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V5A4 — Selected topics in Algebraic Geometry:
Mixed Hodge Structures and Geometry

Wednesdays 12-14, seminar room 0.006

In this lecture course we explain Deligne’s theory of mixed Hodge struc-
tures and discuss various applications to complex algebraic geometry. A
rough outline is as follows:

Recollections: pure Hodge structures, the Hodge decomposition theo-
rem and the Hard Lefschetz theorem.

Local systems and variations of Hodge structures.
The category of mixed Hodge structures.
Mixed Hodge structures of smooth (but possibly open) varieties.

Applications: The global invariant cycle theorem and the semi-simplicity
theorem.

Mixed Hodge structures of projective (but possibly singular) varieties.

Degenerations of Hodge structures in semi-stable families: Limit mixed
Hodge structures and the Clemens—Schmid exact sequence.

Prerequisites. We assume familiarity with basic concepts of complex
geometry in the amount of Sections 2 and 3 of [5].
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