibres Y , where obstructions for rationality

were known, but the singularities did not seem to allow manageable resolutions.

The main idea of this paper is to replace the existence of a universally CH0-trivial

resolution of Y by a weaker condition, which is easier to check, see Proposition 25 below.

This leads to more general specialization theorems which also apply in situations where

it seems impossible to compute a resolution of singularities explicitly, letting alone to

check that a universally CH0-trivial one exists.

To state such a result, note that we define in this paper so called CTO type quadrics

over rational function fields and produce examples in arbitrary dimensions, see Definition

16 and Proposition 29. These quadrics appear as generic fibres in the examples of

Theorem 5. We then prove the following specialization theorem; for what it exactly

means that a variety degenerates or specializes to another variety, see Section 2.2 below.

Theorem 6. Let X be a projective variety which specializes to a complex projective

variety Y with a morphism f : Y //S to a rational n-fold S with n ≥ 2. If the generic

fibre Yη of f is smooth and stably birational to a CTO type quadric Q over C(S), then

X is not stably rational.

Remarkably, the only condition on Y that we have to impose in the above theorem

concerns the generic fibre of f : Y //S. For instance, f does not need to be flat and Y

does not need to have a universally CH0-trivial resolution. In fact, there is no assumption

whatsoever on the singularities of Y at points which do not dominate S.

This significantly extends the number of possible applications. The main point is that

for any smooth quadric Q over C(Pn), and for any rational n-fold S, there is a wide range

of different models f : Y //S with Q as generic fibre. If Q is of CTO type, then the

above theorem applies and so any variety which specializes to Y is not stably rational.
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We emphasize that in general one must be quite careful when trying to deduce non-

rationality for X from non-rationality properties of some specialization Y of X. For

instance, a smooth cubic surface is rational and degenerates to a cone over an elliptic

curve, which is non-rational. In fact, the situation is worse: PN specializes to the cone

over any hypersurface Z ⊂ PN (cf. [37, §4]) and hence to a projective variety Y , stably

birational to any given projective variety of dimension N − 1. For instance, if N ≥ 4,

we may choose a specialization Y of PN with a rational map f : Y 99K Pn whose generic

fibre is stably birational to a CTO type quadric. In Theorem 6, such degenerations

are excluded by the assumption that f is a morphism with smooth generic fibre. It is

however possible to weaken those assumptions so that f : Y 99K S is only a dominant

rational map, but Y must have sufficiently mild singularities locally along the closure of

a general fibre of f , see Theorem 38 for the precise statement.

Remark 7. The quadric surfaces over C(P2), recently constructed by Pirutka [31] and

Hassett, Pirutka and Tschinkel [17], are not of CTO type. Nonetheless, our specialization

method without resolutions works also for those quadrics. This simplifies [17, 18, 19], but

it also yields much more general results which seemed inaccessible before. The details

appear elsewhere [34].

2. Preliminaries

2.1. Conventions and notations. All schemes are separated. A variety is an integral

scheme of finite type over a field. Two varieties X and Y over a field k are stably

birational, if X × Pm is birational (over k) to Y × Pn for some n,m ≥ 0. A resolution of

a variety Y is a proper birational morphism of varieties τ : Ỹ //Y , with Ỹ smooth. If

Z ⊂ Y is a closed subscheme of a variety Y , then a log resolution of the pair (Y, Z) is a

resolution of singularities τ : Ỹ //Y such that the reduced subscheme which underlies

τ−1Z is a simple normal crossing divisor. A very general point of some scheme, is a

closed point which is contained in a countable intersection of dense open subsets.

2.2. What it means that a variety specializes or degenerates to another one.

We say that a variety X over a field L specializes (or degenerates) to a variety Y over

a field k, if there is a discrete valuation ring R with residue field k and fraction field F

with an injection F ↪→ L of fields, together with a flat proper morphism X // SpecR of

finite type, such that Y is isomorphic to the special fibre Y ' X × k and X ' X × L is

isomorphic to a base change of the generic fibre X × F .

The next lemma shows that this terminology allows quite some flexibility.

Lemma 8. Let π : X //B be a flat proper morphism of complex varieties with integral

fibres, and let 0 ∈ B be a closed point. Then for any very general point t ∈ B, the fibre

Xt specializes to X0.
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Proof. The family π is obtained as base change of some family π′ : X ′ //B′ defined over

some countable algebraically closed subfield k ⊂ C. Let U ⊂ B(C) be the union of all

closed points b ∈ B, which do not lie on Z ′ ×k C for some proper subvariety Z ′ ( B′.

Since there are only countably many such subvarieties Z ′, any very general point of B

lies in U . Moreover, for any t ∈ U , there is a field isomorphism ϕ : C(B) ∼ // C which

identifies the geometric generic fibre X × C(B) with the very general fibre Xt, see for

instance [38, Lemma 2.1]. This shows that the fibres Xt with t ∈ U are all abstractly

isomorphic (i.e. differ only by the action of Aut(C)) and so it suffices to find one t ∈ U
such that Xt degenerates to X0. Hence, we may reduce to the case where B is a curve.

Taking normalizations, we may also assume that B is smooth and so the statement is

clear because OB,0 is a discrete valuation ring under these assumptions. �

2.3. Chow groups of zero-cycles. A morphism f : X //Y of varieties over a field k

is universally CH0-trivial, if f∗ : CH0(X × L) ' // CH0(Y × L) is an isomorphism for

all field extensions L of k. If the structure morphism f : X // Spec k is universally

CH0-trivial, then we say that the Chow group of zero-cycles of X is universally trivial.

This is equivalent to the existence of an integral decomposition of the diagonal ∆X ∈
CHdim(X)(X×X) as in (2) below. The Chow group of zero-cycles of a smooth projective

variety X over a field is a stable birational invariant, see [11, Lemme 1.5] and [37,

Theorem 1.1] and references therein.

2.4. Galois cohomology of fields. Let K be a field of characteristic coprime to l.

We identify the Galois cohomology group Hn(K,µ⊗nl ) with the étale cohomology group

Hn
ét(Spec(K), µ⊗nl ), where µl ⊂ Gm denotes the group of l-th roots of unity. We also

use the identification H1(K,µl) ' K∗/(K∗)l, induced by the Kummer sequence. For

a1, . . . , an ∈ K∗, we denote by (a1, . . . , an) ∈ Hn(K,µ⊗nl ) the class obtained by cup

product. Classes of this form are called symbols.

If A is a discrete valuation ring with fraction field K and residue field κ whose charac-

teristic is coprime to l, then there are residue maps ∂nA : Hn(K,µ⊗nl ) //Hn−1(κ, µ
⊗(n−1)
l ).

If ν denotes the corresponding valuation on K, we also write ∂nν = ∂nA.

The following lemma computes the residue of a symbol explicitly in the case of µ2-

coefficients, where squares can be ignored.

Lemma 9. Let A be a discrete valuation ring with residue field κ and fraction field K,

both of characteristic different from 2. Suppose that −1 is a square in K. Let π ∈ A be

a uniformizer, 0 ≤ m ≤ n be integers and let a1 . . . , an ∈ A∗ be units in A. Then the

following identity holds in Hn−1(κ, µ
⊗(n−1)
2 ):

∂nA(πa1, . . . , πam, am+1, . . . , an) =

(
m∑
i=1

(a1, . . . , âi, . . . , am)

)
∪ (am+1, . . . , an),
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where (a1, . . . , âi, . . . , am) denotes the symbol where ai is omitted. Here we use the con-

vention that the above sum
∑m

i=1 is one if m = 1 and it is zero if m = 0.

Proof. The cases m = 0, 1 follow for instance from [10, Proposition 1.3]. In order to

prove the lemma, it thus suffices to show the following:

(πa1, . . . , πam, am+1, . . . , an) =

(
m∑
i=0

(a1, . . . , ai−1, π, ai+1, . . . , am)

)
∪ (am+1, . . . , an).

To prove this identity, note that the Steinberg relations (a, 1− a) = 0 for a ∈ K \ {0, 1}
imply (a,−a) = 0 for all a ∈ K∗, see for instance [23, Lemma 2.2]. Since −1 is a square

in K, (π, π) = 0. Using this, the formula follows immediately. �

We will use the following compatibility of residues, see [10, p. 143]. It can be seen as

direct consequence of Lemma 9 and the fact that any class is a sum of symbols by [39].

Lemma 10. Let f : SpecB // SpecA be a dominant morphism of schemes, where A

and B are discrete valuation rings with fraction fields K = FracA and L = FracB and

residue fields κA and κB, respectively. Then there is a commutative diagram

Hn(L, µ⊗n2 )
∂nB
// Hn−1(κB, µ

⊗(n−1)
2 )

Hn(K,µ⊗n2 )
∂nA
//

f∗

OO

Hn−1(κA, µ
⊗(n−1)
2 ),

e·f∗
OO

where e = νB(πA) ∈ Z is the valuation with respect to B of a uniformizer πA of A.

Finally, we will use the following basic vanishing result, see [33, II.4.2].

Theorem 11. Let K be the function field of an n-dimensional variety over an alge-

braically closed field of odd characteristic. Then, H i(K,µ⊗i2 ) = 0 for all i > n.

2.5. Rost cycle modules. Let k be a field. For any finitely generated field extension

L of k, we denote by Val(L/k) the set of all geometric discrete valuations of rank one

on L over k. Such valuations are characterized by the property that the corresponding

valuation ring Oν ⊂ L is the local ring OX,x at a codimension one point x ∈ X(1) of

some normal variety X over k with k(X) = L, see [25, Proposition 1.7].

A Rost cycle module M∗ over k is a functor from the category of finitely generated

field extensions of k to Z-graded abelian groups with some additional properties, see

[32] and [25, Section 2]. An important one for us is the existence of residue maps

∂iν : M i(L) //M i−1(E), for all ν ∈ Val(L/k), where L/k is a finitely generated field

extension and E is the residue field of ν. The group of unramified elements is

M i
nr(L) := {α ∈M i(L) | ∂iνα = 0 for all ν ∈ Val(L/k)}.



8 STEFAN SCHREIEDER

A class α ∈M i
nr(L) is called nontrivial, if it is not in the image of M i(k) //M i

nr(L).

If X is a variety over k, then we write M i
nr(X) := M i

nr(k(X)). If X and Y are smooth

proper varieties over k, then for any cycle Γ ∈ CHdim(X)(X×Y ), there is a homomorphism

Γ∗ : M i
nr(Y ) //M i

nr(X),

which is trivial whenever Γ does not dominate X, see [22, RC-I and proof of RC.9]. Via

these actions, unramified cohomology descends to a functor on the category of integral

correspondences between smooth and proper k-varieties, see [22, RC.3-4]. If Γ is the

graph of a rational map f : X 99K Y , we obtain pullback maps Γ∗ = f ∗.

2.6. Unramified cohomology. An important example of a Rost cycle module over a

field k is given by Galois cohomology M i(L) = H i(L, µ⊗il ), with l coprime to char(k).

The corresponding unramified cohomology groups are denoted by H i
nr(L, µ

⊗i
l ); if we

want to emphasize the base field k, we also write H i
nr(L/k, µ

⊗i
l ) for this group. If k is

algebraically closed and i ≥ 1, then H i(k, µ⊗il ) = 0 and so any 0 6= α ∈ H i
nr(L/k, µ

⊗i
l ) is a

nontrivial unramified cohomology class in the sense of Section 2.5 above. For equivalent

definitions of unramified cohomology, see [9, Theorem 4.1.1].

If X is a variety over k, H i
nr(X,µ

⊗i
l ) := H i

nr(k(X)/k, µ⊗il ) is a stable birational in-

variant of X, see [10, Proposition 1.2]. If k = C and X is smooth and projective, then

H3
nr(X,µ

⊗3
l ) and H4

nr(X,µ
⊗4
l ) are related to failure of the integral Hodge conjecture for

codimension two cycles on X and to torsion in the third Griffiths group, annihilated by

the Abel–Jacobi map, respectively, see [13] and [40].

3. Quadric bundles and quadrics over non-closed fields

3.1. Quadratic forms and Pfister neighbours. Let K be a field of characteristic

different from 2. Any quadratic form q on an n-dimensional K-vector space can be

diagonalized, q = 〈a1, . . . , an〉 for some ai ∈ K, and we call n the dimension of q. We

associate to q the quadric hypersurface Q := {q = 0} ⊂ Pn−1
K , given by

∑
i aiz

2
i = 0.

Two quadratic forms are similar if and only if the corresponding quadric hypersurfaces

are isomorphic. The form q is isotropic if and only if Q admits a K-rational point.

The form q is called (n-fold) Pfister form, if it is isomorphic to the tensor product of

forms of type 〈1,−ai〉 with nonzero ai ∈ K, where i = 1, . . . , n. We denote this tensor

product by 〈〈a1, . . . , an〉〉; it is a form of dimension 2n. The sign can be ignored if −1 is

a square in K. A non-degenerate quadratic form q1 is called a Pfister neighbour if it is

similar to a subform of a Pfister form q2 with 2 dim(q1) > dim(q2).

3.2. Birational geometry of quadrics. Let K be a field of characteristic different

from 2. We say that two quadratic forms q1 and q2 over K are stably birational, if

the associated quadric hypersurfaces are stably birational over K. The following lemma
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is well-known (cf. [21, Proposition 2]); for more results on the birational geometry of

quadrics, we refer to [36] and references therein.

Lemma 12. Let q2 be a Pfister form over K. Then any Pfister neighbour q1 of q2 is

stably birational to q2.

Proof. Let Qi be the quadric associated to qi. It suffices to prove that the generic fibre of

pri : Q1 ×Q2
//Qi is rational for i = 1, 2. Since q1 is a subform of q2, Q2 has a K(Q1)-

rational point and so this is clear for i = 1. Conversely, q2 is isotropic over K(Q2) and so

Q1 has a K(Q2)-rational point, because 2 dim(q1) > dim(q2) and isotropic Pfister forms

are hyperbolic [14, II.9.10]. This proves the lemma. �

Remark 13. An anisotropic quadratic form q1 over K is stably birational to an anisotropic

Pfister form q2 if and only if q1 is a Pfister neighbour of q2, see [21, Proposition 2].

The following unirationality criterion goes back to Colliot-Thélène and Ojanguren.

Lemma 14. Let n ≥ 2, and let K = C(x1, . . . , xn) be the function field of Pn. Consider

the quadratic form q = 〈1, a1, a2, . . . , ar〉 over K for some ai ∈ K∗. Suppose that a1 = f/g

with f, g ∈ C[x1, . . . , xn], satisfying one of the following:

(1) f and g are linear;

(2) f and g have degree at most two and the homogenization q ∈ L[x0, . . . , xn] of

gz2 − f , where L = C(z), is a quadratic form of rank ≥ 3 over L.

Then the quadric hypersurface Q determined by q is unirational over C; more precisely,

a degree two extension of K(Q) is purely transcendental over C.

Proof. The proof is similar to the arguments in [10, Propositions 2.1 and 3.1]. If a1 is a

square, then Q is rational over K and so the statement is clear. Otherwise, K ′ := K[z]/

(z2 − a1) is a field. Since Q×K ′ has a K ′-rational point, it is rational over K ′. It thus

suffices to see that K ′ ' C(Pn). To this end, consider L = C(z) and let Z ⊂ PnL be

the projective closure of {gz2 − f = 0}. By construction, K ′ = L(Z) and so it suffices

to prove that Z is rational over L. This is clear if f and g are linear. Otherwise, our

assumptions imply that Z is a cone over a smooth quadric Z ′ over L of dimension at

least one. Since L = C(z) is a C1-field, Z ′ has a L-rational point and so Z is rational.

This concludes the lemma. �

3.3. A result of Orlov, Vishik and Voevodsky. Voevodsky’s proof of the Milnor

conjecture [39] together with an exact sequence of Orlov, Vishik and Voevodsky [27,

Theorem 2.1], implies the following important result.
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Theorem 15 (Orlov–Vishik–Voevodsky). Let K be a field of characteristic zero, and

let q be a Pfister neighbour of the Pfister form 〈〈a1, . . . , an〉〉, with ai ∈ K∗. Let f :

Q // SpecK be the projective quadric associated to q. Then the kernel of

f ∗ : Hn(K,µ⊗n2 ) //Hn(K(Q), µ⊗n2 )

is generated by (a1, . . . , an).

Proof. By [27, Theorem 2.1] and [39], the result holds for the Pfister neighbour q =

〈〈a1, . . . , an−1〉〉 ⊕ 〈−an〉. The stated result follows therefore from Lemma 12, because

im(f ∗) ⊂ Hn
nr(K(Q)/K, µ⊗n2 ) and unramified cohomology is a stable birational invariant

[10, Proposition 1.2]. �

3.4. Quadrics à la Artin–Mumford and Colliot-Thélène–Ojanguren. The fol-

lowing definition summarizes the conditions in [10, Propositions 2.1 and 3.1] of Colliot-

Thélène and Ojanguren’s paper, where the cases n = 2 and 3 are studied.

Definition 16. Let n ≥ 2 be an integer and consider the function field K = C(Pn).

Suppose that there are elements a1, . . . , an−1, b1, b2 ∈ K∗ such that for j = 1, 2, the class

αj := (a1, . . . , an−1, bj) ∈ Hn(K,µ⊗n2 ) is nonzero and satisfies the following:

(∗) for any ν ∈ Val(K/C), ∂nναj = 0 for j = 1 or 2.

Then any projective quadric Q = {q = 0} over K defined by a Pfister neighbour q of the

n-fold Pfister form 〈〈a1, . . . , an−1, b1b2〉〉 is called a quadric of CTO type.

Since Pfister neighbours are non-degenerate by definition, we note that CTO type

quadrics are always smooth.

The results in [10] can be summarized as follows: if n = 2 or 3, then CTO type quadrics

exist and have nontrivial unramified Z/2-cohomology in degree n; the Artin–Mumford

example [2] is a CTO type conic over C(P2).

While the existence result in [10] is quite subtle, the argument which proves non-

triviality of Hn
nr(K(Q)/C, µ⊗n2 ) works in arbitrary dimensions, cf. [10, Assertion 2.1.1].

Proposition 17 (Colliot-Thélène–Ojanguren). Let n ≥ 2 and let f : Q // SpecK be a

CTO type quadric over K = C(Pn). Then, 0 6= f ∗α1 ∈ Hn
nr(K(Q)/C, µ⊗n2 ).

Proof. By Theorem 15, f ∗α1 = f ∗α2 and we denote this class by α′. Let ν ∈ Val(K(Q)/

C) and consider the restriction µ := ν|K . If µ is trivial, then ∂να
′ = 0 by Lemma 9.

Otherwise, µ ∈ Val(K/C) by [25, Proposition 1.4]. By Lemma 10, there is some e ∈ Z
such that ∂nνα

′ = e·f ∗(∂nµαj) for j = 1, 2. Hence, ∂nνα
′ = 0, because ∂nµαj = 0 for j = 1 or

2 by assumptions. Therefore, α′ = f ∗α1 ∈ Hn
nr(K(Q)/C, µ⊗n2 ) is unramified over C. To

prove that it is nonzero, it suffices by Theorem 15 to see that α1 6= 0 and α1 6= α1 + α2.

This follows from αj 6= 0 for all j = 1, 2. �
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Remark 18. Proposition 17 implies that CTO type quadrics are always anisotropic.

3.5. Quadric bundles. A quadric bundle is a flat morphism f : X //S of projective

varieties over a field k whose generic fibre is a smooth quadric over k(S). For simplicity,

we will assume that k is algebraically closed of characteristic zero (usually k = C).

Let q : E //L be a generically non-degenerate line bundle valued quadratic form on

some vector bundle E on S such that qs 6= 0 for all s ∈ S. Then the hypersurface

X := {q = 0} ⊂ P(E) is a quadric bundle over S; flatness follows because all fibres

Xs = {qs = 0} ⊂ P(Es) have the same Hilbert polynomial. The degeneration locus on S

is given by the divisor where q does not have full rank.

We will always assume that E =
⊕r+1

i=0 L
−1
i splits into a sum of line bundles. Under

this assumption, q corresponds to a symmetric matrix A = (aij), where aij is a global

section of Li ⊗ Lj ⊗ L. Locally over the base S, X is given by

r+1∑
i,j=0

aijzizj = 0,(1)

where zi denotes a local coordinate which trivializes L−i ⊂ E . If aij = 0 for i 6= j, then

we also write q := 〈a00, . . . , ar+1,r+1〉.
If L⊗2

i ⊗L is base point free for all i, then for sufficiently general choice of q, Bertini’s

theorem implies that X = {q = 0} is non-singular; it is a quadric bundle over S if(
r+3

2

)
> dim(S) or if Li ⊗ Lj ⊗ L is trivial for some i and j.

Lemma 19. Let S be a smooth complex projective rational variety and let L0, . . . , Lr+1

and L be line bundles on S such that Li ⊗Lj ⊗L is base point free for all i, j. Let X be

a smooth r-fold quadric bundle over S, given by a symmetric matrix A = (aij) of global

sections aij ∈ H0(S, Li ⊗ Lj ⊗ L) as in (1) above. If r ≥ dim(S), then X deforms to a

smooth rational variety.

More precisely, if r ≥ dim(S), amm = 0 for some 0 ≤ m ≤ r+1, and the remaining aij
are sufficiently general, then the corresponding quadric bundle X is smooth and rational.

Proof. Since all quadric bundles of the given type are parametrized by some open subset

of H0(S, Sym2(E∨) ⊗ L), where E∨ =
⊕r+1

i=0 Li, we see that they have all the same

deformation type. It thus suffices to prove that for general sections aij ∈ H0(S, Li ⊗
Lj ⊗L) with amm = 0, X is smooth; X is then automatically rational because it admits

a section. We may for simplicity assume m = r + 1. By Bertini’s theorem, the only

possible singularity occurs at z0 = · · · = zr = 0, where we use the local chart (1). Using

the Jacobian criterion, we see that a singular point of X must lie on the fibre above a

point of S where ar+1,i vanishes for i = 0, . . . , r. Since r ≥ dim(S), this locus is empty

by our base point freeness assumption. This proves the lemma. �
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Deforming X as in (1) to a quadric bundle whose symmetric matrix A = (aij) is

diagonal with aii general, shows that the deformation type of X depends only on the line

bundles L⊗2
i ⊗L. In the case of line bundle valued quadratic forms q : E //OPn(l) on Pn,

where E =
⊕r+1

i=0 OPn(−li) is split, this observation gives rise to the following definition.

Definition 20. Let r, n ≥ 1 and l0, . . . , lr+1, l be integers. An r-fold quadric bundle X

over Pn, which is given by a symmetric matrix A = (aij) of homogeneous polynomials of

degrees |aij| = li + lj + l as in (1), is called of type (di)0≤i≤r+1 if di = 2li + l.

We usually assume that di ≥ 0 for all i. This is justified by the observation that X

admits a section if di < 0 for some i and so it is rational in that case.

For any di ≥ 0, a quadric bundle of type (di)0≤i≤r+1 on Pn exists if and only if all di
have the same parity and additionally one of the following holds:

(
r+3

2

)
> n or di = 0 for

some i. The following is an immediate consequence of Lemma 19.

Corollary 21. Let n and r be positive integers with r ≥ n and let (di)0≤i≤r+1 be a tuple

of non-negative integers of the same parity. Then some smooth r-fold quadric bundles of

type (di)0≤i≤r+1 over Pn are rational.

The following two examples of quadric bundles are well-known.

Lemma 22. Let n, r be integers with
(
r+3

2

)
> n > 0. Let P ⊂ Pn+r+1 be an r-plane,

and let X ⊂ Pn+r+1 be a general hypersurface of degree d + 2 with multiplicity d along

P . Then, X is birational to a general r-fold quadric bundle of type (d, . . . , d, d+ 2) over

Pn.

Proof. Choose coordinates x0, . . . , xn, y0, . . . , yr on Pn+r+1 such that P = {x0 = · · · =

xn = 0}. If X = {f = 0}, then

f =
r∑

i,j=0

aijyiyj +
r∑

k=0

(ak,r+1 + ar+1,k)yk + ar+1,r+1,

for some homogeneous polynomials aij = aji, ak,r+1 = ar+1,k and ar+1,r+1 in x0, . . . , xn

of degree d, d + 1 and d + 2, respectively. We introduce an additional variable yr+1

and homogenize the above equation with respect to the yi’s. This shows that the sym-

metric matrix A = (aij)0≤i,j≤r+1 corresponds to a general r-fold quadric bundle of type

(d, . . . , d, d+ 2), which is clearly birational to X. (In fact, it is the blow-up BlPX.) �

Lemma 23. Let n, r ≥ 1 be integers. Let P ⊂ Pn+r be an (r−1)-plane, and let D ⊂ Pn+r

be a general hypersurface of even degree d+2 with multiplicity d along P . Then the double

covering X 2:1 // Pn+r, branched along D, is birational to a general r-fold quadric bundle

of type (0, d, . . . , d, d+ 2) over Pn.
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Proof. The double cover X is given by s2 = f , where D = {f = 0}. Choosing coordinates

x0, . . . , xn, y1, . . . , yr of Pn+r, similarly as in the proof of Lemma 22 shows that X is

birational to a quadric bundle over Pn of type (0, d, . . . , d, d+ 2); the coordinate s plays

the role of y0 in the proof of Lemma 22. The corresponding symmetric matrix A =

(aij)0≤i,j≤r+1 satisfies a00 = 1 and ai0 = 0 for i ≥ 1; the remaining entries of A are

general. Conversely, if A = (aij)0≤i,j≤r+1 is the symmetric matrix of a general r-fold

quadric bundle of type (0, d, . . . , d, d+ 2), then a00 is a nonzero constant and so we can

transform A into a symmetric matrix with a00 = 1 and ai0 = 0 for all i ≥ 1. This proves

the lemma. �

Proposition 24 (Voisin). Let d0 = 0, d1 = d2 = 2 and d3 = 4. Let W be the complex

vector space of symmetric 4× 4-matrices A = (aij)0≤i,j≤3 such that aij ∈ C[x0, x1, x2] is

homogeneous of degree (di + dj)/2 with ai0 = 0 for i = 1, 2, 3. Then the set of points in

P(W ) which parametrize smooth quadric surface bundles of type (0, 2, 2, 4) over P2 with

a rational section is dense in the analytic topology.

Proof. There is a Zariski open subset B ⊂ P(W ) which parametrizes smooth quadric

surface bundles of type (d0, d1, d2, d3) over P2. There is a universal family π : X //B.

As we have seen in Lemma 23, this family coincides with the universal family of (blow-

ups of) double covers of P4, branched along a quartic hypersurface which is singular

along a fixed line. If the fibre Xb above b ∈ B admits a rational multisection of odd

degree, then Xb admits a rational section by Springer’s theorem [35]. Since the integral

Hodge conjecture is known for codimension two cycles on quadric surface bundles over

surfaces (cf. [13, Corollaire 8.2]), it suffices to show that the set of points b ∈ B such

that Xb admits a Hodge class of type (2, 2) which intersects the general fibre of Xb
//P2

in odd degree is dense in B. The latter is proven in [42, Proposition 2.4], which is not

affected by the gap; similar arguments have later been used in [17] and [19]. �

4. The specialization method via weak decompositions of the diagonal

Recall from Section 1.2 that we aim to generalize the method of Voisin [41] and Colliot-

Thélène–Pirutka [11] to degenerations where an explicit resolution of singularities of the

special fibre can be avoided. The first step is the following small but crucial improvement

of the original technique in [41] and [11]; the proof is inspired by [41, 11], Totaro’s paper

[37] and the original arguments of Bloch and Srinivas.

Proposition 25. Let R be a discrete valuation ring with fraction field K and residue

field k, with k algebraically closed. Let π : X // SpecR be a flat proper scheme of finite

type over R with geometrically integral fibres. Let Y := X × k be the special fibre and

suppose that there is a resolution of singularities τ : Ỹ //Y with the following properties:
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(1) for some Rost cycle module M∗ over k, there is an unramified class α ∈M i
nr(Ỹ )

which is nontrivial, i.e. α /∈M i(k);

(2) there is an open subset U ⊂ Y such that τ−1(U) //U is universally CH0-trivial,

and such that each irreducible component Ei of Ỹ \ τ−1(U) is smooth and the

restriction of α to Ei is trivial.

Then, no resolution of singularities of the geometric generic fibre X := X × K admits

an integral decomposition of the diagonal.

The assumptions on the resolution τ in Proposition 25 are weaker and easier to check

than those in [41, Theorem 2.1] and [11, Théorème 1.14]. Roughly speaking, instead

of a universally CH0-trivial resolution of Y , we ask for a resolution which is universally

CH0-trivial only over some open subset U ⊂ Y and such that α restricts to zero on the

complement. In this paper we will mostly use the special case where τ−1(U) ' U is

an isomorphism and so CH0-triviality is automatic. The idea is to replace the Chow

theoretic condition on the resolution τ from [11] by a cohomological one (α|Ei is trivial),

which is typically much more accessible. Since our assumptions are weaker, we will not

conclude that Ỹ admits a decomposition of the diagonal in the usual sense; we only

obtain a weak decomposition of the form (4) below.

Proof of Proposition 25. It suffices to prove that there is an algebraically closed field F

which contains K and such that some resolution of X × F does not admit an integral

decomposition of the diagonal. Up to replacing R by its completion (which does not

change the residue field), we may thus assume that R is a complete discrete valuation

ring. For a contradiction, we assume that some resolution of X admits an integral

decomposition of the diagonal. Pushing forward to X, we obtain a decomposition

∆X = [X × zX ] +BX ,(2)

where zX ∈ CH0(X) is a zero-cycle of degree one, and where supp(BX) ⊂ SX × X for

some proper closed subset SX ( X. Since k = k, the specialization homomorphism on

Chow groups [15, Example 20.3.5] gives a decomposition of the diagonal of Y :

∆Y = [Y × z] +BY ,(3)

where z is a zero-cycle of degree one on Y , and where supp(BY ) ⊂ SY × Y for some

proper closed subset SY ( Y .

Let Ũ := τ−1(U) and E := Ỹ \ Ũ . By assumptions, Ũ //U is universally CH0-trivial.

Hence, for any field extension L of k, the localization exact sequence [15, Proposition



ON THE RATIONALITY PROBLEM FOR QUADRIC BUNDLES 15

1.8] gives the following commutative diagram, with exact rows:

CH0(E × L) // CH0(Ỹ × L)

τ∗

��

// CH0(Ũ × L)

'
��

// 0

CH0(Y × L) // CH0(U × L) // 0

We apply this to L = k(Y ) and think about Ỹ × L and Y × L as generic fibres of the

projections pr1 : Ỹ × Ỹ // Ỹ and pr1 : Y × Y //Y to the first factors, respectively. We

claim that this gives rise to a decomposition

∆Ỹ = [Ỹ × z̃] +B + C,(4)

where z̃ ∈ CH0(Ỹ ) has degree one (and maps to z), supp(C) ⊂ Ỹ × E and supp(B) ⊂
S× Ỹ , for some proper closed subset S ( Ỹ . Indeed, since k = k, we may choose a lift z̃

of z and then the above diagram together with (3) shows that the image of ∆Ỹ − [Ỹ × z̃]

in CH0(Ỹ × L) restricts to zero on Ũ × L, where L = k(Y ). This yields (4), as claimed.

Pull back from the second factor to the first gives an action

∆∗
Ỹ

= [Ỹ × z̃]∗ +B∗ + C∗ : M i
nr(Ỹ ) //M i

nr(Ỹ ),

which is the identity because ∆Ỹ is the class of the diagonal. As recalled in Section 2.5,

B∗ acts trivially because B does not dominate the first factor. Moreover, for each y ∈ Ỹ ,

[Ỹ × y]∗ factors through M i
nr(y) = M i

nr(k) and the induced map M i
nr(k) //M i

nr(Ỹ ) is

the natural one. The image of [Ỹ × z̃]∗ is therefore contained in the subgroup of trivial

unramified elements M i(k) ⊂ M i
nr(Ỹ ). The above decomposition of the diagonal thus

shows that, up to trivial unramified elements from M i(k), we have α = C∗(α).

We may write C =
∑

iCi, where supp(Ci) ⊂ Ỹ × Ei, and where the Ei denote

the irreducible components of E. Since Ei is smooth, C∗i : M i
nr(Ỹ ) //M i

nr(Ỹ ) fac-

tors through the restriction map M i
nr(Ỹ ) //M i

nr(Ei). Our assumptions therefore imply

C∗i (α) ∈M i(k) ⊂M i
nr(Ỹ ) for all i. This implies α ∈M i(k) ⊂M i

nr(Ỹ ), which contradicts

our assumption that α is nontrivial. This finishes the proof of the proposition. �

Remark 26. The unramified cohomology group M i
nr in item (1) of Proposition 25 can be

replaced by any other birational invariant on which integral correspondences act similarly.

For instance, Proposition 25 remains true if we replace condition (1) by the existence of

a nontrivial differential form α ∈ H0(Ỹ ,Ωi
Ỹ

) for some i ≥ 1, cf. [37].

5. A vanishing result

If the special fibre Y in Proposition 25 is birational to a quadric bundle over Pn whose

generic fibre is a quadric of CTO type, then condition (1) of Proposition 25 is satisfied



16 STEFAN SCHREIEDER

by Proposition 17. In this section we establish a vanishing result which ensures that

under some mild assumptions, also the second condition in Proposition 25 is satisfied.

Recall that for any dominant rational map f : Y 99K S, there is a generic fibre

Yη over the function field of S, well-defined up to birational equivalence. An explicit

representative of Yη is given by the generic fibre of f |U : U //S, where U ⊂ Y is some

open dense subset on which f is defined.

Proposition 27. Let Y be a normal complex projective variety and let S be a normal

complex projective rational n-fold for some n ≥ 2. Let f : Y 99K S be a dominant

rational map whose generic fibre Yη is stably birational to a CTO type quadric Q over

K = C(S), defined by a neighbour of the Pfister form 〈〈a1, . . . , an−1, b1b2〉〉, for some

ai, bj ∈ K∗. Set αj := (a1, . . . , an−1, bj) ∈ Hn(K,µ⊗n2 ) and let α′ := f ∗α1 ∈ Hn
nr(Y, µ

⊗n
2 )

be the unramified class from Proposition 17. Then the following holds:

(∗∗) for any prime divisor E ⊂ Y which does not dominate S, the restriction of α′ to

E vanishes: α′|E = 0 ∈ Hn(C(E), µ⊗n2 ).

We will use the following lemma, which reformulates [25, Propositions 1.4 and 1.7] in

geometric terms.

Lemma 28. Let f : Y 99K S be a dominant rational map between normal complex

projective varieties. Let y ∈ Y (1) be a codimension one point. Then there is a normal

projective model S ′ of S, such that the induced rational map f ′ : Y 99K S ′ maps y either

to the generic point of S ′ or to the generic point of a divisor on S ′.

Proof. Since Y is normal, f is defined at y. If f(y) is dense in S, then any projective reso-

lution of singularities S ′ //S works. Otherwise, the valuation ν ∈ Val(C(Y )/C) induced

by y ∈ Y (1) restricts to a geometric discrete valuation µ of rank one on f ∗(C(S)) ⊂ C(Y ),

see [25, Propositions 1.4]. By [25, Proposition 1.7], Oµ = OS′,s′ for some normal pro-

jective variety S ′, birational to S, and some codimension one point s′ ∈ (S ′)(1). The

induced dominant rational map f ′ : Y 99K S ′ sends y to s′. This proves the lemma. �

Proof of Proposition 27. Let y ∈ Y (1) be the generic point of E. Since Y is normal,

f is defined at y. By Lemma 28, we may up to replacing S by some different normal

projective model assume that x := f(y) is a codimension one point on S. Consider the

discrete valuation rings A := OS,x and B := OY,y and note that f induces an injection

A ↪→ B. By the definition of CTO type quadrics, there is some j ∈ {1, 2} with ∂nAαj = 0.

The generic fibre of f is stably birational to a CTO type quadric associated to a

neighbour of the Pfister form 〈〈a1, . . . , an−1, b1b2〉〉. Since unramified cohomology is a

stable birational invariant [10], we conclude f ∗α1 = f ∗α2 ∈ Hn
nr(Y, µ

⊗n
2 ) from Theorem

15. It thus suffices to prove that f ∗αj restricts to zero on E, where j is as above. Since
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∂nAαj = 0,

αj ∈ Hn
ét(SpecA, µ⊗n2 ) ⊂ Hn(K,µ⊗n2 ),

see [9, §3.3 and §3.8]. Functoriality of étale cohomology yields a commutative diagram

Hn
ét(SpecA, µ⊗n2 ) //

f∗

��

Hn(κ(x), µ⊗n2 )

f∗

��

Hn
ét(SpecB, µ⊗n2 ) // Hn(C(E), µ⊗n2 ),

where the vertical arrows are induced by restriction to the corresponding closed points,

respectively. Since Hn(κ(x), µ⊗n2 ) = 0 by Theorem 11, the α′|E = 0 follows from the

commutativity of the above diagram. This finishes the proof of the proposition. �

6. Existence of CTO type quadrics in arbitrary dimensions

In this section, we aim to prove that CTO type quadrics (see Section 3.4) exist over

C(Pn) for arbitrary n ≥ 2.

6.1. Construction of quadrics over C(Pn) via arrangements of quadrics in Pn.
We choose coordinates x0, . . . , xn on Pn. For i = 1, . . . , n− 1 we consider homogeneous

polynomials hi ∈ C[x0, . . . , xn] of degree two and define

ai :=
hi
x2

0

(5)

for i = 1, . . . , n− 1. In order to obtain a candidate CTO type quadric, we need to define

two more rational functions b1 and b2, which we will do next.

Choose two homogeneous polynomials g10, g20 ∈ C[x0, . . . , xn] of degree two. For any

ε = (ε1, . . . , εn−1) ∈ I := {0, 1}n−1 and any j = 1, 2, we then consider

gjε := gj0 +
n−1∑
i=1

εihi.

With this definition, we put

g1 :=
∏
ε∈I

g1ε and g2 :=
∏
ε∈I

g2ε.(6)

Finally, let N := 2n and define

b1 :=
g1

xN0
and b2 :=

g2

xN0
.(7)



18 STEFAN SCHREIEDER

6.1.1. Assumptions. In the above construction, we will always assume that the homoge-

neous degree two polynomials hi and gj0 satisfy the following assumptions.

For any 1 ≤ i1 < · · · < ic ≤ n− 1 with c ≥ 0, the following holds for j = 1, 2:

codimPn({hi1 = · · · = hic = gj = 0}) ≥ c+ 1,(8)

codimPn({hi1 = · · · = hic = g1 = g2 = 0}) ≥ c+ 2.(9)

Moreover, we will assume that for j = 1, 2, the following symbol is nonzero

0 6= (a1, . . . , an−1, bj) ∈ Hn(K,µ⊗n2 ).(10)

6.1.2. Existence. Let l1, . . . , l2n+2 ∈ C[x0, . . . , xn] be linear homogeneous polynomials

which are general subject to the condition1 that

l1, l2, l3, l4 ∈ C[x0, x1, x2].(11)

We put

hi := l2i−1l2i and gj0 := l2n−3+2jl2n−2+2j.(12)

Conditions (8) and (9) are then clearly satisfied; in fact, (8) and (9) follow from

{h1 = · · · = hn−1 = g1 = g2} = ∅,

which holds by our genericity assumption on the li. To see that also (10) holds, it suffices

by symmetry to deal with the case j = 1. Note first that our genericity assumption on

the li implies that x0 does not vanish on {l4 = l6 = · · · = l2n = 0}. We may also perform

a change of variables to assume l2i = xi for i = 2, . . . , n. To prove our claim, we take

now successive residues of (a1, . . . , an−1, b1) along {l2i = 0} for i = n, n − 1, . . . , 3, 2.

Using Lemma 9 and our genericity assumptions on the li’s, we end up with the class

a1 ∈ F ∗/(F ∗)2, where a1 is the restriction of a1 to the line L := {x2 = · · · = xn = 0}
and F = C(L) is the function field of that line. The claim then reduces to prove that

l1l2/x
2
0 is not a square for two general linear homogeneous polynomials l1, l2 ∈ C[x0, x1],

which is clear.

We have thus proven that the choice of hi and gj0 as in (12) and the resulting ai and

bj given by (5) and (7), satisfy all our assumptions (8), (9) and (10).

6.1.3. Key Property. Besides (8)–(10), the most important property of this construction

is as follows. Let g1 and g2 be as in (6), then, for any i = 1, . . . , n− 1,

the image of g1 and g2 in C[x0, . . . , xn]/(hi) becomes a square.(13)

1Condition (11) is not essential; it will only be used later in the proof of density of the rational fibres

in the family of Theorem 2.
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6.1.4. Remarks. The above construction is inspired by [10, Exemple 2.4 and 3.3], where

examples of CTO type quadrics for n = 2, 3 are given. While that construction yields

as degeneration divisor a special configuration of hyperplanes (cf. [10, p. 150, Fig. 2]),

our construction relies on a configuration of pairs of hyperplanes given by hi = 0 and

quadrics given by gjε = 0. Already for n = 3, our construction yields smaller bounds on

the total degree of the degeneration divisor. This is important in view of applications

such as Theorem 3 and Corollary 4, stated in the introduction, where small bounds on

the degrees are desirable.

6.2. Proof of existence – a key result. In this section we prove that the above

construction yields quadrics of CTO type. To this end, we do not follow the original

approach of Colliot-Thélène and Ojanguren. In fact, we do not try to generalize [10,

Complément 3.2], because we were unable to see how to divide the argument by the

dimension of the center x ∈ Pn of the valuation ν ∈ Val(C(Pn)/C) for arbitrary n; that

strategy had however been used in all previous geometric constructions of quadrics with

nontrivial unramified cohomology we are aware of, cf. [10, 31, 17].

Proposition 29. Let n ≥ 2 and let ai, bj ∈ K = C(Pn) be as in (5) and (7). Suppose that

the assumptions (8), (9) and (10) hold. Then any Pfister neighbour of 〈〈a1, . . . , an−1, b1b2〉〉
defines a CTO type quadric over K.

Proof. By (10), the class αj := (a1, . . . , an−1, bj) ∈ Hn(K,µ⊗n2 ) is nonzero. It thus suffices

to prove that for each ν ∈ Val(K/C), ∂nναj = 0 for j = 1 or 2.

To prove this, let ν ∈ Val(K/C). We can choose a normal complex projective variety

S together with a proper birational morphism f : S //Pn, such that ν corresponds to a

codimension one point s ∈ S(1). Let x := f(s) ∈ Pn be its image on Pn.

By construction, x is a point of codimension at least one on Pn. Hence, there is some

i with xi(x) 6= 0. Multiplying the first n− 1 entries of αj by x2
0/x

2
i and the last entry by

x2n

0 /x
2n

i (which does not change the cohomology class αj), we see that we may without

loss of generality assume x0(x) 6= 0. In particular, ai and bj are regular functions locally

at x and we may from now on work on an affine open subset where x0 6= 0.

We consider the completion ÔS,s and let K̂ := Frac(ÔS,s) be its field of fractions. By

Lemma 10, the residue ∂nν = ∂nB fits into a commutative diagram

Hn(K̂, µ⊗n2 )
∂n
B̂
// Hn−1(κ(s), µ

⊗(n−1)
2 )

Hn(K,µ⊗n2 )
∂nν
//

OO

Hn−1(κ(s), µ
⊗(n−1)
2 ).

id

OO
(14)
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To prove the proposition, we need to show that ∂nναj = 0 for j = 1 or 2. We divide

the argument into three cases.

Case 1. g1(x) 6= 0.

If hi(x) 6= 0 for all i, then ∂nνα1 = 0 by Lemma 9. On the other hand, if at least one hi
vanishes at x, then (13) implies that g1 becomes a nontrivial square in the residue field

κ(s). By Hensel’s lemma, g1 becomes a square in the completion K̂, and so ∂nνα1 = 0 by

the commutative diagram (14). This concludes Case 1.

Case 2. g1(x) = 0 and hi(x) 6= 0 for all i = 1, . . . , n− 1.

In this case, we consider α2. If g2(x) 6= 0, then ∂nνα2 = 0 by Lemma 9. On the other

hand, since g1(x) = 0 by assumptions, g2(x) = 0 implies by (9) that x has codimension

at least two in Pn. Moreover, ∂nνα2 is a multiple of (a1, . . . , an−1) by Lemma 9, where by

slight abuse of notation we do not distinguish between ai and its image in κ(s). But this

shows that the residue ∂nνα2 is a pullback of a class from Hn−1(κ(x), µ
⊗(n−1)
2 ) and so it

must vanish by Theorem 11 because x has dimension at most n− 2.

Case 3. g1(x) = 0 and hi(x) = 0 for some i = 1, . . . , n− 1.

Consider α2 = (a1, . . . , an−1, b2) and suppose that exactly c-many entries of α2 vanish

at x. Since g1(x) = 0, (8) and (9) imply that x has codimension at least c + 1. By

assumptions c ≥ 1 and so Lemma 9 shows that we can write

∂nνα2 = β ∪ γ,

where β ∈ Hc−1(κ(s), µ
⊗(c−1)
2 ) and γ is a symbol of degree n − c which is given by (the

images of) all entries of α2 which do not vanish at x. In particular, γ comes from a

class of Hn−c(κ(x), µ
⊗(n−c)
2 ) and so it vanishes because x is a point of dimension at most

n− c− 1. This concludes Case 3.

Cases 1, 2 and 3 above finish the proof of the proposition. �

Remark 30. The above proof did not use that the hi have degree two. In fact, we can

start with any collection of homogeneous polynomials hi, gj0 ∈ C[x0, . . . , xn] of the same

even degree 2m. We may then define g1 and g2 as in (6) and put ai = hi/x
2m
0 and

bj = gj/x
(2m)n

0 . The proof of Proposition 29 shows then that the ai and bj define CTO

type quadrics as soon as the assumptions (8), (9) and (10) hold.

6.3. Quadric bundles of CTO type and some estimates. Here we construct and

analyse some quadric bundles whose generic fibres are quadrics of CTO type.

We will need a suitable bijection between {0, 1}n and {0, 1, . . . , 2n−1}. We start with

I = {0, 1}n−1 and define the length of an element ε ∈ I by |ε| =
∑
εi. We then choose

any bijection φ′ : I ∼ // {0, . . . , 2n−1 − 1} with φ′(ε) ≤ φ′(ε′) if |ε| ≤ |ε′|. With this in

mind, we define

φ : {0, 1}n = I × {0, 1} ∼ // {0, 1, . . . , 2n − 1}, (ε, εn) � //φ′(ε) + εn2n−1.
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Definition 31. Let n ≥ 2, and let l1, . . . , l2n+2 ∈ C[x0, x1, . . . , xn] be linear homogeneous

polynomials as in 6.1.2. Equations (6) and (12) then give two homogeneous polynomials

g1 and g2 of weight 2n. For ε ∈ {0, 1}n, let

cε :=

(
n−1∏
i=1

(l2i−1l2i)
εi

)
(g1g2)εn .

Let φ : {0, 1}n // {0, . . . , 2n−1} be the bijection from above. Then we define the following

homogeneous polynomials for i = 0, . . . , 2n − 1:

(1) ci := cφ−1(i);

(2) c′i := l1ci if l1 does not divide ci and c′i := l−1
1 ci otherwise;

Moreover, we denote the degrees of the above homogeneous polynomials by mi := |ci| and

m′i := |c′i|, respectively.

For later use, we will assume that the bijection φ′ from above is chosen in such a way

that the following holds for n ≥ 3:

c1 = l1l2, c2 = l3l4 and cn = l1l2l3l4.(15)

In the next definition, we consider the polynomials c̃i that are obtained by starting with

l1l3 · · · l2n−3g1ci and absorbing all squares which arise. The homogeneous polynomials c̃i
obtained this way are balanced, in the sense that |c̃i| = 2n + n− 1 for all i. The formal

definition is as follows.

Definition 32. In the notation of Definition 31, and for ε ∈ {0, 1}n, let

c̃ε :=

(
n−1∏
i=1

l1−εi2i−1l
εi
2i

)
g1−εn

1 gεn2 .

Let φ : {0, 1}n // {0, . . . , 2n−1} be the bijection from above. Then we define the following

homogeneous polynomials for i = 0, . . . , 2n − 1:

(1) c̃i := c̃φ−1(i);

(2) c̃′i := l1c̃i if l1 does not divide c̃i and c̃′i := l−1
1 c̃i otherwise.

Moreover, we denote the degrees of the above homogeneous polynomials by m̃i := |c̃i| and

m̃′i := |c̃′i|, respectively.

With the above definitions, we have the following corollary of Proposition 29.

Corollary 33. Let n ≥ 2 and r be integers with 2n−1 ≤ r + 1 < 2n. In the notation of

Definitions 31 and 32, the following quadratic forms

〈c0, . . . , cr+1〉, 〈c′0, . . . , c′r+1〉, 〈c̃0, . . . , c̃r+1〉 and 〈c̃′0, . . . , c̃′r+1〉,
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define hypersurfaces Y ⊂ P(E), where E =
⊕r+1

i=0 OPn(−ki) with

ki = bmi/2c, ki = bm′i/2c, ki = bm̃i/2c and ki = bm̃′i/2c,

respectively, such that the generic fibre of Y //Pn is a quadric of CTO type. Moreover,

the hypersurface Y associated to 〈c0, . . . , cr+1〉 is flat over Pn, i.e. it is a quadric bundle.

Proof. The given forms are line bundle valued quadratic forms on E with values in OPn

or OPn(1), depending on whether the entries of the given form have even or odd degrees,

cf. Section 3.5. Since the entries of the given quadratic forms are nonzero and have no

common factor, they define an integral hypersurface Y ⊂ PPn(E) whose generic fibre over

Pn is a smooth quadric. This quadric is of CTO type by construction and Proposition

29. The fact that 〈c0, . . . , cr+1〉 defines a quadric bundle follows from c0 = 1 and so Y is

flat over Pn in this case. This proves the corollary. �

The following lemma gives some useful estimates for the degrees of the polynomials

which appeared in the above corollary.

Lemma 34. Let n ≥ 2. In the notation of Definitions 31 and 32, the following holds:

(1) m0 = 0, m1 = 2 and m′0 = m′1 = 1;

(2) m̃i = 2n + n− 1 for all i;

(3) m̃′i ≤ m̃i + 1 for all i;

(4)
∑r+1

i=0 mi = (r + 2)(n+ r + 1) if r = 2n − 2;

(5)
∑r+1

i=0 mi ≤ 2(r + 2)(n+ r) for all 2n−1 ≤ r + 1 < 2n;

(6)
∑r+1

i=0 m
′
i ≤ 2(r + 2)(n+ r) for all 2n−1 ≤ r + 1 < 2n.

Proof. The first three items are clear. Item (4) follows from

2n−1∑
i=0

mi = |(l1l2 · · · l2n−2g1g2)2n−1| = 2n−1(2n+1 + 2n− 2) = 2n(2n + n− 1).

We next aim to prove (5). If r = 2n − 2, then it follows from (4) and so it suffices to

treat the case r ≤ 2n−3. We write Ms :=
∑s

i=0 mi and set s0 := 2n−1−1 and s := s0 + i

for some 1 ≤ i ≤ 2n−1 − 1. Then,

Ms = |(l1 . . . l2n−2)2n−1|+ |cs0+1 · · · cs0+i| ≤ 2n−1(2n− 2) + i2n+1 + i(2n− 2)

≤ (s+ 1)(2n− 2) + i2n+1.

Using i ≤ s/2 and 2n−1 ≤ s, we obtain

Ms ≤ (s+ 1)(2n− 2) + s2n ≤ (s+ 1)(2n− 2) + 2s2.

Setting s = r + 1, we get

Mr+1 ≤ (r + 2)(2n− 2) + 2(r + 1)2 ≤ (r + 2)(2n− 2 + 2r + 2) = 2(r + 2)(n+ r).
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This proves (5). Item (6) follows via the same argument, which concludes the lemma. �

Remark 35. At least for small values of n, one can work out the integers mi,m
′
i, m̃i and

m̃′i from Definitions 31 and 32 explicitly. For instance, for n = 2, we have 〈c0, . . . , c3〉 =

〈1, h1, g1g2, h1g1g2〉 with |h1| = 2 and |gj| = 4. We thus obtain

(m0,m1,m2,m3) = (0, 2, 8, 10), (m′0,m
′
1,m

′
2,m

′
3) = (1, 1, 9, 9)

(m̃0, m̃1, m̃2, m̃3) = (5, 5, 5, 5), (m̃′0, m̃
′
1, m̃

′
2, m̃

′
3) = (4, 6, 4, 6).

7. Proof of the main results

7.1. Quadric bundles with nontrivial unramified cohomology. The following the-

orem implies Theorem 5 stated in the introduction.

Theorem 36. Let n and r be positive integers with r ≤ 2n−2. Then there is a unirational

r-fold quadric bundle Y //Pn with Hk
nr(Y, µ

⊗k
2 ) 6= 0, where k is the unique integer with

2k−1 − 1 ≤ r ≤ 2k − 2.

Proof. Since r+2 ≤ 2k, we may consider the homogeneous polynomials ci ∈ C[x0, . . . , xk]

for i = 0, . . . , r+1 from Definition 31. Since c0 = 1, the quadratic form q = 〈c0, . . . , cr+1〉
defines an r-fold quadric bundle Y ′ //Pk, whose generic fibre is of CTO type. Since

k ≤ n, the quadratic form q defines also an r-fold quadric bundle Y //Pn which is

stably birational to Y ′. Since unramified cohomology is a stable birational invariant,

Hk
nr(Y, µ

⊗k
2 ) ' Hk

nr(Y
′, µ⊗k2 ) 6= 0,

by Corollary 33 and Proposition 17. Finally, Y and Y ′ are unirational by Lemma 14,

because c0 = 1 and c1 = l1l2, where l1, l2 ∈ C[x0, x1, x2] are general linear homogeneous

polynomials, see (11) and (15). This proves Theorem 36. �

Remark 37. It follows from [3, Theorem 3.1] that the quadric bundle Y //Pn from

Theorem 36 satisfies H i
nr(Y, µ

⊗i
2 ) = 0 for all 1 ≤ i ≤ k − 1.

7.2. Specialization theorems without resolutions. Recall from Section 2.2 what it

means that a variety specializes to another variety. The following specialization theorem

is a generalization of Theorem 6 stated in the introduction.

Theorem 38. Let X be a proper variety which specializes to a complex projective variety

Y . Suppose that there is a dominant rational map f : Y 99K Pn with the following

properties:

(1) some Zariski open and dense subset U ⊂ Y admits a universally CH0-trivial

resolution of singularities Ũ //U such that the induced rational map Ũ 99K Pn

is a morphism whose generic fibre is proper over K = C(Pn).
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(2) the generic fibre Yη of f is stably birational to a quadric of CTO type over C(Pn).

Then, no resolution of singularities of X admits an integral decomposition of the diagonal.

In particular, X is not stably rational.

Proof. To begin with, note that it suffices to prove the theorem after any extension of

the base field of X. Since X specializes to a complex variety, we may thus assume that

X is defined over an algebraically closed field of characteristic zero.

Taking a suitable blow-up of some projective closure of Ũ , we obtain a proper birational

morphism τ : Ỹ //Y with τ−1(U) = Ũ . By assumption (1), τ−1(U) //U is a universally

CH0-trivial resolution of U . Replacing Ỹ by a log resolution which does not change Ũ ,

and which turns the complement E := Ỹ \ Ũ into a simple normal crossing divisor, we

may additionally assume that τ is a resolution of singularities of Y and each irreducible

component Ei of E is smooth.

By item (1), Ũ 99K Pn is a morphism which becomes proper when base changed to

some open dense subset of Pn. Therefore, no component Ei of E dominates Pn.

By item (2), Yη is stably birational to a quadric Q of CTO type over K = C(Pn).

By Definition 16 and Proposition 17, there are nonzero elements ai, bj ∈ K∗ such that

α1 := (a1, . . . , an−1, b1) ∈ Hn(K,µ⊗n2 ) pulls back to a nontrivial unramified class in

Hn
nr(K(Q)/C, µ⊗n2 ). Since unramified cohomology is a stable birational invariant,

0 6= α′ := f ∗α1 ∈ Hn
nr(K(Yη)/C, µ⊗n2 ).

Applying Proposition 27 to the dominant rational map Ỹ 99K Pn, we see that α′|Ei = 0

for any irreducible component Ei of E. Therefore, the assumptions of Proposition 25 are

satisfied and so no resolution of singularities of X admits an integral decomposition of

the diagonal. Since resolutions of singularities exist in characteristic zero, and because

stably rational varieties admit integral decompositions of the diagonal (see Section 2.3),

it follows that X is not stably rational. This concludes Theorem 38. �

Proof of Theorem 6. Let X be a projective (or proper) variety which specializes to a

complex projective variety Y with a morphism f : Y //S to a rational n-fold S, whose

generic fibre is smooth and stably birational to a CTO type quadric Q over K = C(S).

We may then consider the smooth locus U := Y sm of Y and apply Theorem 38 to the

universally CH0-trivial resolution U //U , given by the identity. As the generic fibre of f

is smooth, the generic fibre of U //Pn coincides with Yη and so it is proper. This shows

that Theorem 38 applies and so X is not stably rational. This proves Theorem 6. �

Theorem 6 has the following consequence.
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Corollary 39. Let n and r be positive integers with 2n−1 − 1 ≤ r ≤ 2n − 2. Let

e0, . . . , er+1 ∈ C[x0, . . . , xn] be nonzero homogeneous polynomials without common factor,

whose degrees di := |ei| are all odd or even. Suppose that after setting x0 = 1 and

possibly multiplying each entry by some nonzero square, the quadratic form 〈e0, . . . , er+1〉
becomes similar to one of the quadratic forms 〈c0, . . . , cr+1〉, 〈c′0, . . . , c′r+1〉, 〈c̃0, . . . , c̃r+1〉
or 〈c̃′0, . . . , c̃′r+1〉 from Corollary 33.

Then any projective variety which specializes to the hypersurface Y ⊂ P(E) given by∑
i eiz

2
i = 0, where E =

⊕r+1
i=0 OPn(bdi/2c), is not stably rational.

Proof. Our assumption on the ei guarantees that Y is integral, but note that Y is not

necessarily flat over Pn, cf. Section 3.5. Nonetheless, Corollary 33 implies that the generic

fibre Yη of Y //Pn is a quadric of CTO type. This fact (or the assumption that ei 6= 0

for all i) ensures that Yη is smooth. The corollary follows therefore from Theorem 6. �

7.3. Proof of Theorem 3 and some applications.

Theorem 40. Let n and r be positive integers with 2n−1 − 1 ≤ r ≤ 2n − 2, and let

(di)0≤i≤r+1 be a tuple of non-negative integers of the same parity. Consider the non-

negative integers mi, m
′
i, m̃i and m̃′i from Definitions 31 and 32. Suppose that one of

the following holds:

(1) d0 is even and di ≥ mi for all i;

(2) d0 is odd and di ≥ m′i for all i;

(3) d0 has the same parity as m̃0 and di ≥ m̃i for all i;

(4) d0 has the same parity as m̃′0 and di ≥ m̃′i for all i.

Then a very general complex r-fold quadric bundle of type (di)0≤i≤r+1 over Pn (see Defi-

nition 20) is not stably rational.

Proof. Choose a general linear homogeneous polynomial l ∈ C[x0, . . . , xn], and let ci, c
′
i, c̃i

and c̃′i be as in Definition 31 .

If d0 is even and di ≥ mi for all i, then consider the homogeneous polynomials

e0 := ld0−m0 · c0 and ei := xdi−mi0 · ci for i = 1, . . . , r + 1.

Since l is general and the di and mi are even, Corollary 39 applies and shows that a very

general quadric bundle X over Pn of type (di)0≤i≤r+1 is not stably rational.

If d0 is odd and di ≥ m′i for all i, then replace ci and mi by c′i and m′i, respectively.

Since m′i is odd for all i, we may then argue as before. If d0 has the same parity as m̃i

and di ≥ m̃i for all i, then replace ci and mi by c̃i and m̃i, respectively, and argue as

before. If d0 has the same parity as m̃′i and di ≥ m̃′i for all i, then replace ci and mi by

c̃′i and m̃′i, respectively, and argue as before. This finishes the proof of the theorem. �
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Proof of Theorem 3. By Lemma 34, m̃i = 2n + n − 1 and m̃′i ≤ 2n + n for all i, and so

Theorem 3 follows from Theorem 40. �

Remark 41. If r ≥ 2, then all examples in Theorems 3 and 40 have rational deformation

type by Corollary 21. If (d0, d1) = (m0,m1) or (d0, d1) = (m′0,m
′
1), then the examples

in Theorem 40 are unirational by Lemmas 14 and 34. Unirationality of the examples in

Theorem 3 is unknown.

Proof of Corollary 4. The corollary follows from Lemma 22 and Theorem 3. �

Corollary 42. Let n and r be positive integers with 2n−1− 1 ≤ r ≤ 2n− 2. Then a very

general complex hypersurface X ⊂ Pn×Pr+1 of bidegree (d, 2) with d ≥ 2n +n− 1 is not

stably rational.

Proof. A very general hypersurface of bidegree (d, 2) in Pn × Pr+1 is nothing but a very

general r-fold quadric bundle of type (d, . . . , d) over Pn. The corollary follows therefore

from Theorem 3. �

Corollary 43. Let n, r be integers with n ≥ 2 and 2n−1 − 1 ≤ r ≤ 2n − 2 and put N :=

r + n. Then a double cover of PN , branched along a very general complex hypersurface

Y ⊂ PN of even degree d ≥ 2n+1+2n−2 and with multiplicity d−2 along an (r−1)-plane

is not stably rational.

Proof. By Lemma 23, we need to prove that a very general r-fold quadric bundle of type

(0, d−2, . . . , d−2, d) is not stably rational if d ≥ 2n+1 +2n−2 is even. This follows from

item (1) in Theorem 40, because m0 = 0 and mi ≤ |l1l2 . . . l2n−2g1g2| = 2n+1 + 2n− 2 for

all i. �

7.4. Proof of Theorem 1.

Theorem 44. Let n and r be positive integers with r ≤ 2n − 2. Then there is a smooth

unirational r-fold quadric bundle X over S = Pn−k × Pk, where k is the unique integer

with 2k−1 − 1 ≤ r ≤ 2k − 2, such that X is not stably rational.

Proof. By Theorem 40 and Remark 41, there are many smooth unirational complex r-

fold quadric bundles Y //Pk which are not stably rational. The product X := Y ×Pn−k

is then a smooth unirational r-fold quadric bundle over S which is not stably rational.

This proves the theorem. �

Proof of Theorem 1. By a theorem of Lang [26], K = C(Pn) is a Cn-field, cf. [33, II.4.5].

It follows that any r-fold quadric bundle over a rational base of dimension n with r >

2n − 2 has a rational section and so it is rational. We thus conclude via Theorem 44

that smooth stably non-rational r-fold quadric bundles over rational bases of dimension

n exist if and only if r ≤ 2n − 2. This proves Theorem 1. �
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Remark 45. In the proof of Theorems 1 and 44, it is essential that Theorem 40 yields

smooth r-fold quadric bundles over rational bases which are not stably rational, non-

rationality would not be enough.

Remark 46. The cases r = 1, 2 in Theorems 1 and 44 follow from [41] and [17], respec-

tively. If one allows singular bundles, the results follow from [2, 10] if r ≤ 6. However,

even without the smoothness assumption, the results are new for any r ≥ 7 (and follow

in that case also from Theorem 36 above).

7.5. Proof of Theorem 2.

Theorem 47. Let n, r and d be integers, with d even if r is even, and such that n ≥ 2,

2n−1 − 1 ≤ r ≤ 2n − 2 and d ≥ 2(n+ r)(r + 2).

There is a smooth complex projective family π : X //B over a complex variety B,

such that each fibre Xb = π−1(b) is a smooth r-fold quadric bundle over Pn, degenerated

over a hypersurface of degree d in Pn, satisfying the following:

(1) for very general t ∈ B, the r-fold quadric bundle Xt over Pn is not stably rational;

(2) all fibres of π are unirational and, if r ≥ 2, then some fibres are rational;

(3) if r ≥ 3 and d is even, the set {b ∈ B | Xb is rational} is dense in B for the

analytic topology.

Proof. We first define some non-negative integers di for i = 0, . . . , r + 1 of the same

parity and use the notation from Definition 31. If d is even, we put di := mi for

i = 0, . . . , r and dr+1 := d−
∑r

i=0 mi. If d is odd, we define di := m′i for i = 0, . . . , r and

dr+1 := d−
∑r

i=0m
′
i. By Lemma 34, dr+1 ≥ mr+1 and (d0, d1) = (0, 2) if d is even, and

dr+1 ≥ m′r+1 and (d0, d1) = (1, 1) if d is odd.

Let E∨ :=
⊕r+1

i=0 O(bdi/2c) and consider V ′ := H0(Pn, Sym2(E∨) ⊗ OPn(d0)). We

identify points in V ′ with symmetric matrices A = (aij)0≤i,j≤r+1. To such a matrix, we

associate the minor M(A) := (aij)i,j∈{0,1,2,n}, which is a symmetric 4 × 4 matrix. We

define V ⊂ V ′ as the linear subspace given by all symmetric matrices A = (aij) with

aij ∈ C[x0, x1, x2] for all i, j ∈ {0, 1, 2, n}, and such that ai0 = 0 for i = 1, 2, n if d is even

and n ≥ 3. We let B ⊂ P(V ) be the subset of points [A] ∈ P(V ) such that A defines a

smooth r-fold quadric bundle of type (di)0≤i≤r+1 over Pn; if n ≥ 3, then we also assume

that M(A) defines a smooth quadric surface bundle of type (d0, d1, d2, dn) over P2. By

Bertini’s theorem, B is an open dense subset of P(V ). There is a universal hypersurface

X ⊂ B × P(E). Projection to the first factor gives a smooth projective morphism

π : X //B of complex varieties. The fibre Xb above b ∈ B is a smooth r-fold quadric

bundle over Pn, which degenerates over a hypersurface of degree d in Pn. Let t ∈ B be

very general. Since c0, c1, c2, cn, c
′
0, c
′
1, c
′
2, c
′
n ∈ C[x0, x1, x2] by (11) and (15), Xt specializes

by Lemma 8 to the hypersurface Y ⊂ P(E), given by
∑r+1

i=0 eiz
2
i = 0, where ei = ci (resp.
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ei = c′i) for i = 0, . . . , r and er+1 = x
dr+1−mr+1

0 cr+1 (resp. er+1 = x
dr+1−m′r+1

0 c′r+1), if d is

even (resp. odd), and where we use the notation from Definition 31. It thus follows from

Corollary 39 that Xt is not stably rational. This proves item (1).

Recall (d0, d1) ∈ {(1, 1), (0, 2)}. Up to replacing B by some open dense subset which is

given by a certain genericity assumption on (aij)0≤i,j≤1, Lemma 14 thus ensures that all

fibres of π are unirational. If r ≥ 2, then our assumptions imply r ≥ n. As in Lemma 19,

Bertini’s theorem shows then that we may additionally assume that B contains points

which correspond to matrices A = (aij) with ar+1,r+1 = 0. The corresponding quadric

bundles admit sections and so they are rational. This proves item (2).

Let us now assume that r ≥ 3 and d is even. Then, n ≥ 3 and (d0, d1, d2, dn) =

(0, 2, 2, 4) (see (15)) and we consider the vector space W of symmetric 4 × 4 matrices

from Proposition 24. There is a dominant morphism

M : B //P(W ), [A] � // [M(A)].

If the quadric surface bundle over P2 which is defined by M(A) admits a rational section,

then the r-fold quadric bundle over Pn defined by A admits a rational section as well.

By Proposition 24, the set of points [M(A)] ∈ P(W ) with that property is dense for the

analytic topology. This proves item (3), i.e. {b ∈ B | Xb is rational} is dense in B for

the analytic topology. This concludes Theorem 47. �

Proof of Theorem 2. The case r = 1, 2 follows from [17], because the examples treated

there (hypersurfaces of bidegree (2, 2) in P2×P3) are both, quadric surface bundles over

P2, as well as conic bundles over P3. The case r ≥ 3 follows from Theorem 47. �

Remark 48. The restriction on the parity of d if r is even is necessary in Theorem

47. Indeed, the Fano variety of m-planes on a smooth quadric of dimension 2m has two

connected components, and so any smooth 2m-fold quadric bundle over Pn gives rise to

a double cover of Pn, branched along the degeneration divisor. This forces the degree of

the degeneration divisor to be even.

Remark 49. It is conceivable that item (3) in Theorem 47 holds for r ≥ 2 and without

the restriction on the parity of d. To prove this, it would be enough to generalize Propo-

sition 24 to other quadric surface bundles of type (d0, . . . , d3) over P2. Even though this

problem seems tractable with the existing methods, we do not try to pursue this here.
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