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Abstract. We define a new elliptic genus ψ on the complex bordism ring. With co-
efficients in Z[1/2], we prove that it induces an isomorphism of the complex bordism
ring modulo the ideal which is generated by all differences P(E) − P(E∗) of projective
bundles and their duals onto a polynomial ring on 4 generators in degrees 2, 4, 6 and
8. As an alternative geometric description of ψ, we prove that it is the universal genus
which is multiplicative in projective bundles over Calabi-Yau 3-folds. With the help of
the q-expansion of modular forms we will see that for a complex manifold M , the value
ψ(M) is a holomorphic Euler characteristic. We also compare ψ with Krichever-Höhn’s
complex elliptic genus and see that their only common specializations are Ochanine’s
elliptic genus and the χy-genus.

1. Introduction

A problem in the theory of bordism and genera that has led to a number of important
works in the past is the determination of the quotient of a bordism ring by a geometrically
defined ideal. We explain this with the help of some examples.

In the 1980’s, S. Ochanine defined the ideal IOc in the oriented bordism ring ΩSO∗ to
be generated by all projectivizations P(E) of complex vector bundles E of even rank.
Then Ochanine’s Theorem [13] states that the quotient

(
ΩSO∗ /IOc

)
⊗ Q is isomorphic to

a polynomial ring Q[δ, ϵ] in two formal variables δ and ϵ of degrees 4 and 8. Amazingly,
the genus, i.e. ring homomorphism, φOc from ΩSO∗ ⊗ Q to Q[δ, ϵ] which induces this
isomorphism is closely related to a family of elliptic functions. Indeed, with the help of
Hirzebruch’s correspondence between formal power series and genera – see section 3 for
more details – Ochanine’s genus φOc, respectively its logarithmic power series gφOc(y) is
defined via the elliptic integral

gφOc(y) =

∫ y

0

dt√
1− 2δt2 + ϵt4

.

This is the reason why the genus φOc is called an elliptic genus.
Shortly after the introduction of Ochanine’s genus, results of S. Ochanine [14] and C.

Taubes [17] showed that Ochanine’s elliptic genus φOc in fact is the universal genus which is
multiplicative in fiber bundles of spin manifolds with structure group a compact connected
Lie group.

In order to discuss multiplicativity in the complex bordism ring ΩU∗ , one defines the
ideal MU in ΩU∗ to be generated by differences E − B · F , where F → E → B ranges
over all fiber bundles of stably almost complex manifolds with structure group a compact
connected Lie group. Then it turns out that the χy-genus induces an isomorphism of
graded Q-algebras (

ΩU∗ /MU
)
⊗Q ∼= Q[s1, s2] ,

where s1 = χy(CP 1) and s2 = χy(CP 2) can be regarded as formal variables of degrees
2 and 4, [8, p. 64]. Essentially, this result was already proven in the early 1970’s by G.
Lusztig, C. Kosniowski, and M.F. Atiyah and F. Hirzebruch, [7, p. 69].
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The starting point of this paper is the definition of a certain subideal of MU . Namely,
we define the ideal IU in ΩU∗ to be generated by differences P(E)− P(E∗), where E → B
ranges over all complex vector bundles over stably almost complex bases B and E∗ denotes
the dual bundle of E. Clearly, the above definition gives a subideal IU of MU and we raise
the question of determining this ideal, respectively the quotient ΩU∗ /IU , at least rationally.
Equivalently, we call a genus φ dualization invariant if

φ(P(E)) = φ(P(E∗))

holds for all complex vector bundles E and raise the question of determining the universal
dualization invariant genus on ΩU∗ ⊗ Q. In order to solve the above problem, we will in
Definition 3.1 define a new genus ψ from the rational complex bordism ring to a polynomial
ring over Q in four variables q1, q2, q3 and q4 in degrees 2, 4, 6 and 8 via the logarithmic
power series

gψ(y) =

∫ y

0

dt√
1 + q1t+ q2t2 + q3t3 + q4t4

.

Since a genus on the complex bordism ring descends to a genus on the oriented bordism ring
if and only if its logarithmic power series is odd, we see that by definition, ψ is a natural
generalization of Ochanine’s elliptic genus φOc to the complex bordism ring. Therefore,
and since the logarithm gψ is an elliptic integral, I like to think of ψ as a complex elliptic
genus, which also explains the title of this paper. However, in the literature the term
complex elliptic genus is already reserved for Krichever-Höhn’s complex elliptic genus and
so we rather use the neutral term ψ-genus for the new genus.

The main result of this paper then solves the problem, raised above, with coefficients
in Z[1/2] rather than Q, which is clearly a stronger statement:

Theorem 4.1. The ψ-genus restricted to ΩU∗ ⊗Z[1/2] induces the following isomorphism
of graded rings: (

ΩU∗ /IU
)
⊗ Z [1/2] ∼= Z [1/2] [q1, q2, q3, q4] .

At this point, let us briefly discuss the obvious notion of dualization invariance in
the oriented bordism ring. To begin with, note that a hermitian metric on a complex
vector bundle E induces a complex antilinear isomorphism E → E∗. This induces a
diffeomorphism between P(E) and P(E∗) which is easily seen to be orientation reversing
if and only if rk(E) is even. This explains that after inverting 2 in the oriented bordism
ring, Ochanine’s ideal IOc equals the ideal which is generated by differences P(E)−P(E∗)
in ΩSO∗ ⊗ Z[1/2]. Since Ochanine’s theorem also holds with coefficients in Z[1/2], see
[12], we obtain a new interpretation of Ochanine’s result: Ochanine’s elliptic genus φOc
is the universal dualization invariant genus on ΩSO∗ ⊗ Z[1/2]. In view of Theorem 4.1,
this uncovers another close relationship between Ochanine’s elliptic genus and the new
ψ-genus.

With slightly more effort, one also proves that after inverting 2, Ochanine’s elliptic
genus is the universal dualization invariant genus on the spin bordism ring. This result is
not included here, but can be found in the author’s Master Thesis [15].

As mentioned earlier, another complex version of Ochanine’s elliptic genus, namely
Krichever-Höhn’s complex elliptic genus φKH , has already been studied in detail in the
past. G. Höhn in [8] and I. Krichever in [11] showed that this genus is the universal genus
on the rational bordism ring of SU -manifolds, which is multiplicative in fiber bundles of
SU -manifolds with compact connected structure group. In particular, we observe that
both elliptic genera known so far, φOc as well as φKH , can be described in terms of
multiplicativity and it is natural to ask1 whether there is a similar description for the new
genus ψ. Our answer is:

1This question was posed to me by B. Totaro.



DUALIZATION INVARIANCE AND A NEW COMPLEX ELLIPTIC GENUS 3

Theorem 5.1. The ψ-genus is the universal genus on the rational complex bordism ring
which is multiplicative in projectivizations P(E) of complex vector bundles E → B over
Calabi-Yau 3-folds B.

In view of the above Theorem, one might conjecture that the ψ-genus is multiplicative
in all fiber bundles over Calabi-Yau 3-folds with structure group a compact connected Lie
group. This is one direction for future research.

Historically, the comparison of projectivizations P(E) and P(E∗) in ΩU∗ arose first from
the observation that they are diffeomorphic. Choosing E → B to be a holomorphic vector
bundle over a complex base B, we therefore obtain a huge family of examples of two
possibly different complex structures P(E) and P(E∗) on the same underlying smooth
manifold. For instance, in [10] D. Kotschick and S. Terzić compared the Chern numbers
(which are complex bordism invariants) of the projective tangent P(TCPn) and cotangent
bundle P(T ∗CPn) of the complex projective n-space. For n = 3 they found – see table
1 in section 6 – that precisely the Chern numbers different from c5, c1c4, c

2
1c3 and c2c3

differ on P(TCP 3) and P(T ∗CP 3). This shows firstly that the two complex structures
are different, and secondly that the Chern numbers c51, c

3
1c2 and c1c

2
2 are not invariant

under diffeomorphisms. On the other hand, this concrete calculation raises the question
of determining those linear combinations of Chern numbers that are dualization invariant,
i.e. whose value on P(E) and P(E∗) always coincides. In section 6 we explain that
by Theorem 4.1 the vector space of dualization invariant linear combinations of Chern
numbers in complex dimension n is isomorphic to the dual space of the degree 2n part
of Q[q1, q2, q3, q4]. Moreover, as examples of pure Chern numbers which are dualization
invariant we find:

Proposition 6.1. In complex dimension n, the Chern numbers cn, c1cn−1, c
2
1cn−2 and

c2cn−2 are dualization invariant.

Before Kotschick and Terzić’s calculations in [10], F. Hirzebruch studied the Chern
numbers of the projective tangent and cotangent bundle P(TB) and P(T ∗B) of Calabi-
Yau 3-folds B in [6] and showed that in ΩU∗ the following identity holds for all Calabi-Yau
3-folds B:

P(TB) + P(T ∗B) = 2 ·B × CP 2 .

In section 7, inspired by this observation, we define for every nontrivial triple of integers
(a, b, c) the ideal IU(a,b,c) in ΩU∗ to be generated by linear combinations

a · P(E) + b · P(E∗) + c ·B × CP k ,
where E → B is some complex vector bundle of rank k+1. Rationally this ideal coincides
with the whole bordism ring whenever a+ b+ c ̸= 0 holds, so that we restrict ourselves to
the case a+ b+ c = 0. In order to state our result, we denote the localization Z[1/n] of Z
at a nontrivial element n ∈ Z by Zn. Let us also recall that the images s1 and s2 of CP 1

and CP 2 under the χy-genus can be regarded as formal variables in degrees 2 and 4.

Theorem 7.1. Let (a, b, c) be a nontrivial triple of integers with a+ b+ c = 0.

(1) For c = 0 the ψ-genus induces an isomorphism(
ΩU∗ /IU(a,−a,0)

)
⊗ Z2a

∼= Z2a[q1, q2, q3, q4] .

(2) For c ̸= 0 the χy-genus induces an isomorphism(
ΩU∗ /IU(a,b,c)

)
⊗ Za+b ∼= Za+b[s1, s2] .

In this introduction we already explained that it was proven in the 1970’s that rationally
the quotient ΩU∗ /MU is a polynomial ring in two variables s1 and s2 of degrees 2 and 4.
Although it might be known to some experts that the same is true integrally, this result is
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not contained in the literature so far. With the help of the second statement in Theorem
7.1, we close this gap here:

Corollary 7.1. The χy-genus induces the following isomorphism of graded rings:

ΩU∗ /MU ∼= Z[s1, s2] .

In section 8, we compare our ψ-genus with Krichever-Höhn’s complex elliptic genus
φKH and see that they are genuinely different. More precisely:

Proposition 8.1. Let R be an integral Q-algebra and φ an R-valued genus which factors
through both ψ and φKH . Then φ already factors through χy or φOc.

By definition of ψ, the coefficients of the characteristic power series Qψ(x) of ψ are
families of modular forms, and in section 9 we will use the q-expansion of modular forms
in order to give an alternative description of the power series Qψ(x). For a complex
manifold M , this will allow us in Proposition 9.2 to interpret ψ(M) as the holomorphic
Euler characteristic of a certain vector bundle associated to the tangent bundle of M .

At the end of this introduction, let us remark the following: In the definition of the
ideals IU and IU(a,b,c) the involved bundles E ranged over all complex vector bundles over

stably almost complex bases. However, since all concrete examples we will use in the proofs
of Theorems 4.1 and 7.1 involve holomorphic bundles over algebraic bases, the Theorems
still hold true if one defines the above ideals in the more restrictive algebraic category.

Outline. In section 2 we recall some basic facts about the complex bordism ring and
compute the total Chern class, as well as the Thom-Milnor number of projectivizations
P(E) of complex vector bundles E. In section 3 we introduce and study first properties
of the ψ-genus, and in section 4 we prove the main result of this paper, Theorem 4.1. In
section 5 we give the proof of Theorem 5.1, and in section 6 we study dualization invariant
Chern numbers. In section 7 we prove Theorem 7.1 and in section 8 we compare ψ with
Krichever-Höhn’s complex elliptic genus φKH . Finally, only using the results of section 3,
we discuss the q-expansion of ψ in section 9.

Conventions. The following conventions are used throughout this paper: All manifolds
are compact, oriented and smooth, if not mentioned otherwise. The evaluation of a top
degree cohomology class ω of some oriented manifold M on the fundamental class [M ] is
denoted by

∫
M ω. However, as long as we do not specify the coefficients, all cohomology

groups we are investigating will have coefficients in Z. Moreover, for a mixed degree
cohomology class ω ∈ H∗(M), the integral

∫
M ω denotes the evaluation of the top degree

component of ω on the fundamental class [M ].

2. Projectivizations in the complex bordism ring

2.1. Description of the complex bordism ring following Milnor and Novikov.
The complex bordism ring ΩU∗ is the bordism ring of closed stably almost complex mani-
folds modulo boundaries of compact stably almost complex manifolds. This ring is graded
by the real dimension of manifolds and the ring structure is induced by the disjoint union
and Cartesian product of manifolds. In order to explain the structure of ΩU∗ , let us recall
that the Thom-Milnor number sm(M) of a closed stably almost complex manifold M in
real dimension 2m is defined by

sm(M) :=

∫
M

p∑
i=1

wmi , (2.1)

where w1, . . . , wp denote the Chern roots ofM . By the splitting principle, Chern roots are
formal cohomology classes of degree 2, so that the total Chern class ofM equals

∏
i(1+wi).
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Since sm(M) is symmetric in the wi’s, it is a polynomial expression in the elementary
symmetric polynomials in w1, . . . , wp, which are the Chern classes ofM . Therefore, sm(M)
is a certain linear combination of Chern numbers of M . The following structure Theorem
is due to J. W. Milnor and S. P. Novikov [16, p. 117 and 128]:

Theorem 2.1. Two stably almost complex manifolds represent the same element in ΩU∗
if and only if all their Chern numbers coincide. Moreover, ΩU∗ is a polynomial ring
Z[x1, x2, x3, . . .] where xm has degree 2m and a sequence (xm)m≥1 with xm ∈ ΩU2m is a
basis sequence if and only if

sm(xm) =

{
±p if m+ 1 is a power of the prime p,

±1 if m+ 1 is not a prime power.

As an example, let us recall that the complex projective space CPm has the nontrivial
Thom-Milnor number sm(CPm) = m+ 1, so that Theorem 2.1 implies:

ΩU∗ ⊗Q = Q
[
CP 1,CP 2,CP 3, . . .

]
. (2.2)

2.2. The cohomology ring and total Chern class of projectivizations. By Theorem
2.1, in order to understand an element in the complex bordism ring we need to know its
Chern numbers. In this subsection we therefore discuss the cohomology ring and total
Chern class of projectivizations of complex vector bundles.

Consider some complex rank k vector bundle E → B over a stably almost complex
base B. We denote the associated projectivization, a stably almost complex CP k−1-fiber
bundle, by π : P(E) → B. Let S → P(E) be the tautological line bundle and write y for
the first Chern class of the dual bundle S∗. Then y restricted to every fiber F = CP k−1 of
π is a generator of the cohomology ring H∗(F ) with

∫
F y

k−1 = 1. Thus, the Leray-Hirsch
theorem yields for the cohomology ring of P(E):

H∗(P(E)) = H∗(B)[y] /
(
yk + c1(E)yk−1 + . . .+ ck(E)

)
, (2.3)

where ci(E) denotes the i-th Chern class of E. By this identity, we will always regard
H∗(B) as a subring in H∗(P(E)). Therefore, the pullback of a class ω ∈ H∗(B) to
H∗(P(E)) is also denoted by ω.

By the above description, a general top degree cohomology class of P(E) has the form
ω · ym with ω ∈ H∗(B) and some exponent m ≥ 0. In the following Lemma we explain
how to reduce explicitly to the case of fixed exponent m = k − 1, which is the complex
dimension of the fiber of P(E). In order to state this result (which, using a different
terminology, can also be found in [5, p. 47]), we denote the total Chern class of E by c(E)
and its multiplicative inverse in H∗(B) (sometimes called Segre class) by s(E).

Lemma 2.1. Let ω ∈ H∗(B) be a cohomology class of the base of fixed degree and m ≥ 0
an integer such that ω ·ym is a top degree cohomology class of P(E). Then ω ·ym coincides
with the top degree component of ω · s(E) · yk−1.

Proof. Since ω has fixed degree and because of s(E) ·c(E) = 1, the following identity holds
for the top degree components of these cohomology classes:

ω · ym = ω ·
∑
j≥0

yj = ω · s(E) · c(E) ·
∑
j≥0

yj .

Each nontrivial summand of the top degree part of the right hand side of this equation
must contain a factor yj with j ≥ k − 1, since ω · s(E) · c(E) is a cohomology class of
the base and the fiber has complex dimension k − 1. Moreover, from (2.3) it follows that
c(E) ·

∑
j≥0 y

j vanishes in degrees ≥ k. Together, this shows that the top degree part of

ω · s(E) · c(E) ·
∑

j≥0 y
j equals the top degree part of ω · s(E) · yk−1, which proves the

Lemma. �



6 STEFAN SCHREIEDER

In order to calculate the total Chern class of P(E), we first need to investigate its
tangent bundle TP(E). This bundle splits into TP(E) = π∗TB ⊕ Tπ, where Tπ denotes
the tangent bundle along the fibers of π : P(E) → B. The bundle Tπ is a complex
vector bundle over P(E), whose restriction to every fiber F of π is the tangent bundle of
F = CP k−1. This bundle is canonically isomorphic to Hom(S, π∗E/S) = S∗ ⊗ (π∗E/S),
where again S → P(E) denotes the tautological line bundle. Since S∗ ⊗ S is the trivial
line bundle C, this yields:

Tπ ⊕ C ∼= (S∗ ⊗ (π∗E/S))⊕ (S∗ ⊗ S) ∼= S∗ ⊗ ((π∗E/S)⊕ S) ,

such that

Tπ ⊕ C ∼= S∗ ⊗ π∗E (2.4)

follows. By the splitting principle, we may factorize the total Chern class of E formally
into a product (1 + x1) · · · (1 + xk), where the xj denote the Chern roots of E. Since
Chern classes are stable classes, equation (2.4) implies, see also [1, p. 514]:

c(Tπ) = c(S∗ ⊗ π∗E) =
k∏
i=1

(1 + y + xi) .

This identity together with the splitting TP(E) = π∗TB ⊕ Tπ and the Whitney sum
formula then yields the following Lemma:

Lemma 2.2. Let E → B be a complex rank k vector bundle over some stably almost
complex base B. Denote the Chern roots of B (i.e. those of the tangent bundle TB) by
w1, . . . , wn and those of E by x1, . . . , xk. Then the total Chern class of P(E) is given by

c(P(E)) =
n∏
j=1

(1 + wj) ·
k∏
i=1

(1 + y + xi) , (2.5)

where y = c1(S∗) denotes the first Chern class of the dual bundle of the tautological line
bundle S → P(E).

2.3. The Thom-Milnor number of projectivizations. In this subsection we explain
how to calculate the Thom-Milnor number of projectivizations and use this to calculate
this number for some examples.

Lemma 2.3. Let E be a complex rank k vector bundle, k ≥ 2, with Chern roots x1, . . . , xk
over a stably almost complex manifold B in real dimension 2n. Then the projectivization
P(E) has real dimension 2m := 2(n + k − 1) and its Thom-Milnor number sm(P(E)) is
given by:

(−1)n ·
∑

r1+...+rk=n

(
(−1)r1

(
m− 1

r1

)
+ . . .+ (−1)rk

(
m− 1

rk

))∫
B
xr11 · · ·xrkk ,

where the sum ranges over all partitions r1, . . . , rk of n. Moreover, we have the following:
sm(P(E)) = (−1)nsm(P(E∗)).

Proof. First of all it is clear that P(E) has real dimension 2(n+k−1). In order to calculate
the Thom-Milnor number sm(P(E)), we denote the Chern roots of B by w1, . . . , wn and
the first Chern class of the dual bundle of the tautological line bundle over P(E) by
y ∈ H2(P(E)). Then (2.5) implies

sm(P(E)) =

∫
P(E)

(
n∑
i=1

wmi +

k∑
l=1

(y + xl)
m

)
.
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By assumptions, we have n < m and we note that every symmetric expression in the wi’s
and xl’s of degree > 2n vanishes because of dimR(B) = 2n. This yields:

sm(P(E)) =

∫
P(E)

 k∑
l=1

n∑
il=0

(
m

il

)
xill y

m−il

 .

In the next step, we use Lemma 2.1 and note that the inverse cohomology class s(E) of
c(E) is given by

1

1 + x1
· · · 1

1 + xk
=

∑
j1,...,jk≥0

(−x1)j1 · · · (−xk)jk .

Furthermore, we use our convention that only the top degree part is integrated, as well as
the fact that yk−1 integrated over the fibers of P(E) equals 1:

sm(P(E)) =

∫
P(E)

 k∑
l=1

n∑
il=0

(
m

il

)
xill

 ·

 ∑
j1,...,jk≥0

(−x1)j1 · · · (−xk)jk

 · yk−1

=

∫
B
(−1)n

 k∑
l=1

n∑
il=0

(
m

il

)
(−1)ilxill

 ·

 ∑
j1,...,jk≥0

xj11 · · ·xjkk


=

∫
B
(−1)n

k∑
l=1

n∑
il=0

∑
j1,...,jk≥0

((
m

il

)
(−1)il · xj11 · · ·xjl+ill · · ·xjkk

)
.

For fixed l, we now collect all summands which contain the same monomial in the xi’s and
obtain:

sm(P(E)) =

∫
B
(−1)n

k∑
l=1

∑
r1,...,rk≥0

 rl∑
il=0

(
m

il

)
(−1)il

 · xr11 · · ·xrkk .

Using the elementary identity
rl∑
il=0

(
m

il

)
(−1)il = (−1)rl

(
m− 1

rl

)
,

together with the fact that only the top degree part is integrated, this shows:

sm(P(E)) = (−1)n ·
∑

r1+...+rk=n

k∑
l=1

(−1)rl
(
m− 1

rl

)∫
B
xr11 · · ·xrkk ,

as claimed in the Lemma. Finally, sm(P(E)) = (−1)nsm(P(E∗)) follows directly from this
formula since the Chern roots of E∗ are given by −x1, . . . ,−xk. �

In the proofs of Theorem 4.1 and Theorem 7.1 in sections 4 and 7 respectively we need to
construct some special basis sequences of the complex bordism ring. These constructions
will be based on the following two examples:

Example 2.1. Let m ≥ n+1 be natural numbers and n = i1+i2 a partition of n. Consider
B := CP i1 × CP i2, denote the projections of B onto its factors by π1 and π2 and define
the holomorphic vector bundle

E := π∗1(O(1))⊕ π∗2(O(1))⊕ Cm−n−1 ,

where O(1) denotes the dual bundle of the tautological line bundle and C the trivial line
bundle. Then the Thom-Milnor number sm(P(E)) equals:

(−1)n ·
(
(−1)i1

(
m− 1

i1

)
+ (−1)i2

(
m− 1

i2

)
+m− n− 1

)
. (2.6)
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Proof. By construction, the bundle E has 2 non-vanishing Chern roots x1 and x2, where
for l = 1, 2 the root xl is the pullback π∗l c1(O(1)) of a positive generator of H∗(CP il).
Therefore, because of dimensions, in the formula of Lemma 2.3 only the summand with
r1 = i1, r2 = i2 and rj = 0 for j > 3 survives. Finally, the Künneth formula yields∫
B x

i1
1 x

i2
2 = 1, which proves (2.6). �

Example 2.2. Let m ≥ n + 2 be natural numbers and n = i1 + i2 + i3 a partition of n.
Consider B := CP i1 ×CP i2 ×CP i3, denote the projections of B onto its factors by π1, π2
and π3 and define the holomorphic vector bundle

E := π∗1(O(1))⊕ π∗2(O(1))⊕ π∗3(O(1))⊕ Cm−n−2 ,

where O(1) denotes the dual bundle of the tautological line bundle over the respective
complex projective space. Then the Thom-Milnor number sm(P(E)) equals:

(−1)n ·

((
3∑
l=1

(−1)il
(
m− 1

il

))
+m− n− 2

)
. (2.7)

Proof. This calculation is completely analogous to the proof of Example 2.1. �

3. A new complex elliptic genus

In this section we define the ψ-genus, a new complex elliptic genus which in section 4
will be shown to be the universal dualization invariant genus on the complex bordism ring
where 2 is inverted.

A genus is a ring homomorphism from some bordism ring (possibly with coefficients in
a ring S) to another ring R. However, in this section we only consider genera on ΩU∗ ⊗Q
or ΩSO∗ ⊗ Q with values in some integral Q-algebra R. Here ΩSO∗ denotes the oriented
bordism ring, i.e. the bordism ring of closed oriented manifolds modulo boundaries of
compact oriented ones. The sum respectively product in ΩSO∗ is induced by the disjoint
union respectively the Cartesian product of manifolds and the grading is given by the real
dimension of manifolds. According to R. Thom, after tensoring with the rationals, this
ring is a polynomial ring with one generator in each degree 0 mod 4 and a particular choice
of generators is given by the complex projective spaces in even complex dimensions, see
[16]:

ΩSO∗ ⊗Q = Q[CP 2,CP 4, . . .] .

Similarly, we saw in (2.2) that ΩU∗ ⊗Q equals the polynomial ring Q[CP 1,CP 2, . . .]. The
forgetful map ΩU∗ ⊗ Q → ΩSO∗ ⊗ Q is nothing but the natural quotient map of these
polynomial rings and we may think of the rational oriented bordism ring as a quotient of
the rational complex one.

Because of (2.2), a genus φ : ΩU∗ ⊗Q → R is uniquely determined by its logarithm

gφ(y) :=

∞∑
m=0

φ(CPm)
m+ 1

· ym+1 , (3.1)

and by Hirzebruch’s correspondence between genera and power series, the map φ 7→ gφ
induces (for any integral Q-algebra R) a bijection between R-valued genera and power
series y + O(y2) ∈ R[[y]], see [7]. The genus φ is well-defined on the quotient ΩSO∗ ⊗ Q
if and only if its logarithm gφ is an odd power series. One of the most famous genera on
ΩSO∗ ⊗Q is Ochanine’s elliptic genus φOc with values in the polynomial ring Q[δ, ϵ], whose
logarithm is defined to be the elliptic integral

gφOc(y) =

∫ y

0

dt√
1− 2δt2 + ϵt4

, (3.2)

where δ and ϵ are formal variables of degrees 4 and 8, see [13]. Since gφOc is an odd power
series, this genus indeed is well-defined for oriented manifolds. We now give a natural
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generalization of the definition of φOc to a genus on the complex bordism ring whose
logarithm need not to be an odd power series any more.

Definition 3.1. Consider formal variables q1, q2, q3 and q4 of weights |qi| = 2i. We define
the ψ-genus to be the genus ψ : ΩU∗ ⊗Q → Q[q1, q2, q3, q4] whose logarithm equals

gψ(y) =

∫ y

0

dt√
1 + q1t+ q2t2 + q3t3 + q4t4

. (3.3)

We will also consider the above genus associated to elements q1, q2, q3, q4 of an integral
Q-algebra R, which are not necessarily algebraically independent. This genus is simply
the composition of ψ : ΩU∗ ⊗Q → Q[q1, q2, q3, q4], where q1, q2, q3, q4 are regarded as formal
variables, with the natural map to R.

Let us now determine the image of ψ in Q[q1, q2, q3, q4].

Lemma 3.1. The elliptic genus ψ is surjective and the images of CP 1,CP 2,CP 3 and
CP 4 form a Q-algebra basis of Q[q1, q2, q3, q4].

Proof. Directly from (3.1) and (3.3) we deduce:

g′ψ(y) =

∞∑
m=0

ψ(CPm)ym =
(
1 + q1y + q2y

2 + q3y
3 + q4y

4
)− 1

2 .

Using the Taylor expansion of (1+x)−
1
2 up to order 4, a straightforward calculation yields:

ψ(CP 1) = −1

2
q1 , (3.4)

ψ(CP 2) =
3

8
q21 −

1

2
q2 , (3.5)

ψ(CP 3) = − 5

16
q31 +

3

4
q1q2 −

1

2
q3 , (3.6)

ψ(CP 4) =
35

128
q41 −

15

16
q21q2 +

3

8
q22 +

3

4
q1q3 −

1

2
q4 . (3.7)

The Lemma now follows immediately. �

Let us consider an arbitrary genus φ : ΩU∗ ⊗ Q → R with logarithm gφ. In order to
calculate the value of φ on a stably almost complex manifold, one needs to determine
the Hirzebruch characteristic power series Qφ(x) of φ, see [7]. This power series equals
x/fφ(x), where fφ(x) is the formal inverse function of the logarithm gφ(x). Once we have
determined Qφ(x), we can compute the value of φ on a stably almost complex manifold
M with Chern roots w1, . . . , wm via

φ(M) =

∫
M
Qφ(w1) · . . . ·Qφ(wm) . (3.8)

As the top degree part of the above integrand is symmetric in the Chern roots, the right
hand side in (3.8) is a certain R-linear combination of Chern numbers which only depends
on Qφ and dim(M). This shows that the right hand side in (3.8) is well-defined. Let us
now compute the characteristic power series Qψ of ψ.

Lemma 3.2. The characteristic power series of the ψ-genus is given by Qψ(x) = x·hψ(x),
where hψ(x) = 1/x+O(1) is uniquely determined via

h′ψ(x)
2 = P (hψ(x)) where P (t) = t4 + q1t

3 + q2t
2 + q3t+ q4 . (3.9)

Proof. By definition, we have hψ(x) = 1/fψ(x) = 1/x + O(1), where fψ is the inverse
function of gψ defined in (3.3). This implies g′ψ(fψ(x)) = 1/f ′ψ(x). Using these identities,
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(3.9) follows from:

h′ψ(x)
2 =

(
−f ′ψ(x)
fψ(x)2

)2

=
hψ(x)

4

g′ψ (fψ(x))
2

= hψ(x)
4 ·
(
1 + q1fψ(x) + q2fψ(x)

2 + q3fψ(x)
3 + q4fψ(x)

4
)

= hψ(x)
4 + q1hψ(x)

3 + q2hψ(x)
2 + q3hψ(x) + q4 .

Since we require hψ(x) = 1/x+O(1), it follows inductively that this differential equation
determines the coefficients of hψ uniquely. �

If the qi’s are complex numbers such that the polynomial P in (3.9) has four distinct
roots, then the solution hψ of (3.9) is an elliptic function of degree two with respect to
some lattice L ⊆ C [19, pp. 452-455] and it will turn out in the proof of Theorem 4.1
that this is crucial for the geometric behavior of ψ. In [7, p. 194] the following explicit
description of this function, dedicated to R. Jung [9], is given:

Lemma 3.3. Let q1, q2, q3 and q4 be complex numbers such that the polynomial P in (3.9)
satisfies discr(P ) ̸= 0 and write P (t − q1/4) = t4 + q̃2t

2 + q̃3t + q̃4. Then there exists a
lattice L ⊆ C with lattice constants g2(L) = q̃4+ q̃

2
2/12 and g3(L) = q̃4q̃2/6− q̃23/16− q̃32/216

and a point z ∈ C \ L with ℘(z) = −q̃2/6 and ℘′(z) = q̃3/4, where ℘(x) = ℘(L;x) is the
Weierstraß ℘-function for the lattice L. Moreover

h(x) = −1

2
· ℘

′(x) + ℘′(z)

℘(x)− ℘(z)
− q1

4
(3.10)

is the unique solution of h′(x)2 = P (h(x)) with h(x) = 1/x+O(1).

We would now like to give a description of the elliptic function h(x) in (3.10) in terms
of the Weierstraß sigma function σ(L, x) for the period lattice L of h. This is an entire
function on C with zeros of order 1 at all lattice points, defined via (see [7, Appendix I])

σ(L, x) = x
∏
ω∈L′

(1− x

ω
)ex/ω+

1
2
(x/ω)2 ,

where we set L′ := L \ {0}. As with ω, also −ω runs through all points of L′, σ is an odd
function. The σ-function is not elliptic, but for every collection of points a1, . . . , an and

b1, . . . , bn in C with
∑

i ai =
∑

i bi, the function
∏
i
σ(x−ai)
σ(x−bi) is an elliptic function on C/L

with divisor
∑

i[ai]−
∑

i[bi].

Lemma 3.4. With the notation of Lemma 3.3, the function h(x) in (3.10) is given by:

h(x) =
σ(x− w)σ(x+ w − z)σ(−z)
σ(x)σ(x− z)σ(w − z)σ(−w)

, (3.11)

where σ(x) denotes the Weierstraß σ-function with respect to the lattice L and w ∈ C \L
is a point with 2 · ℘

′(w)+℘′(z)
℘(w)−℘(z) = −q1.

Proof. Let us first examine the divisor of the function h in (3.10): The Weierstraß ℘-
function for the lattice L is an even elliptic function of degree 2 and modulo L it has
exactly one pole at the origin of order 2. Therefore, its derivative is an odd elliptic
function of degree 3 which modulo L has exactly one pole at the origin of order 3. It
follows that h has a pole of order one at x = 0 and possibly poles at x = ±z, where z
is not a lattice point, since ℘(z) = −q̃2/6 is finite. Using the Taylor expansion of ℘(x)
around z and −z shows that h always has a pole of order one in z and if it also has a pole
in −z, then ℘′(z) vanishes. Since any zero z of ℘′ has the property that 2 · z is a lattice



DUALIZATION INVARIANCE AND A NEW COMPLEX ELLIPTIC GENUS 11

point, this already implies z ≡ −z (mod L). This shows that h has poles precisely at 0
and z, both of order one. Since the sum of the poles and zeros of an elliptic function is
always 0 mod L, the divisor of h equals

div(h) = [w] + [z − w]− [0]− [z] ,

where w ∈ C is a zero of h, i.e. it is a point with 2 · ℘
′(w)+℘′(z)
℘(w)−℘(z) = −q1.

Since z is the pole different from 0 and w is a zero of h, the points 0, w and z are pairwise
distinct modulo L. Therefore, σ(w − z)σ(−w) does not vanish and the right hand side of
(3.11) is a well-defined elliptic function on C/L, whose divisor coincides with the divisor
of h. Hence, both sides of (3.11) just differ by a multiplicative constant and because of
σ(x) = x+O(x2), we conclude

σ(x− w)σ(x+ w − z)σ(−z)
σ(x)σ(x− z)σ(w − z)σ(−w)

=
1

x
+O(1) ,

which means that the constant is one, as claimed in the Lemma. �

4. Dualization invariance in the complex bordism ring

In this section we turn to the main result of this paper, the determination of the following
ideal:

Definition 4.1. Let IU be the ideal generated by differences P(E)− P(E∗) in ΩU∗ , where
E → B is a complex vector bundle over a stably almost complex manifold B, E∗ is its dual
bundle and P(E) respectively P(E∗) denote the corresponding projectivizations.

Before we state our result, note that by Theorem 2.1 the bordism ring ΩU∗ ⊗ Z[1/2] is
a subring of the rational complex bordism ring and we may restrict the ψ-genus (which a
priori is only defined on ΩU∗ ⊗Q) to this subring.

Theorem 4.1. The ψ-genus restricted to ΩU∗ ⊗Z[1/2] induces the following isomorphism
of graded rings: (

ΩU∗ /IU
)
⊗ Z [1/2] ∼= Z [1/2] [q1, q2, q3, q4] .

By Theorem 2.1, the bordism ring ΩU∗ ⊗Z [1/2] is a polynomial ring Z [1/2] [α1, α2, α3, . . .]
with one generator αi in each even degree 2i. Therefore, one consequence of Theorem 4.1
is that one can choose these generators in such a way that

IU ⊗ Z [1/2] = ⟨α5, α6, . . .⟩ (4.1)

holds. In fact we will construct such generators explicitly in Proposition 4.1.
In order to state an equivalent formulation of Theorem 4.1, let us call a genus φ du-

alization invariant if for any complex vector bundle E over some stably almost complex
base

φ(P(E)) = φ(P(E∗))

holds. Abstractly, the universal dualization invariant genus on the complex bordism ring
with coefficients in Z[1/2] is nothing but the quotient map

ΩU∗ ⊗ Z [1/2] →
(
ΩU∗ /IU

)
⊗ Z [1/2] ,

and by Theorem 4.1 we can identify this quotient map with ψ. Moreover, Theorem 4.1
implies the nontrivial fact that ψ restricted to ΩU∗ ⊗ Z [1/2] is a surjective genus

ψ : ΩU∗ ⊗ Z [1/2] → Z [1/2] [q1, q2, q3, q4] ,

and we obtain the following equivalent reformulation of Theorem 4.1:

Theorem 4.2. The genus ψ : ΩU∗ ⊗ Z [1/2] → Z [1/2] [q1, q2, q3, q4] is the universal dual-
ization invariant genus on ΩU∗ ⊗ Z [1/2].
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Note that tensoring the isomorphism in Theorem 4.1 with the rationals shows that one
can replace the coefficient ring Z[1/2] in Theorems 4.1 and 4.2 by Q.

In the remainder of this section, the proof of Theorem 4.1 is carried out and to begin
with we explain how to deduce Theorem 4.1 from the following two Propositions, which
we will prove in subsections 4.1 and 4.2 respectively.

Proposition 4.1. There is a sequence of ring generators (αm)m≥1 for ΩU∗ ⊗ Z[1/2] such
that αm equals CPm for m ≤ 4 and αm ∈ IU for m ≥ 5.

Proposition 4.2. The ψ-genus is dualization invariant, i.e. it vanishes on IU .

Proof of Theorem 4.1. Consider the basis sequence α1, α2, . . . of Ω
U
∗ ⊗Z[1/2] of Proposition

4.1 and think of the ψ-genus restricted to ΩU∗ ⊗Z[1/2]. Since αm ∈ IU holds for all m ≥ 5,
Proposition 4.2 implies that ψ factors through the quotient Z[1/2][α1, α2, α3, α4]. As α1

up to α4 are just complex projective spaces in the respective dimensions, the concrete
calculations (3.4)-(3.7) yield that the induced map

Z[1/2][α1, α2, α3, α4] → Q[q1, q2, q3, q4]

is injective with image Z[1/2][q1, q2, q3, q4] and it remains to prove that the kernel of ψ
equals IU ⊗ Z[1/2]. The injectivity of the induced map shows

ker(ψ) = ⟨α5, α6, . . .⟩
which by construction of the αi’s is contained in IU ⊗ Z[1/2]. Conversely, by Proposition
4.2 the ideal IU ⊗ Z[1/2] is contained in the kernel of ψ. Altogether this proves that
ker(ψ) = IU ⊗ Z[1/2] holds, as desired. �
4.1. A special basis sequence.

Proof of Proposition 4.1. By Theorem 2.1 a sequence (αm)m≥1 with αm ∈ ΩU2m ⊗ Z[1/2]
is a basis sequence of ΩU∗ ⊗ Z[1/2] if and only if the following holds:

sm(αm) =

{
±p · 2a for some a, if m+ 1 is a power of the odd prime p,

±2a for some a, if m+ 1 is not a power of an odd prime.

Because of sm(CPm) = m+ 1, we may choose αm = CPm for m = 1, 2, 3, 4.
We define gcd(IUm) to be the greatest common odd divisor of all Thom-Milnor numbers

sm(P(E))−sm(P(E∗)), where E → B is a holomorphic vector bundle from Example 2.1 or
2.2 such that P(E) has complex dimensionm. Then, in order to show that a basis sequence
with the desired property exists, it is enough to show for m ≥ 5 that gcd(IUm) equals 1 if
m+1 is not a power of an odd prime and that it is equal to p if m+1 is a power of the odd
prime p. The difference P(E) − P(E∗) only has a chance to be nontrivial if the complex
dimension m of P(E) is bigger then the complex dimension n of the base manifold and
in that case sm(P(E)) = (−1)nsm(P(E∗)) holds by Lemma 2.3. This shows that gcd(IUm)
equals the greatest common odd divisor of all Thom-Milnor numbers sm(P(E)), where
n < m is odd and E is taken from Example 2.1 or 2.2. Using the calculations of Example
2.2, this shows the following:

Claim 4.1. The number gcd(IUm) defined above is an odd divisor of

(−1)i1
(
m− 1

i1

)
+ (−1)i2

(
m− 1

i2

)
+ (−1)i3

(
m− 1

i3

)
+m− n− 2 , (4.2)

where n = i1 + i2 + i3 ≤ m− 2 is odd.

For m ≥ 5 we may choose i1 = i2 = i3 = 1 in this claim and it follows that gcd(IUm) is
an odd divisor of −3(m− 1) +m− 5 = −2(m+ 1). This implies that

gcd(IUm) divides m+ 1 for m ≥ 5 . (4.3)
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Let us first consider the case of an odd integer m ≥ 5. Using the calculation of Example
2.1 with i1 = 0 and n = i2 = m − 2 (which is odd), it follows that gcd(IUm) is an odd
divisor of

1−
(
m− 1

m− 2

)
+ (m− (m− 2)− 1) = −m+ 3 .

Together with (4.3) this shows gcd(IUm) = 1, as desired.
It remains to deal with the case of an even integer m ≥ 5. For any natural number

1 ≤ i ≤ m/2 − 2 consider the two integers in (4.2), where (i1, i2, i3) is one of the triples
(i, i, n− 2i) or (i− 1, i+1, n− 2i) and n = m− 3 holds. By Claim 4.1, subtraction of both
integers and changing the sign of the result if necessary shows that gcd(IUm) divides(

m− 1

i

)
+

(
m− 1

i

)
+

(
m− 1

i− 1

)
+

(
m− 1

i+ 1

)
.

Then using the formula
(
n−1
k−1

)
+
(
n−1
k

)
=
(
n
k

)
twice shows:

gcd(IUm) divides

(
m+ 1

i+ 1

)
for all 1 ≤ i ≤ m/2− 2 . (4.4)

Now suppose that p is an odd prime divisor of gcd(IUm). Then, by (4.3), we may write
m + 1 = ps · r for some s ≥ 1 and an integer r not divisible by p. Suppose r ̸= 1. Then,
since m is even, p and r are both ≥ 3. This implies ps − 1 ≤ m/2 − 2, so that (4.4)

yields
(
ps·r
ps

)
≡ 0 (mod p). This is a contradiction to

(
ps·r
ps

)
≡ r (mod p), which follows by

comparing the coefficient of Xps in the mod p reduction of the following polynomial:

(1 +X)p
s·r ≡ (1 +Xps)r (mod p) .

Hence, m+1 = ps is a power of p and it remains to prove that p2 does not divide gcd(IUm).
If s = 1, then this follows from (4.3). If s ≥ 2, then (4.4) implies that gcd(IUm) divides( ps

ps−1

)
. For 0 < l < ps−1, the numerator of the reduced fraction ps−l

l is not divisible by p.

Therefore, (
ps

ps−1

)
=

ps

ps−1
· p

s − 1

1
· · ·

ps −
(
ps−1 − 1

)
ps−1 − 1

is not divisible by p2. This finishes the proof of Proposition 4.1. �

4.2. The values of genera on projectivizations. In this subsection we prove Proposi-
tion 4.2. The proof will make use of a similar strategy which S. Ochanine used in order to
show that his elliptic genus φOc on the oriented bordism ring vanishes on projectivizations
of complex vector bundles of even rank, see [13]. We first need the following Lemma:

Lemma 4.1. Let φ : ΩU∗ ⊗ Q → R be a genus whose characteristic power series Qφ(x)
is written in the form x · hφ(x). Consider a complex vector bundle E with Chern roots
x1, . . . , xk over a stably almost complex manifold B with Chern roots w1, . . . , wn. Define

Hφ(x1, . . . , xk) :=
∑k

i=1

∏
j ̸=i hφ(xj − xi). Then the following holds:

φ(P(E)) =

∫
B
Qφ(w1) · . . . ·Qφ(wn) ·Hφ(x1, . . . , xk) .

For genera on the oriented bordism ring S. Ochanine showed this Lemma in [13] in the
proof of his Proposition 6, see also [7, p. 51]. The same proof works for Lemma 4.1:

Proof of Lemma 4.1. By the calculation of the total Chern class of P(E) in (2.5), we
obtain:

φ(P(E)) =

∫
P(E)

Qφ(w1) · . . . ·Qφ(wn) ·Qφ(y + x1) · . . . ·Qφ(y + xk) , (4.5)
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where y denotes the first Chern class of the dual bundle of the tautological line bundle
over P(E). Truncating the power series Qφ(x) above degree dimR(P(E)) does not change
the value φ(P(E)) and so we may assume that Qφ(x) is a polynomial in x.

In the following paragraph, we regard x1, . . . , xk and y as formal variables and work

in the polynomial ring R[x1, . . . , xk][y]. Since
∏k
i=1(y + xi) is a normalized polynomial

in y, symmetric in the xi’s, division with remainder yields unique polynomials F and G,
symmetric in the xi’s, such that Qφ(y + x1) · . . . ·Qφ(y + xk) equals

F (x1, . . . , xk, y) +

(
k∏
i=1

(y + xi)

)
·G(x1, . . . , xk, y) , (4.6)

where F has degree < k in y. Using Qφ(0) = 1, this yields for i = 1, . . . , k:

F (x1, . . . , xk,−xi) =
∏
j ̸=i

Qφ(xj − xi) .

We are now in the situation of having a polynomial of degree < k and knowing the value
of this polynomial on k different points −x1, . . . ,−xk. This determines F uniquely:

F (x1, . . . , xk, y) =
k∑
i=1

∏
j ̸=i

Qφ(xj − xi)
xj + y

xj − xi
. (4.7)

Note that it in particular follows that the right hand side of the above equation, which a
priori is an element in R(x1, . . . , xk)[y], in fact lies in R[x1, . . . , xk][y].

At this point we return to the original meaning of x1, . . . , xk and y in the cohomology
ring H∗(P(E)) and the equations (4.7), as well as (4.6), still hold since they hold for formal
variables. Because of the relation

k∏
i=1

(y + xi) = yk + c1(E)yk−1 + . . .+ ck(E) = 0

in H∗(P(E)), (4.6) yields in (4.5):

φ(P(E)) =

∫
P(E)

Qφ(w1) · . . . ·Qφ(wn) · F (x1, . . . , xk, y) . (4.8)

Since Qφ(w1) · . . . ·Qφ(wn) and every symmetric expression in x1, . . . , xk are cohomology

classes of the basis B, only terms containing yl for some l ≥ k − 1 give a nontrivial
contribution to the above integral. Furthermore, because F is a polynomial of degree < k
and yk−1 integrated over each fiber of π : P(E) → B gives 1, we get:

φ(P(E)) =

∫
B
Qφ(w1) · . . . ·Qφ(wn) ·

[
coefficient of yk−1 in F (x1, . . . , xk, y)

]
.

Now equation (4.7) shows that the coefficient of yk−1 in F equals Hφ(x1, . . . xk) and we
are done. �
Proof of Proposition 4.2. Assume we have a complex vector bundle E over a stably almost
complex manifold B. Denote the Chern roots of E by x1, . . . , xk and those of B by
w1, . . . , wn. It suffices to prove ψ(P(E)) = ψ(P(E∗)) and because of Lemma 4.1 and
c(E∗) = (1− x1) · . . . · (1− xk) it is enough to show that the expression

Hψ(x1, . . . , xk)−Hψ(−x1, . . . ,−xk) (4.9)

vanishes, where Hψ(x1, . . . , xk) is defined to be
∑k

i=1

∏
j ̸=i hψ(xj − xi). In (4.9) the xi’s

are (formal) cohomology classes, but it is enough to prove this identity for formal variables
x1, . . . , xk. Lemma 3.2 characterizes hψ as the unique solution of (3.9) and it follows from
this description that the coefficients of hψ are homogeneous polynomials in the variables
q1, . . . , q4. This implies that in equation (4.9) each coefficient of an monomial in the xi’s
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is a polynomial expression in q1, q2, q3 and q4. To show that all these expressions vanish
it is enough to see that they vanish for all (q1, q2, q3, q4) in some open, nonempty subset
U ⊆ C4. We choose

U :=
{
(q1, q2, q3, q4) | discr(t4 + q1t

3 + q2t
2 + q3t+ q4) ̸= 0

}
and fix some (q1, q2, q3, q4) ∈ U . Now Lemmata 3.3 and 3.4 apply, i.e. there is a lattice
L ⊆ C such that hψ(x) is an elliptic function, explicitly given by

hψ(x) =
σ(x− w)σ(x+ w − z)σ(−z)
σ(x)σ(x− z)σ(w − z)σ(−w)

,

where w, z ∈ C \ L are two modulo L distinct points. The fact that the Weierstraß σ-
function σ(x) = x+O(x2) is an odd, entire function on C with zeros precisely at all lattice
points of L, yields the following three properties:

(1) div(hψ) = [w] + [z − w]− [0]− [z] ,
(2) res0(hψ) = 1 and resz(hψ) = −1 ,
(3) hψ(x+ z) = hψ(−x) .

To show that the expression (4.9) vanishes for formal variables x1, . . . , xk, it is enough
to show this for all (x1, . . . , xk) in some dense subset V ⊆ Ck. We choose V to be the
subset consisting of all points (x1, . . . , xk) ∈ Ck such that for all i ̸= j the elliptic functions
hψ(xi + x) and hψ(xj + x) in x have no poles in common. Fixing such a tuple, we define
the following elliptic function on C/L:

h̃ψ(x) :=

k∏
j=1

hψ(xj + x) .

From the choice of (x1, . . . , xk) it follows that h̃ψ has poles precisely of order one at the
points −xi and −xi + z for i = 1, . . . , k. According to one of Liouville’s theorems the
sum of the residues of an elliptic function vanishes. Using the properties 1-3 of hψ stated
above, this yields:

0 =
∑
x∈C/L

resx(h̃ψ)

=

k∑
i=1

∏
j ̸=i

hψ(xj − xi)−
k∑
i=1

∏
j ̸=i

hψ(xj − xi + z)

=

k∑
i=1

∏
j ̸=i

hψ(xj − xi)−
k∑
i=1

∏
j ̸=i

hψ(−xj + xi)

= Hψ(x1, . . . , xk)−Hψ(−x1, . . . ,−xk) .

Thus (4.9) vanishes, which completes the proof of Proposition 4.2. �

5. A description of ψ in terms of multiplicativity

We defined a new elliptic genus, the so called ψ-genus in section 3 and showed in section
4 that this is the universal dualization invariant genus for complex manifolds. However,
in the past it turned out that all elliptic genera, known so far, can be characterized by
some universal multiplicativity property. Namely, Ochanine’s elliptic genus is the universal
multiplicative genus for spin manifolds and Krichever-Höhn’s elliptic genus is the universal
multiplicative genus for SU -manifolds. It is therefore natural to ask whether there is also a
description of ψ in terms of multiplicativity. This section’s theorem answers that question
positively:
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Theorem 5.1. The ψ-genus is the universal genus on the rational complex bordism ring
which is multiplicative in projectivizations P(E) of complex vector bundles E → B over
Calabi-Yau 3-folds B.

Proof. Let us define the ideal I in ΩU∗ to be generated by differences

P(E)−B × CP k−1 ,

where E → B is a complex vector bundle of rank k > 0 over some Calabi-Yau 3-fold B
(i.e. B is a compact Kähler manifold with vanishing first Chern class). Since we already
know that ψ is surjective (Lemma 3.1), it remains to prove that the kernel of ψ coincides
with I ⊗Q.

Claim 5.1. There is a sequence of ring generators γ1, γ2, . . . of Ω
U
∗ ⊗Q, such that γm =

CPm holds for all m ≤ 4 and γm ∈ I for all m ≥ 5.

Proof. It is clear that for m ≤ 4 the element γm := CPm is a generator. In order to
construct γm for m ≥ 5, we pick some elliptic curve C and consider the Calabi-Yau 3-fold
B := C3. For some point p on C we consider the line bundle O(p) → C, associated to the
divisor [p]. Let us denote the projection of B onto its factors by π1, π2 and π3, and consider
the complex line bundle L := π∗1O(p)⊗ π∗2O(p)⊗ π∗3O(p). Since c1(O(p)) integrated over
the elliptic curve C equals the degree of the divisor [p], which is 1, we obtain:∫

B
c1(L)

3 =

∫
B
(π∗1c1(O(p)) + π∗2c1(O(p)) + π∗3c1(O(p)))3

=

∫
B
6 · π∗1c1(O(p)) · π∗2c1(O(p)) · π∗3c1(O(p)) = 6

Let us now define for every m ≥ 5 the vector bundle Em := L ⊕ Cm−3 → B. Then the
Chern roots of Em are: x1 = c1(L) and xl = 0 for l ≥ 2. Therefore, in the formula for
sm(P(Em)) in Lemma 2.3 only the summand with r1 = 3 and rl = 0 for l ≥ 2 survives.
This yields:

sm(P(Em)) = −
(
−
(
m− 1

3

)
+ (m− 3)

)
· 6 = (m− 4)(m− 3)(m+ 1) .

Since the Thom-Milnor number of a proper product always vanishes, this implies that for
all m ≥ 5 the element γm := P(Em)−B ×CPm−3 is a generator of ΩU∗ ⊗Q in degree 2m.
This completes the proof of Claim 5.1. �

Claim 5.2. The genus ψ : ΩU∗ ⊗Q → Q[q1, q2, q3, q4] vanishes on I ⊗Q.

Proof. Let E → B be some complex vector bundle of rank k with Chern roots x1, . . . , xk
over a Calabi-Yau 3-fold B with Chern roots w1, w2, w3. It suffices to prove

ψ(P(E)) = ψ(B) · ψ(CP k−1) .

Lemma 4.1 yields

ψ(P(E)) =

∫
B
Qψ(w1)Qψ(w2)Qψ(w3) ·Hψ(x1, . . . , xk) , (5.1)

where only the degree dimR(B) = 6 part is integrated.
We have shown in the proof of Proposition 4.2 that the expression in (4.9):

Hψ(x1, . . . , xk)−Hψ(−x1, . . . ,−xk) ,

vanishes for all xi. This implies that the even cohomology classHψ(x1, . . . , xk) is zero in all
degrees ≡ 2 (mod 4). Therefore, only the degree 0 and degree 4 part ofHψ(x1, . . . , xk) give
a nontrivial contribution to (5.1). However, the degree 2 part of Qψ(w1)Qψ(w2)Qψ(w3) is
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some multiple of c1(B), which vanishes by assumption. This shows that only the degree 0
part of Hψ(x1, . . . , xk) contributes non trivially in (5.1). This implies:

ψ(P(E)) =

∫
B
Qψ(w1)Qψ(w2)Qψ(w3) ·Hψ(0, . . . , 0) .

But Lemma 4.1 shows that the right hand side of the above equation equals ψ(P(Ck)) and
Claim 5.2 follows, since the projectivization of the trivial bundle Ck is nothing but the
product B × CP k−1. �

It now follows from Claim 5.1 and 5.2 that ψ induces a map

Q[γ1, . . . , γ4] → Q[q1, . . . , q4] .

By Lemma 3.1, this map is an isomorphism, since γm = CPm holds for m ≤ 4. The
injectivity of this map implies

ker(ψ) = ⟨γ5, γ6, . . .⟩ ⊆ I ⊗Q . (5.2)

Together with Claim 5.2 this shows ker(ψ) = I ⊗ Q, which finishes the proof of the
theorem. �

6. Dualization invariant Chern numbers

By Theorem 2.1, the Q-linear combinations of Chern numbers in complex dimension
n form the dual space of ΩU2n ⊗ Q. In this section we use Theorem 4.1 in order to study
those linear combinations of Chern numbers which are dualization invariant, i.e. for all
complex vector bundles E over some stably almost complex base the value of this linear
combination on P(E) coincides with the value on P(E∗). Let us therefore consider the
ideal IU (Definition 4.1) generated by differences P(E) − P(E∗) and denote its degree
2n part by IU2n. Then the Q-vector space of dualization invariant linear combinations of
Chern numbers in complex dimension n is isomorphic to the dual space of

(
ΩU2n/IU2n

)
⊗Q.

By Theorem 4.1, this quotient is isomorphic to the dual space of the degree 2n part of
Q[q1, q2, q3, q4], where qi has degree 2i. The isomorphism is induced by the ψ-genus which
can uniquely be written in the form

ψ =
∑

i1,...,i4≥0

λi1,i2,i3,i4 · q
i1
1 q

i2
2 q

i3
3 q

i4
4 ,

where the λi1,i2,i3,i4 ’s are linear combinations of Chern numbers in complex dimension

i1 + 2i2 + 3i3 + 4i4

and we observe that these coefficients of ψ form a basis of the vector space of dualization
invariant linear combinations of Chern numbers.

In the remaining section we want to derive some concrete examples of pure Chern
numbers which are dualization invariant. By the above discussion, a Chern number in
complex dimension n is dualization invariant if and only if it vanishes on IU2n ⊗ Q. By
(4.1), the graded ideal IU∗ ⊗ Q is generated by one element in each even degree ≥ 10.
Therefore, in complex dimension ≤ 4 every Chern number is dualization invariant. As
an example in complex dimension 5, let us consider the Chern numbers of the projective
tangent and cotangent bundle of CP 3 in Table 1, calculated by D. Kotschick and S. Terzić
in [10].

Since IU10 ⊗ Q is one dimensional, Table 1 implies that in complex dimension 5 every
difference P(E)−P(E∗) is a multiple of P(TCP 3)−P(T ∗CP 3). Thus, the Chern numbers
c5, c1c4, c

2
1c3 and c2c3 are dualization invariant. This is true in a greater generality:

Proposition 6.1. In complex dimension n, the Chern numbers cn, c1cn−1, c
2
1cn−2 and

c2cn−2 are dualization invariant.
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c51 c31c2 c1c
2
2 c21c3 c2c3 c1c4 c5

P(TCP 3) 4500 2148 1028 612 292 108 12

P(T ∗CP 3) 4860 2268 1068 612 292 108 12

Table 1. The Chern numbers of P(TCP 3) and P(T ∗CP 3), [10].

Proof. We need to prove that the above Chern numbers vanish on the degree 2n part of
IU ⊗Q = ker(ψ). We have seen in (5.2) that

ker(ψ) = ⟨γ5, γ6, . . .⟩

holds. Here γm is a difference P(Em) − B × CPm−3, where B = C3 is a triple product
of an elliptic curve C and Em is a holomorphic rank m − 2 bundle over B. In ΩU∗ the
manifold B is zero, since its tangent bundle is complex trivial. Hence, we may think of
γm as being equal to P(Em) and it suffices to prove that for m ≥ 5 the Chern numbers
mentioned in the Proposition vanish on any productM := P(Em)×M ′, where M ′ is some
stably almost complex manifold in real dimension 2(n−m). By construction, M is a fiber
bundle π : M → B with fiber CPm−3 ×M ′. Therefore, the tangent bundle of M splits
into π∗TB ⊕ Tπ, where Tπ denotes the tangent bundle along the fibers. Note that π∗TB
is complex trivial, which implies that the total Chern class of M equals c(Tπ). However,
the complex rank of Tπ equals n − 3, such that ci(M) = 0 follows for i > n − 3 and we
are done. �

7. Relations between P(E), P(E∗) and B × CP k

In [6] F. Hirzebruch showed that for the projective tangent and cotangent bundle of a
Calabi-Yau 3-fold B, the following identity holds in ΩU∗ :

P(TB) + P(T ∗B) = 2 ·B × CP 2 .

This observation motivates the question of detecting universal relations between the com-
plex bordism classes P(E), P(E∗) and B×CP k. More precisely, we would like to determine
the ideal defined as follows:

Definition 7.1. Let (a, b, c) be a nontrivial triple of integers. We then define IU(a,b,c) to be

the ideal in ΩU∗ which is generated by linear combinations

a · P(E) + b · P(E∗) + c ·B × CP k , (7.1)

where E and its dual bundle E∗ are complex rank k + 1 vector bundles over some stably
almost complex base B.

Consider (7.1) and choose the base B to be a point. This shows that for all k ≥ 0 we
have (a+ b+ c) · CP k ∈ IU(a,b,c). For a+ b+ c ̸= 0 this implies IU(a,b,c) ⊗Q = ΩU∗ ⊗Q. We

will therefore restrict ourselves to the nontrivial case where a+ b+ c = 0 holds.
Note that by definition, the ideal IU from Definition 4.1 is nothing but IU(1,−1,0). There-

fore, the question of determining the ideal IU(a,b,c) is a generalization of the discussion in

section 4. Before we explain the result, we need the definition of the χy-genus. For a
stably almost complex manifold M with Chern roots x1, . . . , xn it is given by

χy(M) =

∫
M

(
n∏
i=1

xi ·
1 + y · e−xi
1− e−xi

)
· tn , (7.2)

where y has weight 0 and t is a variable of weight 2 which ensures that χy is a graded Q-
algebra homomorphism toQ[y, t], see [7, p. 61]. It turns out that the images s1 := χy(CP 1)
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and s2 := χy(CP 2) are algebraically independent in Q[y, t] and in fact generate the im-
age of the χy-genus rationally. Therefore, the χy-genus can be regarded as a surjective
homomorphism of graded Q-algebras:

χy : Ω
U
∗ ⊗Q → Q[s1, s2] , (7.3)

where s1 = χy(CP 1) and s2 = χy(CP 2) are formal variables in degrees 2 and 4.
In this section, instead of the explicit definition (7.2) of χy, we will mainly use the fact

that this genus is the universal one which is multiplicative in fiber bundles of stably almost
complex manifolds with structure group a compact connected Lie group, see [8, p. 64].
Since the projectivization P(E) → B of a complex rank k vector bundle has structure
group PU(k,C), this result can be applied to projectivizations over stably almost complex
manifolds B:

χy(P(E)) = χy(CP k−1) · χy(B) .

This implies that χy vanishes on IU(a,b,c) whenever a+ b+ c = 0 holds.

In order to state this section’s theorem, we denote the localization Z[1/n] of Z at a
nontrivial element n ∈ Z by Zn.

Theorem 7.1. Let (a, b, c) be a nontrivial triple of integers with a+ b+ c = 0.

(1) For c = 0 the ψ-genus induces an isomorphism(
ΩU∗ /IU(a,−a,0)

)
⊗ Z2a

∼= Z2a[q1, q2, q3, q4] .

(2) For c ̸= 0 the χy-genus induces an isomorphism(
ΩU∗ /IU(a,b,c)

)
⊗ Za+b ∼= Za+b[s1, s2] .

Proof. If c = 0, then a = −b ̸= 0, such that IU(a,b,c) = a · IU follows from the definitions

and the first statement of Theorem 7.1 is nothing but tensoring Theorem 4.1 with Z2a.
To prove the second statement, fix some triple (a, b, c) with a+ b+ c = 0 and c ̸= 0.

Claim 7.1. There is a sequence of ring generators ϵ1, ϵ2, . . . of ΩU∗ ⊗ Za+b, such that
ϵm ∈ IU(a,b,c) holds for all m ≥ 3.

Proof. Because of sm(CPm) = m+1, we may choose ϵm = CPm for m = 1, 2 by Theorem
2.1. For m > 2 we will construct ϵm to be a certain linear combination of elements
a ·P(E)+b ·P(E∗)+c ·B×CP k, where B is a manifold in even complex dimension n < m.
Since B×CP k is a proper product, its Thom-Milnor number vanishes. Moreover, Lemma
2.3 yields sm(P(E)) = sm(P(E∗)) and we obtain:

sm

(
a · P(E) + b · P(E∗) + c ·B × CP k

)
= (a+ b) · sm(P(E)) .

We define gcd(m) to be the greatest common divisor of all Thom-Milnor numbers sm(P(E)),
where P(E) is a projectivization in real dimension 2m and the base B is a manifold in even
complex dimension n < m. Then by Theorem 2.1, in order to show that a basis sequence
with the desired property exists, it is enough to show that for m ≥ 3 the integer gcd(m)
equals 1 if m+ 1 is not a prime power and that it is equal to p if m+ 1 is a power of the
prime p. By the calculations of Example 2.1 in subsection 2.3, we obtain:

Claim 7.2. The number gcd(m), defined above, is a divisor of

(−1)i1
(
m− 1

i1

)
+ (−1)i2

(
m− 1

i2

)
+m− n− 1 , (7.4)

where n = i1 + i2 ≤ m− 1 is even.
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As m ≥ 3, we may choose i1 = i2 = 1 in Claim 7.2 so that the integer in (7.4) equals
−2(m− 1) +m− 3 = −(m+ 1) and we see that

gcd(m) divides m+ 1 . (7.5)

For any natural number 1 ≤ i < m/2 consider the two integers in (7.4), where (i1, i2) is
one of the tuples (i, i) or (i− 1, i + 1) and n = 2i holds. Then by Claim 7.2, subtraction
of both integers and multiplying the result with (−1)i shows that gcd(m) is a divisor of(

m− 1

i

)
+

(
m− 1

i

)
+

(
m− 1

i− 1

)
+

(
m− 1

i+ 1

)
.

Using the formula
(
n−1
k−1

)
+
(
n−1
k

)
=
(
n
k

)
twice shows that

gcd(m) divides

(
m+ 1

i+ 1

)
for all 1 ≤ i < m/2 . (7.6)

Now (7.5) and (7.6) together with the symmetry of the binomial coefficients show that

gcd(m) is a divisor of
(
m+1
j

)
for all 1 ≤ j ≤ m. Suppose that p is a prime divisor of gcd(m)

and write m+ 1 = ps · r for some integer r not divisible by p. Then
(
ps·r
ps

)
is not divisible

by p, so that r = 1 follows. Moreover,
( ps

ps−1

)
is not divisible by p2, which finally shows

that gcd(m) = p holds, as desired. This completes the proof of Claim 7.1. �
Since a+b+c = 0 holds, it follows from the multiplicativity of the χy-genus in CP k-fiber

bundles that it vanishes on IU(a,b,c) ⊗ Za+b. Therefore, it follows from Claim 7.1 that χy
induces a map on the quotient

Za+b[ϵ1, ϵ2] → Za+b[s1, s2] .
This is an isomorphism, since χy maps ϵ1 = CP 1 and ϵ2 = CP 2 to s1 and s2. Thus:
ker(χy) = ⟨ϵ3, ϵ4, . . .⟩ ⊆ IU(a,b,c) ⊗ Za+b. Since χy vanishes on IU(a,b,c) ⊗ Za+b, we obtain

ker(χy) = IU(a,b,c) ⊗ Za+b, so that the second statement of Theorem 7.1 follows. �

In the introduction we defined the ideal MU in ΩU∗ to be generated by differences
E − B · F , where F → E → B ranges over all fiber bundles of stably almost complex
manifolds with structure group a compact connected Lie group. As explained there, it was
shown in the 1970’s that the χy-genus induces an isomorphism

(
ΩU∗ /MU

)
⊗Q ∼= Q[s1, s2].

We are now able to show that this is also true with integral coefficients:

Corollary 7.1. The χy-genus induces the following isomorphism of graded rings:

ΩU∗ /MU ∼= Z[s1, s2] .

Proof. Note that the complex bordism ring is torsion free and therefore a subring of the
rational one. Thus, since χy vanishes on MU ⊗ Q, it also vanishes on MU . Let us now
think of χy restricted to ΩU∗ . Then, choosing (a, b, c) = (1, 0,−1) in Theorem 7.1 shows
that the χy-genus induces an isomorphism

ΩU∗ /IU(1,0,−1)
∼= Z[s1, s2] .

This shows that the kernel of the χy-genus equals IU(1,0,−1), which by definition is a subideal

of MU . Therefore, since χy vanishes on MU , we deduce IU(1,0,−1) = MU which proves the

Corollary. �
Remark 7.1. Corollary 7.1 says that on ΩU∗ the χy-genus is a surjective ring homomor-
phism χy : ΩU∗ → Z[s1, s2] with kernel MU . This shows that a remark of B. Totaro in
[18, p. 777] in which it is claimed that the image of the χy-genus on ΩU∗ is not finitely
generated, is misstated. What was meant there was the twisted χy-genus, rather than the
usual one.
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8. Krichever-Höhn’s complex elliptic genus

For some integral Q-algebra R and a quadruple q⃗ ∈ R4, the ψ-genus of Definition 3.1
induces an R-valued genus ψ(q⃗) via the logarithm

gψ(q⃗)(y) =

∫ y

0

dt√
1 + q1t+ q2t2 + q3t3 + q4t4

.

Analyzing the Taylor expansion of the above integrand shows that gψ(q⃗) is an odd power se-
ries if and only if q1 = q3 = 0 holds. This means that ψ(q⃗) is well defined for oriented man-
ifolds if and only if q1 and q3 vanish. If in this case additionally q2 and q4 are algebraically
independent, then ψ(q⃗) is equivalent to Ochanine’s elliptic genus φOc : Ω

SO
∗ ⊗Q → Q[δ, ϵ],

see (3.2). In this sense we may call our ψ-genus a complex version of Ochanine’s elliptic
genus φOc. Surprisingly, Krichever-Höhn’s complex elliptic genus φKH , studied in [8], [11]
and [18], is also a complex version of φOc and this section’s aim is to compare ψ with
φKH .

Krichever-Höhn’s complex elliptic genus is a graded Q-algebra homomorphism

φKH : ΩU∗ ⊗Q → Q[p1, p2, p3, p4] ,

where p1 up to p4 are formal variables in degrees 2, 4, 6 and 8. Its characteristic
power series QKH(x) = x · hKH(x) is uniquely determined by the condition that r(x) :=
−h′KH(x)/hKH(x) satisfies, see [8]:

r′(x)2 = r(x)4 + p1r(x)
3 + p2r(x)

2 + p3r(x) + p4 . (8.1)

For an arbitrary quadruple p⃗ = (p1, p2, p3, p4) of an integral Q-algebra R, we denote the
associated genus by φKH(p⃗). G. Höhn showed that φKH(p⃗) is equivalent to, see [8, p. 39,
44 and 64]:

(1) Ochanine’s elliptic genus if and only if p1, p3 vanish and p2, p4 are algebraically
independent.

(2) the χy-genus if and only if p3, p4 vanish and p1, p2 are algebraically independent.

Therefore, the χy-genus and Ochanine’s elliptic genus φOc are genera which factor through
φKH . This is also true for ψ: By definition of ψ it is clear that φOc factors through ψ.
Moreover, since the χy-genus is multiplicative in projectivizations P(E) of complex vector
bundles E , it is dualization invariant and therefore factors through ψ by Theorem 4.2.

This section’s result is that φOc and χy are basically the only genera which factor
through both, φKH as well as ψ:

Proposition 8.1. Let R be an integral Q-algebra and φ an R-valued genus which factors
through both ψ and φKH . Then φ already factors through χy or φOc.

An immediate consequence of this statement is the following:

Corollary 8.1. The genera ψ and φKH are genuinely different.

Before we prove the Proposition, we need to calculate the values of φKH on some
complex projective spaces.

Lemma 8.1. For Krichever-Höhn’s complex elliptic genus φKH , the following holds:

φKH(CP 1) =
1

2
p1 ,

φKH(CP 2) =
3

16
p21 +

1

4
p2 ,

φKH(CP 3) =
1

48

(
3p31 + 12p1p2 + 8p3

)
,

φKH(CP 4) =
1

768

(
15p41 + 120p21p2 + 48p22 + 176p1p3 + 96p4

)
.
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Proof. From [8] we deduce the following explicit formulas for the first four coefficients of
the characteristic power series QKH(x) = 1 + b1x+ b2x

2 + . . . :

b1 =
1

4
p1 , b2 =

1

12
p2 , b3 =

1

24
p3 , b4 =

1

720

(
−p22 + 3p1p3 + 18p4

)
.

The total Chern class of CPn equals (1+x)n+1, where x ∈ H2(CPn) is a positive generator

of the cohomology ring. Therefore, φKH(CPn) equals the coefficient of xn in (QKH(x))
n+1.

Now an elementary calculation yields the stated result. �

Proof of Proposition 8.1. The assumptions in the Proposition precisely mean that there
are quadruples q⃗ = (q1, q2, q3, q4) and p⃗ = (p1, p2, p3, p4) in R, such that the associated
genera ψ(q⃗) and φKH(p⃗) both coincide with the genus φ. At the beginning of this section
we explained that φKH(p⃗) factorizes through χy resp. φOc if and only if p3 = 0 and p4 = 0
resp. p1 = 0 and p3 = 0 holds. Therefore, it remains to show that the pi’s satisfy one of
these two conditions.

First of all the values of ψ(q⃗) and φKH(p⃗) on the complex projective spaces in dimensions
≤ 4 must coincide, such that (3.4)-(3.7) together with Lemma 8.1 yield a concrete relation
between the pi’s and qi’s:

q1 = −p1 ,

q2 =
1

8

(
3p21 − 4p2

)
,

q3 =
1

48

(
−3p31 + 12p1p2 − 16p3

)
,

q4 =
1

768

(
3p41 − 24p21p2 + 32p1p3 + 48p22 − 192p4

)
.

Moreover, the characteristic power series Qψ(x) = x · hψ(x) and QKH(x) = x · hKH(x)
must coincide and we may write h(x) := hψ(x) = hKH(x). Hence, r(x) := −h′(x)/h(x) is
a solution of (8.1), where in addition h(x) is a solution of (3.9):

h′(x)2 = h(x)4 + q1h(x)
3 + q2h(x)

2 + q3h(x) + q4 . (8.2)

This equation yields for r(x) = −h′(x)/h(x):

r(x)2 = h(x)2 + q1h(x) + q2 + q3h(x)
−1 + q4h(x)

−2 . (8.3)

We would like to put this into the right hand side of (8.1). Therefore, a little manipulation
of (8.1) is necessary, since we need to get rid of all odd powers of r(x) in (8.1). Indeed, we
will use that (8.1) implies:(

r′(x)2 − r(x)4 − p2r(x)
2 − p4

)2
=
(
p1r(x)

3 + p3r(x)
)2

. (8.4)

Moreover:

r′(x) =

(
h′(x)

h(x)

)′
=
h(x)h′′(x)− h′(x)2

h(x)2
.

Using (8.2), we can replace h′(x)2 as well as h′′(x) in the above equation by a polynomial
expression in h(x). If we put this result for r′(x) together with (8.3) into (8.4), we get

a relation of the form
∑8

j=−8 dj · h(x)j = 0, where the coefficients dj are polynomials in

p1, . . . , p4. Because of h(x) = 1/x + O(1), it follows that all these coefficients dj must
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vanish. An elementary but tedious calculation yields for example:

d−4 =
1

144
p43 + p1 · (some polynomial in p1, p2, p3 and p4) ,

d1 =
1

24
p1
(
4p23 − 18p1p2p3 + 27p21p4

)
,

d2 =
1

4
p1 (2p2p3 − 3p1p4) .

We now distinguish the cases p1 ̸= 0 and p1 = 0 and use that the pi’s are elements in an
integralQ-algebraR. First of all note that the above calculations imply d1+

3
2p1d2 =

1
6p1p

2
3.

If p1 ̸= 0, the vanishing of d1 and d2 therefore imply p3 = 0. Then d2 = 0 shows that also
p4 vanishes, i.e. φ factors through φOc. If p1 = 0, then the vanishing of d−4 immediately
yields p3 = 0, i.e. φ factors through φOc. �

9. The q-expansion of ψ

In the past it turned out that the q-expansion of modular forms gives interesting insight
into the geometric behaviour of elliptic genera. For instance, using this method one can
show that on a complex manifold M Krichever-Höhn’s complex elliptic genus equals the
holomorphic Euler characteristic of a certain vector bundle, associated to the tangent
bundle of M , see [8, 18]. This section’s aim is to derive a similar result for the elliptic
genus ψ from Definition 3.1.

To begin with, we need to give an alternative description of the characteristic power
series of ψ. Therefore, let us define Ak to be the C-vector space of meromorphic functions
f on H× C2 such that:

(J1) f(τ, w, z) is elliptic with respect to the lattice 2πi (Zτ ⊕ Z) in w and z.

(J2) f(aτ+bcτ+d ,
w

cτ+d ,
z

cτ+d) · (cτ + d)−k = f(τ, w, z) for all

(
a b
c d

)
∈ PSL(2,Z).

Endowing elements inAk with weight 2k turns the direct sumA∗ :=
⊕∞

i=0Ak into a graded
Q-algebra. (Elements in Ak which satisfy an additional regularity condition are so-called
meromorphic Jacobi forms, cf. [4].) For now and the following, we write q = e2πiτ , s = ez

and y = −ew, and it follows from (J1) that functions in A∗ in fact depend on q, s and
y rather than τ, w and z. The next (technical) Lemma is essential for the results in this
section.

Lemma 9.1. There is an injective homomorphism ξ : Q[q1, q2, q3, q4] → A∗ of graded
Q-algebras such that the characteristic power series of the genus ξ ◦ ψ is given by

x · µ(q, s, y) ·
∞∏
l=1

(1 + y−1qlex
) (

1 + yql−1e−x
) (

1 + y
s q
lex
) (

1 + s
y q
l−1e−x

)
(1− qlex) (1− ql−1e−x) (1− s−1qlex) (1− sql−1e−x)

 ,

where µ, not depending on x, is given by

µ(q, s, y) :=

∞∏
l=1

 (
1− s−1ql

) (
1− sql−1

) (
1− ql

)2(
1 + y

s q
l
) (

1 + s
y q
l−1
)
(1 + y−1ql) (1 + yql−1)

 .

Proof. Let q1, q2, q3 and q4 be variables of degree 2, 4, 6 and 8, consider the polynomial
P (t) = t4 + q1t

3 + q2t
2 + q3t+ q4 and write P (t− q1/4) = t4 + q̃2t

2 + q̃3t+ q̃4. In view of
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Lemma 3.3, we define the homomorphism ξ : Q[q1, q2, q3, q4] → A∗ via

q1 7→ −2 · ℘
′(Lτ , w) + ℘′(Lτ , z)

℘(Lτ , w)− ℘(Lτ , z)
,

q̃2 7→ −6℘(Lτ , z) ,

q̃3 7→ 4℘′(Lτ , z) ,

q̃4 7→ g2(Lτ )− 3℘(Lτ , z)
2 ,

(9.1)

where Lτ denotes the lattice 2πi (Zτ ⊕ Z), ℘ the Weierstraß ℘-function and g2(L) is the
second modular invariant of the elliptic curve C/L. By standard facts about elliptic
functions and modular forms, the homomorphism ξ is well-defined and the images of q1,
q̃2, q̃3 and q̃4 are algebraically independent over Q. Thus, ξ is injective.

Claim 9.1. The characteristic power series of ξ ◦ ψ is given by x · h(x), where

h(x) =
σ(τ, x− w)σ(τ, x+ w − z)σ(τ,−z)
σ(τ, x)σ(τ, x− z)σ(τ, w − z)σ(τ,−w)

. (9.2)

Here σ(τ,−) denotes the Weierstraß σ-function with respect to the lattice Lτ .

Proof. As (9.2) is an identity of power series with coefficients in A∗, it is enough to show
that this identity holds for all (τ, w, z) in a dense subset V ⊆ H×C2. By Lemma 3.2, the
characteristic power series of ξ ◦ ψ equals x · h(x), where h(x) = 1/x+O(1) satisfies

h′(x)2 = h(x)4 + ξ(q1)h(x)
3 + ξ(q2)h(x)

2 + ξ(q3)h(x) + ξ(q4) .

However, the definition of ξ is cooked up in such a way that Lemma 3.3 and 3.4 state that
(9.2) is true for all (τ, w, z) where the complex polynomial

t4 + ξ(q1)(τ, w, z) · t3 + ξ(q2)(τ, w, z) · t2 + ξ(q3)(τ, w, z) · t+ ξ(q4)(τ, w, z)

has non-vanishing discriminant. Those (τ, w, z) clearly form a dense subset V ⊆ H × C2

and we are done. �

To finish the proof of the Lemma, it remains to see that the function in (9.2) has the
claimed q-expansion. Similarly to Appendix I in [7] we therefore define

Φ(τ, x) := e−G2(τ)·x2−x/2σ(τ, x) , (9.3)

where G2 is the Eisenstein series of weight 2. Our definition differs from [7] by a factor

e−x/2. Thus, according to [7, p. 145]:

Φ(τ, x) =
∞∏
l=1

(
1− qlex

) (
1− ql−1e−x

)
(1− ql)2

. (9.4)

An elementary calculation using (9.3) shows:

σ(τ, x− w)σ(τ, x+ w − z)σ(τ,−z)
σ(τ, x)σ(τ, x− z)σ(τ, w − z)σ(τ,−w)

=
Φ(τ, x− w)Φ(τ, x+ w − z)Φ(τ,−z)

Φ(τ, x)Φ(τ, x− z)Φ(τ, w − z)Φ(τ,−w)
.

Thus, Lemma 9.1 follows from (9.4) and Claim 9.1. �

For the following two subsections, since ξ of Lemma 9.1 is injective, we may identify ψ
with the genus ξ ◦ ψ : ΩU∗ ⊗ Q → im(ξ). The characteristic power series of ψ, given by
Lemma 9.1, has no pole in q = 0, i.e. ψ has values in Q((s, y))[[q]], the ring of power series
in q whose coefficients are Laurent series over Q in s and y. (Note that elements in the
image of ψ are still graded via condition (J2).)
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9.1. The degenerate ψ-genus. Sending q to 0 induces a Q-algebra homomorphism ζ :
Q((s, y))[[q]] → Q((s, y)). It follows directly from Lemma 9.1 that the characteristic power
series of ζ ◦ ψ equals x · hζ◦ψ(x) with

hζ◦ψ(x) =
(1 + ye−x)

(
1 + s

ye
−x
)
(1− s)

(1− e−x) (1− se−x)
(
1 + s

y

)
(1 + y)

. (9.5)

For fixed τ ∈ H, the function in (9.2) is an elliptic function. In the limit of degenerate
lattices, i.e. τ → i · ∞, this elliptic function degenerates to (9.5). Note that this power
series has coefficients in Q(s, y), the ring of rational functions in s and y. As we lose the
grading under the map ζ, we modify ζ ◦ ψ slightly:

Definition 9.1. The degenerate ψ-genus

ψdeg : ΩU∗ ⊗Q → Q(s, y)[t]

is defined via M 7→ (ζ ◦ ψ) (M) · tn, where M has real dimension 2n. Thereby s and y
have degree 0 and t is a variable of degree 2.

We already explained in section 8 that the χy-genus is dualization invariant and by
Theorem 4.2 factors through ψ. At this point we obtain this result in a more explicit way
and see that it even factors through the degenerate ψ-genus.

Proposition 9.1. The χy-genus factors through the degenerate ψ-genus ψdeg.

Proof. It follows from (9.5) that for any manifold M the rational function ψdeg(M) has
no pole in s = 0. Therefore, s 7→ 0 and t 7→ (1 + y)t induces a ring homomorphism
η : im(ψdeg) → Q(y)[t]. For some stably almost complex manifold M in real dimension
2n with Chern roots x1, . . . , xn, we then have:(

η ◦ ψdeg
)
(M) =

∫
M

(
n∏
i=1

xi ·
(1 + y · e−xi)

(1− e−xi) (1 + y)

)
· (1 + y)ntn = χy(M) ,

where we used the definition of the χy-genus given in (7.2). Thus: η ◦ ψdeg = χy. �

Remark 9.1. Composing ψdeg with the map s 7→ −1, y 7→ 0, t 7→ 1/4 shows that the

Â-genus also factors through ψdeg. This result is parallel to an observation of G. Höhn
in [8], who showed that the χy-genus as well as the Â-genus factor through the degenerate
version of Krichever-Höhn’s complex elliptic genus, see also [18, pp. 787-790].

9.2. The ψ-genus equals a holomorphic Euler characteristic. For a complex vector
bundle E of rank k we define the following polynomial respectively power series in x, whose
coefficients are certain exterior respectively symmetric powers of the bundle E:

Λx(E) :=

k⊕
i=0

ΛiE · xi , Sx(E) :=

∞⊕
i=0

SiE · xi . (9.6)

With this notation, we define for every complex manifold M with holomorphic tangent
bundle TM the Laurent series

Θ(M) :=

∞⊗
l=1

(
Λy−1qlTM ⊗ Λyql−1T ∗M ⊗ Λ y

s
qlTM ⊗ Λ s

y
ql−1T ∗M

⊗SqlTM ⊗ SqlT
∗M ⊗ Ss−1qlTM ⊗ Ssql−1T ∗M

)
.

Staring at this definition, one sees that Θ(M) can be written in the form

Θ(M) =

∞∑
l=0

∑
i,j ∈ Z

Ei,j,l · siyjql , (9.7)
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where every Ei,j,l is a finite expression in some exterior and symmetric powers of the
tangent and cotangent bundle of M . If M is a complex manifold, then these coefficients
are holomorphic vector bundles and for such a bundle E →M we define the holomorphic
Euler characteristic χ(M,E) of E in sheaf cohomology via

∑
i(−1)iH i(M,E). Moreover,

we define the holomorphic Euler characteristic of Θ(M) coefficient-wise:

χ(M,Θ(M)) :=

∞∑
l=0

∑
i,j ∈ Z

χ (M,Ei,j,l) · siyjql .

We will see in the following Proposition that this Euler characteristic basically equals to
the ψ-genus of Definition 3.1.

Proposition 9.2. For a complex n-manifold M , the ψ-genus equals

ψ(M) = µ(q, s, y)n · χ(M,Θ(M)) ,

where µ(q, s, y) ∈ Q((s, y))[[q]], defined in Lemma 9.1, depends not on M .

Proof. Let us fix a complex n-manifold M with Chern roots w1, . . . , wn and consider some
holomorphic vector bundle E →M with Chern roots x1, . . . , xk. Then, by the Hirzebruch-
Riemann-Roch Theorem, the holomorphic Euler characteristic of E is given by

χ(M,E) =

∫
M

td(M) · ch(E) ,

where td(M) =
∏n
i=1

wi

1−e−wi
is the Todd class of M and ch(E) =

∑k
i=1 e

xi the Chern

character of E. For another complex vector bundle F → M , the Chern character is
additive: ch(E⊕F ) = ch(E)+ch(F ), and multiplicative: ch(E⊗F ) = ch(E) ·ch(F ). For a
Laurent series whose coefficients are complex vector bundles, we define the Chern character
coefficient-wise and it is clear that it is also additive and multiplicative in these series. By
this definition and the Hirzebruch-Riemann-Roch Theorem, the following remains to be
proved:

ψ(M) = µ(q, s, y)n ·
∫
M

td(M) · ch(Θ(M)) . (9.8)

By [7, pp. 11-12], the Chern characters of the bundles defined in (9.6) are given by

ch (Λx(E)) =

k∏
i=1

(1 + x · exi) and ch (Sx(E)) =

k∏
i=1

1

1− x · exi
.

Therefore, the right hand side of (9.8) equals:

µ(q, s, y)n ·
∫
M

n∏
i=1

(
wi

1− ewi
·

∞∏
l=1

(
1 + y−1qlewi

) (
1 + yql−1e−wi

) (
1 + y

s q
lewi

) (
1 + s

y q
l−1e−wi

)
(1− qlewi) (1− qle−wi) (1− s−1qlewi) (1− sql−1e−wi)

 .

By Lemma 9.1, this shows that the identity in (9.8) indeed holds true. �

An immediate consequence of the above Proposition and the definition of ψdeg in Defi-
nition 9.1 is:

Corollary 9.1. The degenerate ψ-genus of a complex n-manifold M is given by:

ψdeg(M) =

(
y · (1− s)

(y + s) (1 + y)

)n
· χ
(
M , ΛyT

∗M ⊗ Λ s
y
T ∗M ⊗ SsT

∗M
)
· tn .
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