
Dr. Stefan Schreieder Sommersemester 2017

S4A1 - Graduate Seminar on Algebraic Geometry:
Complex Geometry

The seminar provides an introduction to complex geometry. We introduce complex manifolds
and study Kähler metrics on them. Complex manifolds with Kähler metrics are called Kähler
manifolds; an important class of examples is provided by smooth complex projective varieties,
that is, submanifolds of complex projective space that are given by the zero set of polynomial
equations. We will see how Hodge theory provides a particularly useful tool to study this
class of manifolds. For instance, this can be used to prove many topological constraints a
Kähler manifold must satisfy. In particular, we will see that many topological spaces cannot
be realized as a smooth complex projective variety.

The seminar takes place during the summer term 2017 on Thursdays, 16 (c.t.) -18, in seminar
room 1.008 (Endenicher Allee 60). Two weeks before his talk, each participant should briefly
discuss his topic with me. Please contact schreied@math.uni-bonn.de to make an appoint-
ment.

Prerequisites: Basic knowledge of differential geometry (differentiable manifold, real and com-
plex vector bundles, differential forms, etc.) and holomorphic function theory in one variable
(definition of a holomorphic function and basic properties, such as the maximum principle)
are assumed. Some knowledge of sheaf theory is also required, but, depending on the au-
dience, parts of this material will be briefly sketched/recalled during the seminar. Knowledge
of algebraic geometry is helpful but not required.

Our program follows mostly [5] and [6]; alternative sources are [1, 2, 3, 4]. If not mentioned
otherwise, all references in the following list of talks go to [5].

1. Complex manifolds (J. Gruner, 20.4.2017)

Assigned reading: Sections 1.1 and 2.1

Talk: Define complex manifolds, submanifolds, sheaf of holomorphic functions and ho-
lomorphic maps. At this point you could briefly recall the definition of a sheaf. Prove
Proposition 2.1.5 and discuss Exercise 2.1.2. Give some examples, e.g. projective space,
smooth projective hypersurfaces, elliptic curves, complex tori and Hopf manifolds. De-
fine complex projective manifolds. Discuss Exercise 2.1.4.

2. Holomorphic vector bundles and a review of sheaf cohomology (P. Magni,
27.4.2017)

Assigned reading: [6, Section 4] and Section 2.2

Talk: Recall briefly the definition of sheaf cohomology, using for instance flasque reso-
lutions as in Appendix B. The most important property is Proposition B.0.35.

Recall briefly the concept of C̆ech cohomology. State Proposition B.043 and mention
that frequently, C̆ech cohomology coincides with sheaf cohomology in all degrees.

Define holomorphic vector bundles and mention some natural operations on them: e.g.
direct sum, tensor product, duals and pullbacks.

Define the Picard group and prove Corollary 2.2.10. Introduce the exponential sequence
and use it to describe the Picard group; define in particular the first Chern class of a
line bundle.



3. The holomorphic tangent bundle and the example of projective space (U.
Meha, 27.4.2017)

Assigned reading: Section 2.2 and 2.4

Talk: Define the holomorphic tangent bundle of a complex manifold. Define the bund-
le of holomorphic p-forms and define the canonical bundle. Prove Lemma 2.2.15 and
Proposition 2.2.17. Compute the tangent bundle of a complex torus.

Define the sheaf of holomorphic sections of a holomorphic vector bundle and prove
Proposition 2.2.19. Define the cohomology groups of holomorphic vector bundles and
define the Hodge numbers of a compact complex manifold.

Explain Proposition 2.2.6 and use it to define O(k) on Pn. Define the natural map
C[z0, . . . , zn]k −→ H0(Pn,O(k)) and prove Proposition 2.4.1. Explain all maps in the
Euler sequence (2.4.4) and sketch its proof if time permits. Deduce KPn = O(−n− 1).

4. Differential forms on complex manifolds (T. Beckmann und T. Bülles, 4.5.2017)

Assigned reading: pp. 25–28; Sections 1.3 and 2.6; [6, Section 4].

Talk: Define almost complex manifolds (2.6.1) and note that this is equivalent to a
complex vector bundle structure on the real tangent bundle TX . Prove 2.6.2 and 2.6.4.
Explain 2.6.8 and prove 2.6.11. Define the Dolbeault complex and Dolbeault cohomology
groups (2.6.20).

Recall that sheaf cohomology can be computed with any Γ-acyclic resolution, see for
instance [6, Proposition 4.32]. An important example of Γ-acyclic sheaves are modules
over the sheaf of differentiable functions: indeed, such a sheaf is soft, hence acyclic
(B.0.39). As an application, use the Poincaré Lemma (see for instance Proposition
A.0.3) to prove the de Rham theorem [6, Theorem 4.1]. Use the same line of argument
to prove 2.6.21.

Sketch the proof that for locally contractible spaces, sheaf cohomology with constant
coefficients is isomorphic to the corresponding singular cohomology groups, see [6, Theo-
rem 4.47].

5. Kähler manifolds (P.R. Hoefgeest, 11.5.2017)

Assigned reading: pp. 28–29, pp. 48–49, pp. 116–120.

Talk: Explain the set-up of Proposition 1.3.12 and sketch the proof of this proposition.
Define hermitian structures (3.1.1) and explain that any complex manifold admits such
a structure (in fact many) because of partitions of unity, see Exercise 3.1.1.

Define Kähler metrics (3.1.6) and prove Corollary 3.1.8. Explain Examples 3.1.9 (i) and
(ii). Prove 3.1.10 and 3.1.11.

6. Hermitian linear algebra (X.L. Flamm, 18.5.2017)

Assigned reading: Section 1.2.

Talk: In this talk we discuss some linear algebra results on a given Hermitian vector
space; you should think of this vector space as the tangent space of a Kähler manifold X
at a given point x. In order to explain this point of view, you should recall the definition
of a Kähler manifold, i.e. a complex manifold with Kähler metric, and explain how this
structure gives point-wise rise to the situation discussed in the following.

Introduce the Lefschetz operator (1.2.18) and its dual (1.2.21). Prove that they define an
sl2-representation on Λ∗V ∗ (1.2.26) and the Lefschetz decomposition theorem (1.2.30).

Discuss Exercises 1.2.9 and 3.1.8, and conclude that the n-sphere Sn admits a Kähler
structure if and only if n = 2.

2



7. Kähler identities (P. Reichenbach, 1.6.2017)

Assigned reading: Section 3.1.

Talk: Introduce the operators occurring in the Kähler identities (3.1.12) and prove the
identities. Explain Remark 3.1.14.

8. Hodge decomposition (N. Tsakanikas, 22.6.2017)

Assigned reading: Section 3.2

Talk: Define the various spaces of harmonic forms and prove 3.2.6. State 3.2.8 and prove
3.2.9 and 3.2.12.

Use Remark 3.2.7 to deduce the Hodge symmetries Hp,q(X) = Hq,p(X) = Hn−p,n−q(X),
where X is compact Kähler of complex dimension n. Explain the diagram on p. 138.

Deduce that odd Betti numbers of Kähler manifolds are even: b2k+1(X) ≡ 0 mod 2, see
Exercise 3.2.6. Use this to give an example of a complex manifold which is not Kähler,
hence not projective.

9. Lefschetz Theorems (L. Hendrian, 29.6.2017)

Assigned reading: Section 3.3.

Talk: Prove the Lefschetz (1,1)-theorem (3.3.1 and 3.3.2). Define the Neron–Severi
group (Remark 3.3.3); convince yourself that there is a complex torus X = C2/Γ with
NS(X) = 0 and explain that such a torus is not projective, see Exercise 3.3.6.

Prove 3.3.10, define primitive cohomology and prove the Hard Lefschetz theorem (3.3.13).
If time permits, use the Hodge diamond (see p. 138) to illustrate the inequalities on the
Hodge numbers which follow from Hard Lefschetz.

10. Hodge–Riemann bilinear relations (P. Koulakidou, 6.7.2017)

Assigned reading: Section 3.3.

Talk: Prove the Hodge–Riemann bilinear relations (3.3.15) and deduce the Hodge in-
dex theorem (3.3.16) and the signature theorem (3.3.18). (Note that the signature is
an invariant of the underlying smooth manifold which is independent of the complex
structure, whereas the individual Hodge numbers may very well depend on the complex
structure.) Prove Exercise 3.3.3.

If time permits, you could also discuss Exercise 3.3.7, which is a nice application of the
Lefschetz (1,1) theorem from last talk. (Hint: Use a suitable version of the exponential
sequence to compute the group H1(X, C∗X,C) of isomorphism classes of complex line

bundles on X.)

11. Connections and Curvature (G. Vardosanidze, 13.7.2017)

Assigned reading: Section 4.2 and 4.3.

Talk: Define a connection on a complex vector bundle E (4.2.1), sketch Proposition 4.2.3
and explain Remark 4.2.5. Explain how additional structure, i.e. a hermitian metric on
E or a complex structure on M , give rise to the notion of an hermitian connection
(4.2.9) and a connection compatible with the holomorphic structure (4.2.12). Introduce
the Chern connection (4.2.14); explain Example 4.2.16 (i) and maybe also Example
4.2.16 (ii).

Introduce the curvature of a connection (4.3.1). Prove Lemma 4.3.2 and conclude that
F∇ ∈ A2(M,End(E)) is an End(E)-valued differentiable 2-form on M . Prove the Bian-
chi identity (4.3.5).

If time permits, introduce the Atiyah class of a holomorphic vector bundle (4.2.18). Ex-
plain Proposition 4.2.19 and emphasize the difference between a holomorphic connection
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(4.3.7) and a usual connection. Explain the relationship between the curvature of the
Chern connection and the Atiyah class (4.3.10).

12. Chern–Weil theory and Hirzebruch–Riemann–Roch (J. Lourenço, 20.7.2017)

Assigned reading: Sections 4.4 and 5.1.

Talk: The idea of Chern–Weil theory is as follows: If E is a complex vector bundle
on a differentiable manifold M , then we can choose a connection ∇ on E (partition
of unity!). We have seen in the last talk that this gives rise to the curvature form
F∇ ∈ A2(M,End(E)), which satisfies the Bianchi identity (4.3.5). The idea is then
to apply pointwise certain linear algebra constructions to F∇ to cook up for each k
a 2k-form on M ; as a consequence of the Bianchi identity, these forms will be closed
and so we obtain cohomology classes ck(E) ∈ H2k(M,C) on M which turn out to be
important topological invariants of the complex vector bundle E.

If you want, you can start your talk with a brief sketch of the above idea. Introduce then
k-multilinear symmetric maps on a vector space and define what it means that such
a map is invariant (4.4.1). Prove Lemma 4.4.4 and Corollary 4.4.5. Mention Lemma
4.4.6 and Remark 4.4.7. Use this to introduce Chern classes, Chern characters and
Todd classes (4.4.8). These classes are defined for arbitrary complex vector bundles; if
we talk about Chern classes of complex manifolds, then we mean the Chern class of
its tangent bundle, see 4.4.10. These classes are topological invariants of the complex
vector bundle which underlies the holomorphic tangent bundle; they are in general not
topological invariants of the complex manifold itself. Discuss Example 4.4.11. Mention
Proposition 4.4.12 and sketch its proof if time permits.

Explain the statement of the Hirzebruch–Riemann–Roch theorem (5.1.1) and the ex-
amples on p. 233.

13. Kodaira Vanishing and Weak Lefschetz (S. Düzlü, 27.7.2017)

Assigned reading: Section 5.2.

Talk: Prove Kodaira Vanishing, leaving out the proof of Lemma 5.2.3. Discuss Example
5.2.5. Prove the Weak Lefschetz theorem.

You should explain some applications of the Weak Lefschetz theorem. For instance, you
could discuss Exercise 5.2.6. You could also explain how to compute the Betti numbers
bi(X) := dim(H i(X,C)) of a smooth hypersurface X ⊂ Pn+1 of degree d and illustrate
this in one or two explicit examples. (Hint: the computation of bi(X) for i 6= n follows
directly from the Weak Lefschetz theorem and Poincaré duality. In order to compute
the middle degree Betti number bn(X), it then suffices to compute the Euler number,
which is nothing but the top degree Chern number cn(X) =

∑
i(−1)ibi(X). This last

number is computed in Example 4.4.11.)
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