THE PRO-ETALE TOPOLOGY FOR SCHEMES

BHARGAV BHATT AND PETER SCHOLZE

To Gérard Laumon, with respect and admiration

ABSTRACT. We give a new definition of the derived category of constructible Qg-sheaves on a scheme, which
is as simple as the geometric intuition behind them. Moreover, we define a refined fundamental group of
schemes, which is large enough to see all lisse Q,-sheaves, even on non-normal schemes. To accomplish these
tasks, we define and study the pro-étale topology, which is a Grothendieck topology on schemes that is closely
related to the étale topology, and yet better suited for infinite constructions typically encountered in ¢-adic
cohomology. An essential foundational result is that this site is locally contractible in a well-defined sense.

CONTENTS
1. Introduction
2. Local structure
3. On replete topoi
4. The pro-étale topology
5. Relations with the étale topology
6. Constructible sheaves
7. The pro-étale fundamental group
References

\S)

27
34
42
63
72



1. INTRODUCTION

Let X be a variety over an algebraically closed field k. The étale cohomology groups H(X¢:, Q,), where
¢ is a prime different from the characteristic of &, are of fundamental importance in algebraic geometry.
Unfortunately, the standard definition of these groups is somewhat indirect. Indeed, contrary to what the
notation suggests, these groups are not obtained as the cohomology of a sheaf Q, on the étale site X4;. The
étale site gives the correct answer only with torsion coefficients, so the correct definition is

Hi(Xéer) = (@Hi(Xéta Z/gnz)) ®Ze 6@ :

In this simple situation, this technical point is often unproblematic'. However, even here, it takes effort to
construct a natural commutative differential graded Q,-algebra giving rise to these cohomology groups. This
so-called Q,-homotopy type was constructed by Deligne in [Del80], using certain subtle integral aspects of
homotopy theory due independently to Miller [Mil78] and Grothendieck.

For more sophisticated applications, however, it is important to work in a relative setup (i.e., study con-
structible sheaves), and keep track of the objects in the derived category, instead of merely the cohomology
groups. In other words, one wants a well-behaved derived category D%(X, Q,) of constructible Q,-sheaves.
Deligne, [Del80], and in greater generality Ekedahl, [Eke90], showed that it is possible to define such a
category along the lines of the definition of H*(X¢;, Q,). Essentially, one replaces H'( X, Z/¢"Z) with
the derived category D%(X,Z/{"Z) of constructible Z /¢"Z-sheaves, and then performs all operations on
the level of categories:”

DYX, Q) = (Im DX(X, Z/0"2)) @z, Q -
n

Needless to say, this presentation is oversimplified, and veils substantial technical difficulties.

Nonetheless, in daily life, one pretends (without getting into much trouble) that ch’(X ,Qy) is simply
the full subcategory of some hypothetical derived category D (X, Q) of all Q,-sheaves spanned by those
bounded complexes whose cohomology sheaves are locally constant along a stratification. Our goal in this
paper to justify this intuition, by showing that the following definitions recover the classical notions. To
state them, we need the pro-€tale site X,o4¢, Which is introduced below. For any topological space 1', one
has a ‘constant’ sheaf on X|,..¢; associated with T'; in particular, there is a sheaf of (abstract) rings Qg on
Xprost associated with the topological ring Qé.

Definition 1.1. Let X be a scheme whose underlying topological space is noetherian.
(1) A sheaf L of Q,-modules on Xproét 18 lisse if it is locally free of finite rank.
(2) A sheaf C of Qg-modules on Xproét is constructible if there is a finite stratification {X; — X} into
locally closed subsets X; C X such that Cx, is lisse.
(3) An object K € D(Xproét,QE) is constructible if it is bounded, and all cohomology sheaves are
constructible. Let D(X,Q,) C D(Xprocts Q) be the corresponding full triangulated subcategory.

The formalism of the six functors is easily described in this setup. In particular, in the setup above, with

the naive interpretation of the right-hand side, one has
H’L(Xéty Qé) = Hz(Xproéta Qf) ;

for general X, one recovers Jannsen’s continuous étale cohomology, [Jan88]. Similarly, the complex
RT(Xprosts Q) is obtained by literally applying the derived functor RI'(X y0st, —) to a sheaf of Q-algebras,
and hence naturally has the structure of a commutative differential graded algebra by general nonsense (see
[Ols11, §2] for example); this gives a direct construction of the Q,-homotopy type in complete generality.

A version of the pro-étale site was defined in [Sch13] in the context of adic spaces. The definition given
there was somewhat artificial, mostly because non-noetherian adic spaces are not in general well-behaved.
This is not a concern in the world of schemes, so one can give a very simple and natural definition of X ¢t
Until further notice, X is allowed to be an arbitrary scheme.

1t becomes a problem as soon as one relaxes the assumptions on k, though. For example, even for £ = Q, this definition is not
correct: there is no Hochschild-Serre spectral sequence linking these naively defined cohomology groups of X with those of X7.
One must account for the higher derived functors of inverse limits to get a theory linked to the geometry of X+, see [Jan88].
2In fact, Ekedahl only defines the derived category of constructible Z,-sheaves, not performing the final ®z, Qe-step.
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Definition 1.2.

(1) Amap f :Y — X of schemes is weakly étale if f is flat and Ay : Y —'Y xx Y is flat.
(2) The pro-étale site X,,o¢t is the site of weakly étale X -schemes, with covers given by fpgc covers.

Any map between weakly étale X -schemes is itself weakly étale, and the resulting topos has good cate-
gorical properties, like coherence (if X is qcqs) and (hence) existence of enough points. For this definition
to be useful, however, we need to control the class of weakly étale morphisms. In this regard, we prove the
following theorem.

Theorem 1.3. Let f : A — B be a map of rings.

(1) f is étale if and only if f is weakly étale and finitely presented.
(2) If f is ind-étale, i.e. B is a filtered colimit of étale A-algebras, then [ is weakly étale.
(3) If f is weakly étale, then there exists a faithfully flat ind-étale g : B — C' such that go f is ind-étale.

In other words, for a ring A, the sites defined by weakly étale A-algebras and by ind-étale A-algebras are
equivalent, which justifies the name pro-étale site for the site X|,.¢; defined above. We prefer using weakly
€tale morphisms to define X|,.¢; as the property of being weakly étale is clearly €tale local on the source
and target, while that of being ind-étale is not even Zariski local on the target.

One might worry that the pro-étale site is huge in an uncontrolled way (e.g., covers might be too large,
introducing set-theoretic problems). However, this does not happen. To see this, we need a definition:

Definition 1.4. An affine scheme U is w-contractible if any faithfully flat weakly étale map V- — U admits
a section.

A w-contractible object U € X,;04; 1s somewhat analogous to a point in the topos theoretic sense: the
functor I'(U, —) is exact and commutes with all limits, rather than colimits. In fact, a geometric point of
X defines a w-contractible object in X,.¢; via the strict henselisation. However, there are many more
w-contractible objects, which is the key to the control alluded to above:

Theorem 1.5. Any scheme X admits a cover in X,,o¢; by w-contractible affine schemes.

Despite the analogy between w-contractible objects and points, Theorem 1.5 has stronger consequences
than the mere existence of points. For example, the inverse limit functor on systems

.o F,—>F,_1—...>F—F

of sheaves on X ,.n¢; is well-behaved, the derived category of abelian sheaves on X ¢ 1s left-complete and
compactly generated, unbounded cohomological descent holds in the derived category, and Postnikov towers
converge in the hypercomplete oo-topos associated with X,.o¢;. This shows that the pro-étale site is useful
even when working with torsion coefficients, as the derived category of X¢; is left-complete (and unbounded
cohomological descent holds) only under finiteness assumptions on the cohomological dimension of X, cf.
[LOOS].

We note that one can ‘cut off” X|,..¢ by only allowing weakly €tale X-schemes Y of cardinality < x
for some uncountable strong limit cardinal x > |X|, and all results above, especially the existence of w-
contractible covers, remain true. In particular, the resulting truncated site X|,.¢; forms a set, rather than a
proper class, so we can avoid universes in this paper.

Let us explain the local structure of a scheme in the pro-étale site.

Definition 1.6.

(1) A ring A is w-local if the subset (SpecA)¢ C SpecA of closed points is closed, and any connected
component of SpecA has a unique closed point.

(2) Amap f : A — B of w-local rings is w-local if Specf : SpecB — SpecA maps closed points to
closed points.

The next result shows that every scheme is covered by w-local affines in the pro-Zariski topology, and
hence in the pro-étale topology. In particular, as noetherian schemes have finitely many connected compo-
nents, this shows that non-noetherian schemes are unavoidable when studying X,;4;, even for X noetherian.
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Theorem 1.7. The inclusion of the category of w-local rings with w-local maps in the category of all
rings admits a left adjoint A — A%. The unit A — A% of the adjunction is faithfully flat and an ind-
(Zariski localisation), so SpecA? — SpecA is a cover in Spec(A)prost.- Moreover, the subset (SpecA?)c
SpecAZ of closed points maps homeomorphically to SpecA, equipped with its constructible topology.

In other words, SpecAZ is roughly the disjoint union of the local rings of A. However, the union is not
exactly disjoint; rather, the set of connected components 7o(SpecA?) is naturally a profinite set, which is
SpecA with its constructible topology. Thus, the study of w-local rings splits into the study of its local rings
at closed points, and the study of profinite sets. It turns out in practice that these two aspects interact little.
In particular, this leads to the following characterization of w-contractible schemes.

Theorem 1.8. An affine scheme X = SpecA is w-contractible if and only if A is w-local, all local rings at
closed points are strictly henselian, and wo(X) is extremally disconnected.

Recall that a profinite set S is extremally disconnected if the closure of any open subset U C S is still
open. By a theorem of Gleason, S is extremally disconnected if and only if S is projective in the category
of compact Hausdorff spaces, i.e., any surjective map 7" — .S from a compact Hausdorff space 1" admits a
section. In particular, the Stone-Cech compactification of any discrete set is extremally disconnected, which
proves the existence of enough such spaces. Using this construction, if A is w-local, it is relatively easy to
construct a faithfully flat ind-étale A-algebra B satisfying the conditions of the theorem, which proves the
existence of enough w-contractible schemes.

As a final topic, we study the fundamental group. In SGAI1, a profinite group Wft(X ,x) is defined for
any connected scheme X with a geometric point z. It has the property that the category of lisse Z,-sheaves
on X is equivalent to the category of continuous representations of 7r‘1ét (X, z) on finite free Z,-modules.
However, the analogue for lisse Qg-sheaves fails (unless X is geometrically unibranch) as Q-local systems
admit Z,-lattices only étale locally. For example, if X is P! with 0 and oo identified (over an algebraically
closed field), then X admits a cover f : Y — X where Y is an infinite chain of P’s. One can descend
the trivial Qg-local system on Y to X by identifying the fibres at 0 and oo using any unit in Qy, e.g.
¢ € Q. However, representations of 7¢'(X, z) = Z with values in GL;(Qy) will have image in GL;(Z,)
by compactness. This suggests that the "true’ m; of X should be Z C 7= w‘ft(X ,x). In fact, in SGA3 X6,
a prodiscrete group W?GA?’(X ,x) is defined, which gives the desired answer in this example. Its defining
property is that Hom(7$943(X, x),T) is in bijection with T-torsors trivialized at z, for any discrete group
I'. However, in general, 75%43( X, x) is still too small to detect all Q-local systems through its finite
dimensional continuous Qy-representations: the failure is visible already for X a high-genus curve with two
points identified (this example is due to Deligne, and recalled in Example 7.4.9).

We circumvent the issues raised above by working with a larger category of “coverings” than the ones
used in constructing 7$* (X, ) and 7$GA3( X, x). To recover groups from such categories, we study some
general infinite Galois theory. The formalism leads to the following kind of groups.

Definition 1.9. A ropological group G is called a Noohi group if G is complete, and admits a basis of open
neighborhoods of 1 given by open subgroups.

The word “complete” above refers to the two-sided uniform structure on GG determined by its open sub-
groups. For example, locally profinite groups, such as GL, (Q), are Noohi groups. Somewhat more sur-
prisingly, GL,,(Q,) is also a Noohi group. The main result is:

Theorem 1.10. Let X be a connected scheme whose underlying topological space is locally noetherian.
The following categories are equivalent.

(1) The category Locx of sheaves on X,,.os which are locally constant.
e catego ovy of étale X -schemes Y which satis, e valuative criterion of properness.
2) The category C stale X -sch Y which satisfy the valuat It prop
For any geometric point x of X, the infinite Galois theory formalism applies to Locx equipped with the
fibre functor at x, giving rise to a Noohi group Wfroet(X, x). The pro-finite completion of Wfroet(X, x) is
74 (X, ), and the pro-discrete completion of T (X, x) is w643 (X, x). Moreover, Qq-local systems on
X are equivalent to continuous representations of ﬂ'{)roet (X, x) on finite-dimensional Qg-vector spaces, and

similarly for Qg replaced by Q,.
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Informally, the difference between ﬂfrOét(X ,x) and the classical fundamental groups stems from the

existence of pro-étale locally constant sheaves that are not étale locally constant. This difference manifests

itself mathematically in the lack of enough Galois objects, i.e., ﬂ{’mét(X ,x) does not have enough open

normal subgroups (and thus is not prodiscrete). It is important to note that the construction of 77 roét (X, x)
is not completely formal. Indeed, as with 7%43(X, 2), it is not clear a priori that ﬂfmét(X ,x) contains
even a single non-identity element: a cofiltered limit of discrete groups along surjective transition maps can
be the trivial group. Thus, one must directly construct elements to show wlpmét(X ,x) is big enough. This
is done by choosing actual paths on X, thus reuniting the classical point of view from topology with the
abstract approach of SGAI.

Finally, let us give a short summary of the different sections. In Section 2, we study w-local rings and
the like. In Section 3, we study a general topos-theoretic notion (namely, repleteness) which implies left-
completeness of the derived category etc. . We also include some discussions on complete sheaves, which
are again well-behaved under the assumption of repleteness. In Section 4, we introduce the pro-étale site,
and study its basic properties. The relation with the étale site is studied in detail in Section 5. In Section 6, we
introduce constructible sheaves (recalling first the theory for torsion coefficients on the étale site), showing
that for schemes whose underlying topological space is noetherian, one gets the very simple definition stated
above. Finally, in Section 7, we define the pro-étale fundamental group.
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2. LOCAL STRUCTURE

The goal of this section is to study some algebra relevant to the pro-étale topology. Specifically, we show:
(a) weakly étale and pro-étale maps define the same Grothendieck topology on rings in §2.3, and (b) this
Grothendieck topology has enough “weakly contractible” objects in §2.4.

2.1. Spectral spaces. Let 8 be the category of spectral spaces with spectral maps, and let Sy C 8 be the full
subcategory of finite spectral spaces (= finite Ty spaces), so 8 = Pro(8y), cf. [Hoc69]. Our main goal is to
show that each X € § admits a pro-(open cover) X — X such that X% admits no further non-split open
covers. This goal is eventually realized in Lemma 2.1.10. Before constructing X Z, however, we introduce
and study the subcategory of 8 where spaces of the form X Z live:

Definition 2.1.1. A spectral space X is w-local if it satisfies:

(1) All open covers split, i.e., for every open cover {U; — X}, the map L;U; — X has a section.
(2) The subspace X°¢ C X of closed points is closed.

Amap f: X — Y of w-local spaces is w-local if f is spectral and f(X€) C YC. Leti : 8*' — § be the
subcategory of w-local spaces with w-local maps.

The first condition in Definition 2.1.1 is obviously necessary for the promised application. The second
condition turns out to be particularly convenient for applications.

Example 2.1.2. Any profinite set is a w-local space. Any local scheme has a w-local topological space. The
collection of w-local spaces is closed under finite disjoint unions.

The property of w-locality passes to closed subspaces:

Lemma 2.1.3. If X € 8 and Z C X is closed, then 7 € 8.

Proof. Open covers of Z split as any open cover of Z extends to one of X (by extending opens and adding
X — 7). Moreover, it is clear that Z¢ = X° N Z, so the claim follows. ]

Recall that the inclusion Pro(Sets) C Pro(8s) = 8 has a left-adjoint X +— 7(X), i.e., the counit X —
mo(X) is the universal spectral map from X to a profinite set. Given a cofiltered presentation X = lim; X;
with X; € 8¢, we have mo(X') = lim; 7o (X;). We use this to give an intrinsic description of w-local spaces:

Lemma 2.1.4. A spectral space X is w-local if and only if X¢ C X is closed, and every connected compo-
nent of X has a unique closed point. For such X, the composition X¢ — X — mo(X) is a homeomorphism.

Proof. The second part follows immediately from the first as X is profinite when X is w-local. For the
first, assume that X is w-local; it suffices to show that each connected component has a unique closed point.
Then Lemma 2.1.3 shows that any connected component is also w-local, so we may assume X is connected.
If X has two distinct closed points 1, z2 € X¢, then the open cover (X — {z1}) U (X — {z2}) — X has
no section, which contradicts w-locality.

Conversely, assume X C X is closed, and that each connected component has a unique closed point.
Then X ¢ is profinite, and hence X ¢ — 7y(X) is a homeomorphism. Now fix a finite open cover {U; — X }
with U; quasicompact. We must show that 7 : Y := L;U; — X has a section. As X°¢ is profinite, there
isamap s : X¢ — Y lifting the inclusion X¢ — X. Let Z C my(Y) be the image of the composite
X¢23Y — m(Y). Then Z is a closed subset of mo(Y"), and the canonical maps X¢ — Z — m(X) are all
homeomorphisms. In particular Z < my(Y") is a pro-(open immersion). Let Y’ := Y Xro(y)Z < Y be the
inverse image. Then Y” is a spectral space with 7o(Y’) = Z. The map Y’ — Y is pro-(open immersion),
so the map ¢ : Y/ — X is pro-open. One checks from the construction ¢ induces a homeomorphism
mo(Y") — mo(X). Moreover, the fibres of Y/ — 7 (Y”) identify with the fibres of Y — 7(Y"). As the
image of 7o(Y") — mo(Y") only contains connected components of Y that contain a point lifting a closed
point of X, it follows that the fibres of Y — 7 (Y”) map homeomorphically onto the fibres of X — 7 (X).
Thus ¢ is a continuous pro-open bijection of spectral spaces. Any such map is a homeomorphism by a
compactness argument. Indeed, if U C Y” is a quasicompact open, then ¢(U) is pro-(quasi-compact open),
so ¢(U) = N;V;, where the intersection is indexed by all quasi-compact opens containing ¢(U). Pulling
back to Y/ shows U = N;¢p~(V;). As Y’ — U is compact in the constructible topology and each ¢~1(V;) is
constructible, it follows that U = ¢~ *(V;) for some 4, and hence ¢(U) = V;. O
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Remark 2.1.5. Lemma 2.1.4 shows that each w-local space X comes equipped with a canonical “special-
ization” map s : X — X¢, defined as the composition X — (X ) ~ X¢. Concretely, any z € X admits
a unique closed specialization s(x) € X¢ C X; in fact, the connected component spanned by z has s(z) as
its unique closed point. Any map in 8** preserves specializations and closed points, and is thus compatible
with the specialization maps.

Definition 2.1.6. Given a closed subspace Z C X of a spectral space X, we say X is local along Z if
X€¢ C Z, or equivalently, if every x € X specializes to a point of Z. The (pro-open) subspace of X
comprising all points that specialize to a point of Z is called the localization of X along Z.

Lemma 2.1.7. A spectral space X that is local along a w-local closed subspace Z C X with mo(Z) =
mo(X) is also w-local.

Proof. 1t suffices to show that X¢ C X is closed, and that the composition X¢ — X — 7o(X) is a
homeomorphism. Since X¢ = Z¢, the first claim is clear. The second follows from the w-locality of Z: one
has X¢ = Z¢ as before, and 7o (X ) = mo(Z) by assumption. O

We recall the structure of limits in S:
Lemma 2.1.8. S admits all small limits, and the forgetful functor 8 — Set preserves these limits.

Proof. Since 8 = Pro(8y), it suffices to show that 8¢ admits fibre products. Given maps X — Z <
Y in 8, one simply checks that a fibre product X Xz Y in 8¢ is computed by the usual fibre product
X Xz Y in Sety with the topology induced from the product topology on X x Y under the inclusion
X XxzY C X xY. The second claim is then clear. Alternatively, observe that there is a factorization

8 % Pro(Sety) 2 Set, where a(X) is X with the constructible topology, and b(Y") = Y. Both functors
a and b admit left adjoints « and S respectively: 3 is the Stone-Cech compactification functor, while « is
the natural inclusion Pro(Sety) C Pro(8y) = 8. In particular, the forgetful functor 8 — Set preserves
limits. -

The category of w-local spaces also admits small limits:
Lemma 2.1.9. 8! admits all small limits, and the inclusion i : S¥* — 8 preserves these limits.

Proof. We first check 8! admits fibre products. Given maps X — Z <« Y in 8", the fibre product
X Xz Y in 8 is local along the (profinite) closed subset X¢ x zc Y C X xz Y: apoint (z,y) € X xz Y
specializes to the point (s(z),s(y)) € X¢ X zc Y€, where s is the specialization map from Remark 2.1.5.
Then X xz Y € 8 by Lemma 2.1.7. Moreover, this also shows (X xz Y)¢ = X¢ xzc Y, and that
the projection maps X < X xz Y — Y preserve closed points, which proves that X xz Y is a fibre
product on 8“!. For cofiltered limits, fix a cofiltered diagram {X;} in 8*!. Let X := lim; X; be the limit
(computed in 8). We claim that X € 8% and the maps X — X, are w-local. As any open cover of
X can be refined by one pulled back from some X;, one checks that all open covers of X split. For the
rest, it suffices to show X¢ = lim; X¢; note that { X} is a well-defined diagram as all transition maps
X; — X are w-local. It is clear that lim; X C X¢. Conversely, choose x € X“ C X with image z; € X;.
Let Y; = {x;} C X;. Then {Y;} forms a cofiltered diagram in 8 with lim; ¥; C X by Lemma 2.1.3.
Moreover, one has lim; Y; = {z} = {z} C X by the compatibility of closures and cofiltered limits. Now
consider the cofiltered diagram {Y;°}. As each Y* C Y] is a subset, we get lim; Y;* C lim; Y; = {z}. Then
either x € lim; Y, or lim; Y;¢ = 0; the latter possibility does not occur as a cofiltered limit of non-empty
compact Hausdorff spaces is non-empty, so x € lim; Y;° C lim; X, (Il

The adjoint functor theorem and Lemma 2.1.9 show that i : 8! — 8 admits a left adjoint; this adjoint
is characterized as the unique functor that preserves cofiltered limits and finite disjoint unions, and carries a
connected finite T space X to X U {x}, where * is declared to be a specialization of all points of X. This
adjoint is not used in the sequel since it does not lift to the world of schemes. However, it turns out that
i : 8! < 8 also has a right adjoint which can be described via open covers, passes to the world of schemes,
and will be quite useful:
7



Lemma 2.1.10. The inclusion i : 8*' — 8 admits a right adjoint X — X%. The counit X? — X is
a pro-(open cover) for all X, and the composite (X%)¢ — X is a homeomorphism for the constructible
topology on X.

Proof. We first construct the functor X — X and the counit map X% — X. As the notions of w-local
spaces and w-local maps are well-behaved under cofiltered limits by Lemma 2.1.9, it suffices to construct,
for each X € 8, a functorial open cover X Z 5 X with X% w-local such that: (a) the functor X — X4
carries maps to w-local maps, (b) (X#)¢ — X is a bijection, and (c) (X?)¢ C X7 is discrete.
Let X be a finite Ty space. We define
X7 =] X,

rzeX

where X, C X is the subset of generalizations of =, which is an open subset of X. Then X% € § i
Moreover, each X, is w-local as the only open of X, containing x is X itself. Stability of w-locality under
finite disjoint unions shows that XZ is w-local. If f : X — Y is a map of finite 7}, spaces, one gets an

induced map
X7 =] XY =]V,
zeX yey
by mapping X, into Y(,. In particular, this sends the closed point z € X to the closed point f(z) € Y}y,
so that this map is w-local. Moreover, there is a natural map XZ — X for any X, by embedding each X,
into X. Clearly, this is an open cover of X. The definition also shows (X%)¢ = X with the discrete
topology (which is the also the constructible topology for finite 7y spaces).

To show this defines an adjoint, we must check: given X € 8, Y € 8", and a spectralmap h : ¥ — X,
there exists a unique w-local map A’ : Y — X7 factoring h. We may assume X € 8 ¢ as before. As
Y¢ — Y is closed, the composite g : Y — Y — X is a spectral map from a profinite set to a finite
Ty space. One then checks that g~!(x) is clopen in Y for all z € X (the preimage of any open of X is
a quasicompact open, and thus clopen, in the Hausdorff space Y “; one deduces the claim by induction on
# X by excising one closed point at a time). Picking an # € X with g~1(x) # ) and replacing Y with the
clopen subset s~ (g~ !(z)) where s : Y — mo(Y) ~ Y is the specialization map from Remark 2.1.5, we
may assume that h(Y¢) = {x} C X; here we use Lemma 2.1.3 to ensure Y remains w-local. As each point
of Y specialises to a point of Y¢, the map A factors through X, C X, which gives the desired w-local lift
h' Y — X, C X?%; the w-locality requirement forces uniqueness of A’ (|

Remark 2.1.11. The space XZ can be alternatively described as:

X7 = lim U;X;,
where the limit is indexed by the cofiltered category of constructible stratifications {X; — X}, and Z
denotes the set of all points of X specializing to a point of X;. One then has a corresponding description of
closed subspaces
(X% = lim UX;CX?,
so it is clear that (X%)¢ — X is a homeomorphism for the constructible topology on the target. This
description and the cofinality of affine stratifications inside all constructible stratifications show that if X

is an affine scheme, then the maps (X%)° < X7 5 X lift to maps of affine schemes, with a a closed
immersion, and b a pro-(open cover).

Definition 2.1.12. Amap [ : W — V of spectral spaces is a Zariski localization if W = U;U; withU; — V'
a quasicompact open immersion. A pro-(Zariski localization) is a cofiltered limit of such maps.

Both these notions are stable under base change. A key example is:

Lemma 2.1.13. Any map [ : S — T of profinite sets is a pro-(Zariski localization). In fact, we can write
S = lim; S; as a cofiltered limit of maps S; — T', each of which is the base change to T of a map from a
profinite set to a finite set.



Proof. Choose a profinite presentation 7" = lim; 73, and set S; = S x1, T. Then S; — T is the base change
of S — T;, and S ~ lim; S;, which proves the claim. O

We use this notion to split a w-local map into a pro-(Zariski localization), and one that is entirely “local:”

Lemma 2.1.14. Any map f : X — Y in 8 admits a canonical factorization X — 7 — 'Y in 8! with
Z —'Y a pro-(Zariski localization) and X — Z inducing a homeomorphism X°¢ ~ Z°.

Proof. We have a diagram
X—sX——>mX)=:8S

Lfc lf lm(f)
Ye——=Y ——=mno(Y)=T.
Set Z =Y xr S. Then by Lemma 2.1.9, Z is w-local and Z¢ = Y° xp S ~ X°. Moreover, the map

S — T'1is a pro-(Zariski localization), and hence so is Z — Y. The induced map X — Z sends X€ to
Y€ xp S = Z¢ and is thus w-local; as X¢ — Z¢ is a homeomorphism, this proves the claim. OJ

2.2. Rings. We now adapt the notions of §2.1 to the world of rings via the Zariski topology, and also discuss
variants for the étale topology:

Definition 2.2.1. Fix a ring A.
(1) Ais w-local if Spec(A) is w-local.
(2) A is w-strictly local if A is w-local, and every faithfully flat étale map A — B has a section.
(3) Amap f : A — B of w-local rings is w-local if Spec(f) is w-local.
(4) Amap f : A — B is called a Zariski localization if B = [["_, A[%]for some f1,..., fn € A. An
ind-(Zariski localization) is a filtered colimit of Zariski localizations.
(5) Amap f : A — B is called ind-étale if it is a filtered colimit of étale A-algebras.

Example 2.2.2. For any ring A, there is an ind-(Zariski localization) A — A% such that Spec(A4?) =
Spec(A)?, see Lemma 2.2.4. In particular, AZ is w-local. Any strictly henselian local ring A is w-strictly
local. Moreover, any cofiltered limit of w-strictly local rings along w-local maps is w-strictly local.

Our goal in this section is to explain why every ring admits an ind-étale faithfully flat w-strictly local
algebra. The construction of this extension, very roughly, mirrors the classical construction of the strict
henselisations at a geometric point: first one Zariski localizes at the point, and then one passes up along
all étale neighbourhoods of the point. The first step is accomplished using the functor A — A%; the next
lemma describes the structure of the resulting ring.

Lemma 2.2.3. If A is w-local, then the Jacobson radical I 4 cuts out Spec(A)¢ C Spec(A) with its reduced
structure. The quotient A/ 4 is an absolutely flat ring.

Recall that a ring B is called absolutely flat if B is reduced with Krull dimension O (or, equivalently, that
B is reduced with Spec(B) Hausdorff).

Proof. Let J C A be the (radical) ideal cutting out Spec(A)¢ C Spec(A) with the reduced structure. Then
J C m for each m € Spec(A)¢, so J C I4. Hence, Spec(A/I4) C Spec(A) is a closed subspace; we
want the two spaces to coincide. If they are not equal, then there exists a maximal ideal m such that 4 ¢ m,
which is impossible. O

The study of w-local spectral spaces has a direct bearing on w-local rings:

Lemma 2.2.4. The inclusion of the category w-local rings and maps inside all rings admits a left adjoint
A+ AZ. The unit A — AZ is a faithfully flat ind-(Zariski localization), and Spec(A)? = Spec(AZ) over
Spec(A).

Proof. This follows from Remark 2.1.11. In more details, let X = SpecA, and define a ringed space
X% — X by equipping (SpecA)? with the pullback of the structure sheaf from X. Then Remark 2.1.11
presents X Z as an inverse limit of affine schemes, so that X# = Spec(A?) is itself affine. O
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Example 2.2.5. For a ring A, the map A — A?/I,z is the universal map from A to an absolutely flat
ring. Indeed, this follows by the universal property of A%, the w-locality of absolutely flat rings, and the
observation that any w-local map A? — B with B absolutely flat factors through a map A% /1,2 — B.

Lemma 2.2.6. Any w-local map f : A — B of w-local rings admits a canonical factorization A = C 5B
with C w-local, a a w-local ind-(Zariski localization), and b a w-local map inducing mo(Spec(B)) =~

mo(Spec(C)).

Proof. This follows from Lemma 2.1.14 and the observation that any map S — mo(Spec(A)) of profinite
sets is induced by an ind-(Zariski localization) A — C' by applying 7o (Spec(—)) thanks to Lemma 2.1.13.
U

Due to the w-locality of A% and Lemma 2.2.3, absolutely flat rings play an important role in this section.
The next lemma explains the construction of w-strictly local ind-étale covers of absolutely flat rings.

Lemma 2.2.7. For any absolutely flat ring A, there is an ind-étale faithfully flat map A — A with A w-
strictly local and absolutely flat. For a map A — B of absolutely flat rings, we can choose such maps
A — Aand B — B together with a map A — B of A-algebras.

Proof. The following fact is used without further comment below: any ind-étale algebra over an absolutely
flat ring is also absolutely flat. Choose a set I of isomorphism classes of faithfully flat étale A-algebras, and
set A = ®;A;, where the tensor product takes place over 4; € I, i.e., A = colimycr ®jesAj, where the
(filtered) colimit is indexed by the poset of finite subsets of 1. Then one checks that A is absolutely flat, and
that any faithfully flat étale A-algebra has a section, so A is w-strictly local as Spec(A) is profinite. For the
second part, simply set B to be a w-strictly local faithfully flat ind-étale algebra over A ® 4 B. O

To decouple topological problems from algebraic ones, we consistently use:

Lemma 2.2.8. For any ring A and a map T — 7y(Spec(A)) of profinite sets, there is an ind-(Zariski
localization) A — B such that Spec(B) — Spec(A) gives rise to the given map T — my(Spec(A)) on
applying mg. Moreover, the association T — Spec(B) is a limit-preserving functor.

One may make the following more precise statement: for any affine scheme X, the functor Y — 7y(Y)
from affine X-schemes to profinite 7o(X)-sets has a fully faithful right adjoint S +— S X, (x) X, the
fibre product in the category of topological spaces ringed using the pullback of the structure sheaf on X.
Moreover, the natural map S X (x) X — X is a pro-(Zariski localisation) and pro-finite.

Proof. Given T as in the lemma, one may write 7" = lim 7; as a cofiltered limit of profinite m(Spec(A))-
sets 1; with T; — m(Spec(A)) being the base change of a map of finite sets, see Lemma 2.1.13. For each
T;, there is an obvious ring B; that satisfies the required properties. We then set B := colim B;, and observe
that 7o(Spec(B)) = lim mo(Spec(B;)) = im T; = T as a wy(Spec(A))-set. O

One can characterize w-strictly local rings in terms of their topology and local algebra:

Lemma 2.2.9. A w-local ring A is w-strictly local if and only if all local rings of A at closed points are
strictly henselian.

Proof. For the forward direction, fix a w-strictly local ring A and choose a closed point z € Spec(A)°.
Any faithfully flat étale map A, — B’ is the localization at = of a faithfully flat étale map A[%} — B
for some f invertible at x. As x is a closed point, we may find f1,..., f, € A vanishing at = such that
C=Bx][", Al fi_l] is a faithfully flat étale A-algebra. This implies that there is a section C — A, and
hence C ® 4 A, — A,. As f; vanishes at z, one has C ® 4 A, = B, x A’, where A’ has no point above x.
The (algebra) section B, x A’ — A, then necessarily factors through the projection on the first factor, which
gives us the desired section. For the converse direction, assume A is a w-strictly local ring whose local rings
at closed points are strictly henselian. Fix a faithfully flat étale A-algebra B. Then A — B has a section
over each closed point of Spec(A) by the assumption on the local rings. Spreading out, which is possible
by finite presentation constraints, there is a Zariski cover of Spec(A) over which Spec(B) — Spec(A) has
a section; by w-locality of Spec(A), one finds the desired section B — A. U
10



To pass from w-strictly local covers of absolutely flat rings to arbitrary rings, we use henselizations:

Definition 2.2.10. Given a map of rings A — B, let Hens(—) : Ind(Bg) — Ind(Agt) be the functor
right adjoint to the base change functor Ind(Ag) — Ind(Bgt). Explicitly, for By € Ind(Bg), we have
Hensy(By) = colim A’, where the colimit is indexed by diagrams A — A’ — By of A-algebras with
A — A’ étale.

Remark 2.2.11. The notation of Definition 2.2.10 is not ambiguous, i.e., for any map A — B and C €
Ind(Bgt), the ring Hens 4 (C') depends only on the A-algebra C, and not on B. It follows that if A — A" —
C is a factorization with A — A’ ind-étale, then Hens 4 (C') ~ Hens 4/ (C).

Henselization is particularly well-behaved for quotient maps:

Lemma 2.2.12. For surjective maps A — A/, the functor Hens o(—) is fully faithful, so Henss(—) ® 4
A/I ~id as functors on Ind((A/I)et).

Proof. Fix some By € Ind((A/I)¢ ) and set B = Hens 4(Bjy). By adjointness, it suffices to check B/I B =~
By. As any étale A/I-algebra Cy lifts to some étale A-algebra C, one immediately checks that B — B is
surjective. Choose f € ker(B — Bp). Then f lifts to some étale A-algebra C' along some map C' — B.
If f € IC, we are done. If not, f gives an element of the kernel of C'/IC' — By. Hence, there is some
diagram C/IC — Dy — By in Ind((A/I)¢) with C/IC — Dy étale such that f maps to 0 in Dy. Choose
an étale C-algebra D lifting Dy, so f € ID. The map D — D/ID = Dy — By of A-algebras then gives
a factorization C — D — B, which shows that f € I B. 0

The étale analogue of Lemmas 2.1.3 and 2.1.7 is:

Lemma 2.2.13. Let A be a ring henselian along an ideal I. Then A is w-strictly local if and only if A/I is
s0.

Proof. First assume A/I is w-strictly local. As A is henselian along I, the space Spec(A) is local along
Spec(A/I), so A is w-local by Lemma 2.1.7. Pick a faithfully flat étale A-algebra B. Then A/I — B/IB
has a section. By the adjunction Hom 4 (B, Hensa(A/I)) ~ Homa(B/IB, A/I) and the identification
Hensa(A/I) = A, one finds the desired section B — A. Conversely, assume A is w-strictly local. Then
Spec(A/I)¢ = Spec(A)° by the henselian property, so Spec(A/I)¢ C Spec(A/I) is closed. Moreover, any
faithfully flat étale A/I-algebra By is the reduction modulo of I of a faithfully flat étale A-algebra B, so the
w-strict locality of A immediately implies that for A/1. O

Henselizing along w-strictly local covers of absolutely flat rings gives w-strictly local covers in general:
Corollary 2.2.14. Any ring A admits an ind-étale faithfully flat map A — A’ with A" w-strictly local.

Proof. Set A’ := Hens 4z (A% /1 ,z), where AZ /I ,z is a w-strictly local ind-étale faithfully flat AZ /1 ,z-
algebra; then A’ satisfies the required property by Lemma 2.2.13. (Il

We end by noting that the property of w-strictly locality passes to quotients:
Lemma 2.2.15. Let A be a ring with an ideal I. If A is w-strictly local, so is A/I.

Proof. The space Spec(A/I) is w-local by Lemma 2.1.3. The local rings of A/I at maximal ideals are
quotients of those of A, and hence strictly henselian. The claim follows from Lemma 2.2.9. (|

2.3. Weakly étale versus pro-étale. In this section, we study the following notion:

Definition 2.3.1. A morphism A — B of commutative rings is called weakly étale if both A — B and the
multiplication morphism B @ 4 B — B are flat.

Remark 2.3.2. Weakly étale morphisms have been studied previously in the literature under the name of
absolutely flat morphisms, see [Oli72]. Here, we follow the terminology introduced in [GRO03, Definition
3.1.1].

Our goal in this section is to show that weakly étale maps and ind-étale maps generate the same Grothendieck
topology, see Theorem 2.3.4 below. We begin by recording basic properties of weakly étale maps.
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Proposition 2.3.3. Fixmaps f : A— B, g: B — C,and h : A — D of rings.
(1) If f is ind-étale, then f is weakly étale.
(2) If f is weakly étale, then the cotangent complex L, vanishes. In particular, f is formally étale.
(3) If f is weakly étale and finitely presented, then f is étale.
(4) If f and g are weakly étale (resp. ind-étale), then g o f is weakly étale (resp. ind-étale). If g o f and
f are weakly étale (resp. ind-étale), then g is weakly étale (resp. ind-étale).
(5) If h is faithfully flat, then f is weakly étale if and only if f @4 D : D — B ® 4 D is weakly étale.

Proof. These are well-known, so we mostly give references.

(1) As flatness and tensor products are preserved under filtered colimits, one reduces to the case of étale
morphisms. Clearly, f is flat in that case; moreover, B®4 B — B is an open immersion on spectra,
and in particular flat.

(2) See [GRO3, Theorem 2.5.36] and [GRO03, Proposition 3.2.16].

(3) Since f is weakly étale and finitely presented, it is formally étale and finitely presented by (2), hence
étale.

(4) The first part is clear. For the second part in the weakly étale case, see [GR03, Lemma 3.1.2 (iv)].
For the ind-étale case, observe that the category of ind-étale algebras is equivalent to the ind-category
of étale algebras by finite presentation constraints.

(5) This is clear, as flatness can be checked after a faithfully flat base change. ]

The analogue of (5) fails for ind-étale morphisms. Our main result in this section is:

Theorem 2.3.4. Let f : A — B be weakly étale. Then there exists a faithfully flat ind-étale morphism
g: B —= Csuchthatgo f : A — Cis ind-étale.

The local version of Theorem 2.3.4 follows from the following result of Olivier, [Oli72]:

Theorem 2.3.5 (Olivier). Let A be a strictly henselian local ring, and let B be a weakly étale local A-
algebra. Then f : A — B is an isomorphism.

Remark 2.3.6. One might hope to use Theorem 2.3.5 for a direct proof of Theorem 2.3.4: Assume that
f+ A — Bisweakly étale. Let C' = [ [- Af+z, where T runs over a set of representatives for the geometric
points of Spec(B), and Ay+z denotes the strict henselization of A at f*Z. Then Theorem 2.3.5 gives maps
B — Bz ~ Aj« for each @, which combine to give a map B — C inducing a section of C' — B ®4 C.
However, although each Az is ind-étale over A, C'is not even weakly étale over A, as infinite products do
not preserve flatness. In order to make the argument work, one would have to replace the infinite product
by a finite product; however, such a C' will not be faithfully flat. If one could make the sections B — Az
factor over a finitely presented A-subalgebra of Az, one could also make the argument work. However, in
the absence of any finiteness conditions, this is not possible.

Our proof of Theorem 2.3.4 circumvents the problem raised in Remark 2.3.6 using the construction of
w-strictly local extensions given in §2.2 to eventually reduce to Olivier’s result. We begin by recording the
following relative version of the construction of such extensions:

Lemma 2.3.7. Let f : A — B be a map of rings. Then there exists a diagram
A——sA
)
B—— B
with A — A’ and B — B’ faithfully flat and ind-étale, A’ and B’ w-strictly local, and A" — B’ w-local.

Proof. Choose compatible w-strictly local covers to get a diagram
AZ/IAZ I AZ/IAZ = AO

| |

B?/Igz — BZ Iz =: By
12



of absolutely flat rings with horizontal maps being faithfully flat and ind-étale, and Ay and By being w-
strictly local. Henselizing then gives a diagram

A—— A? — > Hens z(Ag) =: A’

ol |
B —— B? — = Hensgz(By) =: B’

Then all horizontal maps are ind-étale faithfully flat. Moreover, both A’ and B’ are w-strictly local by
Lemma 2.2.13. The map f’ is w-local since Spec(A’)¢ = Spec(Ap), and Spec(B’)¢ = Spec(By), so the
claim follows. U

We now explain how to prove an analogue of Olivier’s theorem for w-strictly local rings:

Lemma 2.3.8. Ler f : A — B be a w-local weakly étale map of w-local rings with A w-strictly local. Then
f is a ind-(Zariski localization).

Proof. First consider the canonical factorization A — A’ — B provided by Lemma 2.2.6. As A — A’
is w-local with A’ w-local, Lemma 2.2.9 shows that A’ is w-strictly local. Replacing A with A’, we may
assume f induces a homeomorphism Spec(B)¢ ~ Spec(A)¢. Then for each maximal ideal m C A, the ring
B/mB has a unique maximal ideal and is absolutely flat (as it is weakly étale over the field A/m). Then
B/mB must be a field, so mB is a maximal ideal. The map Ay, — Byp is an isomorphism by Theorem
2.3.5 as Ay, is strictly henselian, so A ~ B. g

The promised proof is:
Proof of Theorem 2.3.4. Lemma 2.3.7 gives a diagram
A——sA
]
B—— B

with f” a w-local map of w-strictly local rings, and both horizontal maps being ind-étale and faithfully flat.
The map f’ is also weakly étale since all other maps in the square are so. Lemma 2.3.8 shows that [’ is a
ind-(Zariski localization). Setting C' = B’ then proves the claim. t

2.4. Local contractibility. In this section, we study the following notion:
Definition 2.4.1. A ring A is w-contractible if every faithfully flat ind-étale map A — B has a section.

The name “w-contractible” is inspired by the connection with the pro-étale topology: if A is w-contractible,
then Spec(A) admits no non-split pro-étale covers, and is hence a “weakly contractible” object of the cor-
responding topos. Our goal is to prove that every ring admits a w-contractible ind-étale faithfully flat cover.
We begin by observing that w-contractible rings are already w-local:

Lemma 2.4.2. A w-contractible ring A is w-local (and thus w-strictly local).

Proof. The map 7 : Spec(A?) — Spec(A) has a section s by the assumption on A. The section s is a
closed immersion since 7 is separated, and Spec(A?) = Spec(A)Z is w-local, so we are done by Lemma
2.1.3. U

The notion of w-contractibility is local along a henselian ideal:

Lemma 2.4.3. Let A be a ring henselian along an ideal I. Then A is w-contractible if and only if A/I is
s0.

Proof. This is proven exactly like Lemma 2.2.13 using that Ind(A¢;) — Ind((A/I)et) is essentially surjec-
tive, and preserves and reflects faithfully flat maps. g

The main difference between w-contractible and w-strictly local rings lies in the topology. To give mean-
ing to this phrase, recall the following definition:
13



Definition 2.4.4. A compact Hausdorf{f space is extremally disconnected if the closure of every open is open.
One has the following result characterizing such spaces, see [Gle58]:

Theorem 2.4.5 (Gleason). Extremally disconnected spaces are exactly the projective objects in the category
of all compact Hausdorff spaces, i.e., those X for which every continuous surjection Y — X splits.

It is fairly easy to prove the existence of “enough” extremally disconnected spaces:

Example 2.4.6. For any set X, given the discrete topology, the Stone-Cech compactification 5(X) is ex-
tremally disconnected: the universal property shows that (X ) is a projective object in the category of com-
pact Hausdorff spaces. If X itself comes from a compact Hausdorff space, then the counit map (X ) — X
is a continuous surjection, which shows that all compact Hausdorff spaces can be covered by extremally
disconnected spaces. In fact, the same argument shows that any extremally disconnected space is a retract
of B(X) for some set X.

Extremally disconnected spaces tend to be quite large, as the next example shows:

Example 2.4.7. An elementary argument due to Gleason shows that any convergent sequence in an ex-
tremally disconnected space is eventually constant. It follows that standard profinite sets, such as Z,, (or the
Cantor set) are not extremally disconnected.

The relevance of extremally disconnected spaces for us is:

Lemma 2.4.8. A w-strictly local ring A is w-contractible if and only if mo(Spec(A)) is extremally discon-
nected.

Proof. As Spec(A)¢ — Spec(A) gives a section of Spec(A) — mo(Spec(A)), if A is w-contractible, then
every continuous surjection 7' — mo(Spec(A)) of profinite sets has a section, so 7y(Spec(A)) is extremally
disconnected. Conversely, assume A is w-strictly local and my(Spec(A)) is extremally disconnected. By
Lemma 2.4.3, we may assume A = A/I4. Thus, we must show: if A is an absolutely flat ring whose local
rings are separably closed fields, and Spec(A) is extremally disconnected, then A is w-contractible. Pick
an ind-étale faithfully flat A-algebra B. Then A — B induces an isomorphism on local rings. Lemma
2.2.6 gives a factorization A — C' — B with A — C a ind-(Zariski localization) induced by a map of
profinite sets 7 — Spec(A), and B — C' a w-local map inducing an isomorphism on spectra. Then C' ~ B
as the local rings of C' and B coincide with those of A. As Spec(A) is extremally disconnected, the map
T — Spec(A) of profinite sets has a section s. The closed subscheme Spec(C’) C Spec(C) realizing
s(Spec(A)) C T maps isomorphically to Spec(A), which gives the desired section. O

We now show the promised covers exist:
Lemma 2.4.9. For any ring A, there is an ind-étale faithfully flat A-algebra A’ with A’ w-contractible.

Proof. Choose an ind-étale faithfully flat A% /I z-algebra Ay with Ag w-strictly local and Spec(Ag) an
extremally disconnected profinite set; this is possible by Example 2.4.6, Lemma 2.2.7, and Lemma 2.2.8.
Let A" = Hens 4z (Ap). Then A’ is w-contractible by Lemma 2.4.3 and Lemma 2.4.8, and the map A — A’
is faithfully flat and ind-étale since both A — A% and A% — A’ are so individually. 0

Lemma 2.4.10. Let A be a w-contractible ring, and let f : A — B be a finite ring map of finite presentation.
Then B is w-contractible.

Proof. We can write A = colim; A; as a filtered colimit of finite type Z-algebras such that A — B is the
base change of a finite ring map Ayg — By of some index 0, assumed to be initial; set B; = By ®4, A,
so B = colim; B;. Then Spec(A) = lim; Spec(A4;) and Spec(B) = lim; Spec(B;) as affine schemes and
as spectral spaces, so mo(Spec(B)) = mo(Spec(Bo)) X(Spec(4o)) To(Spec(A)). As mo(Spec(Ap)) and
mo(Spec(By)) are both finite sets, it follows that 7 (Spec(B)) is extremally disconnected as 7o(Spec(A))
is such. Moreover, the local rings of B are strictly henselian as they are finite over those of A. It remains
to check Spec(B) is w-local. By finiteness, the subspace Spec(B)¢ C Spec(B) is exactly the inverse
image of Spec(A)¢ C Spec(A), and hence closed. Now pick a connected component Z C Spec(B). The
image of Z in Spec(A) lies in some connected component W C Spec(A). The structure of A shows that
14



W = Spec(A;) for some closed point x € Spec(A)¢, so W is a strictly henselian local scheme. Then
Z — W is a finite map of schemes with Z connected, so Z is also a strictly henselian local scheme, and
hence must have a unique closed point, which proves w-locality of Spec(B). ([l

Remark 2.4.11. The finite presentation assumption is necessary. Indeed, there are extremally disconnected
spaces X with a closed subset Z C X such that Z is not extremally disconnected. As an example, let X
be the Stone-Cech compactification of N, and let Z = X \ N. As any element of N is an open and closed
point of X, Z C X is closed. Consider the following open subset U of X:

U:U{meX\xiéO mod 2"} .

n>1

Here, we use that the map N — Z /nZ extends to a unique continuous map X — Z/nZ. Let U = Uunz,
which is an open subset of Z. We claim that the closure U of U in Z is not open. If not, then Z admits a
disconnection with one of the terms being U. It is not hard to see that any disconnection of Z extends to a
disconnection of X, and all of these are given by M LI (X \ M) for some subset M C N. It follows that
U = M N Z for some subset M C N. Thus, U C M, which implies that for all n > 0, almost all integers
not divisible by 2" are in M. In particular, there is a subset A C M such that A = {ag, a1, ...} with 2|a;.
Take any point z € A\ N C Z. Thus,z € M N Z = U. On the other hand, z lies in the open subset
V=ANZC Z,and VN U = (): Indeed, for any n > 0,

An{r e X |2 #0 mod 2"} C {ag,...,an_1} CN.
This contradicts = € U, finally showing that U is not open.



3. ON REPLETE TOPOI

A topos is the category of sheaves on a site, up to equivalence, as in [SGA72a]. We will study in §3.1 a
general property of topoi that implies good behaviour for the lim and R lim functors, as well as unbounded
cohomological descent, as discussed in §3.3. A special subclass of such topoi with even better completeness
properties is isolated in §3.2; this class is large enough for all applications later in the paper. In §3.4 and
§3.5, with a view towards studying complexes of ¢-adic sheaves on the pro-étale site, we study derived
completions of rings and modules in a replete topos; the repleteness ensures no interference from higher
derived limits while performing completions, so the resulting theory is as good as in the punctual case.

3.1. Definition and first consequences. The key definition is:

Definition 3.1.1. A topos X is replete if surjections in X are closed under sequential limits, i.e., if F :
N°P — X is a diagram with F,, 1 — F), surjective for all n, then lim F' — F,, is surjective for each n.

Before giving examples, we mention two recogition mechanisms for replete topoi:
Lemma 3.1.2. If X is a replete topos and X € X, then X x is replete.

Proof. This follows from the fact that the forgetful functor X,y — X commutes with connected limits and
preserves surjections. U

Lemma 3.1.3. A topos X is replete if and only if there exists a surjection X — 1 and X x is replete.

Proof. This follows from two facts: (a) limits commute with limits, and (b) a map ¥ — G in X is a
surjection if and only if it is so after base changing to X. (|

Example 3.1.4. The topos of sets is replete, and hence so is the topos of presheaves on a small category.
As a special case, the classifying topos of a finite group G (which is simply the category of presheaves on
B(Q)) is replete.

Example 3.1.5. Let k be a field with a fixed separable closure k. Then X = Shv(Spec(k)¢t) is replete if

and only if % is a finite extension of k.> One direction is clear: if k/k is finite, then Spec(k) covers the
final object of X and X /Spec(R) = Set, so X is replete by Lemma 3.1.3. Conversely, assume that X is replete

with k/k infinite. Then there is a tower k = kg < k; < kg < ... of strictly increasing finite separable
extensions of k. The associated diagram - -- — Spec(k2) — Spec(k1) — Spec(ko) of surjections has an
empty limit in X, contradicting repleteness.

Remark 3.1.6. Replacing N°P with an arbitrary small cofiltered category in the definition of replete topoi
leads to an empty theory: there are cofiltered diagrams of sets with surjective transition maps and empty
limits. For example, consider the poset I of finite subsets of an uncountable set T' ordered by inclusion, and
F: I°P — Set defined by

F(S)={f € Hom(S,Z) | f injective}.

Then F is a cofiltered diagram of sets with surjective transition maps, and lim F' = ().

Example 3.1.5 shows more generally that the Zariski (or étale, Nisnevich, smooth, fppf) topoi of most
schemes fail repleteness due to “finite presentation” constraints. Nevertheless, there is an interesting geo-
metric source of examples:

Example 3.1.7. The topos X of fpgc sheaves on the category of schemes® is replete. Given a diagram

coo = Fpy1 — Fy — - = F} — Fy of fpqc sheaves with F,, — F,,_1 surjective, we want lim F,, — Fy
to be surjective. For any affine Spec(A) and a section sg € Fy(Spec(A)), there is a faithfully flat map
A — Bj such that sg lifts to an s; € Fj(Spec(Bj)). Inductively, for each n > 0, there exist faithfully
flat maps A — B, compatible in n and sections s, € F,(Spec(B,)) such that s, lifts s,_1. Then
B = colim,, B, is a faithfully flat A-algebra with sy € Fy(Spec(A)) lifting to an s € lim F,,(Spec(B)),
which proves repleteness as Spec(B) — Spec(A) is an fpqc cover.

3Recall that this happens only if & is algebraically closed or real closed; in the latter case, k(1/—1) is an algebraic closure of k.
4To avoid set-theoretic problems, one may work with countably generated affine schemes over a fixed affine base scheme.
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The next lemma records a closure property enjoyed by surjections in a replete topos.

Lemma 3.1.8. Let X be a replete topos, and let F — G be a map in Fun(IN°P, X). Assume that the induced
maps F; — G and Fi 1 — F; Xq, Git1 are surjective for each i. Then lim F' — lim G is surjective.

Proof. Fix an X € X and amap s : X — lim G determined by a compatible sequence {s,, : X — G}
of maps. By induction, one can show that there exists a tower of surjections --- — X, = X1 — -+ —
X1 — X¢o — X and maps t,, : X,, — F,, compatible in n such that ¢,, lifts s,. In fact, one may take
Xo =X XGo Fo, and

XnJrl = Xn XFnXGnG,LJrl Fn+1-
The map X’ := lim; X; — X is surjective by repleteness of X. Moreover, the compatibility of the ¢,’s
givesamap t : X’ — lim F lifting s, which proves the claim. O

We now see some of the benefits of working in a replete topos. First, products behave well:
Proposition 3.1.9. Countable products are exact in a replete topos.

Proof. Given surjective maps f,, : F,, = Gy, in X for each n € N, we want f : [[ F, — [[,, G5 to be
surjective. This follows from Lemma 3.1.8 as f = lim [[,_,, fi; the condition from the lemma is trivial to
check in this case. O

In a similar vein, inverse limits behave like in sets:

Proposition 3.1.10. [f X is a replete topos and F' : N°P — Ab(X) is a diagram with F,, .1 — F,, surjective
for all n, then lim F, ~ Rlim F,.

Proof. By Proposition 3.1.9, the product [ [, F;, € X computes the derived product in D(X). This gives an
exact triangle

RlimF, — [] £ 2 ] Fo,

where t : F,,+1 — F, is the transition map. It thus suffices to show that s := ¢ — id is surjective. Set
Gpn = [li<, Fn, Hn = Gpy1, and let s, : H, — G, be the map induced by ¢ — id. The surjectivity of
t shows that s,, is surjective. Moreover, the surjectivity of ¢ also shows that H, 1 — Gp11 X@q, Hpis
surjective, where the fibre product is computed using s, : H, — G}, and the projection G,,+1 — G,. In
fact, the fibre product is H,, X F,,+1 and H,,y; — H, X F, 41 is (pr,t — id). By Lemma 3.1.8, it follows
that s = lim s,, is also surjective. g

Proposition 3.1.11. If X is a replete topos, then the functor of N°P-indexed limits has cohomological di-
mension 1.

Proof. For a diagram F : N°° — Ab(X), we want Rlim F}, € DI%1(X). By definition, there is an exact
triangle

Rm&%nﬂﬁnﬂ

with the last map being the difference of the identity and transition maps, and the products being derived.
By Proposition 3.1.9, we can work with naive products instead, whence the claim is clear by long exact
sequences. O

Question 3.1.12. Do Postnikov towers converge in the hypercomplete co-topos of sheaves of spaces (as in
[Lur09, §6.5]) on a replete topos?

3.2. Locally weakly contractible topoi. We briefly study an exceptionally well-behaved subclass of re-
plete topoi:

Definition 3.2.1. An object F of a topos X is called weakly contractible if every surjection G — F has a
section. We say that X is locally weakly contractible if it has enough weakly contractible coherent objects,
i.e., each X € X admits a surjection U;Y; — X with Y; a coherent weakly contractible object.

The pro-étale topology will give rise to such topoi. A more elementary example is:
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Example 3.2.2. The topos X = Set is locally weakly contractible: the singleton set S is weakly contractible
coherent, and every set is covered by a disjoint union of copies of .S.

The main completeness and finiteness properties of such topoi are:

Proposition 3.2.3. Let X be a locally weakly contractible topos. Then
(1) X is replete.
(2) The derived category D(X) = D(X, Z) is compactly generated.
(3) Postnikov towers converge in the associated hypercomplete co-topos. (Cf. [Lur09].)

Proof. For (1), note that a map I — G in X is surjective if and only if F'(Y) — G(Y) is so for each weakly
contractible Y'; the repleteness condition is then immediately deduced. For (2), given j : Y — 1y in X with
Y weakly contractible coherent, one checks that Hom(jiZ, —) = H°(Y, —) commutes with arbitrary direct
sums in D(X), so jiZ is compact; as Y varies, this gives a generating set of D(X) by assumption on X,
proving the claim. For (3), first note that the functor F' — F(Y") is exact on sheaves of spaces whenever Y’
is weakly contractible. Hence, given such an F' and point x € F(Y) with Y weakly contractible, one has
mi(F(Y),*) = m(F,*)(Y). This shows that F' ~ lim,, 7<,, ' on X, which proves hypercompleteness. (Cf.
[Lur09, Proposition 7.2.1.10].) ]

3.3. Derived categories, Postnikov towers, and cohomological descent. We first recall the following
definition:

Definition 3.3.1. Given a topos X, we define the left-completion ﬁ(f)C) of D(X) as the full subcategory of
D(XN) spanned by projective systems {K,,} satisfying:

(1) K, € DZ7"(X).

(2) The map 727" n+1 — Ky induced by the transition map K, 1 — K, and (1) is an equivalence.
We say that D(X) is left-complete if the map 7 : D(X) — D(X) defined by K > {r=""K} is an
equivalence.

Left-completeness is extremely useful in accessing an unbounded derived category as Postnikov towers
converge:

Lemma 3.3.2. The functor R lim : ﬁ(%) — D(XN) — D(X) provides a right adjoint to 7. In particular,
if D(X) is left-complete, then K ~ Rlim 72" K for any K € D(X).
Proof. Fix K € D(X) and {L,} € D(X). Then we claim that
RHom p(y) (K, Rlim L;) ~ Rlim RHomp(y) (K, L,) ~ R lim RHom p (T2 "K, L)
~ RHomp v, (T(K),{Ln})-

This clearly suffices to prove the lemma. Moreover, the first two equalities are formal. For the last one,
recall that if F, G € Ab(XN), then there is an exact sequence

1 — Hom(F,G) — HHom(Fn, Gp) — HHom(Fn+1, Gn),

where the first map is the obvious one, while the second map is the difference of the two maps Fj,1 1 —
F, = G, and F,,;1 — Gpni1 — G,. One can check that if F,G € Ch(XN), and G is chosen to be
K-injective, then the above sequence gives an exact triangle

RHom(F,G) — | [ RHom(F,,, Gy) — | [ RHom(F,, 11, G).

In the special case where F,G € ﬁ(f)C), one has RHom(F},+1,G,) = RHom(F,, G,) by adjointness of
truncations, which gives the desired equality. O

Classically studied topoi have left-complete derived categories only under (local) finite cohomological
dimension constraints; see Proposition 3.3.7 for a criterion, and Example 3.3.5 for a typical example of the
failure of left-completeness for the simplest infinite-dimensional objects. The situation for replete topoi is
much better:
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Proposition 3.3.3. If X is a replete topos, then D(X) is left-complete.

Proof. We repeatedly use the following fact: limits and colimits in the abelian category Ch(Ab(X)) are
computed termwise. First, we show that 7 : D(X) — ﬁ(DC) is fully faithful. By the adjunction from Lemma
3.3.2, it suffices to show that K ~ Rlim 72~"K for any K € D(X). Choose a complex I € Ch(Ab(X))
lifting K € D(X). Then [[,7=""I € Ch(Ab(X)) lifts the derived product [[, 7= "K € D(X) by
Proposition 3.1.9. Since I ~ lim 7=~"I € Ch(Ab(X)), it suffices as in Proposition 3.1.10 to show that

_ t—id _
HTZ ny = HTZ ny
n n

is surjective in Ch(Ab(X)), where we write ¢ for the transition maps. Since surjectivity in Ch(Ab(X))
can be checked termwise, this follows from the proof of Proposition 3.1.10 as 7>~ "= 72=(n=1 g
termwise surjective.

For essential surjectivity of 7, it suffices to show: given {K,} € D(X), one has K,, ~ 72" "R lim K,,.
Choose a K-injective complex {I,,} € Ch(Ab(XN)) representing {K,,}. Then [[,, I, € Ch(Ab(X)) lifts

[1,, K, (the derived product). Moreover, by K-injectivity, the transition maps I,,.1 — I, are (termwise)

surjective. Hence, the map
t—id
172 = 115
n n

in Ch(Ab(X)) is surjective by the argument in the proof of Proposition 3.1.10, and its kernel complex K
computes R1im K,,. We must show that H'(K) ~ H'(K;) for each ¢ € N. Calculating cohomology and
using the assumption { K, } € D(X) C D(XN) shows that

H(I[ 1) =[] 41 =[] B (1) = [ #'(53)
n n n>i n>t
for each i € N; here we crucially use Proposition 3.1.9 to distribute H* over []. The map H'(t — id) is
then easily seen to be split surjective with kernel lim H*(K,,) ~ lim H'(K;) ~ H'(K;), which proves the
claim. O

If repleteness is dropped, it is easy to give examples where D(X) is not left-complete.

Example 3.3.4. Let G = [[,,~ Z,, and let X be the topos associated to the category B(G) of finite G-sets
(topologized in the usual way). We will show that D(X) is not left-complete. More precisely, we will show
that K — K := Rlim 7>""K does not have a section for K = ®n>1Z/p"[n] € D(X); here Z/p™ is given
the trivial G-action.

For each open subgroup H C G, we write X € B(G) for the G-set G/ H given the left G-action, and let
I°P C B(Q) be the (cofiltered) full subcategory spanned by the X ;’s. The functor p*(F) = colim; F(X )
commutes with finite limits and all small colimits, and hence comes from a point p : * — X. Deriving gives
p*L = colim; RT'(Xy, L) for any L € D(X), and so H(p*L) = colim; H*(Xy, L). In particular, if
L1 — Lo has a section, so does

colim HY(Xy, L) — colim H(Xy, Ly).

If 7 : X — Set denotes the constant map, then K = 7* K’ where K’ = ®,>1Z/p"[n] € D(Ab), so
colim H(Xp,K)= H(p*K) = H(p*n*K') = H(K") = 0.

Since 72K ~ @<, Z/p'[i] ~ [1,<, Z/p'[i], commuting limits shows that K ~ [] -, Z/p"[n] (where
the product is derived), and so R(Xp, K) ~ [L,>1 RI'(X#,Z/p"[n]). In particular, it suffices to show
that
H(p*K) = colim 112" Xu,z/p")

n>1
isnot0. Leta,, € H"(Xq,Z/p") = H"(X, Z/p") be the pullback of a generator of H"(B([ [\, Zy,), Z/p") ~
@ HY(B(Z,),Z/p") under the projection f, : G — [[_, Z,. Then a,, has exact order p" as f, has a
section, s0 a 1= (ay,) € [[,,51 H™(X,Z/p") has infinite order. Its image o’ in H° (p*f() is 0 if and only

19



if there exists an open normal subgroup H C G such that « restricts to 0 in [[,, H"(Xp,Z/p™). Since
Xpu — X is a finite cover of degree [G : H], a transfer argument then implies that « is annihilated by
[G : H], which is impossible, whence o/ # 0.

Remark 3.3.5. The argument of Example 3.3.4 is fairly robust: it also applies to the étale topos of X =
Spec(k) with k a field provided there exist M,, € Ab(X;) for infinitely many n > 1 such that H" (X, M)
admits a class o, with lim ord(a,,) = co. In particular, this shows that D(Spec(k)gt) is not left-complete
for k = C(z1, z2,23,...).

Thanks to left-completeness, cohomological descent in a replete topos is particularly straightforward:

Proposition 3.3.6. Let f : Xo — X be a hypercover in a replete topos X. Then
(1) The adjunctionid — f. f* is an equivalence on D(X).
(2) The adjunction fif* — id is an equivalence on D(X).
(3) f* induces an equivalence D(X) ~ Dcart(Xe).

Here we write D(Y) = D(Ab(X,y)) for any Y € X. Then D(X,) is the derived category of the
simplicial topos defined by X, and D¢t (X6 ) is the full subcategory spanned by complexes K which are
Cartesian, i.e., for any map s : [n] — [m] in A, the transition maps s*(K|x,) — K]|x,, are equivalences.
The usual pushforward then gives f. : D(X,) — D(X) right adjoint to the pullback f* : D(X) —
D(X,) given informally via (f*K)|x, = K|x,. By the adjoint functor theorem, there is a left adjoint
fi: D(Xe) — D(X) as well. When restricted to Deayt(Xe), one may describe f informally as follows.
For each Cartesian K and any map s : [n] — [m] in A, the equivalence s*(K|x, ) ~ K|x,, has an adjoint
map K|x, — s1(K|x,). Applying !-pushforward along each X,, — X then defines a simplicial object in
D(X) whose homotopy-colimit computes f, .

Proof. We freely use that homotopy-limits and homotopy-colimits in D(X,) are computed “termwise.”
Moreover, for any map g : ¥ — X in X, the pullback ¢g* is exact and commutes with such limits and
colimits (as it has a left adjoint gy and a right adjoint g.). Hence f* : D(X) — D(X,) also commutes with
such limits and colimits.

(1) Forany K € Ab(X), one has K ~ f, f*K by the hypercover condition. Passing to filtered colimits
shows the same for K € D*(X). For general K € D(X), we have K ~ Rlim7=>""K by
repleteness. By exactness of f* and repleteness of each X,,, one has f*K ~ Rlim f*r="K.
Pushing forward then proves the claim.

(2) This follows formally from (1) by adjunction.

(3) The functor f* : D(X) — Decart(Xe) is fully faithful by (1) and adjunction. Hence, it suffices to
show that any K € Dcay(Xe) comes from D(X). The claim is well-known for K € DY (X,)
(without assuming repleteness). For general K, by repleteness, we have K ~ R 1lim 72" K. Since
the condition of being Cartesian on a complex is a condition on cohomology sheaves, the truncations
727" K are Cartesian, and hence come from D(X). The claim follows as D(X) C D(X,) is closed

under homotopy-limits. (|
We end by recording a finite dimensionality criterion for left-completeness:

Proposition 3.3.7. Let X be a topos, and fix K € D(X).
(1) Given U € X with T'(U, —) exact, one has RI'(U, K) ~ RlimRI['(U, 727" K).
(2) If there exists d € N such that H'(K) has cohomological dimension < d locally on X for all i, then
D(X) is left-complete.

Proof. For (1), by exactness, RI'(U, K) is computed by I(U) where I € Ch(X) is any chain complex rep-
resenting K. Now D(Ab) is left-complete, so I(U) ~ Rlim 72~"I(U). As I'(U, —) is exact, it commutes
with truncations, so the claim follows. (2) follows from [Sta, Tag 0719]. (]

3.4. Derived completions of f-adic rings in a replete topos. In this section, we fix a replete topos X, and
aring R € X with an ideal I C R that is locally finitely generated, i.e., there exists a cover {U; — 1} such
that Iy, is generated by finitely many sections of I(U;). Given U € X, z € R(U) and K € D(Xy, R),
we write T(K,z) := Rlim(--- % K 5 K 5 K) € D(X ¢, R).
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Definition 3.4.1. We say that M € Modp is classically I-complete if M ~ lim M /1" M write Mod R comp C
Modpg for the full subcategory of such M. We say that K € D(X, R) is derived I-complete if for each
UeXandx € I(U), we have T (K |y, x) = 0; write Deomp(X, R) C D(X, R) for the full subcategory of
such K.

Itis easy to see that Deomp (X, R) is a triangulated subcategory of D (X, R). Moreover, forany U € X, the
restriction D(X, R) — D(Xy;, R) commutes with homotopy-limits, and likewise for Z-modules. Hence,
both the above notions of completeness localise on X. Our goal is to compare these completeness conditions
for modules, and relate completeness of a complex to that of its cohomology groups. The main result for
modules is:

Proposition 3.4.2. An R-module M € Modg, is classically I-complete if and only if it is I-adically sepa-
rated and derived I-complete.

Remark 3.4.3. The conditions of Proposition 3.4.2 are not redundant: there exist derived /-complete R-
modules M which are not I-adically separated, and hence not classically complete. In fact, there exists a
ring R with principal ideals I and J such that R is classically /-complete while the quotient R/.J is not
I-adically separated; note that R/J = cok(R — R) is derived I-complete by Lemma 3.4.14.

The result for complexes is:
Proposition 3.4.4. An R-complex K € D(X, R) is derived I-complete if and only if each H (K) is so.
Remark 3.4.5. For X = Set, one can find Proposition 3.4.4 in [Lurl1].

Lemma 3.4.6. Given z,y € R(X), the sequence

1 1
}@R[y-(ﬁy)

0 — R| | = R|

]—R
T4y z-(r+y)

ey w7

is exact.

Proof. Using the Mayer-Vietoris sequence for Spec(R(U) [T}ry]) for each U € X, one finds that the corre-

sponding sequence of presheaves is exact, as (z,y) = (1) € R(U) [fiy], the claim follows by exactness of

sheafification. OJ

The main relevant consequence is that R[;Ty] € D(X, R) is represented by a finite complex whose terms
are direct sums of filtered colimits of free R[2]-modules and R[%]—modules.
Lemma 3.4.7. Fix K € D(X, R) and x € R(X). Then T(K,z) = 0 if and only if RHom (M, K) = 0 for
M € D(X, R[2)).

Proof. The backwards direction follows by setting A/ = R[] and using R[] = colim (R LSR5 R—

. ) For the forward direction, let ¢ C D(X, R[%]) be the triangulated subcategory of all M for which

RHomp (M, K) = 0. Then C is closed under arbitrary direct sums, and R[i] € € by assumption. Since
T(K|y,z) = T(K,z)|y = 0, one also has ji(R[%]|/) € Cforany j : U — 1x. The claim now follows:
for any ringed topos (X, A), the smallest triangulated subcategory of D (X, A) closed under arbitrary direct
sums and containing j;(A|y) for j : U — 1y variable is D(X, A) itself. O

Lemma 3.4.8. Fix K € D(X, R) and = € I1(X). Then T'(K, z) lies in the essential image of D(X, R[%]) —
D(X, R).

Proof. We may represent K by a K -injective complex of R-modules. Then T'(K, z) ~ RHom R(R[%], K)~
Homp(R[2], K) is a complex of R[1]-modules, which proves the claim. O
Lemma 3.4.9. The inclusion Deomp(X, R) — D(X, R) admits a left adjoint K — K. The natural map

K — K is an equivalence.
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Proof. The second part is a formal consequence of the first part as the inclusion Deomp (X, R) C D(X, R)
is fully faithful. For the first part, we first assume I is generated by global sections x1, ..., z, € I(X). For
0 < i < r, define functors F; : D(X, R) — D(X, R) with maps F; — F;1; as follows: set F = id, and

Fi1 (K) = cok (T(Fi(K), Tis1) = Fi(K)> ~ Rlim (E(K) T E-(K))

~ Rlim (F(K) 9, ) Zlvi] /@),
n+1 n
where the transition maps (FZ(K ) Ty Fi(K )) — (E(K ) S Fi(K )) are given by x;11 on the source,
and the identity on the target. One then checks using induction and lemmas 3.4.7 and 3.4.8 that F;(K) is
derived (z1, ..., x;)-complete, and that

RHom(F1(K), L) = RHom(F;(K), L)

if Lis (x1,...,7+1)-complete. It follows that X' — F,(K) provides the desired left adjoint; we rewrite
K = F,(K) and call it the completion of K. The construction shows that completion commutes with
restriction. In general, this argument shows that there is a hypercover f : X*® — 1y such that the inclu-
sion Deomp(X™, R) — D(X™, R) admits a left adjoint, also called completion. As completion commtues
with restriction, the inclusion Dcart comp(X®, R) C Decart(X®, R) of derived I-complete cartesian com-
plexes inside all cartesian complexes admits a left-adjoint Deart (X®, R) — Dcart,comp(X®, R). The co-
homological descent equivalence f* : D(X, R) — D(X*®, R) restricts to an equivalence Dcomp(X, R) —

Decart,comp(X®, R), so the claim follows. O
Lemma 3.4.9 leads to a tensor structure on Deomp (X, R):
Definition 3.4.10. For K, L € D(X, R), we define the completed tensor product via K®rL =K ®f€ L e

Dcomp(X, R).
The completed tensor product satisfies the expected adjointness:
Lemma 34.11. For K € D(X,R) and L € Dcomp(X, R), we have RHomp(K,L) € Decomp(X, R).
Moreover, there is an adjunction
Hom(K', RHomp(K, L)) ~ Hom(K'®pK, L)
forany K' € Deomp (X, R).
Proof. For any x € I(X), we have T(RHomp (K, L),z) ~ RHomp(K,T(L,z)) ~ 0. Repeating this

argument for a slice topos X then proves the first part. The second part is a formal consequence of the
adjunction between ® and RHom in D(X, R), together with the completeness of L. g

Lemma 3.4.12. Fix K € D(X, R). The following are equivalent

(1) ForeachU € X and x € I(U), the natural map K — Rlim (K 5 K) is an isomorphism.
(2) K is derived I-complete.

(3) There exists a cover {U; — 1y} and generators x1, . ..,x, € I(U;) such that T (K|y,, z;) = 0.
(4) There exists a cover {U; — 1x} and generators x1, ..., x, € 1(U;) such that
Ky, ~ RIm(K|v, @7, Z[ﬂﬁl, o x] /(2 a2y)

via the natural map.

Proof. The equivalence of (1) and (2) follows from the observation that the transition map
" 1 n
(K g K) (K - K)
is given by x on the first factor, and the identity on the second factor. Also, (2) clearly implies (3). For the
converse, fixaU € X and z € I(U). To show T'(K |y, z) = 0, we are free to replace U with a cover. Hence,
we may assume & = » . a;x; with T'(K |y, x;) = 0. Lemma 3.4.7 shows T'(K |y, a;x;) = 0, and Lemma
3.4.6 does the rest. Finally, since each x; acts nilpotently on K|y, ®é[x1 ] Zzy,. ..,z |/ (2}, ... ¢, it

is clear that (4) implies (3). Conversely, assume (3) holds. Replacing X with a suitable U;, we may assume
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I is generated by global sections z1,...,z, € I(X). Consider the sequence of functors Fy,..., [, :
D(X, R) — D(X, R) defined in the proof of Lemma 3.4.9. As each Z[z;]/(z}) is a perfect Z[z;]-module,
the functor — ®é[xi] Z[x;]/(«}') commutes with homotopy-limits. Hence, we can write

K = Fy(K) = Rim(K @y Zlon]/(07) 9, 2w /(@3) & -+ &y, ) Zla]/ (1)),
which implies (4). ]
Lemma 3.4.13. If M € Modp, is classically I-complete, then M is derived I-complete.

Proof. Commuting limits shows that the collection of all derived I-complete objects K € D(X, R) is
closed under homotopy-limits. Hence, writing M = lim M /I"M ~ Rlim M/I™M (where the second
isomorphism uses repleteness), it suffices to show that M is derived I-complete if 1" M = 0. For such M,
any local section x € I(U) for some U € X acts nilpotently on M |7, so T'(M |y, x) = 0. O

The cokernel of a map of classically I-complete R-modules need not be /-complete, and one can even
show that Mod g comp is not an abelian category in general. In contrast, derived /-complete modules behave
much better:

Lemma 3.4.14. The collection of all derived I-complete M € Modpg is an abelian Serre subcategory of
MOdR.

Proof. Fixamap f: M — N of derived I-complete R-modules. Then there is an exact triangle
ker(f)[1] — (M = N) s cok(f)

For any = € I(X), there is an exact triangle
T'(ker(f)[1],2) — 0 — T(cok(f), z)

where we use the assumption on M and NN to get the middle term to be 0. The right hand side lies in
DZ0(X, R), while the left hand side lies in D=°(X, R) as R lim has cohomological dimension < 1 (as X
is replete). Chasing sequences shows that the left and right terms are also 0. Repeating the argument for a
slice topos X ;7 (and varying x € I(U)) proves that ker(f) and cok(f) are derived I-complete. It is then
immediate that im(f) = M /ker(f) is also derived I-complete. Since closure of derived /-completeness
under extensions is clear, the claim follows. U

Proof of Proposition 3.4.4. Assume first that each H*(K) is derived I-complete. Then each finite truncation
TSPrZM K is derived I-complete. Hence, 7<™K ~ R lim 72 "7<"K is also derived I-complete for each
m; here we use that D(X) is left-complete since X is replete. For any « € I(X), applying T'(—, x) to

K — K = 7K.

shows that T(K, z) ~ T(r=™* 'K, x) € D=™T(X, R). Since this is true for all m, one has T'(K, x) = 0.
Repeating the argument for z € I(U) for U € X then proves the claim.

Conversely, assume that K is derived I-complete. By shifting, it suffices to show that HY(K) is derived
I-complete. Assume first that K € D=<9(X, R). Then there is an exact triangle

=K - K —» H(K).
Fixing an = € I(X) and applying T'(—, x) gives
T(r='K,z) - T(K,z) - T(H(K), z).

The left term lives in D=Y(X, R), the middle term vanishes by assumption on K, and the right term lives
in D=°(X, R), so the claim follows by chasing sequences (and replacing X with X su)- Now applying the
same argument to the triangle

K 5 K » 77K

shows that each 7" K and 72! K are derived I-complete. Replacing K by 7<"K then proves the claim. [J
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Proof of Proposition 3.4.2. The forward direction follows from Lemma 3.4.13. Conversely, assume M is
derived I-complete and [-adically separated. To show M is classically I-complete, we may pass to slice
topoi and assume that I is generated by global sections x1, ..., z, € I(X). Then derived I-completeness of
M gives

M ~ Rhm(M ®Z[ ] Z[:L‘l,...,l'r]/(l'?)).

Calculating H°(M) ~ M via the Milnor exact sequence (which exists by repleteness) gives

1= RUNmH (M @z, o1 Zlxr .2,/ (2]) = M —lim M/(2f,...,a})M — 1.

’ ’I"

By I-adic separatedness, the last map is injective, and hence an isomorphism. O

3.5. Derived completions of noetherian rings in a replete topos. In this section, we specialize the dis-
cussion of §3.4 to the noetherian constant case. More precisely, we fix a replete topos X, a noetherian ring
R, and an ideal m C R. We also write m C R for the corresponding constant sheaves on X. Our goal is to
understand m-adic completeness for R-complexes on X.

Proposition 3.5.1. Fix K € D(X, R). Then
(1) K is derived m-complete if and only if K ~ Rlim(K ®% R/m™) via the natural map.
(2) Rlim(K ®k R/m") is derived m-complete.
(3) The functor K — Rlim(K ®% R/m") defines a left adjoint D(X,R) — Deomp(X, R) to the
inclusion.

Proof. (2) is clear as each K ®ﬁ, R/m™ is derived m-complete. For the rest, fix generators f1, .., f, C m.
Set P = Z[z1,...,x,|,and J = (x1,...,2,) C P. Consider the map P — R defined via z; — f; (both in
Set and X). By Lemma 3.4.12, K is derived m-complete precisely when K ~ R lim(K ®% P/J") via the
natural map. For (1), it thus suffices to check that

a:{P/J" @k R} —» {R/m"}
is a strict pro-isomorphism. There is an evident identification
{P/J" @p R} = {P/J" ®p (P @z R) ®ps, 5 R},

where P ®z R is viewed as a P-algebra via the first factor. As P/J" and P ®z R are Tor-independent over
P, we reduce to checking that

{Rlar,...a)/(an, )" @, BY = {R/m")

is a strict pro-isomorphism. This follows from the Artin-Rees lemma. Finally, (3) follows from a being a
pro-isomorphism as the construction of Lemma 3.4.9 realises the m-adic completion of K as R lim (K ®IL3
P/Jm™). O

Proposition 3.5.1 gives a good description of the category Dgomp(X, R) of derived m-complete com-
plexes. Using this description, one can check that R itself is not derived m-complete in X in general. To
rectify this, we study the m-adic completion R of R on X, and some related categories.

Definition 3.5.2. Define R = lim R/m™ € X. In particular, R is an R- algebra equipped with R-algebra
maps R — R/m". An object K € D(X, R) is called m-adically complete if the natural map K —
Rlim(K ®L R/m™) is an equivalence. Let i : Dcomp(X, R) < D(X, R) be the full subcategory of such
complexes.

Our immediate goal is to describe m-adically complete complexes in terms of their truncations. To this
end, we introduce the following category of compatible systems:

Definition 3.5.3. Letr ¢ = Fun(N°P, X) be the topos of N°P-indexed projective systems {F,} in X. Let
Ry = {R/m"} € C be the displayed sheaf of rings, and let Dcomp(C, Re) C D(C, R,) be the full subcate-
gory spanned by complexes { K, } such that the induced maps Kn®f2 Jmn R/m" ! — K, 1 are equivalences
foralln.
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Lemma 3.54. For {K,} € D~ (C,R.), one has an identification of pro-objects {K, ®% R/m} ~
{K, ®é/m" R/m}, and hence a limiting isomorphism R lim(K, ®f% R/m) ~ Rlim(K, ®é/m" R/m).
If m is regular; this extends to unbounded complexes.

Proof. Change of rings gives {K,, ®% R/m} ~ {K, ®{J%/mn R/m™ ®% R/m}. The Artin-Rees lemma
shows that { R/m" @& R/m} — {R/m} is a pro-isomorphism. Since { K,,} is bounded above, the spectral

sequence for Tor has only finitely many contributing terms to a given F,-term, and hence

{Kn © R/m} ~ {K, ®f pn R/m" @p R/m} = {K, @ R/m}
is also a pro-isomorphism. Applying Rlim and using repleteness then gives the claim. Finally, if m
is generated by a regular sequence (fi,..., fr), then {R/m"} is pro-isomorphic to {R/(f{',..., f")}.
Each quotient R/(f, ..., f) is R-perfect, and hence the Tor-spectral sequence calculating H'(K ®ﬁ

R/(ff',..., f})) has only finitely many non-zero terms even when K is unbounded, so the preceding argu-
ment applies. U

Lemma 3.5.5. For {K,} € D,(C, Re), the natural map gives (Rlim K,) @k R/mk ~ Ky, for k > 0.
If m is regular; this extends to unbounded complexes.

Proof. By devissage and the completeness of { K, }, we may assume k& = 1. By shifting, we can also assume
{K,} € D=9(@), i.e., K, € D=°(X) for all . Fix an integer ¢ > 0, and an R-perfect complex P; with a
map P; — R/m whose cone lies in D=~%(R). Then there is a commutative diagram

(Rlim K,,) @& P; : Rlim(K, ®g P;)

g ]

(Rlim K,,) ®% R/m —= Rlim(K, ®g R/m) ~ K.

The isomorphism on the bottom right is due to Lemma 3.5.4. As P; is perfect, a is an isomorphism.
Moreover, cok(h) € D=~+1(X) as Rlim K,, € D=!(X) by repleteness. A similar argument also shows
cok(d) € DS~1(X). Hence, cok(c) € D=~"*1(X). Then ¢ must be an isomorphism as this is true for all
i. (|

We can now show that the two notions of completeness coincide:

Lemma 3.5.6. For each m, the natural map induces ﬁ@ﬁ R/m™ ~ R/m™. In particular, D¢omp (X, ﬁ) ~

Decomp(X, R).
Proof. The first part follows from Lemma 3.5.5. The second part follows formally from this and Proposition
3.5.1. 0

We now show that an m-adically complete complex is determined by its reductions modulo powers of m;
this will be used later to compare complexes on the pro-étale site to Ekedahl’s category of adic complexes.

Lemma 3.5.7. With notation as above, we have:
(1) Thereisamap : (€, Ry) — (X, R) of ringed topoi given by w,({F,,}) = lim F,, withw—*R — R,
the natural map.
(2) Pullback under m induces a fully faithful functor 7 : Deomp(X, ﬁ) — Deomp(C, Ra).
(3) Pushforward under w induces a fully faithful functor 7« : D50 (€, Re) — Do (X, R).
(4) ™ induces an equivalence D, (X, ﬁ) >~ Domp(C, Re).
(5) If mis regular, then (3) and (4) extend to the unbounded case.

Proof. (1) is clear. The functor 7* : D(X,R) — D(€, R,) is given by K +— {K ®p R/m"}, while
T : D(C,Ry) — D(X,R) is given by m.({K,}) ~ Rlim K,. It is then clear that 7* carries com-
plete complexes to complete ones. Given {K,} € Dcomp(C, R,), each K,, € D(X, R/m") is derived
m-complete, and hence 7, preserves completeness as well (since m.{K,} := Rlim K, is m-adically com-
plete). For (2), it then suffices to check that K ~ R lim (K ®% R/m"™) for any K € Deomp (X, R), which is

true by Proposition 3.5.1. Lemma 3.5.5 and (2) immediately give (3), and hence (4). Finally, (5) follows by
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the same argument as (3) as all the ingredients in the proof of the latter extend to the unbounded setting if m
is regular. O
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4. THE PRO-ETALE TOPOLOGY

We define the pro-étale site of a scheme in §4.1, and study the associated topos in §4.2. In §4.3, we use
these ideas to construct a variant of Tate’s continuous cohomology of profinite groups that behaves better in
some functorial respects.

4.1. The site.

Definition 4.1.1. Amap f : Y — X of schemes is called weakly étale if f is flatand Ay : Y — Y xx Y
is flat. Write Xo¢; for the category of weakly étale X -schemes, which we give the structure of a site by
declaring a cover to be one that is a cover in the fpqc topology, i.e. a family {Y; — Y} of maps in Xproé is
a covering family if any open affine in' Y is mapped onto by an open affine in L;Y;.

Remark 4.1.2. To avoid set-theoretic issues, it suffices for our purposes to define the site X4 using
weakly étale maps Y — X with |Y| < k, where & is a fixed uncountable strong limit cardinal larger
than | X|.° The choice of # is dictated by the desire to have Shv(X,,0s) be locally weakly contractible.
Increasing x results in a different topos, but cohomology remains the same, as it can be calculated by a
simplicial covering with w-contractible schemes.

Remark 4.1.3. We do not directly work with pro-étale morphisms of schemes to define X ;o4 as the
property of being pro-étale is not geometric: Example 4.1.12 shows its failure to localise on the target.
Nonetheless, we call X4 the pro-étale site, as by Theorem 2.3.4 any weakly étale map f : ¥ — X is
Zariski locally on X and locally in Y},;4 of the form SpecB — SpecA with A — B ind-étale.

Some elementary examples of weakly étale maps:

Example 4.1.4. For a field k, a map Spec(R) — Spec(k) is weakly étale if and only if k¥ — R is ind-étale.
Indeed, R embeds into some ind-étale k-algebra S; but one checks easily that as & is a field, any subalgebra
of an ind-étale k-algebra is again ind-étale.

Example 4.1.5. For a scheme X and a geometric point z, the map Spec((ﬁ);’gx) — X from the strict

henselization is weakly étale; similarly, the henselization and Zariski localizations are also weakly étale.
We begin by recording some basic generalities on pro-étale maps.

Lemma 4.1.6. Compositions and base changes of weakly étale maps are weakly étale.

Proof. Clear. O

Lemma 4.1.7. Any map in X,,o¢ is weakly étale.

Proof. This follows from Proposition 2.3.3 (iv). ]
The previous observations give good categorical properties for X o¢t:

Lemma 4.1.8. The category X;o4t has finite limits, while the full subcategory spanned by affine weakly
étale maps Y — X has all small limits. All limits in question agree with those in Sch x.

Proof. For the first part, it suffices to show that X|,;.¢; has a final object and arbitrary fibre products. Clearly
X is a final object. Moreover, if Y7 — Y5 < Y3 is a diagram in X o4, then both maps in the composition
Y1 Xy, Y3 — Y; — X are weakly étale for any ¢ € {1, 2,3} by the previous lemmas, proving the claim. For
the second part, the same argument as above shows finite limits exist. Hence, it suffices to check that small
cofiltered limits exist, but this is clear: the limit of a cofiltered diagram of affine weakly étale X -schemes is
an affine X -scheme that is weakly étale over X as flatness is preserved under filtered colimits of rings. [

We record an example of a typical “new” object in X o4t

Example 4.1.9. The category X,,;¢; is “tensored over” profinite sets, i.e., given a profinite set S and Y €
Xproét» one can define Y ® S € X ;04 as follows. Given S = lim; S; as a cofiltered limit of finite sets, we
obtain constant X-schemes S; € X¢; C Xpro¢r With value S;. Set § = lim; Sj,and Y @ S :=Y xx S. If
X is qcgs, then for any finitely presented X -scheme U, one has Homx (Y ® S, U) = colim; Homx (Y ®

SRecall that a cardinal x is a strong limit cardinal if for any v < &, 27 < k.
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Si,U) = colim; [ [ Homx (Y, U). The association S — S defines a limit preserving functor from profinite
sets t0 Xprost-

Using these objects, we can describe the pro-étale site of a field explicitly:

Example 4.1.10. Fix a field k. If k is a separable closure, then the qcqgs objects in Spec(E)proét identify with

the category of profinite sets via the functor Y — Y (k) with inverse S — S (in the notation of Example
4.1.9). The map Spec(k) — Spec(k) is a weakly étale G-torsor, so the qcgs objects in Spec(k) progt identify
with pro-objects in the category of finite discrete G-sets, i.e., with the category of profinite continuous G-
sets. Under this identification, a family {S; — S} of continuous G-equivariant map of such sets is a covering
family if there exists a finite subset .J of the indices such that Li;c ;S; — S is surjective. To see this, we may

assume k = k. Given such a family {S; — S}, the corresponding map L;¢ g8 — S'is a surjective weakly

étale map of affines, so {S; — S} is a covering family in Spec(k)prost; the converse is clear. Evaluation on
S is exact precisely when S is extremally disconnected; note that this functor is not a topos-theoretic point
as it does not commute with finite coproducts (though it does commute with filtered colimits and all limits).

Remark 4.1.11. The site X ;¢ introduced in this paper differs from the one in [Sch13], temporarily de-
noted X[ . More precisely, there is a natural map ux : Shv(Xpros) — Shv(X] ) of topoi, but px
is not an equivalence: px . is fully faithful, but there are more objects in ShV(XI/)roét)' This is evident
from the definition, and can be seen directly in Example 4.1.10 when X = Spec(k) with k an algebraically
closed field. Indeed, both the categories X,o¢; and Xll)roét are identified with the category of profinite sets,
but X,.0¢t has more covers than X;,)roét: all objects of XI’)roét are weakly contractible, while the weakly
contractible ones in X ;4 are exactly the ones corresponding to extremally disconnected profinite sets.

The following example (due to de Jong) shows that the property of being pro-étale is not Zariski local on
the target, and hence explains why weakly étale maps give a more geometric notion:

Example 4.1.12. Let S’ be an infinite set with an automorphism 7" : S — S’ which does not stabilize any
finite subset; for example, S = Z, and T"(n) = n+ 1. Write (S, 0) for the one point compactification of S’
and T : § — S for the induced automorphism (which has a unique fixed point at 0); note that .S is profinite,
and the unique non-empty clopen subset of S stable under T is .S itself. Let X C A% be the union of
two irreducible smooth curves X; and X5 meeting transversely at points p and g; note that X is connected.
Glueing S ® X1 € X1 prost 10 S @ Xo € X progt using the identity at p and T" at g gives Y € X040 We
claim that Y is not pro-étale over X. Assume otherwise that Y = lim; Y; — X with f; : ¥; — X étale. Let
0: X — Y be the zero section, defined using 0 € S. Then the assumption on Y shows that 0(X) = NU;
with U; C Y a clopen subset (pulled back from a clopen of Y;). Now any clopen subset U C Y defines a
clopen subset U,, C S that is stable under 7, so U, = S is the only possibility by choice of S and T; this
gives {0} = 0(X), = N;S = S, which is absurd.

We end by giving examples of covers in Xp,o¢t.

Example 4.1.13. Given a scheme X and closed geometric points 1, ..., Z,, the map

(ui Spec((‘)ﬁ?’zi» L (X — {1, ... ,xn}) — X
is a weakly étale cover. However, one cannot add infinitely points. For example, the map
h
UpSpec(Z(,)) — Spec(Z)
is not a weakly étale cover as the target is not covered by a quasicompact open in the source.

4.2. The topos. To effectively study Shv (X, ), we single out a special class of weakly étale morphisms
to serve as generators:

Definition 4.2.1. Fix a scheme X. An object U € X is called a pro-étale affine if we can write
U = lim; U; for a small cofiltered diagram i — U; of affine schemes in Xg;,; the expression U = lim; U; is
called a presentation for U, and we often implicitly assume that the indexing category has a final object 0.

The full subcategory of Xpros, Spanned by pro-étale affines is denoted ng)ét.
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We remark that each U € ng)ét is, in particular, an affine scheme pro-étale over X.

Lemma 4.2.2. Any map in X2

proét is pro-(affine étale).

Proof. Fixamaph:U — Vin X aff  and presentations U = lim; U; and V' = lim; V; as pro-étale affines.

proét’
Then, after changing the presentation for U, we may assume that X = V) is an affine scheme Spec(A). The
claim now follows from the observation that a map between ind-étale A-algebras is also ind-étale. g

Remark 4.2.3. By Lemma 4.2.2, the category ngf)ét admits limits indexed by a connected diagram, and
these agree with those in Sch,x. However, this category does not have a final object (unless X is affine) or

non-empty finite products (unless X has an affine diagonal).

The reason to introduce pro-étale affines is:

Lemma 4.2.4. The site X,,;o¢, is subcanonical, and the topos Shv (X st ) is generated by ng;ét.
Proof. The first part comes from fpqc descent. The second assertion means that any Y € X|,.¢ admits a

surjection L;U; — Y in Xr¢p With U; € X aff which follows from Theorem 2.3.4. ]

proét’

We record some consequences of the above observations on pro-étale maps for the pro-étale site:

Remark 4.2.5. Assume X is an affine scheme. Then ngf)ét is simply the category of all affine schemes
pro-étale over X; this category admits all small limits, and becomes a site with covers defined to be fpqc

covers. Lemma 4.2.4 then shows that Shv(Xp¢t) =~ Shv( X2 ).

proét

Lemma 4.2.6. A presheaf F' on X,,;04; is a sheaf if and only if:
(1) For any surjection V. — U in X1 the sequence F(U) — F(V)—= F(V xy V) is exact.

proét’
(2) The presheaf F' is a Zariski sheaf.
Proof. The forward direction is clear. Conversely, assume F' is a presheaf satisfying (1) and (2), and fix a
cover Z — Y in X,06. Using (1) and (2), one readily checks the sheaf axiom in the special case where
Y € X;g)ét, and Z = U;W; with W; € nggét. In the case of a general cover, Lemma 4.2.4 shows that we
can find a diagram

Llje]Uj .z

d
UierVi ——=Y

aff

where d is a Zariski cover, a and b are covers in Xprost, and Uy, Vi € X7 o with b determined by a map

h:J — I of index sets together with maps U; — Vj,(;) in ngfoét. The previous reduction and (2) give the
sheaf axiom for b and d, and hence d o b as well. It formally follows that F'(Y) — F(Z) is injective, and
hence that F(Z) — [[, F/(U;) is also injective by (2) as a is a cover. A diagram chase then shows that the

sheaf axiom for ¢ follows from that for c o a. ]
Lemma 4.2.7. For any Y € Xpro¢t, pullback induces an identification Shv (X proet) /v = Shv (Yprost)-

Proof. A composition of weakly étale maps is weakly étale, and any map between weakly étale maps is
weakly étale. ([l

The pro-étale topos is locally weakly contractible in the sense of Definition 3.2.1.
Proposition 4.2.8. For any scheme X, the topos Shv (X prost) is locally weakly contractible.
Proof. This follows immediately from Lemma 2.4.9 since any affine U € X|,;.¢; is coherent. ]

Remark 4.2.9. Proposition 4.2.8 gives a recipe for calculating the pro-étale homotopy type | X | of a qcqs
scheme X. Namely, if f : X* — X is a hypercover in X ;¢ with each X" being w-contractible, then
| X| = |mo(X*)|; any two such choices of f are homotopic, and hence | X | is well-defined in the category of
simplicial profinite sets up to continuous homotopy.

We give an example illustrating the behaviour of constant sheaves on the pro-étale site:
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Example 4.2.10. Fix a connected affine scheme X, and a profinite set S = lim; .S; with S; finite. By the
formula in Example 4.1.9, the constant sheaf A € Shv(X,,0¢) associated to a set A satisfies

A(X ® S) = colim (A%).
K2
In particular, the functor A — A is not compatible with inverse limits.
The following example shows classical points do not detect non-triviality in Shv (X prot)-

Example 4.2.11. Fix an algebraically closed field &, and set X = Spec(k). Then Shv (X ) identifies
with the topos of sheaves on the category of profinite sets .S as explained in Example 4.1.10. Consider the
presheaf GG (resp. F') which associates to such an .S the group of all locally constant (resp. all) functions
S — A for some abelian group A. Then both F" and G are sheaves: this is obvious for GG, and follows from
the compatibility of limits in profinite sets and sets for /. Moreover, G C F,and Q := F/G € Ab(Xprost)
satisfies Q(X) = 0, but Q(S) # 0 for S not discrete.

In fact, more generally, one can define ’constant sheaves’ associated with topological spaces. Indeed, let
X be any scheme, and let 7" be some topological space.

Lemma 4.2.12. The association mapping any U € Xproet 10 Mapo (U, T) is a sheaf Fp on Xproer. If
T is totally disconnected and U is gcgs, then Fp(U) = Map.on (m0(U), T). In particular, if T is discrete,
then Fr is the constant sheaf associated with T

Proof. To show that Fr is a sheaf, one reduces to proving that if f : A — B is a faithfully flat ind-étale
morphism of rings, then M C SpecA is open if and only if (Specf)~'(M) C SpecB is open. Only the
converse is nontrivial, so assume (Specf) (M) C SpecB is open. First, we claim that M is open in
the constructible topology. Indeed, the map Specf : SpecB — SpecA is a continuous map of compact
Hausdorff spaces when considering the constructible topologies. In particular, it is closed, so

SpecA \ M = (Specf)(SpecB \ (Specf) (M)

is closed, and thus M is open (in the constructible topology). To check that M is actually open, it is enough
to verify that M is closed under generalizations. This is clear, as Specf is generalizing, and (Specf)~1(M)
is open (and thus closed under generalizations).

If T is totally disconnected and U is gcgs, then any continuous map U — T will necessarily factor
through the projection U — mo(U), so that Fr(U) = Map, . (mo(U), T). O

We relate sheaves on X with sheaves on its space mo(X ) of connected components. Recall that if X is a
qcgs scheme, then my(X) is a profinite set. If 7o (X )pro¢t denotes the site of profinite mo(X)-sets as in Ex-
ample 4.1.10, then the construction of Lemma 2.2.8 defines a limit-preserving functor 7~ : (X)progt —
Xprost Which respects coverings. Hence, one has an induced map 7 : Shv(Xprost) — Shv(7mo(X ) progt) of
topoi. This map satisfies:

Lemma 4.2.13. Assume X is gcgs, and let 7w : Shv(Xprosr) — Shv(m0(X)proct) be as above. Then
(1) 7 F(U) = F(mo(U)) for any qcgs U € Xprosr and F' € Shv(mo(X)proct)-
(2) 7 commutes with limits.
(3) ©* is fully faithful, so w,m* ~ id.
(4) 7* identifies Shv (mo(X ) prost ) With the full subcategory of those G € Shv(Xprost) such that G(U) =
G(V) for any map U — 'V of qcgs objects in Xpros inducing an isomorphism on .

Proof. All schemes appearing in this proof are assumed gcgs. (2) is automatic from (1). For (1), fix some
F € Shv(mo(X)prost). As any continuous 7o(X)-map U — S with U € Xp040 and S € mo(X)proct
factors canonically through 7o(U), the sheaf 7*F is the sheafification of the presheaf U — F(m(U))
on U € Xproer- As Fis itself a sheaf on mo(X)prost, it is enough to check: for a surjection U — V
in Xpro¢t, the map mo(U) — (V) is the coequalizer of the two maps mo(U xy U) — mp(U) in the
category of profinite sets (induced by the two projection maps U xy U — U). For any profinite set S,
one has (S ® X)(U) = Map(m0(U), S) with notation as in Example 4.1.9, so the claim follows from
the representability of S ® X and fpqc descent. For (3), it suffices to check that m,7*F =~ F for any
F € Shv(mo(X)prost), Which is immediate from Lemma 2.2.8 and (2). For (4), by (2), it remains to
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check that any G with the property of (4) satisfies G ~ 7*m,G. Given U € Xq¢t, We have a canonical
factorization U — 7 Y(mo(U)) — X, where 77 1(mo(U)) — X is a pro-(finite étale) map inducing
7o(U) — 7o(X) on connected components, while U — 7~ !(mo(U)) is an isomorphism on 7. Then
G(U) = G(r=Y(mo(U))) by assumption on G, which proves G = 7*7,.G by (2). O

Remark 4.2.14. The conclusion of Lemma 4.2.13 fails for 7 : Shv(X¢;) — Shv(mo(X)et). Indeed, if X
is connected, then Shv(my(X)s) = Set, and 7* coincides with the “constant sheaf” functor, which is not
always limit-preserving.

4.3. The case of a point. Fix a profinite group G. We indicate how the definition of the pro-étale site
can be adapted to give a site BG o6 Of profinite G-sets. In particular, each topological G-module M
defines a sheaf J; on BG,o¢t, and the resulting functor from topological G-modules to abelian sheaves on
BG 04t 1s an embedding with dense image (in the sense of colimits). We use this construction to study the
cohomology theory M — RI'(BGproct, Far) on G-modules: this theory is equal to continuous cohomology
in many cases of interest, and yet better behaved in some functorial respects. The definition is:

Definition 4.3.1. Let BG,;o¢ be the pro-étale site of G, defined as the site of profinite continuous G-sets
with covers given by continuous surjections.

For S € BGprost, We use hg € Shv(BGpro6t) to denote the associated sheaf. Let G-Spc be the category
of topological spaces with a continuous G-action; recall that G-Spc admits limits and colimits, and the
formation of these commutes with passage to the underlying spaces (and thus the underlying sets). Let
G-Spc,, C G-Spc be the full subcategory of X € G-Spc whose underlying space may be written as a
quotient of a disjoint union of compact Hausdorff spaces; we call these spaces compactly generated. There
is a tight connection between these categories and Shv(BGproct):

Lemma 4.3.2. Let notation be as above.

(1) The association X +— Map oy (—, X) gives a functor F(_y : G-Spc — Shv(BGprost)-
(2) The functor F_y is limit-preserving and faithful.

(3) F(—y admits left adjoint L.

(4) F(_y is fully faithful on G-Spc,,.

(5) The essential image of G-Spc,, generates Shv(BGyproet) under colimits.

Proof. The argument of Lemma 4.2.12 shows that any continuous surjection of profinite sets is a quotient
map, which gives the sheaf property required in (1). It is clear that the resulting functor JF(_y is limit-
preserving. For any X € G-Spc, one has Fx(G) = X where G € BG4 is the group itself, viewed as a
left G-set via translation; this immediately gives (2). The adjoint functor theorem gives the existence of L
as in (3), but one can also construct it explicitly: the functor hg +— S extends to a unique colimit preserving
functor Shv(BGpre¢t) — G-Spc by the universal property of the presheaf category (as a free cocompletion
of BGpro¢t) and the fact that covers in BG ot give quotient maps. In particular, if F' € Shv(BGproct),
then F' = colimp, hg, where I is the category of pairs (5, s) with S € BGpo¢r and s € F(S), which
gives L(F') = colimy, S. For (4), it is enough to show that L(Fx) ~ X for any compactly generated X.
By the previous construction, one has L(Fx) = colim Iy S, so we must check that there exists a set I of
spaces S; € BG o4t and G-maps s; : S; — X such that L;S; — X is a quotient map. Choose a set I of
compact Hausdorff spaces 7; and a quotient map LI;7; — X. Then the map LI;7; x G — X induced by
the G-action is also a quotient, so we reduce to the case where X is a compact Hausdorff G-space. Now
consider Y := G x (X) € BGprost, Where the G-action is defined via g - (h,n) = (gh,n). There is an
induced continuous map f : ¥ — X viaG x 3(X) - G x X — X, where the last map is the action.
One checks that f is G-equivariant and surjective. As Y is profinite, this proves (4). Lastly, (5) is formal as
Fsg = hgforS e BGproét. ]

Let G-Mod denote the category of continuous G-modules, i.e., topological abelian groups equipped with
a continuous G-action, and let G-Mod.;, C G-Mod be the full subcategory of topological G-modules
whose underlying space is compactly generated. The functor &F(_ restricts to a functor F_) : G-Mod —
Ab(BGproet), and Lemma 4.3.2 (1) - (4) apply formally to this functor as well. The main non-formal
statement is:
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Proposition 4.3.3. With notation as above, one has:

(1) The essential image of F_y : G-Mody — Ab(BGproet) generates the target under colimits.
(2) Every N € Ab(BGyprost) has a resolution whose terms come from G-Mod.g.

To prove Proposition 4.3.3, we review some topological group theory. For a topological space X, write
AX for the free topological abelian group on X, defined by the obvious universal property. One may show
that AX is abstractly isomorphic to the free abelian group on the set X, see [AT08, Theorem 7.1.7]. In
particular, one has a reduced length associated to each f € AX, defined as the sum of the absolute values of
the coefficients. Let A« y X C AX be the subset of words of length < IV; one checks that this is a closed
subspace, see [AT08, Theorem 7.1.13]. Moreover:

Theorem 4.3.4 (Graev). If X is a compact topological space, then AX = colim A<y X as spaces.
Proof. See Theorem [ATO08, Theorem 7.4.1]. ]
We use this to prove.

Lemma 4.3.5. Fix a compact Hausdorff space S, an extremally disconnected profinite set T, and a contin-
uous map f : T — AS. Then there exists a clopen decomposition T = L;T; such that f|r, is a Z-linear
combination of continuous maps T; — S.

Proof. Lemma 4.3.7 and Theorem 4.3.4 imply that f factors through some A<x.S. Now consider the
profinite set S = S LU {0} LU S and the induced map ¢ : S — A<y defined by viewing S as the subspace

<1 . S) U{0} U ( -1 S) C AS and using the group law. This map is continuous and surjective, and all

spaces in sight are compact Hausdorff. By extremal disconnectedness, there is a lift 7" — SN one checks
that this implies the desired claim. U

We can now identify the free abelian sheaf Zj, for any S € BG o4
Lemma 4.3.6. If S € BGro6t, then Zpg ~ F 5.

Proof. One clearly has g = hg, so there is a natural map 1) : Z;, — F4g of abelian sheaves induced by
Fs — Fas. We will check ¥(T) is an isomorphism for T" covering BGpros. Let F' 1 #pr06t — BGproct
be a left adjoint to the forgetful functor BGpro¢t — *progt- Then it is enough to check ¢(F (7)) is an
isomorphism for 7" extremally disconnected. Unwinding definitions, this is exactly Lemma 4.3.5. U

Proposition 4.3.3 falls out quickly:

Proof of Proposition 4.3.3. Theorem 4.3.4 shows that AS is compactly generated for any S € BGpro¢t.
Now Lemma 4.3.6 gives (1) as the collection {Zj,,} generates Ab(BGpy0¢t) under colimits. Finally, (2) is
formal from (1). ]

The next lemma was used above, and will be useful later.

Lemma 4.3.7. Fix a countable tower X1 C X9 C --- C X, C ... of closed immersions of Hausdorff
topological spaces, and let X = colim; X;. Then Map,, (S, X) = colim Map_, (S, X;).

Proof. We must show each f : S — X factors through some X;. Towards contradiction, assume there
existsamap f : S — X with f(S) ¢ X, for all i. After reindexing, we may assume that there exist x; € S
such that f(z;) € X; — X;_1. These points give a map 7 : SN — S via i — z;. After replacing f with
f om, we may assume S = BN; set T' = {f(¢)|[i € N}. Now pick any € X — T'. Then « € X for some
j. For i > j, we may inductively construct open neighourhoods x € U; C X; such that U; N T = (), and
Ui+1 N X; = U;; here we use that X; N T is finite. The union U = U;U; C X is an open neighbourhood
of x € X that misses 7. Hence, f~1(U) NN = 0, so f~1(U) = () by density of N C S. Varying over all
x € X — T then shows that f(S) = T. Now one checks that T C X is discrete: any open neighbourhood
1 € U; C X can be inductively extended to open neighbourhoods x; € U; C X; suchthat U; 11 N X; = U;
and x; ¢ U;. Then T must be finite as S is compact, which is a contradiction. O

We now study the cohomology theory M +— RI'(BGypro¢t, Far) on G-Mod. There is a natural transfor-
mation connecting it to continuous cohomology:
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Lemma 4.3.8. For any M € G-Mod, there is a natural map ®p; : R cont (G, M) — RI(BGprost, Far)-

Proof. By [Sch13, Proposition 3.7], one has Rl cont (G, M) = RF(BG;rOé“M*?M)’ where BG;mé
defined as in Remark 4.1.11, and p1 : Shv(BGproet) — Shv(BG, ) the natural map; one then defines
¢ via pullback as p* i, =~ id on D(BGpro6t) (simply because BG ot is finer topology than BG'

proé
the same category).

¢ 18
¢ ONn

The map @), is an isomorphism for a fairly large collection of modules:

Lemma 4.3.9. Let © C G-Mod be the full subcategory of all M € G-Mod for which R' . Ty = 0 for all
i > 0, where pu : Shv(BGproet) — Shv(BG'  ..) is the natural map.

proét
(1) Forall M € C, the map @ : Rl cont (G, M) = RI'(BGprost, Far) is an isomorphism.
(2) If M € G-Mod is discrete, then M € C.
(3) If M = colim M; is a sequential colimit of Hausdorff M; € C along closed immersions, then
M e C.
(4) If M = lim M; is a sequential limit of M; € C along profinitely split M;+1 — M;, then M € C.
(5) If M = lim M; is a sequential limit of M; € C along B-epimorphisms M;y1 — M; with kernel
K; = ker(Mi_H — MZ) € C, then M € C.

Here a quotient map M — N of topological spaces is said to be profinitely split if it admits sections
over any map K — N with K profinite. It is said to be a 3-epimorphism if for every map g : K — N
with K compact Hausdorff, there is a surjection K’ — K with K’ compact Hausdorff, and a lift K/ — M,
equivalently, for any map 5(X) — N where X is discrete, there is a lift 3(X) — M. This property is
automatic if M — N is a quotient map, and the kernel is compact Hausdorff.

Proof. Parts (1) and (2) are clear. For (3), note that Iy = colim J);, by Lemma 4.3.7, so the result follows
as Ry, commutes with filtered colimits. For parts (4) and (5), note that if M;; — M; is a S-epimorphism,
then Fpy,, — Fpy, is surjective on BGproer. By repleteness, we get Fyy = limFyy; = Rlim Fyy,.
Applying Ry, and using repleteness of BG;rOét, we have to show that R! lim (1. Fpz,) = 0. If all M1 —
M; are profinitely split, then all .z, ,, — ps«F g, are surjective, so the result follows from repleteness of
BG! If K; = ker(M; 11 — M;) € C, then on applying Ry to the sequence

proét*
0_>ng1'_>ng¢+1 _>?M¢_>07
we find that p.F

o1 — Ty, is surjective, so again the result follows from repleteness of BG' ([l

proét*
Remark 4.3.10. The category C of Lemma 4.3.9 includes many standard Galois modules occurring in

arithmetic geometry obtained by iterations of completions and localisations applied to discrete modules.
For example, when G' = Gal(Q,,/Q,), the G-module Byr is such an object.

We now indicate one respect in which RI'( BG,ro¢t, F(—) behaves better than continuous cohomology:
one gets long exact sequences in cohomology with fewer constraints.

a

Lemma 4.3.11. Fix an algebraically short exact sequence 0 — M’ — M L M7 = 0in G-Mod. Assume
b is a B-epimorphism, and a realises M’ as a subspace of M. Then there is an induced long exact sequence
on applying H*(BG prost, F(—))-

Proof. It is enough to show that

0—=Fy = Fpy = Fyr —0
is exact. Exactness on the right results from the assumption on b, exactness on the left is obvious from the
injectivity of M’ < M, and exactness in the middle comes from the assumption on a. U

Remark 4.3.12. Considerations of the discrete topology show that some hypothesis must be imposed in
Lemma 4.3.11. The assumption used above is fairly weak: it is automatic if M’ is compact Hausdorff. In
contrast, in continuous cohomology, one demands existence of sections after base change to all profinite
sets over M".
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5. RELATIONS WITH THE ETALE TOPOLOGY

Fix a scheme X . Since an étale map is also a weakly étale map, we obtain a morphism of topoi
v Shv(Xproet) — Shv(Xey).

The main goal of this section is to describe its behaviour at the level of derived categories. The pullback and
pushforward along v, together with the resulting semiorthogonal decompositions of complexes on Xo¢t,
are discussed in §5.1 and §5.2. This is used to describe the left-completion of D(X¢;) in terms of D(Xpro¢t)
in §5.3. Some elementary remarks on the functoriality of v in X are recorded in §5.4. Finally, we describe
Ekedahl’s category of “adic” complexes [Eke90] in terms of D(Xp0¢t) in §5.5. We rigorously adhere to the
derived convention: the functors * and v, when applied to complexes, are understood to be derived.

5.1. The pullback. We begin with the pullback at the level of sheaves of sets:

Lemma 5.1.1. For F' € Shv(X¢) and U € ngfoét with a presentation U = lim; U;, one has v*F(U) =
colim; F(U;).

Proof. The problem is local on X, so we may assume that X = Spec(A) is affine. In that case, by Remark
4.2.5, the site X,0¢t is equivalent to the site .S’ given by ind-étale A-algebras B = colim B;, with covers
given by faithfully flat maps. The pullback F’ of F' to S as a presheaf is given by F’(B) = colim F(B;). It
thus suffices to check that F” is a sheaf; we will do this using Lemma 4.2.6. First, note that F” is a Zariski
sheaf since any finite collection of quasicompact open subschemes of SpecB come via pullback from some
SpecB;. It remains to show that F” satisfies the sheaf axiom for every faithfully flat ind-étale map B — C'
of ind-étale A-algebras. If B — C' is actually étale, then it arises via base change from some faithfully
flat étale map B; — Cj, so the claim follows as [ is a sheaf. In general, write C' = colim C); as a filtered
colimit of étale B-algebras C';, necessarily faithfully flat. Then F'(C) = colim; F’(C}). The sheaf axiom
for B — C' now follows by taking filtered colimits. ([l

A first consequence of the above formula is that ©* is fully faithful. In fact, we have:

Lemma 5.1.2. The pullback v* : Shv(Xe¢) — Shv(Xproee) is fully faithful. Its essential image consists
exactly of those sheaves F with F(U) = colim; F'(U;) forany U € ngfoét with presentation U = lim; Uj.

Proof. Lemma 5.1.1 shows that F' ~ v, v*F for any F' € Shv(X¢;), which formally implies that v* is
fully faithful. For the second part, fix some G' € Shv(X,,0¢) satisfying the condition of the lemma. Then
Lemma 5.1.1 (together with Lemma 4.2.4) shows that v*v,G — G is an isomorphism, which proves the
claim. ([l

Definition 5.1.3. A sheaf F' € Shv(Xp06t) is called classical if it lies in the essential image of v* :
ShV(Xét) — ShV(XprOét).

In particular, F' is classical if and only if v*v,F' — F' is an isomorphism. We need a simple lemma on
recognizing classical sheaves.

Lemma 5.1.4. Let F be a sheaf on Xpros. Assume that for some pro-étale cover {Y; — X}, Fly, is
classical. Then F'is classical.

Proof. We may assume that X = SpecA is affine, that there is only one Y = Y; = SpecB, with A — B ind-
étale, B = colim; B;, with A — B, étale. We need to check that for any ind-étale A-algebra C' = colim; C},
we have F'(C') = colim; F'(Cj). Now consider the following diagram, expressing the sheaf property for
C - B®C,resp. C; — B® Cj.

F(C) F(C® B) F(C®B® B)

| | |

colim F(C}j) — colim; F(C; ® B) —= colim; F'(C; ® B® B)

The second and third vertical arrows are isomorphisms as F!SpeC p 1s classical. Thus, the first vertical arrow
is an isomorphism as well, as desired. U
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As an example, let us show how this implies that the category of local systems does not change under
passage from X¢; to Xprot.

Corollary 5.1.5. Let R be a discrete ring. Let Locx,, (R) be the category of R-modules Lg on X
which are locally free of finite rank. Similarly, let Locx, ., (R) be the category of R-modules Lyyoet on

Xprost Which are locally free of finite rank. Then v* defines an equivalence of categories Locx,, (R) =
Locx. . (R).

proét

In the following, we denote either category by Locx (R).

Proof. If Lg; € Locx,, (R), then clearly Lyo6 = v*Lgy € Locx,,., (R); as v* is fully faithful, it remains
to verify essential surjectivity. Thus, take Lyyoet € Locx,, 4 (R). As Ly is locally free of finite rank, it
is in particular locally classical, thus classical by Lemma 5.1.4. Thus, Lo = v* L¢; for some sheaf L of
R-modules on Xg;. Assume that U € X;g)ét with presentation U = lim U is such that Lyoe| = R™|y.
The isomorphism is given by n elements of (Lpyost) (U) = colimy; Let (Us). This shows that the isomorphism

Lrost|v = R™|y is already defined over some Uj, thus Lg, € Locx,, (R), as desired. O
Next, we pass to derived categories.

Corollary 5.1.6. For any K € D (Xg), the adjunction map K — v,v*K is an equivalence. Moreover; if
U € X2 with presentation U = lim; U, then RI' (U, v*K) = colim; RI'(U;, K).

proé

Proof. The first part follows from the second part by checking it on sections using Lemma 4.2.4, i.e., by
applying RT'(V, —) to the map K — v, v*K for each affine V' € Xg. For the second part, the collection
of all K € DT (Xg) for which the claim is true forms a triangulated category stable under filtered colimits.
Hence, it suffices to prove the claim for K € Ab(X¢) C DT (Xg). For such K, since we already know the
result on HY by Lemma 5.1.1, it suffices to prove: HP(U,v*I) = 0 for I € Ab(Xg) injective, p > 0, and
U e ng)ét. By [SGA72b, Proposition V.4.3], it suffices to prove that H?(U,v*I) = 0 for the same data.
Choose a presentation U = lim; U; for some cofiltered category I. By Theorem 2.3.4, a cofinal collection of
covers of U in X ;4 18 obtained by taking cofiltered limits of affine €tale covers obtained via base change
from some U;. Using Lemma 5.1.1 again, we can write

(U, F) = colim HP (1(V)==% I(V %, V)==E I(V x0, V xu, V)=

where the colimit is computed over (the opposite of) the category of pairs (i, V') where i € I,and V' — Uj is
an affine étale cover. For a fixed 4, the corresponding colimit has vanishing higher cohomology since I, is
injective in Ab(Uj ¢;), and hence has trivial higher Cech cohomology. The claim follows as filtered colimits
are exact. O

Again, we will refer to objects in the essential image of v* as classical, and Lemma 5.1.4 extends to
bounded-below derived categories with the same proof.

Remark 5.1.7. The argument used to prove Corollary 5.1.6 also shows: if U € ngf)ét is w-strictly local,

then HP(U,v*F) = 0 for all F' € Ab(X¢) and p > 0. Indeed, for such U, any affine étale cover V" — U
has a section, so the corresponding Cech nerve is homotopy-equivalent to U as a simplicial scheme.

Remark 5.1.8. If K € D(Xg) is an unbounded complex, then the formula in Corollary 5.1.6 is not true.
Instead, to describe v*K, first observe that v*K ~ Rlimv*7=""K as Shv(Xpost) is replete and v*
commutes with Postnikov truncations. Hence, RI'(Y, v*K) ~ Rlim colim; RT'(Y;, 727" K) for any Y €
ng)ét with a presentation Y = lim Y;. Moreover, since v, commutes with arbitrary limits, we also see that
v,v*K ~ Rlim 72" K. For an explicit example, we remark that Example 3.3.4 can be adapted to exhibit
the failure of id — v,v* being an equivalence.

An abelian consequence is:

Corollary 5.1.9. The pullback v* : Ab(X¢) — Ab(Xproet) induces an equivalence on Ext’ for all i. In
particular, v*(Ab(Xgt)) C Ab(Xproet) is a Serre subcategory.
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Proof. Let @ C Ab(Xg) be the full subcategory of sheaves F for which Ext’(F, —) ~ Ext‘(v*(F),v*(-))
for all 7. Then C contains all direct sums of sheaves of the form Zy for U € X by Corollary 5.1.6. Since
any F' € Ab(Xg) admits a surjection from such a direct sum, the claim follows by dimension shifting. [J

5.2. The pushforward. Our goal is to describe the pushforward v, : D(Xpro¢t) — D(Xg;) and the result-
ing decomposition of D(Xpr04t). To do so, it is convenient to isolate the kernel of v,:

Definition 5.2.1. A complex L € D(Xpyo6t) is parasitic if RU(v™1U, L) = 0 for any U € Xg. Write
Dp(Xproet) C D(Xprost) for the full subcategory of parasitic complexes, D;‘ (Xproet) for bounded below
parasitics, etc.

The key example is:

Example 5.2.2. Let {F,,} € Fun(N°P Ab(X¢;)) be a projective system of sheaves with surjective transi-
tion maps. Set K = Rlim F,, € D(X¢), and K’ = Rlimv*(F},) € D(Xproet). Then K/ ~ lim v*(F),)
as Xpro¢t 1s replete. The natural map v* K — K " has a parasitic cone since v,v*K ~ K = Rlim F), ~
Rlim v, v*F,, ~ v, K'. For example, when X = Spec(Q), the cone of the map v*(R lim p1,,) — lim gy, is
non-zero and parasitic.

The basic structural properties of D), (X prost) are:

Lemma 5.2.3. The following are true:
(1) Dp(Xproct) is the kernel of vy = D(Xprost) = D(Xet).
(2) Dp(Xproct) is a thick triangulated subcategory of D(Xproct)-
(3) The inclusion i : Dp(Xprost) — D(Xprost) has a left adjoint L.
(4) The adjunction L o 1 — id is an equivalence.

Proof. Sketches:

(1) This follows from the adjunction between v* and v, together with the fact that D(X¢;) is generated
under homotopy-colimits by sheaves of the form Z;; for U € Xg;.

(2) Clear.
(3) Consider the functor M : D(Xpost) — D(Xproet) defined via M(K) = cok(v*v, K — K).
There is a map id — M, and hence a tower id — M — M? — M3 — ... , where M™" is the

n-fold composition of M with itself. We set L : D(Xpr06t) — D(Xproct) to be the (filtered) colimit
of this tower, i.e., L(K) = M*°(K) := colim,, M™(K). We will show that L(K) is parasitic for
any I, and that the induced functor L : D(Xpro¢t) — Dp(Xprost) is a left adjoint to . Choose any
U € Xg. As U is qcgs, we have

RI'(v~'U, L(K)) ~ RI(v~'U, colim M™(K)) = colimRT'(v~'U, M™(K)).
n n
Hence, to show that L takes on parasitic values, it suffices to show that
RI (v 'U,K) — RI(v'U, M(K))

is the 0 map for any K € D(Xp0¢t). Since v is a map of a topoi, we have a factorisation

RI(v1U, K) ~ RO(U, 1, K) "5 RU(v~U, v* 1, K) — RO(v~U, K)
of the identity map on RT'(v~1U, K). The composition RT'(v U, K) — RI(v~1U, M(K)) is
then 0 by definition of M (K'), which proves that L(K) is parasitic. To show that the induced
functor L : D(Xprost) — Dp(Xprost) is a left adjoint to the inclusion, note first that for any
K, P € D(Xprost) With P parasitic, one has Hom(v*v, K, P) = Hom (v, K, v, P) = 0 by (1). The
exact triangle defining M (K') shows
Hom(K, P) ~ Hom(M (K), P) ~ Hom(M?*(K), P) ~ --- ~ Hom(M"(K), P)
for any n > 0. Taking limits then shows
Hom(K, P) = lim Hom(M"(K), P) = Hom(colim M"(K), P) = Hom(L(K), P),
n

which is the desired adjointness.
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(4) This follows from (1) and the construction of L given in (3): for any parasitic P € D(Xp04t), One
has P ~ M(P) ~ M"™(P) ~ colim,, M"(P) ~ L(P) since v, P = 0. O

Remark 5.2.4. In Lemma 5.2.3, it is important to work at the derived level: the full subcategory Ab, (X prost)
of all F' € Ab(Xprost) With F(v~='U) = 0forany U € X is not a Serre subcategory of Ab(Xprost). For

example, let X = Spec(Q) and set Zy(1) := lim ppn € Ab(Xprost). Then there is an exact sequence
1 Zo(1) 5 Zp(1) — pe — 1
in Ab(Xpr06t). One easily checks that 25(1) € Abp(Xprost), While f1y & Aby(Xproct)-

Remark 5.2.5. The localisation functor L : D(Xpr0¢t) — Dp(Xprogt) from Lemma 5.2.3 admits a partic-
ularly simple description when restricted to bounded below complexes: L(K) ~ cok(v*v, K — K) for
any K € DT (Xp04). Indeed, by the proof of Lemma 5.2.3 (3), it suffices to show that M (K) ~ M 2(K)
for such a complex K; this follows from the formula v*v,v*v, K ~ v*v, K, which comes from Corollary
5.1.6.

We can now show that D" (X¢;) and D;r (Xproct) give a semiorthogonal decomposition for D™ (X proct )-

Proposition 5.2.6. Consider the adjoints D* (X prozt) Zg D+ (Xe) and Dy (Xproer) % D (Xproct)-
(1) v* is fully faithful.
(2) The adjunction id — v,v* is an equivalence.
(3) The essential image of v* is exactly those K € D+(Xproét) whose cohomology sheaves are in
v (Ab(Xa)).
(4) The pushforward v, realises DV (Xe) as the Verdier quotient of DV (X prost) by D;‘ (Xprost)-
(5) The map L realises Df (Xyro¢t) as the Verdier quotient of D (X prost) by v* (DT (Xgt))-

Proof. Sketches:

(1) This follows formally from Corollary 5.1.6.

(2) This follows from (1) by Yoneda.

(3) Let C C D+(Xproét) be the full subcategory of complexes whose cohomology sheaves lie in
v*(Ab(Xg)); by Corollary 5.1.9, this is a triangulated subcategory of D (X04) closed under
filtered colimits. Moreover, chasing triangles and truncations characterises C as the smallest tri-
angulated subcategory of D (X,06) closed under filtered colimits that contains v*(Ab(Xg;)).
Now v*(D* (X)) C € as v* is exact. Moreover, by (1) and left-adjointness of v*, we see that
v*(D*(Xe)) is a triangulated subcategory of DT (X ,0¢t) closed under filtered colimits. Since
v*(D (X)) clearly contains v*(Ab(Xg)), the claim follows.

(4) By Lemma 5.2.7, we want v, to admit a fully faithful left adjoint; this is what (1) says.

(5) This follows from Lemma 5.2.3 and Lemma 5.2.7 provided v*(D* (X)) is the kernel of L. By
Remark 5.2.5, the kernel of L is exactly those K with v*v, K ~ K, so the claim follows using
Corollary 5.1.6. g

The following observation was used above:

Lemma 5.2.7. Let L : C; — Co be a triangulated functor between triangulated categories. If L admits a
fully faithful left or right adjoint i, then L is a Verdier quotient of C1 by ker(L).

Proof. By symmetry, we may assume L is a left adjoint. Given a triangulated functor F' : ¢; — D which
carries ker(L) to 0, we will show that the natural map F' — F o o L is an equivalence. First, adjunction
shows L o ¢ ~ id via the natural map as ¢ is fully faithful. Hence, for each K € C;, we get a triangle
K' - K — (io L)(K) such that L(K’) = 0. This shows that F'(K) ~ (F o i o L)(K) for all such F,
proving the claim. O

Remark 5.2.8. If we assume that X is locally of finite cohomological dimension, then D(X) is left-
complete. Since D(Xpro¢t) is also left-complete, one can show that v* : D(Xg) — D(Xproet) is fully
faithful by reduction to the bounded below case. In fact, every statement in Proposition 5.2.6 extends to the
unbounded setting in this case.
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At the unbounded level, the pullback v* : D(X¢) — D(Xprogt) is not fully faithful in general, as
explained in Remark 5.1.8, so none of the arguments in Proposition 5.2.6 apply. Nevertheless, we can still
prove a semiorthogonal decomposition as in Proposition 5.2.6 at the expense of replacing D(X¢;) with the
smallest triangulated subcategory D' C D(X,04) that contains v*(D(Xg;)) and is closed under filtered
colimits:

Proposition 5.2.9. Let D' C D (X 06t) be as above. Then
(1) If v* is fully faithful, then v* induces an equivalence D(X¢) ~ D’
(2) Given K € D(Xprost), one has K € D" if and only if Hom(K, K') = 0 for any K' € Dp(Xprost)-
(3) The inclusion i : D" — D admits a right adjoint N : D(Xpyoet) — D' such that N o i ~ id.
(4) The localisation L realises Dp(X o) as the Verdier quotient of D( X prost) by D'
(5) The map N realises D' as the Verdier quotient of D(Xprost) by Dp(Xproet)-

Proof. Sketches:

(1) If v* is fully faithful, then K ~ v,v*K ~ Rlim72""K (where the last isomorphism is from
Remark 5.1.8). The claim now follows by reduction to the bounded case, as in Remark 5.2.8.

(2) Since v*(D(Xg;)) is left-orthogonal to Dy,(Xproet), so is D'. For the converse direction, con-
sider the functors N; : D(Xprost) — D(Xproet) defined via N;(K) = ker(K — M'(K)) where
M(K) = cok(v*v,K — K) (as in the proof of Lemma 5.2.3). The tower id — M — M? —
M3 — ... gives rise to a tower Ny — No — N3 — --- — id with N;; being an extension of
v*u, M by N;; set N = colim; IN;. The description in terms of extensions shows N;(K) € D’ for
all 7, and hence N € D’ as D’ is closed under filtered colimits. Moreover, setting L = colim; M ¢
gives an exact triangle N — id — L of functors. As in Lemma 5.2.3, L realises the parasitic
localisation D(Xproet) — Dp(Xprost). Hence, if Hom(K, K') = 0 for every parasitic K’, then
K ~ N(K) € D' by the previous triangle.

(3) One checks that the functor N : D(Xpr0st) — D’ constructed in (2) does the job (using the exact
triangle N — id — L and the fact that Hom(D’, L(K)) = 0 for all K by (2)).

(4) This follows from Lemma 5.2.7 if we could show that D’ is the kernel of L. For this, one simply
uses the exact triangle N — id — L as in (2).

(5) This is proven exactly like (4). O]

5.3. Realising the left-completion of D (X ) via the pro-étale site. Our goal is to identify the left-
completion E(Xét) with a certain subcategory of D (X« ) using the analysis of the previous sections. The
starting point is the following observation: by Proposition 3.3.3, the pullback v* : D(X¢4) — D(Xproet)
factors through 7 : D(Xg;) — ﬁ(Xét). To go further, we isolate a subcategory of D(Xproét) that contains
the image of v*:

Definition 5.3.1. Let D..(Xproct) be the full subcategory of D(Xproet) spanned by complexes whose coho-
mology sheaves lie in v*(Ab(X;)); we write D}.(Xproet) for the bounded below objects, etc.

Since v* : D(X¢) — D(Xprost) is exact, it factors through De.(Xpro¢t), and hence we get a functor
D(X¢t) = Dee(Xprogt). Our main observation is that this functor is an equivalence. More precisely:

*
Vee

Proposition 5.3.2. There is an adjunction D..(Xprost) == D(X¢;) induced by v, and v*. This adjunc-

Vee
tion is isomorphic to the left-completion adjunction B(Xét) Rl% D(X¢t). In particular, Dee(Xproet) ™~
D(Xg).

Proof. The existence of the adjunction is formal from the following: (a) v* carries D(X¢t) to Dee(Xprost)s
and (b) Dec(Xprost) — D(Xprogt) is fully faithful. Proposition 5.2.6 immediately implies that v/}, in-
duces an equivalence DV (X¢;) ~ D}.(Xproet). To extend to the unbounded setting, observe that K €
Dee(Xprogt) if and only if 2 "K € Dee(Xproet) by the left-completeness of D(Xpr0¢t) and the exact-
ness of v*. This lets us define functors p : ﬁ(Xét) — Dee(Xproet) and v Dee(Xprost) — ﬁ(Xét)
via u({K,}) = Rlimv*(K,) and y(K) = {v.72""K}; one can check that ;1 and ~ realise the desired
mutually inverse equivalences. H
38



Since D’ is the smallest subcategory of D(X,,o¢) that contains v*D(Xg;) and is closed under filtered
colimits, one has D’ C Dece(Xprogt)- It is natural to ask how close this functor is to being an equivalence.
One can show that if D(Xg) is left-complete, then D(Xg) ~ D" =~ Dee(Xproet); We expect that D' =~
De(Xprogt) fails without left-completeness, but do not have an example.

5.4. Functoriality. We study the variation of v : Shv(Xp0¢;) — Shv(Xg;) with X. For notational clarity,
we often write vx instead of v.

Lemma 5.4.1. A morphism f : X —Y of schemes induces a map fpro¢t : Shv(Xproet) — Shv(Yprost) of
topoi with f* given by pullback on representable objects. The induced diagram

ShV(Xproét) L ShV(Xé )
lfproét lfét
ShV(Yproét) L) ShV(Y;ét)

commutes. In particular, for F either in Shv(Yg) or D(Yg), there is an isomorphism f
vy o f&(F).

o vy (F) =~

roét

Proof. Since all maps in sight are induced by morphisms of sites, this follows simply by the definition of
pullback. ([l

Lemma 5.4.2. Let f : X — Y be a universal homeomorphism of schemes, i.e., f is universally bijective
and integral. Then f, : Shv(Xprost) — Shv(Yprost) is an equivalence.

Proof. The claim is local on Y, so we may Y and X are affine. By Theorem 2.3.4, we can identify
Shv(Yproet) With the topos of sheaves on the site opposite to the category of ind-étale O(Y")-algebras with
covers generated by faithfully flat maps and Zariski covers, and likewise for X. Since f~! identifies X
with Yz, while preserving affine objects (by integrality) and covers, the claim follows from the topological
invariance of the usual étale site. O

Lemma 5.4.3. Fix a qcqgs map f : Y — X of schemes and F either in Shv(Ye) or DV (Yy). Then the
natural map
Vi*/ © fét,*(F) — fproét,* o V}k((F)

is an equivalence.

Proof. We first handle F' € Shv(Yg). The claim is local on X, so we may assume X is affine. First,
consider the case where Y is also affine. Choose some U € Ypaff with presentation U = lim; U;. Then

Lemma 5.1.1 shows

roét
Vi o faro(F)(U) = colim F(f~'T5).

As f7U € Ypifgét with presentation f~'U = lim; f~'Uj;, one concludes by reapplying Lemma 5.1.1. For
not necessarily affine but separated and quasicompact Y, the same argument shows that the claim is true for
all F' € Shv(Yg;) obtained as pushforwards from an affine open of Y. Since the collection of all F’ satisfying
the above conclusion is stable under finite limits, a Mayer-Vietoris argument shows that the claim is true
for all F' € Shv(Y') with Y quasicompact and separated. Repeating the argument (and using the separated
case) then gives the claim for all qcqs Y. For ' € DT (Xg), the same argument applies using Corollary

5.1.6 instead of Lemma 5.1.1 (with finite limits replaced by finite homotopy-limits). U

Remark 5.4.4. Lemma 5.4.3 does not apply to unbounded complexes. Any scheme X’ with D(X7,) not
left-complete (see Remark 3.3.5) gives a counterexample as follows. Choose K € D(X,) for which
K # Rlim72""K. Then there is an X € X} for which RI['(X,K) # RI'(X,Rlim72""K) ~
RI'(Xproet, ¥ K) (here we use Remark 5.1.8). The map X — Spec(Z) with ' = K|x gives the de-
sired counterexample.

Remark 5.4.5. One reason to prefer the pro-étale topology to the fpqc topology is that the analogue of
Lemma 5.4.3 fails for the latter: étale pushforwards do not commute with arbitrary base change.
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Lemma 5.4.3 and the repleteness of the pro-étale topology let us access pushforwards of unbounded
complexes quite easily; as pointed out by Brian Conrad, a similar statement can also be shown for D(X)
using Hartshorne’s formalism of “way-out” functors.

Lemma 5.4.6. Let f : X — Y be a map of qcqs schemes. Assume f, : Mod(Xg, F') — Mod(Ye, F') has
cohomological dimension < d for aring F. Then f, : D(Xprost, F') = D(Yprost, F) carries Dék(Xpmét, F)
to DM (Y 0, F).

Proof. Fix K € D=F(Xproet)- Then K ~ Rlim727"K by repleteness, so fi K ~ Rlim f, 7= "K.
Lemma 5.4.3 and the assumption on f show fut2 K € D§k+d(Yproét). As R lim has cohomological
dimension < 1 by repleteness, half of the claim follows. It remains to check that H'(f,K) € v*Ab(Y).
For this, observe that, for fixed i, the projective system {H*(f,7=""K)} is essentially constant: for n > 0,
the map f, 7=~ "*DK — f,72""K induces an isomorphism on H' by assumption on f. By repleteness,
this proves H!(f. K) ~ 3H'(f.7=""K) for n >> 0, which is enough by Lemma 5.4.3. O

5.5. Relation with Ekedahl’s theory. In this section, we fix a noetherian ring R complete for the topology
defined by an ideal m C R. For this data, we follow the notation of §3.4 with X = Shv(X,0¢;). We use
here the following (slight variations on) assumptions introduced by Ekedahl, [Eke90].

Definition 5.5.1.
(A) There is an integer N and a set of generators Y;, Y; € Xg, of Xet, such that for all R/m-modules
M on Xg, H"(Y;, M) =0 forn > N.
(B) The ideal m is regular, and the R/m-module m" / m™ L has finite flat dimension bounded indepen-
dently of n.

Here, condition (A) agrees with Ekedahl’s condition (A), but condition (B) may be slightly stronger than
Ekedahl’s condition (B). By Proposition 3.3.7 (2), condition (A) ensures that D (X, R/m) is left-complete,
as are all D(X¢, R/m'™). Ekedahl considers the following category.

Definition 5.5.2. If condition (A) is fulfilled, let x = —, if condition (B) is fulfilled, let x = 4, and if condition
(A) and (B) are fulfilled, let * be empty. Define D', (X, R) as the full subcategory of D*(XJ"", Re) spanned
by projective systems { My, } whose transition maps M,, @ Jmn R/m"~! — M, _4 are isomorphisms for all
n.

In the pro-étale world, limits behave better, so we can define the following analogue:

Definition 5.5.3. Define D g, (Xprost, ﬁ) C Decomp(Xproét, é) as the full subcategory of complexes K
satisfying K @ R/m € Deo(Xproat), i, H(K @5 R/m) € v*Ab(Xg,) for all i. If x € {+,—,b}, let

D (Xprost, R) C Dgr(Xproet, R) be the full subcategory with corresponding boundedness assumptions.
The main comparison is:

Proposition 5.5.4. If condition (A) is fulfilled, let x = —, if condition (B) is fulfilled, let x = +, and
if condition (A) and (B) are fulfilled, let x be empty. There is a natural equivalence D7y (Xprost, R) =~
Dy, (Xet, R).

Proof. Assume first that condition (A) is satisfied. By Lemma 3.5.7 (iv), we have Dc_omp(Xproét, }A%) o~

Dign (XN R,). The full subcategory D, (Xprost, R) consists of those {K,,} € D (X oce Re

com; roét’ = -®
for wﬁichpKn € D_(Xprost, R/m™) for all n, as follows easily by induction on n. Under condition (A),
D(X¢, R/m™) is left-complete, so D™ (X, R/m™) = D (Xproet, R/m™). This gives the result.

Now assume condition (B). Thus, there exists N € N such that if K € D%lz (Xproét E) for some k,
then K @5 R/m" € DZF N (Xroe) for all n. Hence, by Lemma 3.5.7, we may view D, (Xprost, R)
as the full subcategory of Dégmp(ngzt, R,) spanned by those { K, } with K,, € Df(X}06t). Moreover,
by Proposition 5.2.6, v* induces an equivalence D (X¢;) ~ D (Xproct). The desired equivalence is then
induced by {M,,} — {v*M,} and {K,,} — {v. K,}.

If condition (A) and (B) are satisfied, simply combine the two arguments. ]
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5.6. Relation with Jannsen’s theory. Fix a scheme X. In [Jan88, §3], one finds the following definition:

Definition 5.6.1. The continuous étale cohomology H¢ . (X¢i, {Fn}) of X with coefficients in a pro-system
{F,} of abelian sheaves on Xg is the value of the i-th derived functor of the functor Ab(X¢ )N — Ab given
by {F,} — H°(Xg,lim F},).

In general, the groups H . (Xet, {F,,}) and H'( Xy, lim F},) are distinct, even for the projective system
{Z/0™}; the difference is explained by the derivatives of the inverse limit functor. As inverse limits are
well-behaved in the pro-étale world, this problem disappears, and we obtain:

Proposition 5.6.2. Let {F,} is a pro-system of abelian sheaves on X¢ with surjective transition maps.
Then there is a canonical identification

H o (Xe, {F}) =~ H (X progs, im v* F).

cont
Proof. Write RT cont (Xst, {Fn}) := RI'(Xet, Rlim F,,), 50 HY (R cont (Xat, {Fn})) = Hion (Xet, {Fn})
as defined above by the Grothendieck spectral sequence for composition of derived functors. We then have
RIcont (Xet, {Fn}) ~ RUmRIT (Xgt, Fr) >~ RIm R (Xproee, v Fr) =~ RT(Xprogt, R1im v* F, );
here the first and last equality use the commutation of RI' and Rlim, while the second equality comes

from the boundedness of F;,, € D(X¢;). The assumption on {F},} ensures that R lim F,, ~ lim F}, by the
repleteness of X|,.o¢¢, which proves the claim. ]
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6. CONSTRUCTIBLE SHEAVES

This long section studies constructible sheaves, with the ultimate goal of giving a different perspective on
the notion of a Q,-sheaf. We begin by studying in §6.1 and §6.2 the basic functoriality of pushforward and
pullback along locally closed immersions; the main novelty here is that pullback along a closed immersion
is limit- and colimit-preserving, contrary to the classical story. Next, we recall the theory of constructible
complexes in the étale topology in §6.3. We alert the reader that our definition of constructibility is more
natural from the derived perspective, but not the usual one: a constructible complex on a geometric point is
the same thing as a perfect complex, see Remark 6.3.2. In particular, the truncation operators 7>, T7<p do
not in general preserve constructibility. As a globalisation of this remark, we detour in §6.4 to prove that
constructible complexes are the same as compact objects under a suitable finiteness constraint; this material
is surely standard, but not easy to find in the literature. We then introduce constructible complexes in the
pro-étale world in §6.5 with coefficients in a complete noetherian local ring (R, m) as those R-complexes
on X0, Which are complete (in the sense of §3.4), and classically constructible modulo m. This definition
is well-suited for comparison with the classical picture, but, as we explain in §6.6, also coincides with the
more intuitive definition on a noetherian scheme: a constructible complex is simply an R-complex that is
locally constant and perfect along a stratification. This perspective leads in §6.8 to a direct construction of
the category of constructible complexes over coefficient rings that do not satisfy the above constraints, like
Z, and Q,. Along the way, we establish that the formalism of the 6 functors “works” in this setting in §6.7.

6.1. Functoriality for closed immersions. Fix a qcqs scheme X, and a qcqs open j : U — X with closed
complement ¢ : Z — X. We use the subscript “0” to indicate passage from X to Z. First, we show
“henselizations” can be realised as pro-étale maps.

Lemma 6.1.1. Assume X is affine. Theni~' : XSH — Zaff)ét admits a fully faithful left adjoint V — V.

roét pr

In particular, we have i~ (V) ~ V.

Proof. See Definition 2.2.10 and Lemma 2.2.12. ([l
Henselization defines a limit-preserving functor between sites:

Lemma 6.1.2. Assume X is affine. Then the functor V 1% Jfrom Lemma 6.1.1 preserves surjections.

Proof. Fix V = Spec(Ag) with V = Spec(A) for a ring A that is henselian along I = ker(A — Ag). It
suffices to show that any étale map W — V whose image contains V' C Vis surjective. The complement of
the image gives a closed subset of V that misses V, but such sets are empty as [ lies in the Jacobson radical
of A by assumption. O

Contrary to the étale topology, we can realise ¢* simply by evaluation in the pro-étale world:

Lemma 6.1.3. If X is affine, then i* F(V') = F(V) for any w-contractible V & Z> . and F' € Shv(Xpro6t)-

proé

Proof. Clearly, i*F is the sheafification of V + F(V) on Z* . . On w-contractible objects, sheafification

proét*
is trivial, giving the result. O]

Remark 6.1.4. It follows from the affine analogue of proper base change, [Gab94], [Hub93], that for clas-
sical torsion sheaves F, i*F'(V) = F(V) forall V € Zgi)ét; in fact, the affine analogue of proper 