p-ADIC HODGE THEORY FOR RIGID-ANALYTIC VARIETIES

PETER SCHOLZE

ABSTRACT. We give proofs of de Rham comparison isomorphisms for rigid-analytic
varieties, with coefficients and in families. This relies on the theory of perfectoid
spaces. Another new ingredient is the pro-étale site, which makes all constructions
completely functorial.
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2 PETER SCHOLZE

1. INTRODUCTION

This paper starts to investigate to what extent p-adic comparison theorems stay true
for rigid-analytic varieties. Up to now, such comparison isomorphisms were mostly
studied for schemes over p-adic fields, but we intend to show here that the whole theory
extends naturally to rigid-analytic varieties over p-adic fields. This is of course in analogy
with classical Hodge theory, which most naturally is formulated in terms of complex-
analytic spaces.

Several difficulties have to be overcome to make this work. The first is that finiteness
of p-adic étale cohomology is not known for rigid-analytic varieties over p-adic fields.
In fact, it is false if one does not make a restriction to the proper case. However, our
first theorem is that for proper smooth rigid-analytic varieties, finiteness of p-adic étale
cohomology holds.

Theorem 1.1. Let K be a complete algebraically closed extension of Qp, let X/K be
a proper smooth rigid-analytic variety, and let . be an Fy-local system on X¢. Then
HY(X¢, L) is a finite-dimensional Fp-vector space for all i > 0, which vanishes for
1> 2dim X.

The properness assumption is crucial here; the smoothness assumption is probably
unnecessary, and an artefact of the proof. We note that it would be interesting to prove
Poincaré duality in this setup.

Let us first explain our proof of this theorem. We build upon Faltings’s theory of
almost étale extensions, amplified by the theory of perfectoid spaces. One important
difficulty in p-adic Hodge theory as compared to classical Hodge theory is that the local
structure of rigid-analytic varieties is very complicated; small open subsets still have
a large étale fundamental group. We introduce the pro-étale site X,;,6 whose open
subsets are roughly of the form V — U — X, where U — X is some étale morphism,
and V' — U is an inverse limit of finite étale maps. Then the local structure of X in the
pro-étale topology is simpler, namely, it is locally perfectoid. This amounts to extracting
lots of p-power roots of units in the tower V. — U. We note that the idea to extract
many p-power roots is common to all known proofs of comparison theorems in p-adic
Hodge theory.

The following result gives further justification to the definition of pro-étale site.

Theorem 1.2. Let X be a connected affinoid rigid-analytic variety over K. Then X
is a K(m, 1) for p-torsion coefficients, i.e. for all p-torsion local systems 1. on X, the
natural map

7
H cont

(Wl(Xa x)vL:v) — Hi(XétaL)

is an isomorphism. Here, x € X(K) is a base point, and 71(X,x) denotes the profinite
étale fundamental group.

We note that we assume only that X is affinoid; no smallness or nonsingularity hy-
pothesis is necessary for this result. This theorem implies that X is 'locally contractible’
in the pro-étale site, at least for p-torsion local systems.

Now, on affinoid perfectoid subsets U, one knows that H(Us, O% /p) is almost zero for
1 > 0, where O} C Ox is the subsheaf of functions of absolute value < 1 everywhere.
This should be seen as the basic finiteness result, and is related to Faltings’s almost
purity theorem. Starting from this and a suitable cover of X by affinoid perfectoid
subsets in X6, one can deduce that H i(Xét, O} /p) is almost finitely generated over
Opg. At this point, one uses that X is proper, and in fact the proof of this finiteness
result is inspired by the proof of finiteness of coherent cohomology of proper rigid-
analytic varieties, as given by Kiehl, [13]. Then one deduces finiteness results for the
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[Fp-cohomology by using a variant of the Artin-Schreier sequence
0—->F,—0%/p—0%/p—0.

In order to make this argument precise, one needs to analyze more closely the category
of almost finitely generated Ox-modules, which we do in Section 2, formalizing the proof
of §3, Theorem 8, of Faltings’s paper [9]. In fact, the proof shows at the same time the
following result, which is closely related to §3, Theorem 8, of [9].

Theorem 1.3. In the situation of Theorem 1.1, there is an almost isomorphism of
Og-modules for all i > 0,

H'(X4,L) @ Ok /p — H' (Xat, L ® O% /p) .

More generally, assume that f: X — Y is a proper smooth morphism of rigid-analytic
varieties over K, and IL is an Fp-local system on X¢. Then there is an almost isomor-
phism for all i > 0,

(R fas L) ® OF /p — R' feei (L ® OF /p)

Remark 1.4. The relative case was already considered in an appendix to [9]: Under the
assumption that X, Y and f are algebraic and have suitable integral models, this is §6,
Theorem 6, of [9]. In our approach, it is a direct corollary of the absolute version.

In a sense, this can be regarded as a primitive version of a comparison theorem.
Although it should be possible to deduce (log-)crystalline comparison theorems from it,
we do only the de Rham case here. For this, we introduce sheaves on X, which we
call period sheaves, as their values on pro-étale covers of X give period rings. Among
them is the sheaf IB(]LR, which is the relative version of Fontaine’s ring BJR. Let L be

lisse Zy-sheaf on X. In our setup, we can define it as a locally free Z,-module on X,
where Z,, = l’ng/p”Z as sheaves on Xj04. Then L gives rise to a B:{R—local system
M=L ®Zp IBS(‘;R on Xpro¢t, and it is a formal consequence of Theorem 1.3 that

H'(Xa, L) ®2, By = H'(Xproer, M) . (1)

We want to compare this to de Rham cohomology. For this, we first relate filtered
+

modules with integrable connection to Bz-local systems.

Theorem 1.5. Let X be a smooth rigid-analytic variety over k, where k is a complete
discretely valued nonarchimedean extension of Q, with perfect residue field. Then there
is a fully faithful functor from the category of filtered Ox-modules with an integrable
connection satisfying Griffiths transversality, to the category of IB%IR—local systems.

The proof makes use of the period rings introduced in Brinon’s book [5], and relies on
some of the computations of Galois cohomology groups done there. We say that a lisse
Zy-sheaf L is de Rham if the associated IB%;{R—Iocal system M lies in the essential image
of this functor.

Let us remark at this point that the form of this correspondence indicates that the
Rapoport — Zink conjecture on existence of local systems on period domains, cf. [16,
|, is wrong if the cocharacter p is not minuscule. Indeed, in that case they are asking
for a crystalline, and thus de Rham, local system on (an open subspace of) the period
domain, whose associated filtered module with integrable connection does not satisfy
Griffiths transversality. However, the p-adic Hodge theory formalism does not allow
for an extension of Theorem 1.5 beyond the situations where Griffiths transversality is
satisfied.

We have the following comparison result.
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Theorem 1.6. Let k be a discretely valued complete nonarchimedean extension of Q,
with perfect residue field k, and algebraic closure k, and let X be a proper smooth rigid-
analytic variety over k. For any lisse Zy-sheaf . on X with associated B;R—local system
M, we have a Gal(k/k)-equivariant isomorphism

HI(XE::L) ®Zp BJR = HI(XE,M) .

If L is de Rham, with associated filtered module with integrable connection (€,V,Fil®),
then the Hodge-de Rham spectral sequence

Hyyotige (X, €) = Hip (X, €)

degenerates. Moreover, Hi(X,;,L) is a de Rham representation of Gal(l_f_/k) with associ-
ated filtered k-vector space Hig (X, E). In particular, there is also a Gal(k/k)-equivariant
isomorphism

HY(X}, L) ®z, k = @Hﬁogée (X,€) @y k(—j) .

Remark 1.7. We define the Hodge cohomology as the hypercohomology of the associated
gradeds of the de Rham complex of &£, with the filtration induced from Fil®.

In particular, we get the following corollary, which answers a question of Tate, [19],
Remark on p.180.

Corollary 1.8. For any proper smooth rigid-analytic variety X over k, the Hodge-de
Rham spectral sequence

H(X, %) = Hi (X)

degenerates, there is a Hodge-Tate decomposition

H' (X, 4, Qp) ®g, k = @ H (X, 9% ) @ k(—j) ,
j=0

and the p-adic étale cohomology H' (X, Qp) is de Rham, with associated filtered k-vector
space Hip (X).

Interestingly, no "Kéhler’ assumption is necessary for this result in the p-adic case as
compared to classical Hodge theory. In particular, one gets degeneration for all proper
smooth varieties over fields of characteristic 0 without using Chow’s lemma.

Examples of non-algebraic proper smooth rigid-analytic varieties can be constructed
by starting from a proper smooth variety in characteristic p, and taking a formal, non-
algebraizable, lift to characteristic 0. This can be done for example for abelian varieties
or K3 surfaces. More generally, there is the theory of abeloid varieties, which are 'non-
algebraic abelian rigid-analytic varieties’, roughly, cf. [15]. Theorem 1.6 also has the
following consequence, which was conjectured by Schneider, cf. [17], p.633.

Corollary 1.9. Let k be a finite extension of Qp, let X = Qf be Drinfeld’s upper
half-space, which is the complement of all k-rational hyperplanes in IP)Z_I, and let T' C
PGL, (k) be a discrete cocompact subgroup acting without fized points on ). One gets
the quotient Xp = X /T, which is a proper smooth rigid-analytic variety over k. Let M
be a representation of I' on a finite-dimensional k-vector space, such that M admits a
T-invariant Og-lattice. It gives rise to a local system Mr of k-vector spaces on Xr.
Then the twisted Hodge-de Rham spectral sequence

H'(Xp, @, ® Mr) = Hyf/ (Xr, Ox, ® Mr)

degenerates.
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The proof of Theorem 1.6 follows the ideas of Andreatta and Iovita, [2], in the crys-
talline case. One uses a version of the Poincaré lemma, which says here that one has an
exact sequence of sheaves over X, q¢t,

0 — Bi, — OBL, % OB, @0, Q% % ...

where we use slightly nonstandard notation. In [5] and [2], B} would be called BYS,
and OIB%(J{R would be called BIR. This choice of notation is used because many sources
do not consider sheaves like OB;R, and agree with our notation in writing IBSIR for the
sheaf that is sometimes called ng . We hope that the reader will find the notation not
too confusing.

Given this Poincaré lemma, it only remains to calculate the cohomology of OBZ{R,
which turns out to be given by coherent cohomology through some explicit calculation.
This finishes the proof of Theorem 1.6. We note that this proof is direct: All desired
isomorphisms are proved by a direct argument, and not by producing a map between
two cohomology theories and then proving that it has to be an isomorphism by abstract
arguments. In fact, such arguments would not be available for us, as results like Poincaré
duality are not known for the p-adic étale cohomology of rigid-analytic varieties over p-
adic fields. It also turns out that our methods are flexible enough to handle the relative
case, and our results imply directly the corresponding results for proper smooth algebraic
varieties, by suitable GAGA results. This gives for example the following result.

Theorem 1.10. Let k be a discretely valued complete nonarchimedean extension of
Qp with perfect residue field k, and let f : X — Y be a proper smooth morphism of
smooth rigid-analytic varieties over k. Let IL be a lisse Zy-sheaf on X which is de
Rham, with associated filtered module with integrable connection (£,V,Fil*). Assume
that Rifproét*L is a lisse Zy-sheaf on Y ; this holds true, for example, if the situation
comes as the analytification of algebraic objects.

Then R? fproéeslls is de Rham, with associated filtered module with integrable connection
given by R far+(E, V, Fil®).

We note that we make use of the full strength of the theory of perfectoid spaces,
[18]. Apart from this, our argument is rather elementary and self-contained, making
use of little more than basic rigid-analytic geometry, which we reformulate in terms
of adic spaces, and basic almost mathematics. In particular, we work entirely on the
generic fibre. This eliminates in particular any assumptions on the reduction type of our
variety, and we do not need any version of de Jong’s alterations, neither do we need log
structures. The introduction of the pro-étale site makes all constructions functorial, and
it also eliminates the need to talk about formal projective or formal inductive systems
of sheaves, as was done e.g. in [9], [2]: All period sheaves are honest sheaves on the
pro-étale site.

Recently, a different proof of the de Rham comparison theorem for algebraic varieties
was given by Beilinson, [3]. Apart from the idea of extracting many p-power roots to
kill certain cohomology groups, we see no direct relation between the two approaches.
We note that adapting Beilinson’s approach to the rigid-analytic case seems to require
at least Equation (1) as input: Modulo some details, the sheaf IB%:{R will appear as the
sheaf of constants of the derived de Rham complex, not just the constant sheaf B:{R as
in Beilinson’s case. This happens because there are no bounded algebraic functions on
p-adic schemes, but of course there are such functions on affinoid subsets. Also, it looks
difficult to get results with coefficients using Beilinson’s approach, as the formulation of
the condition for a lisse Z,-sheaf to be de Rham seems to be inherently a rigid-analytic
condition.
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Let us make some remarks about the content of the different sections. Some use-
ful statements are collected in Section 9, in particular concerning comparison with the
algebraic theory. In Section 2, we prove a classification result for almost finitely gen-
erated Ox-modules, for nonarchimedean fields K whose valuation is nondiscrete. In
Section 3, we introduce the pro-étale site and establish its basic properties. The most
important features are that inverse limits of sheaves are often well-behaved on this site,
i.e. higher inverse limits vanish, and that it gives a natural interpretation of continuous
group cohomology, which may be of independent interest. Moreover, going from the
étale to the pro-étale site does not change the cohomology. In Section 4, we introduce
structure sheaves on the pro-étale site and prove that they are well-behaved on a basis
for the pro-étale topology, namely on the affinoid perfectoid subsets. This relies on the
full strength of the theory of perfectoid spaces. In Section 5, we use this description
to prove Theorem 1.1 and Theorem 1.3 as indicated earlier. In Section 6, we introduce
some period sheaves on the pro-étale topology, and describe them explicitly. Given the
results of Section 4, this is rather elementary and explicit. In Section 7, we use these
period sheaves to prove Theorem 1.5, and parts of Theorem 1.6. Finally, in Section 8,
we finish the proofs of Theorem 1.6 and Theorem 1.10.

Acknowledgments. Some of these results were announced in March 2011 at a
conference at the TAS in Princeton, and the author wants to thank the organizers for
the invitation to speak there. He would also like to thank Arthur Ogus and Martin
Olsson for the invitation to speak about these results at Berkeley in September 2011.
The author would like to thank Lorenzo Ramero for discussions related to the results of
Section 2, which were inspired by reading Section 9.3 of [10], and overlap with it to some
extent. Also, he would like to thank Kiran Kedlaya for discussions related to Theorem
1.5, in particular for proposing the alternate characterization of M in Proposition 7.9.
The generalization of these results to general proper smooth rigid-analytic varieties was
prompted by a question of Davesh Maulik, whom the author wishes to thank. Further,
he wants to thank Ahmed Abbes, Pierre Colmez, Jean-Marc Fontaine, Ofer Gabber,
FEugen Hellmann, Adrian lovita, Wieslawa Niziol, Michael Rapoport and Timo Richarz
for helpful discussions. These results were the basis both for an ARGOS seminar in
Bonn in the summer of 2011, and a lecture course in Bonn in the summer of 2012, and
the author thanks the participants for working through this manuscript. This work was
done while the author was a Clay Research Fellow.

2. ALMOST FINITELY GENERATED (O-MODULES

Let K be a nonarchimedean field, i.e. a topological field whose topology is induced by
a nonarchimedean norm |- | : K — R>¢. We assume that the value group I' = |K*| C
R<q is dense. Let O C K be the ring of integers, and fix # € O some topologically
nilpotent element, i.e. |r| < 1. Using the logarithm with base |7|, we identify R~ with
R; this induces a valuation map v : K — RU {oo} sending 7 to 1. We write logI" C R
for the induced subgroup. For any r € logI' we fix some element, formally written as
7" € K, such that |7"| = |x|".

In this setting, the maximal ideal m of O is generated by all ¢, € > 0, and satisfies
m? = m. We consider the category of almost O-modules with respect to the ideal m, i.e.

an O-module M is called almost zero if mM = 0:

Definition 2.1. The category of O%-modules, or almost O-modules, is the quotient of
the category of O-modules modulo the category of almost zero modules.

We denote by M +— M?® the functor from O-modules to O%modules.

Definition 2.2. Let M and N be two O-modules. For any € > 0, € € logD', we say
that M =~. N if there are maps fe : M — N, gc : N — M such that fege = gcfe = w€.
Moreover, if M ~, N for all € > 0, we write M ~ N.
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Note that the relations ~, and ~ are symmetric, and transitive in the following sense:
If M =~ N and N =5 L, then M =~.,5 L. In particular, ~ is transitive in the usual
sense. Also, note that M is almost zero if and only if M =~ 0. In general, for two
O-modules M, N, if M* 2 N as O%modules, then M =~ N, but the converse is not
true. In this section, we will concentrate on the equivalence classes of the relation =
instead of isomorphism classes of O%modules, which is slightly nonstandard in almost
mathematics. For this reason, we will mostly work with honest O-modules instead of
O%modules, as the use of the latter will often not clarify the situation.

Definition 2.3. Let M be an O-module. Then M is called almost finitely generated
(resp. almost finitely presented) if for all € > 0, € € logT', there exists some finitely
generated (resp. finitely presented) O-module N, such that M =, N¢.

The property of being almost finitely generated (resp. presented) depends only on
the O%module M*“, so that we may also talk about an O*-module being almost finitely
generated (resp. presented).

Ezample 2.4. (i) Recall that any finitely generated ideal of O is principal, so that O is
coherent, i.e. any finitely generated submodule of a finitely presented module is again
finitely presented. Now let r € R, » > 0 and consider the ideal

I, = U ™0 CO.
e€log'e>r

Then the inclusions O = 7¢O C I, for € > r show that O =~ I,.. However, one can check
that I is not isomorphic to O% as O%modules if r € logI". Note that all nonprincipal
ideals of O are of the form I, in particular all nonzero ideals I C O satisfy I ~ O, and
hence are almost finitely presented.

(ii) Let v1,72, ... € R>g, such that v; — 0 for i — co. Then
O/L,, @0/, ® ...
is almost finitely presented.
The main theorem of this section is the following.

Theorem 2.5. Let M be any almost finitely generated O-module. Then there exists a
unique series y1 > y2 > ... > 0 of real numbers such that v; — 0 for i — oo, and a
unique integer r > 0, such that

M~O0 &0/l,®0/L,®....
First, we note that O is ’almost noetherian’.
Proposition 2.6. Every almost finitely generated O-module is almost finitely presented.
Proof. First, recall the following abstract result.
Proposition 2.7 ([11], Lemma 2.3.18). Let 0 - M’ — M — M" — 0 be an exact
sequence of O-modules.

(i) If M is almost finitely generated, then M" is almost finitely generated.

(i) If M" and M" are almost finitely generated (resp. presented), then M is almost
finitely generated (resp. presented).

(iii) If M is almost finitely generated and M" is almost finitely presented, then M’ is
almost finitely generated.

(iv) If M is almost finitely presented and M’ is almost finitely generated, then M" is
almost finitely presented.
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Now let M be an almost finitely generated O-module; we want to show that it is
almost finitely presented. We start with the case that M is generated by one element,
M = O/I for some ideal I C O. By Example 2.4 (i), I is almost finitely generated,
giving the claim by part (iv).

Now assume that M is finitely generated, and let 0 = My C My C ... C My = M
be a filtration such that all M;/M;_; are generated by one element. Then by the
previous result, all M; /M, are almost finitely presented, and hence M is almost finitely
presented by part (ii).

Finally, take M any almost finitely generated O-module. Let ¢ > 0, € € logI', and
choose N, finitely generated, M =~ N.. Then N, is almost finitely presented, so there
exists some finitely presented L. such that N, ~. L.. Then M =, L., and letting ¢ — 0,
we get the result. O

We note that it follows that any subquotient of an almost finitely generated O-module
is almost finitely generated, so that in particular the category of almost finitely generated
O-modules is abelian.

The following proposition reduces the classification problem to the case of torsion
modules.

Proposition 2.8. (i) Let M be a finitely generated torsion-free O-module. Then M s
free of finite rank.

(ii) Let M be an almost finitely generated torsion-free O-module. Then M ~ O for a
unique integer r > 0.

(iii) Let M be an almost finitely generated O-module. Then there exists a unique integer
r >0 and an almost finitely generated torsion O-module N such that M ~ O" & N.

Proof. (i) Let k be the residue field of O. Lifting a basis of the finite-dimensional k-
vector space M ® k, we get a surjection O" — M. Assume that the kernel is nontrivial,
and let f € O be in the kernel. Write f = 77g for some v > 0, v € logI', such that
¢ has nontrivial image in x". This is possible, as greatest common divisors of finitely
elements of O exist. Now ¢ has nontrivial image in M, but 77¢ becomes 0 in M, which
means that M has torsion, which is a contradiction.

(ii) By definition, for any ¢ > 0, € € logI', there is some finitely generated submodule
N, C M such that M ~. N.. But then NN, is finitely generated and torsion-free, hence
free of finite rank. The rank is determined as the dimension r of the K-vector space
M ® K. Hence M ~, N, =2 O" for all € > 0, giving the claim.

(iii) Let N C M be the torsion submodule, which is almost finitely generated by our
previous results. Let M’ = M /N, which is almost finitely generated and torsion-free,
hence M’ ~ O", where r is the dimension of M ® K. For any € > 0, € € logT', there is
some M, such that M =, M. and M, is an extension of O" by N. As O" is projective,
M, =2 O"@® N, hence M ~, O" @ N. Letting ¢ — 0, we get the result.

OJ

Next, we discuss elementary divisors for finitely presented torsion O-modules, and
then for almost finitely generated torsion O-modules.

Definition 2.9. Let (>°(N)g be the space of sequences v = (1,72, --.), Vi € R such that
vi — 0 for i — oco. We endow it with the {°-norm ||y|| = max(|y;|). Let {L(N)y C
(>®(N)g be the subspace of sequences for which y1 > 2 > ... > 0. B

On (X (N)g, introduce the majorization order > by saying that v >~ if and only if
for alli >1,

ST I e e (I
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Note that ¢>°(N)y is complete for the norm || - ||, and that (2 (N)y C ¢>°(N)g is a
closed subspace. B

Proposition 2.10. (i) Let M be a finitely presented torsion O-module. Then there exist
unique Ypma = Ym2 = - > Ymk > 0, i € log I, such that

M = 0/7-‘-'71\/[,1 o O/W’YM,z D...oP O/W'YM,k .

Write ypr = (Y, -+ Yk 0, .0) € €§°(N)o, and set \(M) = ~va1+ ...+ Yk, called
the length of M.

(ii) Let M, M’ be finitely presented torsion O-modules. If M' is a subquotient of M,
then yap o < yumi for all i > 1.

(i) Let 0 = M’ — M — M" — 0 be an ezxact sequence of finitely presented torsion
O-modules. Then N\(M) = AX(M")+X(M") and yar < yarr +ypr, using the magjorization
order.

(iv) Let M, M’ be finitely presented torsion O-modules. Then M =~. M’ if and only if
v — || < e

Proof. (i) Choose a short exact sequence 0 — N — OF — M — 0. Then N is finitely
generated (as M is finitely presented) and torsion-free, hence free of finite rank. As
M is torsion, the rank of N is k, hence N = OF. It follows that there is some matrix
A € Mp(O) N GLg(K) such that M = coker A. But the Cartan decomposition

M;,(0) N GLK(K) = |_ GL(0) diag(n™, ..., 77%)GL(0)

holds true over K with the usual proof: One defines 77 as the greatest common divisor
of all entries of A, moves this entry to the lower-right corner, eliminates the lowest row
and right-most column, and then proceeds by induction on k. We may thus replace A by
a diagonal matrix with entries 77, ... 77 and then the result is clear. For uniqueness,
note that the vys; are the jumps of the function mapping v > 0, v € logI', to

dim, (7" M) ®o k) .

(ii) It is enough to deal with the case of submodules and quotients. Using the duality
M — Homop(M, K/O), one reduces the case of submodules to the case of quotients.
Hence assume M’ is a quotient of M and vap; > v, for some i. Set v = vy ; and
replace M and M’ by M /77, resp. M'/n7. Then

TME = YM' k= TM'i =7

for k < i, but ypr; < 7. It follows that M’ admits a direct summand L = (O/n7)*.
The surjection M — L of O/m7-modules splits, hence L is a direct summand of M. But
then vy > v = 7, contradiction.

(iii) The additivity of X follows easily from the multiplicativity of the 0-th Fitting ideal,
but one can phrase the proof more elementary as follows. It is easy to construct a
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commutative exact diagram

0 0 0
0 OF OF O+ 0
A’ A A
0 OF OF O 0
0 M’ M M 0
0 0 0

Here, k = k' + k”, the maps OF — OF are the inclusion of the first k' coordinates,
and the maps OF — OF" are the projection to the last k” coordinates. In that case,

A(M') = v(det A"), and similarly for M and M”, and A is a block-upper triangular
matrix with A" and A” on the diagonal, so that det A = det A’ det A”, giving the result.
To show that vas < var + v, choose some integer ¢ > 1, and let M; C M be the
direct sum
M, =0/7"™M1q ... ¢ 0O/x "™
Note that A(M;) = yam,1+ ...+ vars. Define M) = M; N M’ and M/ as the image of M;
in M"”. We get an exact sequence
0— M} — M; - M —0.
From part (ii), it follows that Yumyj = 0for j > i by comparison to M;, and vy ; < Ymr
for all j. In particular,
)\(MZ/) < YM' 1 + ...+ YM'i -
Similarly,
AM) < Anra + o+ i
Now the desired inequality follows from additivity of A.
(iv) If M =, M’, there is a quotient L of M such that 7°M’ C L C M’. By coherence of
O, L is finitely presented. Then
VM > YLi = Yremr,i = max(yap; —€,0) > yapr i — €.

By symmetry, we get ||vasr — yarr|| < €. The other direction is obvious.

Now we can go to the limit.

Proposition 2.11. (i) There exists a unique map sending any almost finitely generated
torsion O-module M to an element vy € €3’ (N)g that extends the definition for finitely
presented M, and such that whenever M =, M', then ||yp — ymr|| < €. Set

/\(M) = Z’y]mi € RZO U {OO} .
i=1
(ii) Any almost finitely generated torsion O-module M with ypr = (1,72, - . .) satisfies
M~0O/L,®0/1,,®... .

In particular, vpr = 0 if and only if M is almost zero.
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(iii) If M, M’ are almost finitely generated torsion O-modules such that M’ is a subquo-
tient of M, then yar i < vy for alli > 1.

(iv)IfO - M — M — M" — 0 is an exact sequence of almost finitely generated
torsion O-modules, then vy < vy + yur in the majorization order, and AN(M) =
AM") + XM

(V) If in (iv), yapr = Y, then M" is almost zero. Similarly, if yar = Yy, then M’ is
almost zero.

We call yar = (yar,1, VM2, - - ) the sequence of elementary divisors of M.

Proof. (i) In order to define v,/, choose some sequence of finitely presented torsion O-
modules M, such that M =, M,. Then by transitivity of ~ and part (iv) of the
previous proposition, 7y, is a Cauchy sequence in ¢*°(N)g, converging to an element
v € {2 (N)g. Clearly, the conditions given force this definition. Moreover, the inequal-
ity ||var —yar|| < € for M =, M’ follows by approximating by finitely presented torsion
O-modules.

(ii) Let N denote the right-hand side. Then yx = 7. Choose some € > 0, € € logT,
and finitely presented N, M, as usual. Then ||yn. — var.|| < 2¢, hence Ne ~9 M. It
follows that N =4 M, and we get the result as e — 0.

(iii) Follows by approximation from the finitely presented case.

(iv) The majorization inequality follows by direct approximation from the finitely pre-
sented case. For the additivity of A, we argue as follows. We know that A(M) < \(M')+
A(M"), and we have to prove the reverse inequality. Let v < A(M'), " < A(M"),
r’,r" € R be any real numbers. Then there exists a finitely presented subquotient M;
of M inducing subquotients M| and M7 of M’ and M", sitting in an exact sequence

0— M — M — M -0,

and such that A(M{) > ', A(M{) > r”. Indeed, first replace M by a large finitely
generated submodule, and then take a large finitely presented quotient. Then let M} C
M be a finitely generated submodule with small quotient; we still have A(M5) > r'.
One gets an induced quotient M4 = M; /M), which has M{" as further quotient, so that
A(MY) > r". Because O is coherent, M} and MY are finitely presented, and one finishes
the proof by using additivity of A in the finitely presented case.

(v) Using duality M — Homp(M, K/O), we reduce to the second case. Note that if
A(M) < oo, this is a direct consequence of additivity of A, and part (ii). In the general
case, apply this reasoning to w€M and w¢M" for any € > 0: In general, we deduce from
the classification result that

Yremi = max(yari — €,0)

hence yrepr = Yrensr. Moreover, only finitely many 7yrepr,; are nonzero, hence 7°M has
finite length. It follows that M’ N 7€M is almost zero. But

M~ M' N7M |

so that ||yar|| <e. As e — 0, this gives the result.
O

This finishes the proof of the classification result. We will need the following appli-
cation of these results.

Lemma 2.12. Assume additionally that K is an algebraically closed field of character-
istic p. Let My be an O/m*-module for any k > 1, such that

(i) My is almost finitely generated.
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(ii) There are maps pg : Mygi1 — My and q : My — My4q such that prqy : My — My, is
multiplication by w, and such that

My "5 My B M,

1s exact in the middle.

(iii) There are isomorphisms
(Y2 Mk ®O/7rk,<p O/ka = Mpk
compatible with py, q.-

Then there exists some integer r > 0 and isomorphisms of O%-modules
M = (0°)xy

for all k, such that py is carried to the obvious projection, qy is carried to the multipli-
cation by m-morphism, and @y, is carried to the coordinate-wise Frobenius map.

Proof. We may assume that O is complete. From part (ii), we see by induction that
Mj, is almost finitely generated for all k, and that vas,, < 71 + vag for all & > 1.
In particular, yar, < kvar, for all £ > 1. On the other hand, part (iii) implies that
YM,, = PYMm,- Taken together, this implies that va, = kya, for all & > 1. Let
M| C Mj1 be the image of My, and M, C My, the image of Mj1. Then we have an
exact sequence

0— M{ — M1 — M, —0.

It follows that
(k + Dy, = Yy < varg + 01 < v+, = (B + Dy, -
Hence, all inequalities are equalities, and in particular vy, = v, and VM = VM- By
part (v) of the previous proposition, we get M{* = M{ and M;* = M}, so that
0— M{ — Mg, — Mg —0
is exact. By induction over j > 1, the sequence
0— M — Mg, ; — Mg —0

is exact. Let M = 1&1]{ M. Taking the inverse limit over j in the previous exact
sequence, we see that

k
0— M*% M® — M —0
is exact. This implies that M“ is flat, and because M{ = M?/7 is almost finitely

generated and O is complete, also M?® is almost finitely generated, by the following
lemma.

Lemma 2.13. Let A be an O%module such that A = Jim, A/7*, and such that A/ is
almost finitely generated. Then A is almost finitely generated.

Proof. Choose some 0 < ¢ < 1, € € logT', and some map O" — A/m whose kernel is
annihilated by 7€. Take any lift f : O" — A; we claim that the cokernel of O" — A is
the same as the cokernel of O" — A/m, in particular annihilated by 7¢. Indeed, take
any ap € A with trivial image in the cokernel of O" — A/w. Then ag = f(xg) + 7by
for some xg € O", by € A. Let a; = 7b;. Then ag = f(x¢) + 7' ¢a; and a1 has trivial
image in the cokernel of O" — A/7. In particular, we can repeat the argument with ag
replaced by a;, which gives a m-adically convergent series

ag = f(.%’o + 7T1_E$1 + 7T2(1_6)£L'2 + .. ) ,

which shows that ag is in the image of f. O
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Now the ¢, induce an isomorphism ¢ : M ®0 , O = M. Then (M ® K, ¢) = (K", ¢)
for some integer r > 0: Over any ring R of characteristic p, locally free R-modules N
with an isomorphism N ®pg , R = N are equivalent to étale IF)-local systems over R; as
K is algebraically closed, these are all trivial. Let M’ C M ® K be the image of M; as
M®is flat, M® = M'®. Now M' C M@K = K" is p-invariant, and because M is almost
finitely generated, there is some integer m > 1 such that 70" ¢ M’ Cc #~™O". By
applying ¢!, we see that /Pt or ¢ M ¢ 7™/ O for all k > 0, hence M'* = (O%)",
compatibly with ¢. This gives the desired statement. (|

3. THE PRO-ETALE SITE

First, let us recall some abstract nonsense about pro-objects of a category. For details,
we refer to SGA 4 1, 8.

Definition 3.1. Let C be a category, and let C = Funct(C, Set)°P with the fully faithful
embedding C — C be its Yoneda completion. The category pro — C of pro-objects of C
is the full subcategory of those objects ofé which are small cofiltered inverse limits of
representable objects.

The category pro — C can be described equivalently as follows.

Proposition 3.2. The category pro — C is equivalent to the category whose objects are
functors F : I — C from small cofiltered index categories I and whose morphisms are
given by
Hom(F, G) = lim lim Hom(F (i), G(j)) .
J 1

forany FF: I —-C and G:J — C.

In the following, we will use this second description and call F' : I — C simply a
formal cofiltered inverse system Fj;, ¢ € I. Note that cofiltered inverse limits exist in
pro — C, cf. (dual of) SGA 4 I, Proposition 8.5.1: This amounts to combining a double
inverse system into a single inverse system.

Now let X be a locally noetherian scheme, or a locally noetherian adic space. We recall
that an adic space is called locally noetherian if it is locally of the form Spa(A4, AT), where
A is strongly noetherian, or A admits a noetherian ring of definition. As a consequence,
if Y — X is étale, then locally, Y is connected. This will be used in verifying that the
pro-étale site is a site.

As a first step, we consider the pro-finite étale site. Let Xys denote the category of
spaces Y finite étale over X. For any U = @Ui € pro — Xy¢, we have the topological
space |U| = lim [Uy].

Definition 3.3. The pro-finite étale site Xprorer has as underlying category the category
pro — Xgst. A covering is given by a family of open morphisms {f; : Uy — U} such that
U = U £(IUi).

We will mostly be using this category in the case that X is connected. In this case, fix
a geometric base point Z of X, so that we have the pro-finite fundamental group 7 (X, z):
Finite étale covers of X are equivalent to finite sets with a continuous (X, Z)-action.!

Definition 3.4. For a profinite group G, let G — fsets denote the site whose underlying
category is the category of finite sets S with continuous G-action, and a covering is
gwen by a family of G-equivariant maps {f; : S; — S} such that S = |, fi(S;). Let
G — pfsets denote the site whose underlying category is the category of profinite sets
S with continuous G-action, and a covering is given by a family of open continuous

G-equivariant maps {f; - S; = S} such that S = J; fi(S;).

n particular in the case of adic spaces, one may consider more refined versions of the fundamental
group, cf. e.g. [7], which will not be used here.
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Proposition 3.5. Let X be a connected locally noetherian scheme or connected locally
noetherian adic space. Then there is a canonical equivalence of sites

Xprofer = m1(X, T) — pfsets .

Proof. The functor is given by sending Y = @YZ - XtoSY)=5= @Si, where
S; is the fibre of  in Y;. Each S; carries a continuous 71 (X, Z)-action, giving such an
action on S. Recalling that every profinite set with continuous action by a profinite
group G is in fact an inverse limit of finite sets with continuous G-action, identifying
G — pfsets = pro — (G — fsets), the equivalence of categories follows immediately from
Xret =My (X, f) — fsets.

We need to check that coverings are identified. For this, we have to show that a map
Y — Z in Xprofé is open if and only if the corresponding map S(Y') — S(Z) is open. It
is easy to see that if Y — Z is open, then so is S(Y) — S(Z). Conversely, one reduces
to the case of an open surjection S(Y') — S(Z).

Lemma 3.6. Let S — S’ be an open surjective map in G — pfsets for a profinite group
G. Then S — S’ can be written as an inverse limit S = limT; — S, where each T} is
of the form T; = A; xp, S’, where A; — B; is a surjection in G — fsets, and S" — B; is
some surjective map. Moreover, one can assume that S = l'LmAi and S" = l&le

Proof. Write S = lim S; as an inverse limit of finite G-sets. The projection S — .S; gives
rise to finitely many open U;; C S, the preimages of the points of S;. Their open images
Uj; form a cover of S". We may take the refinement V;;, C S" given by all possible
intersections of UZ.’j’s. Taking the preimages Vs of VZ'], and again taking all possible
intersections of Vj;’s and Uj;’s, one gets an open cover Wy, of S, mapping to the open
cover V;jr of S', giving rise to finite G-equivariant quotients S — A; and S’ — B;, and
a surjective map A; — B;, such that S — S’ factors surjectively over A; xp, S — S’
Now S is the inverse limit of these maps, giving the first claim. The last statements
follow similarly from the construction. O

Using this structure result, one checks that if S(Y) — S(Z) is open and surjective,
then Y — Z is open. O

Using the site G — pfsets, we get a site-theoretic interpretation of continuous group
cohomology, as follows. Let M be any topological G-module. Associated to M, we
define a sheaf Fj; on G — pfsets by setting

‘FM(S) = Homcont,G(S7 M) .

Checking that this is a sheaf is easy, using that the coverings maps are open to check
that the continuity condition glues.

Proposition 3.7. (i) Any continuous open surjective map S — S’ of profinite sets ad-
mits a continuous splitting.

(ii) For any S € G — pfsets with free G-action, the functor F — F(S) on sheaves over
G — pfsets is exact.

(iii) We have a canonical isomorphism
Hi(pt, ]:M) = Héont(G> M)
for alli > 0. Here pt € G — pfsets is the one-point set with trivial G-action.

Proof. (i) Use Lemma 3.6. Using the notation from the lemma, the set of splittings of
A; — B; is a nonempty finite set, hence the inverse limit is also nonempty, and any
compatible system of splittings B; — A; gives rise to a continuous splitting S’ — S.
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(ii) We have the projection map S — S/G, an open surjective map of profinite topological
spaces. By part (i), it admits a splitting, and hence S = S/G x G. In particular, any
S with free G-action has the form S =T x G for a certain profinite set T with trivial
G-action. We have to check that if F — F' is surjective, then so is F(S) — F'(S). Let
2’ € F'(S) be any section. Locally, it lifts to F, i.e. there is a cover {S; — S}, which we
may assume to be finite as S is quasicompact, and lifts z; € F(S;) of a} = 2'|s, € F'(S;).
Let T; C S; be the preimage of T' C S; then .S; = T; x G and the T; are profinite sets, with
an open surjective family of maps {T; — T'}. By part (i), this map splits continuously,
hence {S; — S} splits G-equivariantly, and by pullback we get x € F(S) mapping to 2.
(iii) We use the cover G — pt to compute the cohomology using the Cartan-Leray spec-
tral sequence, cf. SGA 4 V Corollaire 3.3. Note that by our previous results,

RT(G™, Far) = HoMeont 6 (G™, M) = Homeon (G™ ™1, M)

for all n > 1. The left-hand side is a term of the complex computing H*(pt, Fys) via the
Cartan-Leray spectral sequence, the right-hand side is a term of the complex computing
H! «(G,M). One easily identifies the differentials, giving the claim.

O

Corollary 3.8. The site G — pfsets has enough points, given by G-profinite sets S with
free G-action. O

Now we define the whole pro-étale site Xpro¢t. Note that U = lim U; — X in pro— Xg;
has an underlying topological space |U| = 1&1 |U;|. This allows us to put topological
conditions in the following.

Definition 3.9. A morphism U — V of objects of pro — X¢ is called étale, resp. finite
étale, if it is induced by an étale, resp. finite étale, morphism Uy — Vo of objects in
X, t.e. U =Uy xy, V via some morphism V- — Vy. A morphism U — V' of objects of
pro — Xg s called pro-étale if it can be written as a cofiltered inverse limit U = lim U;
of objects Uy — V étale over V, such that U; — Uj is finite étale and surjective for
large i > j. Note that here U; is itself a pro-object of Xg;, and we use that the cofiltered
inverse limit lim U; exists in pro — X¢. Such a presentation U = 1&1 U, =V is called a
pro-étale presentation.
The pro-étale site X060 has as underlying category the full subcategory of pro — Xg

of objects that are pro-étale over X. Finally, a covering in Xy is given by a family

of pro-étale morphisms {f; : Uy — U} such that |U| = J; fi(|Ui])-
We have the following lemma, which in particular verifies that X ;¢ is indeed a site.

Lemma 3.10. (i) Let U,V,W € pro — X4, and assume that U — V is étale, resp.
finite étale, resp. pro-étale, and W — V' is any morphism. Then U xy W exists in
pro — X¢, the map U xy W — W is étale, resp. finite €tale, resp. pro-étale, and the
map |U xy W| — |U| x|y W] of underlying topological spaces is surjective.

(i1) A composition of U — V' — W of two étale, resp. finite étale, morphisms in pro— X
is étale, resp. finite étale.

(iii) Let U € pro—Xg and let W C |U| be a quasicompact open subset. Then there is some
V € pro— X¢ with an étale map V- — U such that |V| — |U| induces a homeomorphism
V=2 W. If U € Xprots, the following strengthening is true: One can take V € Xprost,
and for any V' € Xposr such that V! — U factors over |W| on topological spaces, the
map V' — U factors over V.

(iv) Any pro-étale map U — V in pro — Xg is open.

(v) A surjective étale, resp. surjective finite étale, map U — V in pro — Xg with V' €
Xproet comes via pullback along V- — Vo from a surjective étale, resp. surjective finite
étale, map Uy — Vo of objects Uy, Vy € Xgt.
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(vi) Let U = V. — W be pro-étale morphisms in pro — X¢, and assume W € Xprost-
Then U,V € Xproer and the composition U — W is pro-étale.

(vii) Arbitrary finite projective limits exist in Xprost.

Proof. (i) If U — V is étale, resp. finite étale, then by definition we reduce to the case
that U,V € Xg. Writing W as the inverse limit of W;, we may assume that the map
W — V comes from a compatible system of maps W; — V. Then U xyy W = @ UxyW;
exists, and U xy W — W is by definition again étale, resp. finite étale. On topological
spaces, we have

U xy W[ =1m|U xy Wi = Im |U| X}y [Wi| = [U] ¥y W],

the first equality by definition, and the last because fibre products commute with inverse
limits. But the middle map is surjective, because at each finite stage it is surjective with
finite fibres, and inverse limits of nonempty finite sets are nonempty. In particular, the
fibres are nonempty compact spaces.

In the general case, take a pro-étale presentation U = limU; — V. Then U xy W =
@Ui xy W — W is pro-étale over W by what we have just proved. On topological
spaces, we have

U xy W[ =1lim|U; xy W| = Lm [Uj| <y W] = [U] xv| W]

by similar reasoning. The middle map is surjective on each finite level by our previous
results, with fibres compact. Thus the fibres of the middle map are inverse limits of
nonempty compact topological spaces, hence nonempty.
(ii) Write V' = Vi xw, W as a pullback of an étale, resp. finite étale, map V) — Wy in
X¢i. Moreover, write W = lim W; as an inverse limit of W; € X, with a compatible
system of maps W; — Wy for i large. Set V; = Vi xyw, W;; then V = 1£1VZ

Now write U = Uy Xy, V as a pullback of an étale, resp. finite étale, map Uy — Vj in
X¢t. The map V' — W factors over V; — Vj for ¢ large. Now let U; = Uy Xy, Vi € Xt
This has an étale, resp. finite étale, map U; — W;, and U = U; xyw, W.
(iii) Write U as an inverse limit of U; € Xg, let W be the preimage of W; C |U;| for
1 sufficiently large. Then W; corresponds to an open subspace V; C U;, and we take
V =V, Xy, U. This clearly has the desired property. Moreover, if U = @Ui is a pro-
étale presentation, then so is the corresponding presentation of V. If V! — U factors
over W, then V' — U; factors over W;. Choosing a pro-étale presentation of V' as the
inverse limit of Vj’ , the map V/ — U; factors over Vj’ — U; for j large; moreover, as the
transition maps are surjective for large j, the map Vj’ — U; factors over V; C U; for j
large. Then V' — U factors over V; xy, U =V, as desired.

(iv) Choose a pro-étale presentation U = 1£1 U; — V,and let W C |U| be a quasicompact
open subset. It comes via pullback from a quasicompact open subset W; C |U;| for some
i, and if ¢ is large enough so that all higher transition maps in the inverse limit are
surjective, then the map W — W; is surjective. Using parts (iii) and (ii), the image of
Wi C |Ui] = |V| can be written as the image of an étale map, so we are reduced to
checking that the image of an étale map is open.

Hence let U — V be any étale map, written as a pullback of Uy — Vj along V' — V4.
Then the map |[U| — [V factors as the composite |Uy xv, V| — |Uo| Xy [V = [V].
The first map is surjective by (i), so it suffices to check that the image of the second
map is open. For this, it is enough to check that the image of |Up| in |Vp| is open, but
this is true because étale maps are open, cf. [12], Proposition 1.7.8, in the adic case.
(v) Write U — V as the pullback along V' — Vj of some étale, resp. finite étale,
map Uy — Vj, and take a pro-étale presentation of V' as an inverse limit of V;. We
get a compatible system of maps V; — Vj for i large. Because the composite |U| =
|Uo xv, V| = [Uo| Xjvp| V| — |V], and hence the second map, is surjective, we know
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that |V| — |Vp| factors over the image of |Up| in |Vp|. But |V| = Jim |Vi| with surjective
transition maps for large 4, hence also |V;| — |Vp| factors over the image of |Up| in |V
for some large ¢. Then Uy xy, V; — V; is surjective and étale, resp. finite étale, as
desired.

(vi) We may write U — V as the composition U — Uy — V of an inverse system
U = limU; — Uy of finite étale surjective maps U; — U; — Up, and an étale map
Up — V. This reduces us to checking the assertion separately in the case that U — V
is étale, or an inverse system of finite étale surjective maps.

First, assume that U — V is étale. Then it comes via pull-back along V — V4 from
some Uy — Vj of objects Uy, Vy étale over X. We may choose a pro-étale presentation
V=1lmV, - W, and V — Vj is given by a compatible system of maps V; — Vj for
1 large. Then U = l'&nUo Xy, Vi. This description shows that U is pro-étale over W,
using part (i).

Using this reduction, we assume in the following that all maps U -V — W — X
are inverse limits of finite étale surjective maps, and that X is connected. We want to
show that all compositions are again inverse limits of finite étale surjective maps. This
reduces to a simple exercise in X, of6t.

(vii) We have to check that direct products and equalizers exist. The first case follows
from (i) and (vi). To check for equalizers, one reduces to proving that if U — X is
pro-étale and V C U is an intersection of open and closed subsets, then V — X is
pro-étale. Writing U = @Ui, we have V = l'&n%, where V; C U; is the image of V.
As V is an intersection of open and closed subsets, and the transition maps are finite
étale for large 1, it follows that V; C U; is an intersection of open and closed subsets for
large . Since locally, U; has only a finite number of connected components, it follows
that V; C U; is open and closed for large i. Moreover, the transition maps V; — V; are
by definition surjective, and finite étale for large i, j, as they are unions of connected
components of the map U; — U;. This shows that V' is pro-étale over X, as desired.

O

It is part (vii) which is the most nonformal part: One needs that any U € X has
locally on U only a finite number of connected components.

Lemma 3.11. Under the fully faithful embedding of categories Xproret C Xprogs, @ mor-
phism f : U — V in Xporee @5 open if and only if it is pro-étale as a morphism in
Xpro¢t- In particular, the notions of coverings coincide, and there is a map of sites
Xproét — Xprofét-

Proof. As pro-étale maps are open, we only have to prove the converse. This follows
directly from Lemma 3.6, under the equivalence of Proposition 3.5. O
Proposition 3.12. Let X be a locally noetherian scheme or locally noetherian adic
space.

(i) Let U = @Ui — X be a pro-étale presentation of U € Xproer, such that all U; are
affinoid. Then U is a quasicompact object of Xprost-

(ii) The family of all objects U as in (i) is generating, and stable under fibre products.
(ili) The topos associated to the site Xproe is algebraic, cf. SGA 4 VI, Definition 2.3,
and all U as in (1) are coherent, i.e. quasicompact and quasiseparated.

(iv) An object U € Xproer 1S quasicompact, resp. quasiseparated, if and only if |U| is
quasicompact, resp. quasiseparated.

(V) If U — V is an inverse limit of surjective finite étale maps, then U is quasicompact,
resp. quasiseparated, if and only if V is quasicompact, resp. quasiseparated.

(vi) A morphism f : U — V of objects in Xproe @5 quasicompact, resp. quasiseparated,
if and only if |f| : |U| — |V is quasicompact, resp. quasiseparated.
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(vii) The site Xprocet, i quasiseparated, resp. coherent, if and only if | X| is quasiseparated,
resp. coherent.

Proof. (i) Each |U;| is a spectral space, and the transition maps are spectral. Hence
the inverse limit |U| = l&n |U;| is a spectral space, and in particular quasicompact. As
pro-étale maps are open, this gives the claim.

(i) Any U € Xproet can be covered by smaller U’ that are of the form given in (i), using
that preimages of affinoids under finite étale maps are again affinoids. This shows that
the family is generating, and it is obviously stable under fibre products.

(iii) Using the criterion of SGA 4 VI Proposition 2.1, we see that X ¢ is locally algebraic
and all U as in (i) are coherent. We check the criterion of SGA 4 VI Proposition 2.2
by restricting to the class of U as in (i) that have the additional property that U — X
factors over an affinoid open subset Uy of X. It consists of coherent objects and is still
generating, and because U xx U = U Xy, U, one also checks property (i ter).

(iv) Use SGA 4 VI Proposition 1.3 to see that if |U| is quasicompact, then so is U, by
covering U by a finite number of open subsets U; C U of the form given in (i). Conversely,
if U is quasicompact, any open cover of |U| induces a cover of U, which by definition
has a finite subcover, inducing a finite subcover of |U|, so that |U| is quasicompact.

Now take any U, and cover it by open subsets U; C U, the U; as in (i). Using

SGA 4 VI Corollaire 1.17, we see that U is quasiseparated if and only if all U; xy Uj
are quasicompact if and only if all |Us| x|y |Uj| are quasicompact if and only if |U] is
quasiseparated.
(v) Use SGA 4 VI Corollaire 2.6 to show that U — V is a coherent morphism, by
covering V' by inverse limits of affinoids as in (i): they are coherent, and their inverse
images are again inverse limits of affinoids, hence coherent. Hence Proposition SGA 4
VI Proposition 1.14 (ii) shows that V quasicompact, resp. quasiseparated, implies U
quasicompact, resp. quasiseparated.

Conversely, if U is quasicompact, take any open cover of |V[; this gives an open cover
of |U| which has a finite subcover. But the corresponding finite subcover of |V| has to
cover |V, hence |V| is quasicompact. Arguing similarly shows that U quasiseparated
implies V quasiseparated.

(vi) This follows from (iii), (iv) and SGA 4 VI Corollaire 2.6.

(vii) This follows from (iii), (iv) and the definition of quasiseparated, resp. coherent,

sites.
O

Moreover, the site X4 is clearly functorial in X. Let us denote by T the topos
associated to a site T'. If X is quasiseparated, one can also consider the subsite X étqc C
Xproet consisting of quasicompact objects in X,,04¢; the associated topoi are the same.

Proposition 3.13. Let x € X, corresponding to a map Y = Spa(K,K') — X, resp.
Y = Spec(K) — X, into X.2 Then there is a morphism of topoi

~

proét

such that the pullback of F € X ot 0 the sheafification it F of the functor

Vi lim F(U),
V—=U

(2 profét - X

where U € Xproer, and V. — U is a map compatible with the projections to' Y — X.
If for all points x, iz, F = 0, then F = 0. In particular, Xpro¢r has enough points,
given by profinite covers of geometric points.

2We note that in the case of adic spaces, the image of Y may be larger than x itself.
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Remark 3.14. It is not enough to check stalks at geometric points: One has to include
the profinite covers of geometric points to get a conservative family.

Proof. We leave the construction of the morphism of topoi to the reader: One reduces
to the case that X is affinoid, in particular quasiseparated. Then there is a morphism
of sites Yprofst —+ Xproétqes induced from the taking the fibre of U € X|04tqc above .

Now let F be a sheaf on X, such that i3, F = 0 for all x € X. Assume that there
is some U € X060 With two distinct sections sq,s0 € F(U). We may assume that U is
quasicompact. Take any point z € X and let S be the preimage of x in U. It suffices
to see that there is a pro-étale map V' — U with image containing S such that s; and
s2 become identical on V. The preimage S of x corresponds to a pro-finite étale cover
S e Yprofét, S —U.

Now we use that s; and sy become identical in (i%F)(S). This says that there is a
pro-étale cover S’ — S in Yorofer and some V' € Xpo6r, V — U, with a lift S" — V such
that s1 and sy become identical in F (V). We get the following situation:

/

%}

e

— U —
S <

Y — X

Here both projections V' — X and U — X are pro-étale, and the map S Sisa
pro-finite étale cover.

By the usual arguments, one reduces to the case that U and V are cofiltered inverse
limits of finite étale surjective maps. Moreover, one may assume that X is connected,
and we choose a geometric point Z above x. Let Sz, S. be the fibres of S and S’
above . Now U,V € X0t correspond to profinite (X, Z)-sets S(U), S(V). In fact,
S(U) = Sz, and SL C S(V). Consider the subset T' = m(X,z)SZ C S(V), and let
V' C V be the corresponding subset. Since S’ — S is a pro-finite étale cover, S% — Sz
is an open surjective map, hence so is the map S(V') =T — S(U) = Sz. This means
that the map V' — U is pro-étale. Since s; and sg are identical in F(V’), this finishes
the proof that F = 0.

For the last assertion, use that Y},of4 has enough points. [

We will need a lemma about the behaviour of the pro-étale site under change of base
field. Assume that X lives over a field K, i.e. X — Spec K, resp. X — Spa(K,K™),
and let L/K be a separable extension (with LT C L the integral closure of K in the
adic case). Let X1, = X Xgpec ik Spec L, resp. X1, = X Xgpa(k, x+) Spa(L, L*). We may
also define an object of X, by taking the inverse limit of X, € X¢ where L; C L
runs through the finite extensions of K. By abuse of notation, we denote by the same
symbol X7, € Xpo¢t this formal inverse limit.

Then, we may consider the localized site Xpo¢t/ X1 of objects with a structure map
to X1, and the induced covers. One immediately checks the following result.

Proposition 3.15. There is an equivalence of sites X, prost = Xprost/X1L- O

There is the natural projection v : X060 — X¢i. Using it, we state some general
comparison isomorphisms between the étale and pro-étale site.

Lemma 3.16. Let F be an abelian sheaf on Xg. For any quasicompact and quasisepa-
rated U = T&lUj € Xprost and any i > 0, we have

H'(U,v*F) = lim H'(U;, F) .
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Proof. One may assume that F is injective, and that X is qcgs. Let us work with
the site Xproétqc; as it has the same associated topos, this is allowed. Let F be the
presheaf on Xprostqc given by F(V) = lig]: (Vj), where V. = @VJ Obviously, v*F
is the sheaf associated to F. We have to show that F is a sheaf with H*(V,F) = 0
for all V' € Xjroetqc and 4 > 0. Using SGA 4 V Proposition 4.3, equivalence of (i) and
(iii), we have to check that for any U € Xproétqe With a pro-étale covering by Vi, — U,
Vi € Xprostqe, the corresponding Cech complex

k kK’

is exact. This shows in the first step that Fis separated; in the second step that Fis
a sheaf; in the third step that all higher cohomology groups vanish.

We may pass to a finite subcover because U is quasicompact; this may be combined
into a single morphism V' — U. Now take a pro-étale presentation V = 1&1% —-U.
Then V; — U is an étale cover for large I. Since F(V) = hﬂ]}(Vl), the Cech complex for
the covering V' — U is the direct limit of the Cech complexes for the coverings V; — U.
This reduces us to the case that V — U is étale.

Choose V; — Uj étale such that V' = V; xy, U. Then denoting for j' > j by Vj — Uy
the pullback of V; — Uj, Vjy — Ujr is an étale cover for large j’, and the Cech complex
for V'— U is the direct limit over j' of the Cech complexes for Vj; — Ujs. This reduces
us to checking exactness of the Cech complexes for the covers Vj — U, But this is just
the acyclicity of the injective sheaf F on Xg;. O

Corollary 3.17. (i) For any sheaf F on Xg, the adjunction morphism F — Rv,w*F is
an isomorphism.

(ii) Let f : X — Y be a quasicompact and quasiseparated morphism. Then for any sheaf
F on Xg, the base-change morphism

Vﬁ*/Rfét*]: — prroét*y}k(]:
associated to the diagram

vx
X proét » X ét

prroét J(fét

vy
Yproét ” }/ét
s an tsomorphism.

Proof. (i) We recall that for any i > 0, R'v,.v*F is the sheaf on Xg; associated to the
presheaf U — H'(U,v*F), where in the last expression U is considered as an element
of X r0st- Hence the last lemma already implies that we get an isomorphism for 7 = 0.
Moreover, in degree i > 0, the lemma says that if U is qegs, then H (U, v*F) = H (U, F).
But any section of H*(U, F) vanishes locally in the étale topology, so that the associated
sheaf is trivial.

(ii) One checks that for any i > 0, the i-th cohomology sheaf of both sides is the sheafi-
fication of the presheaf taking a quasicompact and quasiseparated U = @Uj — Y
to
lig H'(U; xy X, F) .
O
Part (i) implies that v* gives a fully faithful embedding from abelian sheaves on Xg

to abelian sheaves on X,0¢, and we will sometimes confuse a sheaf 7 on X¢ with its
natural extension v*F to X ost-
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One useful property of the pro-étale site is that inverse limits are often exact. This is
in stark contrast with the usual étale site, the difference being that property (ii) of the
following lemma is rarely true on the étale site.

Lemma 3.18. Let F;, i € N, be an inverse system of abelian sheaves on a site T.
Assume that there is a basis B for the site T, such that for any U € B, the following
two conditions hold:
(i) The higher inverse limit R! l'&n]—}(U) = 0 vanishes.
(ii) All cohomology groups H (U, F;) = 0 vanish for j > 0.

'Then R hm F; = 0 for j > 0 and (@E)(U) = @]—}(U) for allU € T'. Moreover,
HJ(U,I.&HE) =0 forU € B and j > 0.

Proof. Consider the composition of functors
Sh" — PreSh" — PreSh — Sh .

Here the first is the forgetful functor, the second is the inverse limit functor on presheaves,
and the last is the sheafification functor. The first functor has the exact left adjoint given
by sheafification, so that it preserves injectives and one sees that upon taking the de-
rived functors, the conditions guarantee that for U € B, all (R’ @}})(U ) vanish for
j > 0: They do before the last sheafification, hence they do after the sheafification. This
already shows that all higher inverse limits R’ 1'&1}37 j > 0, vanish. Because an inverse
limit of sheaves calculated as presheaves is again a sheaf, the description of 1&1}2 is
always true.
For the last statement, consider the commutative diagram

ShY — PreShY

L

Sh —— PreSh

expressing that the inverse limit of sheaves calculated on the level of presheaves is a sheaf.
Going over the upper right corner, we have checked that the higher derived functors of
the composite map are zero for ¢ > 0 on sections over U € B. As the left vertical
functor has an exact left adjoint giving by taking a sheaf to the constant inverse limit, it
preserves injectives, and we have a Grothendieck spectral sequence for the composition
over the lower left corner. There are no higher derived functors appearing for the left
vertical functor, by what we have proved. Hence this gives H’ (U, lgn}'l) =0forj>0
and U € B. a

4. STRUCTURE SHEAVES ON THE PRO-ETALE SITE
Definition 4.1. Let X be a locally noetherian adic space over Spa(Qp,Zy). Consider
the following sheaves on X4t -
(i) The (uncompleted) structure sheaf Ox = v*Ox
(9} = V*O}ét.
(ii) The integral completed structure sheaf ot = @O}/p”, and the completed structure
sheaf Ox = @}[%]

«» With subring of integral elements

Lemma 4.2. Let X be a locally noetherian adic space over Spa(Qp,Zy), and let U €
Xproét~
(i) For any x € |U|, we have a natural continuous valuation f v+ |f(x)| on Ox(U).
(ii) We have
Ox(U) ={f € Ox(U) | Yz € |U] : |f(2)| <1} .
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(iil) For any n > 1, the map of sheaves O /p"™ — @}/p” is an isomorphism, and (’A)}(U)
is flat over Z, and p-adically complete.
(iv) For any x € |U|, the valuation f — |f(z)| extends to a continuous valuation on
Ox(U).
(v) We have

Ox(U) ={f € Ox(U) |Vz € |U| : | f(x)| <1} .
In particular, @}(U) C Ox(U) is integrally closed.

Proof. All assertions are local in U, so we may assume that U is quasicompact and
quasiseparated. We choose a pro-étale presentation U = yLnUl- — X.
(i) A point z € |U] is given by a sequence of points x; € |U;|, giving a compatible system
of continuous valuations on Ox,, (U;) = Ox (U;). But

Ox(U) = (" Ox,,)(U) = lim Ox (Vi) ,
so these valuations combine into a continuous valuation on Ox (U).
(ii) Assume ¢ is large enough so that |U| — |U;| is surjective, and f € Ox(U) is the
image of f; € Ox(U;). Then the condition |f(z)| < 1 for all € |U| implies | f;(z;)| <1
for all x; € |U;|, whence f; € OF(U;), so that f € O%(U). Conversely, if f € O%(U),
then it comes as the image of some f; € O%(U;), and it lies in the right-hand side.
(iii) This follows formally from flatness of OF over Z,.

(iv) To define the desired valuation on f € @}(U ), represent it as the inverse system of
fn € (0% /p™)(U). Tt makes sense to talk about max(|f, ()], |p|"): Cover U so that f,
lifts to some f,, € OF; then the valuation |f,,(%)| will depend on the preimage & of z in
the cover, but the expression max(| f,,(%)|, |p|®) does not. If max(|f,, ()|, |p|") > |p|® for
some n, then we define |f(z)| = |f,,(z)]; otherwise, we set | f(z)| = 0. One easily checks
that this is well-defined and continuous. Clearly, it extends to Ox (U).

(v) By definition, the left-hand side is contained in the right-hand side. For the converse,
note that since U is quasicompact and quasiseparated, we have Ox(U) = O (U )[]%]

This reduces us to checking that if f € @}(U) satisfies | f(z)| < [p|™ for all z € |U],
then f € p"(’j}(U) For this, one may use part (iii) to write f = fy + p"g for some
fo € OF(U), g€ p”@;((}) over some cover U of U. Then we see that | fo(Z)| < |p|™ for
all € U, and hence by part (ii), fo € p"O%(U).

O

We caution the reader that we do not know whether Ox(U) € Ox(U) is always
dense with respect to the topology on Ox (U) having p”(’j}(U), n > 0, as a basis of
open neighborhoods of 0. This amounts to asking whether O% (U)/p" — @}(U )/p" is
an isomorphism for all n > 1, or whether one could define Oy (U) as the completion
of Ox(U) with respect to the topology having p”@}(U), n > 0, as a basis of open
neighborhoods of 0. In a similar vein, we ignore whether for all U € X, the triple
(U], @X“U\’ (| (z)| | = € |U|)) is an adic space. Here @X||U| denotes the restriction of
Ox to the site of open subsets of |U].

However, we will check next that there is a basis for the pro-étale topology where these
statements are true. For simplicity, let us work over a perfectoid field K of characteristic
0 with an open and bounded valuation subring K+ C K, and let X over Spa(K, K™)
be a locally noetherian adic space. As in the Section 2, we write I' = |[K*| C Ry, and
identify R~ with R using the logarithm with base |p|. For any r € logI" C R, we choose
an element, written p” € K, such that |p"| = |p|".



p-ADIC HODGE THEORY 23

Definition 4.3. Let U € X|04-

(i) We say that U is affinoid perfectoid if U has a pro-étale presentation U = @Ui - X
by affinoid U; = Spa(R;, Rj) such that, denoting by R the p-adic completion ofliﬂR;F,
and R = R*[p~1], the pair (R, R") is a perfectoid affinoid (K, K*)-algebra.

(ii) We say that U is perfectoid if it has an open cover by affinoid perfectoid V- C U.

Here, recall that quasicompact open subsets of U € Xproer naturally give rise to objects
m Xproét-

Ezample 4.4. 1f
X =T" = Spa(K(T;F, ..., 7Y, KH(TE . TEY) |
then the inverse limit T™ € Xprogt of the

Spa(K(THP" L vy (TP mE Ty
m > 0, is affinoid perfectoid.

To an affinoid perfectoid U as in (i), one associates U = Spa(R, R*), an affinoid
perfectoid space over K. One immediately checks that it is well-defined, i.e. independent
of the pro-étale presentation U = limU;. Also, U — U defines a functor from affinoid
perfectoid U € X060 to affinoid perfectoid spaces over K. Moreover, if U is affinoid
perfectoid and U = T&nUi is a pro-étale presentation, then U ~ @Ui in the sense of

18], in particular |U| = |U].

Lemma 4.5. Let U = @Ui € Xoprost, Ui = Spa(R;, R;r), be affinoid perfectoid, with a
pro-étale presentation. Let (R, RT) be the completion of the direct limit of the (R;, R}"),
so that U = Spa(R, RT).

Assume that V; = Spa(Si,Sf) — U; is an étale map which can be written as a
composition of rational subsets and finite étale maps. For j > i, write V; = V; xy, U; =
Spa(S;, S;»r), and V =V; xy, U = HVJ € Xproet- Let Aj be the p-adic completion of
the p-torsion free quotient of S;r ®R]+ R*. Then
(i) The completion (S,ST) of the direct limit of the (Sj,S;-L) is a perfectoid affinoid
(K, KT)-algebra. In particular, V is affinoid perfectoid. Moreover, V= Vi Xu; U in the
category of adic spaces over K, and S = Aj[%] for any j > 1.

(ii) For any j > 14, the cokernel of the map A; — S is annihilated by some power p of
p.

(iii) Let € > 0, € € logI'. Then there exists some j such that the cokernel of the map
A; — ST is annihilated by p©.

Proof. Clearly, one can separately treat the cases where V; C U; is a rational subset and
where V; — U; is finite étale.

Assume first that V; C U; is a rational subset, given by certain functions f1, ..., fn,g €
R;. By pullback, it induces a rational subset W of U. Let

(T, T7) = (O (W), 0L (W)) .

Then (T,T7) is a perfectoid affinoid (K, Kt)-algebra by Theorem 6.3 (ii) of [18], W =
Spa(T,T"). Recall that for perfectoid affinoid (K, Kt)-algebras (4, A"), A" is open
and bounded, i.e. carries the p-adic topology. Let R;o C Rj be an open and bounded
subring. Then

fl fn +
Sjo = Rj0<;,...,;> C Sj
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is an open and bounded subring. If we give T; = S; ®p,; R its natural topology making
the image of Sjo ®g,, R* open and bounded, and let TjJr C T} be the integral closure
of the image of S;f ®Rj+ R*, then Spa(Tth*) is the fibre product V; xy; U=Ww. By
the universal property of (T,7"), we find that (T,77) is the completion of (T}, T}").
In particular, the natural topology on T makes T;r open and bounded (as this is true

after completion, T being perfectoid). Hence, the natural topology on T; agrees with
the topology making the image of SJ‘.F ®p+ R open and bounded, as
J

im(Sjo ®r;, RT — Tj) Cim(S) @p+ RT = Tj) C T .
J

In particular, T = A;j[p~!]. As TT C T is bounded, we also find that the cokernel of
Aj — T is killed by some power of p.

Next, we claim that ST = T, hence also S = T. We have to show that S*/p" =
liﬂ S;-r /p" — T /p"™ is an isomorphism for all n. As W — Vj is surjective for j large, the
map from S;r/p” to T /p™ is injective for large j, hence so is the map S*/p™ — T* /p™.
For surjectivity, take f € TT. After multiplying by p?, it is the image of some element
of S ® R R, which we can approximate by g € S;T modulo p"tV if j is large enough,
as Rt /pitl = ligNR;-“/p"*'N. Then g € pNSj+ (by surjectivity of W — V; for j large),
and writing g = p™V h, h € S;r, we find that h = f modulo p"T.

It remains to see that for any ¢ > 0, there exists some j such that the cokernel
of Aj — T7 is annihilated by p¢. For this, it suffices to exhibit a subalgebra T, C
T, topologically finitely generated over R*, whose cokernel is annihilated by p¢: Any
generator can be approximated modulo p" by an element of S;f for j large enough, so
that for j very large, 7" will be in the image of A;.

The existence of such subalgebras is an abstract question about perfectoid spaces. It
follows from Lemma 6.4 of [18]: In the notation of that lemma, the subalgebras

fﬁ 1/pm fﬁ 1/p™
Rﬂ(ﬁ) ,”w<£> Y Ox(UH*T
for m > 0 have the desired property.

Now assume that V' — U is finite étale. In that case, Sj is a finite étale R;-algebra for
all j, and the almost purity theorem [18], Theorem 7.9 (iii), shows that T' = S; ®r, R
is a perfectoid K-algebra. Let T be the integral closure of R* in T. By [18], Lemma
7.3 (iv) and Proposition 7.10, Spa(T,T™") is the fibre product V; xy, U. Then the proof
of parts (i) and (ii) goes through as before. For part (iii), it suffices to check that one
can find subalgebras T." C T topologically finitely generated over R, such that the
cokernel is annihilated by p¢. In this case, this follows from the stronger statement
that 7T = T°% is a uniformly almost finitely generated R™® = R°%-module, cf. [18],
Theorem 7.9 (iii). O

In particular, this implies that the functor U — U is compatible with open embed-
dings, and one can extend the functor to a functor U +— U from perfectoid U € X4t
to perfectoid spaces over K.

Lemma 4.6. Let U € Xy be perfectoid. For any V. — U pro-étale, also V' is
perfectoid.

Proof. We may assume that U is affinoid perfectoid, given as the inverse limit of U; =
Spa(R;, R;"). Moreover, factor V' — U as the composition V' — Vj — U of an inverse
limit of finite étale surjective maps V' = limV; — Vj and an étale map Vo — U. The
latter is locally the composite of a rational subset of a finite étale cover. These cases
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have already been dealt with, so we can assume that Vj = U, i.e. V is an inverse limit
of finite étale surjective maps.

For any j, V; comes as the pullback of some finite étale cover V;; = Spa(Sij,S;; )
of U;. For any j, the completion (Sj,S;-r) of the direct limit over i of the (S;;, S;;) is
perfectoid affinoid by the previous lemma. It follows that the completion of the direct
limit over ¢ and j of (S}, Si'; ) is the completion of the direct limit of the (S}, S;“) But the
completion of a direct limit of perfectoid affinoid (K, K)-algebras is again perfectoid
affinoid. O

Corollary 4.7. Assume that X is smooth over Spa(K, KT). Then the set of U € Xproet
which are affinoid perfectoid form a basis for the topology.

Proof. If X = T", then we have constructed an explicit cover of X by an affinoid
perfectoid T" € Xproét- By the last lemma, anything pro-étale over T" again has a basis
of affinoid perfectoid subspaces, giving the claim in this case: Any U € X ,;0¢; is covered
by U xpn T™, which is pro-étale over T™.

In general, X locally admits an étale map to T", cf. [12], Corollary 1.6.10, reducing
us to this case. 0

This corollary is all we will need, but a result of Colmez, [6], shows that the statement
is true in full generality.

Proposition 4.8. Let X be a locally noetherian adic space over Spa(K, K*). Then the
set of U € Xprost which are affinoid perfectoid form a basis for the topology.

Proof. We may assume that X = Spa(A, A1), where A has no nontrivial idempotents.
It is enough to find a sequence A;/A of finite étale extensions, such that, denoting by Aj
the integral closure of AT in A, the completion (B, B") of the direct limit of (4;, A]")
is perfectoid affinoid. Here, we put the p-adic topology on the direct limit of the Aj,
even though all Aj may not carry the p-adic topology. Using Proposition 3.15, we may
assume that K is algebraically closed.

Now we follow the construction of Colmez, [6], §4.4. The construction is to iterate
adjoining p-th roots of all 1-units 1+ A°°; here A°° C AT denotes the subset of topologi-
cally nilpotent elements. Note that Colmez works in a setup which amounts to assuming
that A* has the p-adic topology; however,

(14 A%)/(1+ AP = (14 A%) /(1 + A

where A = A*[p~!], with A% the p-adic completion of AT. This means that adjoining
the p-th roots to A first and then completing is the same as first completing and then
adjoining the p-th roots. Colmez shows that repeating this construction produces a
sympathetic K-algebra, and sympathetic K-algebras are perfectoid by [6], Lemma 1.15
(iii). O
Using the construction of the previous proposition, we prove the following theorem.

Theorem 4.9. Let X = Spa(A, A™) be an affinoid connected noetherian adic space over
Spa(Qyp, Zy). Then X is a K(m,1) for p-torsion coefficients, i.e. for all p-torsion local
systems L on Xg;, the natural map

HY o (m(X,7),Ly) — H'(Xg, L)

cont

is an isomorphism, where T € X is a geometric point, and w1 (X, ) denotes the profinite
étale fundamental group.

Proof. We have to show that the natural map
H'(Xtet, L) — H'(Xg, L)
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is an isomorphism. For this, let f : X¢g — Xpg be the natural map of sites; then it
is enough to show that R'f,L. = 0 for 4 > 0, and f.. = L. The second property is
clear. It remains to show that for any U — X, which we may assume to be connected,
any cohomology class of H(Ug, L) can be killed by a finite étale cover of U. Renaming
U = X, we have to show that any cohomology class of H*(Xg,LL) can be killed by a
finite étale cover. For this, we can assume that L is trivial (by passing to the cover
trivializing L), and then that L = F),.

Now we argue with the universal cover of X. Let A, be a direct limit of faithfully
flat finite étale A-algebras A; C A, such that A, has no nontrivial idempotents, and
such that any faithfully flat finite étale A,.-algebra has a section. Let AT C A, be the
integral closure of AT, and let (A, AL) be the completion of (As, AL), for the p-adic
topology on A% . Then (12100, fljo) is a perfectoid affinoid C,-algebra (which can either
be easily checked directly, or deduced from the proof of the previous proposition and the
almost purity theorem). Let Xo = Spa(Aoo, 121;"0), which is a perfectoid space over C,,.
Moreover, X oo ~ @Xi in the sense of [18, Definition 7.14], where X; = Spa(A4;, 4;") —
X is finite étale. Then by [18, Corollary 7.18], we have

H (Xoo 1, 1L) = thj(Xi,ét,]L)
for all j > 0. We see that it is enough to prove that HY(Xe ¢, L) = 0 for j > 0.
For this, we argue with the tilt X’ of X,. Recall that we have reduced to the case
L = IF,. We have the Artin — Schreier sequence
0—=Fp = Oxy —Oxy, —0
on Xgo o = Xoo 6. Taking cohomology, we see that HI (Xoot: Fp) =0 for j > 2, and
0-F, > A — A — HY (X, Fp) = 0

However, as A, has no nontrivial finite étale covers, also floo has no nontrivial finite
étale covers (cf. e.g. [18, Lemma 7.5 (i)]), and thus A’ has no nontrivial finite étale
covers, by [18, Theorem 5.25]. This implies that the Artin — Schreier map AZO — fllc’)o is
surjective, giving H' (X 41, Fp) = 0, as desired. O

Lemma 4.10. Assume that U € X4 @5 affinoid perfectoid, with U = Spa(R, R").
In the following, use the almost setting with respect to K+ and the ideal of topologically
nilpotent elements.

(i) For any nonzero b € K, we have O%(U)/b = R /b, and this is almost equal to
(O%/0)(U).
(ii) The image of (O% /b1)(U) in (0% /b2)(U) is equal to RT /by for any nonzero by, by €
K™ such that |b1| < |ba].
(iti) We have O%(U) = R, Ox(U) = R.
(iv) The ring (’A);E(U) is the p-adic completion of OF%(U).
(v) The cohomology groups H'(U, @}) are almost zero for i > 0.

In particular, for any perfectoid U € Xproét, (]U\,(’A)X“U‘,(] o (x)| | x € |U|)) is an
adic, in fact perfectoid, space, given by U.
Remark 4.11. This gives the promised base of the topology on which the sheaves @}

and Ox behave as expected. Note that by Proposition 3.15, such a base of the topology
exists for all locally noetherian adic spaces over Spa(Q,, Zy).

Proof. (i) The equality O% (U)/b= R* /b follows from the definition of (R, RT). By the
last proposition, giving a sheaf on X,.¢; is equivalent to giving a presheaf on the set of
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affinoid perfectoid U € Xq¢t, satisfying the sheaf property for pro-étale coverings by
such. We claim that

U~ F(U) = (05(U)/b)" = (0%(U)/b)"

is a sheaf F of almost KT-algebras, with H'(U, F) = 0 for i > 0. Indeed, let U be
covered by Vi, — U. We may assume that each Vj is pro-finite étale over Vig — U,
and that Vg — U factors as a composite of rational embeddings and finite étale maps.
By quasicompactness of U, we can assume that there are only finitely many Vi, or just
one V by taking the union. Then V = limV; — Vj, — U, where Vj; is a composite
of rational embeddings and finite étale maps, and V; — Vs is finite étale surjective for
7,7 > jo. We have to see that the complex
CUV):0=FU)—»FV)=>FVxyV)—...
is exact. Now F(V) = hg]—"(V]) etc., so that
C(U,V) = limC(U.Vj) .

and one reduces to the case that V — U is a composite of rational embeddings and
finite étale maps. In that case, V and U are affinoid perfectoid, giving rise to perfectoid
spaces U and V, and an étale cover V' — U. Then Lemma 4.5 implies that

CU.V): 0= (0F (U)/b)" = (Of (V)/b)* = (OF (Vx5 V)/b)* = ...,

so the statement follows from the vanishing of H®(Wy;, (’){,FV‘;), i > 0, for any affinoid
perfectoid space W, proved in [18], Proposition 7.13.

This shows in particular that F = (0% /b)?, giving part (i).
(ii) Define ¢ = % € KT, with |c| < 1. Let f € (O%/b1)(U), and take g € R* such that
cf = g in (O%/b1)(U), which exists by part (i). Looking at valuations, one finds that
g = ch for some h € R*. As multiplication by ¢ induces an injection OF /by — O% /by,
it follows that f —h =0 in (O%/b2)(U). Hence the image of f in (0% /b2)(U) is in the
image of R /by, as desired.
(iii) Using part (ii), one sees that

O (U) = lim(O% /p")(U) = lim RT /p" = R .

Inverting p gives @X(U) = R.
(iv) This follows from part (iii) and the definition of R*.

(v) We have checked in the proof of part (i) that the cohomology groups H'(U, O% /p™)

are almost zero for 7 > 0 and all n. Now it follows for @} from the almost version of
Lemma 3.18.
O

Lemma 4.12. In the situation of the previous lemma, assume that L. is an F,-local
system on Xg. Then for all i > 0, the cohomology group
H'(U,L®O%/p)*=0

is almost zero, and it is an almost finitely generated projective R /p-module M (U) for
i =0. If U € Xpocet s affinoid perfectoid, corresponding to U’ = Spa(R',R'"), and
U — U some map in Xprogt, then M(U') = M(U) @p+a s, R /p.

Proof. We may assume that X is connected; in particular, one can trivialize L to a
constant sheaf IF’; after a surjective finite étale Galois cover. Let V' — U be such a

surjective finite étale Galois cover trivializing L, with Galois group G, and let V=
Spa(S,ST). Then L = F’; over V. Let V7/U be the j-fold fibre product of V over U, for

j > 1. Then the previous lemma implies that H*(VI/V L ® (’)} /p) is almost zero for
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1 > 0, and almost equal to (S]Jr /p)F for i = 0, where S;-“ is the j-fold tensor product of
St over RT. But S1¢/p is almost finite étale over RT®/p by the almost purity theorem,
and then faithfully flat (as V' — U is surjective), so the result follows from faithfully flat
descent in the almost setting, cf. Section 3.4 of [11]. O

5. FINITENESS OF ETALE COHOMOLOGY
In this section, we prove the following result.

Theorem 5.1. Let K be an algebraically closed complete extension of Q, with an open
and bounded valuation subring KT C K, let X be a proper smooth adic space over
Spa(K,KT), and let L be an Fp-local system on Xg. Then H'(Xe,L) is a finite-
dimensional Fp-vector space for all © > 0, which vanishes for i > 2dim X. Moreover,
there is an isomorphism of almost KT -modules for all i > 0,

H' (X4, L) ® K+/p = H (Xe, L ® O /p) .

We start with some lemmas. Here and in the following, for any nonarchimedean field
K, we denote by O = K° C K its ring of integers.

Lemma 5.2. Let K be a complete nonarchimedean field, let V' be an affinoid smooth
adic space over Spa(K,Ok), and let x € V with closure M = {x} C V. Then there
exists a rational subset U C V containing M, together with an étale map U — T™ which
factors as a composite of rational embeddings and finite étale maps.

Proof. We note that M is the intersection of all rational subsets U C V that contain M.

Now, first, one may replace V by a rational subset such that there exists an étale
map f : V — B”, where B" denotes the n-dimensional unit ball. This follows from
Corollary 1.6.10 of [12], once one observes that the open subset constructed there may
be assumed to contain M. Let y = f(x) € B", with closure N C B". Then by Lemma
2.2.8 of [12] (with similar analysis of its proof) one may find a rational subset W C B"
containing N, such that f~'(W) — W factors as an open embedding f~1(W) — Z
and a finite étale map Z — W. Note that M C f~'(W). Choose some open subset
U C f~1(W) containing M, such that U is rational in Z (and hence in f~1(W)). Then
U C f~5W) C V is a rational subset, and U — W factors as a composite of a rational
embedding and a finite étale map. Finally, embed B™ — T™ as a rational subset, e.g.
as the locus where |T; — 1| < |p| for all i = 1,...,n. Then W C B” C T" is a rational
subset, so that U — T" gives the desired étale map. O

Lemma 5.3. Let K be a complete nonarchimedean field and let X be a proper smooth
adic space over Spa(K,Ok). For any integer N > 1, one may find N finite covers

V-(l),...,Vi(N) of X by affinoid open subsets, such that the following conditions are

(2

satisfied.

(i) For alli, k=1,...,N — 1, the closure Vl(-kﬂ) of Vi(kﬂ) in X is contained in Vi(k).
(ii) For all 4, VZ-(N) C...C Vi(l) is a chain of rational subsets.

(iii) For all i, j, the intersection Vi(l) N Vj(l) - Vi(l) s a rational subset.

(1)

(iv) For all i, there is an étale map V; ' — T" that factors as a composite of rational

subsets and finite étale maps.

Proof. For any x € X, there is some affinoid open subset V' C X such that m cV, by
[20]. Inside V, we may find a rational subset U C V such that {x} C U and the closure
U of U in X is contained in V. Taken together, the U’s cover X, so we may find finite
covers Ui0 , V;O C X by affinoid open subsets such that for all x € X, there is some 4 for

which {z} C U?, and such that U? Cc V9, with U? C V) a rational subset.
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Next, we may find for any = € X an affinoid open subset V' C X such that {z} C V,
such that V' N Ui0 - Ui0 is a rational subset for all 7, and such that V' C UZ-0 for one
i. Tt suffices to do this for maximal points z. Now, let I, = {i[{z} C V}. There is
some open affinoid subset W C X containing {z} such that W N U =0ifi¢l,, and
W C V;O for i € I,. For each i € I, choose some rational subset W; C VZ-O such that
m C W; c W, and let V' be the intersection of all W; for ¢« € I,. There is some
i € I, such that {z} C UY; we set V. = V' N UY, which is a rational subset of V.
Then V' C V? is rational for all i € I,;, hence VN U? C UY is rational. If i € I, then
VNUY c WNUP =0, which is also a rational subset of U?. Finally, V C U for one i.

Replacing V' by a further rational subset, we may assume that there is an étale map
V' — T™ that factors as a composite of rational embeddings and finite étale maps. Also,
we may find a chain of rational subsets V¥) ¢ ... ¢ V = V) such that {z} ¢ V(V)

and V(kﬂ) c V® for k =1,...,N — 1. Then the VI¥)’s cover X, so we may find
finite covers Vj(N), e Vj(l) C X by affinoid open subsets such that (i), (ii) and (iv) are
satisfied. In fact, (iii) is satisfied as well: For each j, there is some ¢ such that Vj(l) c UY.

Then for all j/, V" n VY = vV 02 nviY). Now, U0 n vV < U is a rational

subset by construction of the V(1)’s. Tt follows that Vj(l) N(Uy? ﬂVj(,l)) - Vj(l) is a rational
subset as well, as desired. O

Let us record the following lemma on tracing finiteness results on images of maps
through spectral sequences.

Lemma 5.4. Let K be a nondiscretely valued complete nonarchimedean field, and let
Ep’q) = M{Srq, i =1,...,N, be upper-right quadrant spectral sequences of almost Ok -

*,(1

modules, together with maps of spectral sequences Ef:gz.) — Effi—&-l)’ Mg;rq — Mgi‘{) for
1=1,....,N — 1. Assume that for some r, the image on the r-th sheet, Ef’(ql.) — Ef’(qiﬂ)

is almost finitely generated over O for all i, p, q. Then the image of M(kl) n M(]“N) 18
an almost finitely generated O -module for k < N — 2.

Proof. Fix k < N — 2. Each spectral sequence defines the decreasing separated and

exhaustive abutment filtration Fill(’i) on M (ki), such that

@ -
1
In particular, Fil?l.) =M (ki) and Fillggl = (0. We note that the existence of the maps of
P

spectral sequences means that Fill(’i) maps into Fil(l. +1) for all p, and the induced maps

Fill, /Filts! = EDS

k—p _ 1
EPhr — T,

agree with the map on the spectral sequence.

By induction on i = 1,...,k + 2, we claim that the image of M(kl) in ]\4(”‘;.)/1?11161
is an almost finitely generated Ox-module. For i = 1, there is nothing to show. Now
assume that the image of M (kl) in M (ki) / Fil’(i_)1 is an almost finitely generated Og-module.

APt . APt -
) /Fllﬁ.) — Flll(’Hl) /Flll()i+1) = E§O7(if1)

There is some r such that the image of E? ’(qi) — EP ’(qz. L1y is an almost finitely generated
Og-module for all p, ¢q. It follows that the same stays true on the E.-page, so that in

particular the image of

i—1k+1—i i—1,k+1—i

ol Poo ity
is almost finitely generated. Under the identification of these terms with the abutment
filtration, this image is precisely

Fiv(';)l /(Fﬂz';)1 NFilf;, ) -
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Now we use the exact sequence

0 — (M) NFilGh /(M) NFil5 NIl ) — M) /(ME) NFil, )

— My /(M 0 (il +Fill ) =0,
where the intersection M (kl) NF for F C M (k'i) means taking those elements of M (kl) whose
image in M (kz.) lies in F'. The right-most term is almost finitely generated by induction,
and we have just seen that the left-most term is almost finitely generated. The middle
term is isomorphic to the image of M, (k) in MF (i+1) / Fil! (i41)> SO We get the claim.

Now we use this information for ¢ = k + 2, where it says that the image of M(kl) in

M(kk to) = M(kk +2) / Fllk’:r +2) is almost finitely generated. In particular, the same stays
true for the image in MF () 88 desired. (|

Lemma 5.5. Let K be a complete nonarchimedean field of characteristic 0 that contains
all p-power roots of unity; choose a compatible system (e € K of pt-th roots of unity.

Let Ry = (’)K(Tlﬂ, o TEY, and R = Ok (T TEYPT ,...,Tnil/poo>. Let Zyy act on R, such
that the k-th basis vector vy, € Zy, acts on the basis via

T“...Tin — (ikT”---Té’l 7

where (' = (““p whenever iyp’ € Z. Then H
sented Roy- module for all m, and the map

,R/p™) is an almost finitely pre-

Cont (

/\ Ry = Hgont RO) cont (ng R)

is injective with cokernel killed by ¢, — 1.
Moreover, if So is a p-adically complete flat Zy-algebra with the p-adic topology, then

Hgont (ZZ> So/pm ®Ro/pm R/pm) = S()/p @Ry /pm cont(ZZa R/pm)
for all m, and

Hgont(ZZ7S0®ROR) S0®R0 cont(Zn R) .

Proof. Recall that in general, if M is a topological Z;-module such that M = hén M/p™,
with M carrying the inverse limit topology of the discrete topologies on M /p™, then
continuous Zj,-cohomology with values in M is computed by the Koszul complex

q
O—>M—>M"—>...—>/\M"—>...—>M"—>M—>0,
where the first map is (y1 — 1,...,79, — 1). To check this, consider the Iwasawa algebra
A = Zy[[Z)] = Zy[[Th, . . ., Ty, with T; corresponding to 7; — 1, use the Koszul complex
q
0—>A—>A"—>..‘—>/\A”—>...—>A”—>A—>O

associated to (11, ...,T,), which resolves Z,. Now take Homgont(—, M), which gives
0 — Homeont(Zy,, M) — Homeont (Zy,, M)" — ...,

and resolves M as a topological Zj-module. Then taking continuous Zj-cohomology
gives the result.
Let us compute H%(Z;, R/p™) for all m. It is the direct sum of

HYZ), Rofp™ - T -+ T3)
over iy, . ..,i, € [0,1)NZ[p~!]. This is computed by the tensor product of the complexes

0— R()/pm Clk—;l Ro/pm —0
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over k = 1,...,n. If i # 0, the cohomology of 0 — Ry/p™ cEt Ry/p™ — 0 is
annihilated by ¢, — 1. It follows that

q

N(Ro/p™)" = HUZ;, Ro/p™) — H(Zy, R/p™)

is injective with cokernel killed by ¢, — 1, for all m. Taking the inverse limit over m, we
get the statement about HZ, (Z7, R).

cont

More precisely, if i, has denominator p’, then the cohomology of 0 — Ry/p™ CZk—; !
Ry/p™ — 0 is annihilated by Ge — 1. If € > 0, € € logT’, then (,r — 1 divides p® for
almost all ¢, hence only finitely many n-tuples (i1, ...,,) contribute cohomology which
is not pS-torsion. The cohomology for each such tuple is finitely presented, hence the
cohomology group HY(Zy;, R/p™) is almost finitely presented.

The compatibility with base-change is immediate from the calculations. O

Lemma 5.6. Let K be a perfectoid field of characteristic 0 containing all p-power roots
of unity. Let V be an affinoid smooth adic space over Spa(K,Og) with an étale map
V' — T™ that factors as a composite of rational embeddings and finite étale maps. Let 1L
be an Fy-local system on V.

(i) For i > n =dimV, the cohomology group
H'(Vat, L. ® OF/p)
18 almost zero as O -module.
(i) Assume that V' C V is a rational subset such that V' is strictly contained in V. Then
the image of
H'(Vet, L ® O /p) — H'(Vg, L ® O /p)
is an almost finitely generated Ok -module.

Remark 5.7. It is probably true that H'(V,L ® Of/p) is an almost finitely generated
O‘J}(V) /p-module. If one assumes that K is algebraically closed, then using Theorem
9.4, the arguments of the following proof would show this result if Ok /p[T1,...,T),]
is ’almost noetherian’ for all n; the problem occurs in the Hochschild-Serre spectral
sequence, where certain subquotients have to be understood.

Proof. We may use the pro-étale site to compute these cohomology groups. Let V=
V xpn T™ € Viprost- Let Vi/V be the j-fold fibre product of V over V, for j > 1. Recall
that the category underlying Spa(K, Ok )protér contains the category of profinite sets

(with trivial Galois action); in particular, we can make sense of V x Zz(j e Vproét, by
considering ZZ(J U asan object of Spa(K, Ok )protét, pulled back to Vprosr. As V= Vis
a Galois cover with Galois group Z,, we see that VilV =V x ZZ(] Y. Then by Lemma
3.16,
H VIV, L® 0y /p) 2= Homeon (Z2U~Y, HY(V,L ® O /p))
for all ¢ > 0, j > 1. But Lemma 4.12 implies that
H(V,L® OF /p)" =0
for i > 0, and is an almost finitely generated projective ST%/p-module M for i = 0,
where V = Spa(S, ST). Taken together, the Cartan-Leray spectral sequence shows that
Hi(vproém ]L & Ox—;/p)a = Héont(Z;L7 M) .

As Zj has cohomological dimension n, we get part (i).
For part (ii), we have to check that the image of

H (Zga M) - Héont(ngM ®S‘*""/]o SH—a/p)

cont
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is an almost finitely generated Ox-module, where (S’, S’") is defined as (S, S™), with V’

in place of V. Recall that M is an almost finitely generated projective S*¢/p-module.

By Lemma 2.4.15 of [11], this means that for any € > 0, € € logI', there exists some

k and maps f. : M — (ST¢/p)*, gc : (ST%/p)¥ — M with g.f. = p°. One sees that in

order to prove (ii), we may replace M by S™%/p, i.e. we have to show that the image of
Heony(Zyy, ST /D) = Heont(Z3y, 8™ /)

is an almost finitely generated Og-module.

Now, choose N = n + 2 rational subsets VIV) = V'’ ¢ .. C V) = V. such that
VU+D i strictly contained in V@) for j =1,...,N — 1. Let V) and (S, S0)+) be
defined as for V, using VU) in place of V. We need to show that the image of

Hgont(Zg7 S(l)+/p) — Hfl;ont (Z;L7 S(N)+/p)

is almost finitely generated over Ok. Now we use Lemma 4.5, applied to X = T",
U =T", giving rise to U = Spa(R, R™), where

RY = Op(TEVP™ . 1E ™y
Also, in the notation of that lemma, let U, = Spa(R,, R,,) with

R = O (TP mEemy
giving rise to v = v xy U, = Spa(Sﬁ,Z),S,(,{”). By Lemma 4.5, it is enough to
show that the image of

Héont(ng (S’r(rp—i_ ®R;"n R+)/p) - Héont(Zga (SﬁnN)Jr ®R;tl R+)/p)

is almost finitely generated over O for all m. These groups can be computed via the
Hochschild-Serre spectral sequence
HY((Z/p"L)" Hdt (07 Zp)" (SP)F @i BY) /D)) = Heoh* (2, (ST @ RY)/p)
as the coeflicients carry the discrete topology. But by Lemma 5.5,

Hiont (0" Zp)", (ST @ gy RY)/0) = S /0 @ gty Heon (07 Zp)", R /) -

Now as N =n+2 > i+ 2, Lemma 5.4 shows that it is enough to prove that the image
of

Sr(izb')Jr/p ®Rﬂ+1/p Hciont((pmzp)n’ RJr/p) - Sr(rJL'Jrl)Jr/p ®R:§L/p Héont((pmzp)n7 R+/p)

is almost finitely generated for j = 1,..., N — 1. The image A of S%H/p — Sﬁ,{“”/p
is almost finitely generated over Og: As V,ﬁf g strictly contained in Vn(:f ), the map

S,(n,z) — Sfﬂ'ﬂ) is completely continuous, and hence one easily checks that A is a subquo-
tient of a bounded subset of a finite-dimensional K-vector space. Such Og-modules are
almost finitely generated as Ok is almost noetherian. Then the image of

SO /P ® s 1y Hoone (07" Zp)", R [p) = ST p @ s ) Hione (07 Z)", RT /p)
is a quotient of A ®pi \ Hignt((P"Zp)", R /p). The group Hign((p™Zp)", R* /p) is
almost finitely generated over R, by Lemma 5.5. Choosing a map
(R /DN — Hign(0™Z)", R /p)
with cokernel annihilated by p€, we find a map
ANO 5 Ag e Hi (072", R /)

with cokernel annihilated by p®. It follows that A®p+ /) Hio (P Zy)™, R /p) is almost
finitely generated over O, giving the claim. O

Now we can prove the crucial statement.
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Lemma 5.8. Let K be a perfectoid field of characteristic 0 containing all p-power roots
of unity. Let X be a proper smooth adic space over Spa(K,Ok), and let L be an Fp-local
system on Xg,. Then

H (Xa, L ® O% /p)
is an almost finitely generated O -module, which is almost zero for j > 2dim X.

Proof. Let X,, be the site of open subsets of X. Lemma 5.6 shows that under the
projection A : Xgt — Xan, RIA(L ® OF /p) is almost zero for j > dim X. As the
cohomological dimension of X,, is < dim X by Proposition 2.5.8 of [8], we get the
desired vanishing result.

To see that H7(Xg,L ® OF /p) is an almost finitely generated Ox-module, choose

N = j 4 2 covers V(‘7+2) .,V;(l) C X as in Lemma 5.3. Let I be the finite index set.
For any nonempty subset J C I, let Vj(k) = MNie J‘/,L«(k). Then the conditions of Lemma

5.3 ensure that each V}k) admits an étale map VJ(k) — T™ that factors as a composite of
rational embeddings and finite étale maps. For each kK =1,...,j + 2, we get a spectral
sequence
Bl = @ H™(VE Lo 0% /p) = H™ ™ (X, L® 0% /p) |
|J\:m1 +1
together with maps between these spectral sequences F (1’;”2 — E'VT for ko=

*,(k+1)
1,...,j5+ 1. Then Lemma 5.4 combined with Lemma 5.6 (11) shows the desired finite-

ness. U
To finish the proof, we have to introduce the ’tilted’ structure sheaf.

Definition 5.9. Let X be a locally noetherian adic space over Spa(Qp,Zy). The tilted
integral structure sheaf is O7, b = hm ot /P, where the inverse limit is taken along the

Frobenius map.
If X lives over Spa(K, K*), where K is a perfectozd field with an open and bounded
valuation subring K™ C K, we set Oxb = Oxb Q poo+ K.

Lemma 5.10. Let K be a perfectoid field of characteristic 0 with an open and bounded
valuation subring K+ C K, let X be a loca{ly noetherian adic space over Spa(K, Kt),
and U € Xproer e affinoid perfectoid, with U = Spa(R, RT), where (R, RT) is a perfec-
toid affinoid (K, K*)-algebra. Let (R’, R*T) be its tilt.

(i) We have OF, (U) = RF, O, (U) = R.

(ii) The cohomology groups H(U, @}b) are almost zero for i > 0, with respect to the
almost setting defined by K*T and its ideal of topologically nilpotent elements.

Proof. This follows from Lemma 4.10 by repeating part of its proof in the tilted situation.
O

Proof. (of Theorem 5.1.) Let X' be the fibre product X xgpa (ki +) Spa(K, Ok ), which
is an open subset of X. Then the induced morphism

Hl(Xem]L@O /P)_>HZ( etvL@O /p)

is an almost isomorphism of K -modules. Indeed, take a simplicial cover U, of X by
affinoid perfectoid U, — X. Then U, x x X’ — X' is a simplicial cover of X’ by affinoid
perfectoid Uy, x x X’. Then for all i,k > 0,

H'(Uy,L® O} /p) = H'(Uy xx X', L ® O /p)

is an almost isomorphism by Lemma 4.12, which implies the same result for X compared
to X'.
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Now recall that K is an algebraically closed field ofA characteristic p. Fix an element
7 € Ogs such that 7% = p. Let My = H(X! ., L ® O}b/wk). As O;b’X' is a sheaf of

proét>’
perfect flat O-algebras with O;b /m = O% /p, we see that Lemma 5.8 implies that the
M, satisfy the hypotheses of Lemma 2.12. It follows that there is some integer r > 0
such that

Hz( proet7]L ® O+b/7r )a = HZ( proetﬂL ® O+b/7rk)a = (O?(b/ﬂ-k)r

as almost Ops-modules, compatibly with the Frobenius action. By Lemma 3.18 and
Lemma 5.10, we have

Rlim(L ® OF,/7")* = (L& OF,)" .
Therefore,
H (Xproet, L ® OF, ) 2 (02,)7
Inverting 7, we see that
H'(Xproer, L ® Oy) = (K")"
still compatible with the action of Frobenius . Now we use the Artin-Schreier sequence
0—>]L—>]L®(’)Xb —>L®@Xb -0,

where the second map is v ® f — v ® (fP — f). This is an exact sequence of sheaves on
Xproet: It suffices to check locally on U € X0t which is affinoid perfectoid and over
which L is trivial, and only the surJect1V1ty is problematic. To get surjectivity, one has
to realize a finite étale cover of U > but Ufet =~ Ufet, and finite étale covers of U come
via pullback from finite étale covers in Xpo4;, by Lemma 7.5 (i) of [18].

On cohomology, the Artin-Schreier sequence gives

- Hi(XproétaL) - Hi(Xproéta L& éXb) - I_Ii()(proét»L ® @X") —
But the second map is the same as (K”)" — (K”)", which is coordinate-wise = — 2P — z
This is surjective as K” is algebraically closed, hence the long-exact sequence reduces to
short exact sequences, and (using Lemma 3.17 (i))
Hi(XétvL) = Hi(XproétaL) = Hi(Xproetv]L@OXb) Fr

which implies all desired statements. O

Corollary 5.11. Let f : X — Y be a proper smooth morphism of locally noetherian
adic spaces over Spa(Qyp,Zy). Let L be an Fp-local system on X¢. Then for all i > 0,
there is an isomorphism of sheaves of almost (9¢—m0dules

(Rifét*]L) & O;a/p = Rifét*(L & O;)’_(a/p> .

Here, we use the almost setting relative to the site Yy, the sheaf of algebras O;, and
the ideal of elements of valuation < 1 everywhere. If Y lives over Spa(K, K1) for some
nondiscretely valued extension K of Q,, this is the same as the almost setting with
respect to KT and the ideal of topologically nilpotent elements in K.

Proof. It suffices to check at stalks at all geometric points y of Y. Let y correspond to
Spa(L, L") — Y, where L is an algebraically closed complete extension of K, and let
X, = X xy Spa(L, L"). By Proposition 2.6.1 of [12], we have
((Rifét*]l") ® O}ta/p)y = (Rifét*L)y ® ((’);Ea/p)y = Hi(Xyét’]L) ® L+a/p )
and
(R fars (L ® OF /D))y = H (Xyar, L ® OF/p) .

Now the result follows from Theorem 5.1. O
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6. PERIOD SHEAVES

Definition 6.1. Let X be a locally noetherian adic space over Spa(Qyp,Zy). Consider
the following sheaves on Xproet -

N

(i) The sheaf Ay = W(O;b), and its rational version Biys = Ainf[%]. Note that we have
0: Ay — @} extending to 0 : B — Ox.

(ii) The positive deRham sheaf
Bp = lim Bine/ (ker 0)"

with its filtration Fil' B}, = (ker 0)'BZ;.
(iii) The deRham sheaf
IB3dR = IB;R[til] )

where t is any element that generates Fil IB%IR. It has the filtration

Fil' Bqr = Y _t 7 Fil" By, .
JEZ
Remark 6.2. We will see that locally on X4, the element ¢ exists, is unique up to

a unit and is not a zero-divisor. This shows that the sheaf Bqr and its filtration are
well-defined.

Before we describe these period sheaves explicitly, we first study them abstractly for a
perfectoid field K with open and bounded valuation subring K C K of characteristic 0
and a perfectoid affinoid (K, K*)-algebra (R, RT). Fix 7 € K’ such that 7#/p € (K+)*.
We make the following definitions.

Aui(R,R) = W(R™)

Bint (R, R") = Aune (R, R")[p™'] |

Bl (R, R") = limBins(R, R7)/(ker )" .
Moreover, we know that 6 : Aj,e (R, RT) = W(R*t) — R* is surjective.

Lemma 6.3. There is an element £ € Ape(K,K") that generates ker 6, where 0 :
Ape(K,KT) — K*. The element & is not a zero-divisor, and hence is unique up to a
unat.

In fact, for any perfectoid affinoid (K, K™)-algebra (R, RT), the element & generates
ker(6 : Aje(R, RY) — R™), and is not a zero-divisor in Ape(R, RT).

Proof. We will choose the element ¢ of the form & = [r] =Y 52, p*[z;] for certain elements
r; € Os. In fact, [1] maps via 6 to some element 7% in p(K ), and any such element
can be written as a sum > o, p0([z;]), as desired.

Let y = >.5°, p'[yi] € W(R’F), and assume &y = 0, but y # 0. Because W(R’*) is
flat over Z,, we may assume that yo # 0. Reducing modulo p, we see that 7y = 0,
which implies yo = 0, as R** is flat over K”T, contradiction.

Assume now that y = > 0% p'[yi] € ker(6 : W(RT) — R*Y). We want to show
that it is divisible by €. Because R is flat over Z,, we may assume that yy # 0.
As a first step, we will find zp € W(R*t) so that y — 2¢ is divisible by p. Indeed,
W(R*1)/(€,p) = R** /= = Rt /p, so that f is mapped to zero in this quotient, which
amounts to the existence of zp as desired.

Continuing in this fashion gives us a sequence zg, z1,... € W(R“‘) such that y —
(K, pizi)€ is divisible by p*t1, for all k > 0. But W(R’") is p-adically complete and
separated, hence y = (}7°,p'z;)¢, as desired. O
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In particular, we can also define Bqg(R, RT) = Bl; (R, RT)[¢!], with the filtration
given by Fil'Bar (R, R") = (Bl (R, RY), i € Z.

Corollary 6.4. For any i € 7, we have gr' Bqr (R, RT) = ¢'R, which is a free R-module
of rank 1. In particular, gr® Bqr(R, RT) = R[¢F1].

Proof. The element £ has the same properties in Bi,s as in Ay, i.e. it generates ker 6
and is not a zero-divisor. The corollary follows. O

Note that all of these rings are Aj,¢(K, KT)-algebras, e.g. KT via the map 6. In
the following, we consider the almost-setting with respect to this ring and the ideal
generated by all [r1/7"].

Theorem 6.5. Let X be a locally noetherian adic space over Spa(K, K1). Assume that
U — Xproet 18 affinoid perfectoid, with U = Spa(R, R™).
(i) We have a canonical isomorphism

Ainf(U) = Ainf(-Ry R+> )

and analogous statements for Biys, IB%(J{R and Bar. In particular, there is an element &
generating Fil* IB%IR(U), unique up to a unit, and it is not a zero-divisor.

(i) All HY(U, F) are almost zero fori > 0, where F is any of the sheaves just considered.

(iii) In BJR(U) and Bar(U) the element [r] becomes invertible, in particular the coho-
mology groups H'(U, F) vanish for these sheaves.

Proof. By induction on m, we get a description of W(@;b) /p™, together with almost
vanishing of cohomology. Now we use Lemma 3.18 to get the description of Aj,¢. After-
wards, one passes to Bi,; by taking a direct limit, which is obviously exact. This proves
parts (i) and (ii) for these sheaves.

In order to pass to IBBIR, one has to check that the exact sequence of sheaves on Xo¢t

0 = Bint = Bint — Bing/(ker 0)F — 0

stays exact after taking sections over U. We know that the defect is controlled by
H' (U, Biy¢), which is almost zero. We see that all statements follow once we know that
[7] is invertible in B¢/ (ker §). But the latter is a sheaf of By, (K, K1)/(kerf) = K-
modules, and [r] maps to the unit 7 € K*. O

Corollary 6.6. Let X be a locally noetherian adic space over Spa(K, K™), and assume
that U € Xprogr 15 affinoid perfectoid. Further, let S be some profinite set, and V =
U xS € Xproer, which is again affinoid perfectoid. Then

F (V) = Homeont (S, F(U))
for any of the sheaves

F e {@Xa @;’_{7 @Xba @;baAinfaBinﬁEIR?BdRa gri IBng} .

Here, @}(U) is given the p-adic topology, and all other period sheaves are given the
induced topology: For example, Ans(U) the inverse limit topology, Bine(U) the direct
limit topology, the quotients (Bine/(ker 0)™)(U) the quotient topology, and then finally
B (U) the inverse limit topology and Bag (U) the direct limit topology.

Proof. Go through all identifications. O

This proposition shows that even though we defined our sheaves completely abstractly
without any topology, their values on certain profinite covers naturally involve the topol-
ogy. This will later imply the appearance of continuous group cohomology.
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Proposition 6.7. Let X be a locally noetherian adic space over Spa(Qp,Zy). For all
i € Z, we have gr' Byr % Ox (i), where (i) denotes a Tate twist: LAet Ly = l'&lZ/p"Z as
sheaves on Xproet, anc{ Zp(1) = Y&nupn. Then for any sheaf F of Zp-modules on Xproet,
we set F(1) = F®; Zp(1).

Proof. Let K be the completion of Qp (). A choice of p™-th roots of unity gives rise
to an element € € Og». Recall the element

t =log([e]) € Fil' Bl (), K1) ,

which generates Fill, so that we have gr'Bgr = ti@X over Xg proct = Xprost/ XK
cf. Proposition 3.15. Because the action of the Galois group Gal(Qp(up~)/Qp) on
t is througp the cyclotomic character, the isomorphism descends to an isomorphism
gr’ BdR = OX (7,) on Xproét. |:|

Definition 6.8. Let X be a smooth adic space over Spa(k,Oy), where k is a discretely
valued complete nonarchimedean extension of Q, with perfect residue field k. Consider
the following sheaves on Xproct -

(i) The sheaf of differentials Q}( = V*Q}Xét, and its exterior powers QfX
(ii) The tensor product OBiyt = Ox Qw () Bing. Here W (k) = v*W (k) is the constant
sheaf associated to W (k). It still admits 6 : OBy — Ox.
(iii) The positive structural deRham sheaf
OIB%:{R = I&H OB/ (ker 6)" |

with its filtration Fil' OBl = (ker 0)'OBj.
(iv) The structural deRham sheaf
OBdR = OBIR[tfl} ,
where t is a generator of Fill IB%(J{R, with the filtration
Fil' OBag = » ¢ Fil't/ OB, .
JEZ
Remark 6.9. Because locally on X, the element ¢ exists and is unique up to a unit

and not a zero-divisor, the sheaf OByr and its filtrations are well-defined.

Also note that the sheaf OB;,s admits a unique Bj,¢-linear connection
V. OBinf — O]Binf ®(9X Qk— ,
extending the one on Ox. This connection extends uniquely to the completion
: + + 1
V0B — OB ®oy O ,

and this extension is IB%;R—Iinear. Because t € BIR, it further extends to a Bgr-linear
connection
V : OBggr — OB4r @0, Ok .

We want to describe (’)IB%CTR. For this, choose an algebraic extension of k whose com-
pletion K is perfectoid. We get the base-change Xx of X to Spa(K,Ok), and again
consider Xx € Xpro¢r by slight abuse of notation. We assume given an étale map
X — T"; such a map exists locally on X. Let X = X xpn T". Taking a further-base
change to K, Xx € X K,proét = Xprost/ XK is perfectoid.

In the following, we look at the localized site Xprost/ X. We get the elements

ui=T;®1-1® [I}] € OBi|g = (Ox Swm W(OL))x
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1

in the kernel of 0, where Tib € C’A);L(b = @O}/p is given by the sequence (7;,7;",...) in
the inverse limit.
Proposition 6.10. The map

Bixl[[X1,.... X)) = OBl |5

sending X; to u; is an isomorphism of sheaves over Xproet/X .

Proof. It suffices to check this over Xj o4 /X k- The crucial point is to show that
Bl %, [ X1, ..., Xp]] admits a unique Ox |, -algebra structure, sending T; to [T?]+ X;
and compatible with the structure on

Bia[[X1, ..., X,/ (ker 0) = Ox
This being granted, we get a natural map

(OX ®W(n) W(@;—(b)ﬂffk — IB%’_R XKHXh (RN Xn]] )

which induces a map OB} | X B %, [[X1, ..., Xp]] which is easily seen to be inverse
to the map above, giving the desired isomorphism.
In order to check that Bly| %, [ X1, Xp]| admits a natural Ox |, -algebra struc-

ture, we need the following lemma.

Lemma 6.11. Let (R,R%) be a perfectoid affinoid (K,Ok)-algebra, so that we get
BIR(R, R*Y). Let S be a finitely generated Oy-algebra. Then any morphism

f:8 =B (R RM)[[X1,..., X,]]
such that 6(f(S)) C Rt extends to the p-adic completion of S.

Proof. 1t suffices to check modulo (ker )" for all . There it follows from the fact that
any finitely generated R*-submodule of gr’ IB%:{R(R, R™) = R is p-adically complete: In
fact, the image of S will be contained in

- X1 X
W(RM)[[X1,...,X,]]/(ker §)° é,—,...,—"
(W (R™)[[X1 1/ ))[pk o pk]
for some k, and this algebra is p-adically complete. Here, £ is as in Lemma 6.3. O

Moreover, we have the following lemma about étale maps of adic spaces, specialized
to the case T".

Lemma 6.12. Let U = Spa(R, RT) over Spa(W (x)[p~!],W(k)) be an affinoid adic
space of finite type with an étale map U — T". Then there exists a finitely generated

W(R)[TE, ..., T -algebra Ry, such that Ry = RS‘[%] is étale over

W(m)p T T
and RT is the p-adic completion of R(T.

Proof. We use [12], Corollary 1.7.3 (iii), to construct the affinoid ring (Ro, Ry ), denoted
B there. We have to see that R{ is a finitely generated W (k)[Ti, ..., T;']-algebra.
But [12], Remark 1.2.6 (iii), implies that it is the integral closure of a finitely generated
W (k)T ..., T -algebra Ry C Ry inside Ry, with Rf[%] = Ryp. But W(k) is
excellent, in particular for any reduced flat finitely generated W (k)-algebra S*, the
normalization of ST inside S*[p~!] is finite over ST, giving the desired result. O

First note that one has a map

W) I T = Blgl g [[X, - X))
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sending T; to [T7] + X;. For this, note that T; mod (ker 6) is [T7], which is invertible,
hence T; is itself invertible.

Now take some affinoid perfectoid U € Xpo¢ /X' i, and write it as the inverse
limit of affinoid U; € Xg. In particular, Ox(U) = ligOX(Ui), and we may ap-
ply the last lemma to U; — T™. This gives algebras Rj('] whose generic fibre R;g is
étale over W (x)[p~ [T, ..., T;F']. By Hensel’s lemma, we can lift Ry uniquely to
B (U)[[X1, ..., Xx]], hence we get lifts of Rj. These extend to the p-adic completion,
hence we get lifts of OF (U;), and thus of Ox(U;). Take the direct limits of these lifts
to conclude. O

Let us collect some corollaries. First off, we have the following version of the Poincaré
lemma.

Corollary 6.13. Let X be an n-dimensional smooth adic space over Spa(k,Ox). The
following sequence of sheaves on Xpro¢t is exact.

v v v
0 — Bl = OBl - OBl ®0y Uk — ...~ OBl ®o, Q% — 0 .
Moreover, the derivation V satisfies Griffiths transversality with respect to the filtration
on OIBS;R, and with respect to the grading giving QY degree i, the sequence is strict exact.
Proof. Using the description of Proposition 6.10, this is obvious. U

In particular, we get the following short exact sequence, often called Faltings’s exten-
sion.

Corollary 6.14. Let X be a smooth adic space over Spa(k, Oy). Then we have a short
exact sequence of sheaves over Xproet,

0— Ox(1) — gr' OB}y — Ox @0, W =0 .

Proof. This is the first graded piece of the Poincaré lemma. O
Corollary 6.15. Let X — T", X,~etc., be as above. For any i € Z, we have an
isomorphism of sheaves over Xproet/ XK,

- X X

grl OBdR = §ZOX[—1, ooy 7”] .
3 3
In particular,
gr' OBdR = Ox[fil,Xl, e ,Xn] N

where & and all X; have degree 1. O
Proposition 6.16. Let X = Spa(R, R") be an affinoid adic space of finite type over

Spa(k, Or) with an étale map X — T™ that factors as a composite of rational embeddings
and finite étale maps.

(i) Assume that K contains all p-power roots of unity. Then

HY(Xg,gr’ OBar) = 0
unless ¢ = 0, in which case it is given by RQLK.
(ii) We have

HY(X,gr' OBgr) =0
unless i =0 and ¢ = 0,1. Ifi =0, we have (gr’ OB4r)(X) = R and H' (X, gt OBgRr) =
Rlogx. Here, x : Gal(k/k) — Z) is the cyclotomic character and

IOgX € HomCOHt(Gal(E/k)7 Qp) = Hclont(Gal<E/k)7 Qp)

is its logarithm.
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Proof. (i) We use the cover Xx — Xg to compute the cohomology using the Cartan-
Leray spectral sequence. This is a Zj-cover, and all fibre products Xp x Xp ' XXk X5
are affinoid perfectoid, and hence we know that all higher cohomology groups of the
sheaves considered vanish. The version of Corollary 6.6 for gr’ OBggr stays true, so we

find that
HY(Xg,gr’ OBar) = HL (27, g1 OBar(Xk)) -

Now we follow the computation of this Galois cohomology group given in [5], Proposition
4.1.2. First, note that we may write

gI,O O]BdR(XK) = R[Vlv s 7Vn] 3

where X = Spa(R, R*), and the V; are given by t~log([T7]/T}), where t = log([e]) as
usual. Let 7; € Z) be the i-th basis vector.

Lemma 6.17. The action of v; on Vj is given by v;(V;) = Vj if i # j and (Vi) = Vi+1.

Proof. By definition, ; acts on ij trivially if ¢ # j, and by multiplication by € if i = j.
This gives the claim. O

We claim that the inclusion
(R&LK)[Vh,...,Vu] C RIVA,..., Vi)

induces an isomorphism on continuous Z;-cohomology. It is enough to check this on
associated gradeds for the filtration given by the degree of polynomials. On associated
gradeds, the action of Z; on the variables V; is trivial by the previous lemma, and it

suffices to see that RQ,K C R induces an isomorphism on continuous Z,,-cohomology.
The following lemma reduces the computation to Lemma 5.5.

Lemma 6.18. The map
R @oy .. Or (Ty TP TE) S R

is ingective with cokernel killed by some power of p. In particular, we have
R= R®k(T1il,...,Tfl)K<T1i1/poo7 e ’T7:L|:1/p°°> .
Proof. This is an immediate consequence of Lemma 4.5 (ii). O

Now we have to compute

Hgont( Za (R®kK)[Vv1a SRR Vn]) .

We claim that inductively HZ . (Zyvi, (R&kK)[Vi,...,Vi]) = 0 for ¢ > 0 and equal to
(R®pK)[VA,...,V;_1] for ¢ = 0. For this purpose, note that the cohomology is computed
by the complex

(R&wK)[VA, ..., Vi] "5 (R&WK) WA, ..., Vi] .

If we set S = (R®yK)[V4,...,Vi_1], then the map ; — 1 sends a polynomial P € S[Vj]
to P(V;+1) — P(V;). One sees that the kernel of v; — 1 consists precisely of the constant
polynomials, i.e. .S, and the cokernel of v; — 1 is trivial.

(ii) First note that in part (i), we have calculated H?(Xg,gr! OBqgr) for any i € Z, as
all of these sheaves are isomorphic on Xpro¢t/ XK to gr? OBgg.

We take K as the completion of k(pup~), and we let I'y = Gal(k(pp~)/k). We want
to use the Cartan-Leray spectral sequence for the cover X — X. For this, we have to
know

HYX X or! OBgr)
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where we set X}?/X = Xg Xx - Xx Xg. Inspection of the proof shows that they are
given by

HY (XZ.L/X, gri OIBdR) = Homont (Iﬂknila H1 (XK7 gri OIBdR)) :

In fact, using the cover Xk % Xg X}?/ X of X;/ X to compute the cohomology via the
Cartan-Leray spectral sequence, the version of Corollary 6.6 for gr’ OB4r says that at
each step in the proof, one has to take Homgqp (FZL_I, o). This shows that we have an
identity

HY(X,gr' OBgr) = HL . (Tk, RO K (7)) .
Similarly to Lemma 5.5, the map R(i) — R®;K (i) induces an isomorphism on contin-
uous I'x-cohomology. But then we get

HE, (Tk, RORK (1)) = H,

cont cont

(T, R(1)) = R ®q, Heon(Tr: Qo))

and the latter groups are well-known, cf. [19].
O

Corollary 6.19. Let X be a smooth adic space over Spa(k, Oy). Then v,OBgr = Ox,, .

Moreover, v,Ox = Ox V*éx(n) =0 forn>1,

ét
R'v,0x(1) = Ok,
via the connecting map in Fualtings’s extension, and Rlz/*@x(n) =0 forn > 2.

Remark 6.20. One could compute all Riy*@x(j). They are 0 if i < jori > j+ 1, and
they are ¥y if ¢ = j, and QY logx if i =j + 1.
Proof. The first part is clear. For the second, note that after inverting ¢ in the Poincaré
lemma, we get the exact sequence
O%BdR%OBde... R
whose 0-th graded piece is an exact sequence
0—>@X —>grOOIB3dR—> e,

giving in particular an injection 1.Ox — v, gr’ OBgr. But we know that Ox,, maps
isomorphically into v, gr’ OBgg.
Similarly, we have a long exact sequence

0— Ox(n) = gr" OBgr — gt OBar ®o, Qx — ... ,

which shows that for n > 1, 1,Ox(n) = 0 and for n > 2, R'v,Ox(n) = 0, whereas for
n = 1 we get an isomorphism R'v,Ox (1) = Q}(ét. One directly checks that it is the
boundary map in Faltings’s extension. (|

7. FILTERED MODULES WITH INTEGRABLE CONNECTION

Let X be a smooth adic space over Spa(k, O), with k a discretely valued complete
nonarchimedean extension of @, with perfect residue field .

Definition 7.1. (i) A IB%CTR—local system is a sheaf of BgR—modules M that is locally on
Xproet free of finite rank.

(ii) An (’)IB;;R—module with integrable connection is a sheaf of OB:{R—modules M that is
locally on Xproer free of finite rank, together with an integrable connection Vg : M —
M ®poy Qk, satisfying the Leibniz rule with respect to the derivation V on OB?{R.
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Theorem 7.2. The functor Ml — (M, V rq) given by M = M®B§R OBly, Vam =id®@V
induces an equivalence of categories between the category of IB%XR—local systems and the
category of (’)IB%&"R—modules with integrable connection. The inverse functor is given by

M = MVYM=0,

Proof. 1t is obvious that one composition is the identity. One needs to check that any
OIB%;{R—module with integrable connection admits enough horizontal sections. This can
be checked locally, i.e. in the case X étale over T™. Then it follows from Proposition
6.10 and the fact for any Q-algebra R, any module with integrable connection over
R[[X1,...,X,]] has enough horizontal sections. O

We want to compare those with more classical objects. We have the following lemma:

Lemma 7.3. Let X,, be the site of open subsets of X. Then the following categories
are naturally equivalent:

(i) The category of Ox,, -modules Eay over Xy that are locally on Xay, free of finite rank.
(ii) The category of Ox,, -modules E over X¢ that are locally on X free of finite rank.

(iii) The category of Ox-modules € over Xprosr that are locally on Xprosw free of finite
rank.

Proof. We have the morphisms of sites v : Xproer — Xet, A 1 X¢g — Xan. We know that
Ox,., = \Ox,, and Ox,, = v,Ox. This implies that the pullback functors are fully
faithful.

To see that pullback from the analytic to the étale topology is essentially surjective,
we have to see that the stack in the analytic topology sending some X to the category
of locally free sheaves for the analytic topology, is also a stack for the étale topology.
It suffices to check for finite étale covers Y — X by the proof of [8], Proposition 3.2.2.
Moreover, we can assume that X = Spa(R, R") is affinoid, hence so is Y = Spa(S, ST).
In that case, a locally free sheaf for the analytic topology is equivalent to a projective
module over R of finite rank. But the map R — S is faithfully flat, hence usual descent
works; note that the fibre product Y x x Y has global sections S ®g S etc. .

Similarly, if & on X0 becomes trivial on some U € X 06, then write U has an
inverse limit of finite étale surjective maps U; — Uy, Uy € Xg. We assume again that
Up = Spa(R, RT) is affinoid, hence so are all U; = Spa(R;, R]"). Then Ox(U) is the
direct limit R of all R;, which is faithfully flat over R. Applying descent for this
morphism of rings shows that £ descends to a projective module of finite rank over Uy;
hence after passage to some smaller open subset of Uy, it will be free of finite rank. [

Definition 7.4. A filtered Ox-module with integrable connection is a locally free Ox -
module £ on X, together with a separated and exhaustive decreasing filtration Fil* €,
1 € Z, by locally direct summands, and an integrable connection V satisfying Griffiths
transversality with respect to the filtration.

Definition 7.5. We say that an (’)IB%IR—module with integrable connection M and a
filtered O x -module with integrable connection € are associated if there is an isomorphism
of sheaves on Xprogt

M ®OBIR OBgr = & Rox OBar
compatible with filtrations and connections.
Theorem 7.6. (i) If M is an (’)]B%IR—module with integrable connection and horizontal

sections M, which is associated to a filtered Ox-module with integrable connection &,
then

M = Fil’(€ ®0, OBqr)¥ =" .
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Similarly, one can reconstruct £ with filtration and connection via
Eet = vi(M gt OBgR) -
(ii) For any filtered Ox-module with integrable connection £, the sheaf
M = Fil’(£ ®p, OBgr)V ="

is a IB%IR—local system such that £ is associated to M = M ®B§R (’)IBBIR.

In particular, the notion of being associated gives rise to a fully faithful functor from
filtered O x -modules with integrable connection to IB%(J{R-local systems.

Proof. (i) We have
_ 310 _ 110 V=0 _ 110 V=0
M = Fil (M ®B3—R BdR) = Fil (M ®OB3’R OBdR) = Fil (5 Koy OIBdR) .
Similarly, lemma 6.19 shows that
Est = vs(E Koy OB4r) = v«(M ®OBC41-R OB4r) = v« (M ®B§—R OBgR) -

One also recovers the filtration and the connection.

(ii) Let (&, V,Fil®*) be any filtered Ox-module with integrable connection. We have to
show that there is some BIR—local system M associated to &, i.e. such that

& Rox OB4r =M ®B§R OBar

compatible with filtrations and connection.
We start by constructing some BXR—local system My such that

€ @ox OB = Mo @51 OBy

compatible with the connection (but not necessarily with the filtration). To this end,

consider the OIB%(TR-module Moy =E®oy OIB%(J{R, with the induced connection V ,4,, and

take My = MOVMOZO. The desired isomorphism follows from Theorem 7.2.

Let n be maximal with Fil” £ = £ and m minimal with Fil™*! £ = 0. We prove the
proposition by induction on m — n.

If n = m, then we choose M = Fil™" (M ®B3_R Bqr). This obviously satisfies all
conditions.

Now assume that n < m, and let Fil'® be the filtration on & with Fil* & = Fil* €
unless k = m, in which case we set Fil" £ = 0. Associated to (€, V,Fil’®) we get a
BIR—local system M, by induction. Twisting everything, we may assume that m = 0.
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We need to show that M := Fil®(£ ®0y OBgr)V=" is large. To this end, we consider
the following diagram:

0 0 0

0 M/ » M FiéE®O0x ———0

0 —— Fil"%(£ ® OBgr) —— Fil’(£ @ OByr) ——— Fil’ £ ® g1’ OBgg —— 0
v v ideV
0 Fil™ (£ ® OBgr) ® Q% = Fil 1 (£ ® OBgr) ® Q% = Fil’ £ @ gr ' OBgr ® Q% =0

v v ideVv

v v ideVv

0 Fil'"4(€ ® OBgr) ® Q% — Fil™4(£ @ OB4r) ® Q% - Fil’ £ @ gr=? OB ® Q% — 0

0 0 0

Here d is the dimension of X (which we may assume to be connected), and all tensor
products are taken over Ox.

Lemma 7.7. (i) All rows and columns of this diagram are complezes, and the diagram
commautes.

(i) All but the first row are exact.

(iii) The left and right column are ezxact.

(iv) In the middle column, M is the kernel of the first map V.

Proof. Parts (i), (ii) and (iv) are clear: To check that V in the middle column actually

is a map compatible with the filtration as claimed, use Griffiths transversality. The left
column is isomorphic to M’ tensored with the exact sequence

0 = Bjy — Fil° OBgr  Fil ' OBgp © Q% — ... .
The right column is Fil° € tensored with gro of this sequence. m

It follows that the whole diagram is exact, e.g. by considering all but the first row of
this diagram as a short exact sequence of complexes and looking at the associated long

exact sequence of cohomology groups.
Tensoring the first row with Fil® OBgg over IBBIR, which is flat, we get a diagram

0—— M Dps Fil’ OBgg —— M ®pt Fil® OB4r —— Fil’ € ®0, g1’ OBqr —— 0

: | |

0 —— Fil"%(£ ®0, OBgr) —— Fil’(£ ®0, OBgr) —— Fil’ £ @0, gr® OBgr —— 0

It follows that the middle vertical is an isomorphism as well, which shows that M is as

desired.
O
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Although not necessary for our applications, it may be interesting to investigate the
relationship between M and & further. We recall the EIR—local system My from the
proof, associated to (£, V) with the trivial filtration. It comes with an isomorphism

£ ®ox OBjp = Mo @31 OBy -
In particular, reducing the isomorphism modulo ker 6, we get an isomorphism
& ®oy Ox gr’ M .
Now the short exact sequence
0= €®o, Ox(1) = My/Fil’My — € ®0, Ox — 0
induces via v, a boundary map
Es = £ @ R, (Ox (1)) .

Lemma 7.8. Under the canonical isomorphism R'v,(Ox (1)) = Q}(ét, this map is iden-
tified with —1 times the connection on £.

Proof. Define a sheaf F via pullback £ = £ ®o Ox as in the diagram

00— & ®oy @X(—l) HMO/FHQMO —— & Roy Ox ——0

| | |

0——E®oy Ox (1) F £ 0

Then F admits two maps
F = £ ®0y OBy /Fil> = Mo @t OB/ Fil* -

One via F — My/ Fil?, the other via F — £. The two maps agree modulo Fil', hence
their difference gives a map F — € ®p,, gr! OIB%:{R. This gives a commutative diagram

0—— & ®oy Ox(1) F £ 0

J J |-

0——¢& R0y @X(l) — & R0y gl“1 OB(TR — & Rox Qﬁ( Rox @X — 0

Here the lower sequence is Faltings’s extension tensored with £. We know that the

boundary map of the lower line induces the isomorphism & ® Q}(ét ~ &4 R, 1) x (1),
giving the claim. O

Proposition 7.9. The IB%XR—local system M associated to (€,V,Fil®) is contained in
M ®B§R Bar, and it has the property

(M N Fil' M) /(M N Fil'* M) = Fil ™ € ®0, Ox(i) C gr' My = £ @0, Ox (i)
for alli e Z.

Conversely, there is a unique such IB%XR—submodule 1n Mg ®B$R Bar-

Proof. The first assertion is clear. For the other two assertions, we follow the proof of
existence of M and argue by induction. So, let n and m be as above. Again, the case
n = m is trivial, so we assume n < m and (by twisting) m = 0. Moreover, we define the
filtration Fil'® as before, and get a unique M.
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Note that M has the desired interaction with Ml if and only if there is a commutative
diagram as follows:

0 M M Fil' € @0, Ox —— 0
0 —— Fil' M M E®oy Ox ———0

It is immediate to check that our construction of M fulfils this requirement. Con-
versely, it is enough to check that there is a unique sheaf N that fits into a diagram

0 M’ N Fill'e ——0

Lo

0 —— Fil'! Mg —— My —— £ ®0, Ox —— 0
Lemma 7.10. We have injections
Ext!(Fil° £, M) — Hom(Fil’ £, Fil ™' £ ®o, Q%) ,
Ext!(Fil° £, Fil' My) — Hom(Fil’ £, € ®0, Q) ,
where we calculate the Ext' in the category of abelian sheaves on Xprost-

Proof. Both M and Fil' My are successive extensions of sheaves of the form F®o,, O x (k)
with £ > 1, where F is some locally free Ox-module. One readily reduces the lemma
to proving that for two locally free Ox-modules F; and Fa, we have

Ext! (F1, F2 ®ox Ox(k)) = Hom(Fi, Fr @0, Q)
if k=1, and =0 if k£ > 2. For this, note that
RHom(v* Fig, F2 @0y Ox (k) = RHom(Fig, Rv.(F2 @0y Ox(k)))
and we know by Corollary 6.19 that the term Ruv,(Fs ®0, Ox(k)) vanishes in degrees

0 and 1if £ > 2, and vanishes in degree 0 if k = 1. This gives vanishing if k¥ > 2, and if
k = 1, we get the desired identification because R'v,(Fa®0, Ox (k) & Fos®0, Q. O

This shows that the pullback of the lower sequence along Fil® & — & ®ox Ox comes
in at most one way as the pushout from a sequence on the top, giving the desired
uniqueness. Let us remark that the existence of this extension is related to Griffiths
transversality once again. O

Theorem 7.11. Let X be a proper smooth adic space over Spa(k, O), let (€, V,Fil®) be
a filtered module with integrable connection, giving rise to a BIR—local system M, and let

k be an algebraic closure of k, with completion k. Then there is a canonical isomorphism
H' (X5, M) ®p+ Bar = Hip(X,€) ®) Bar

fay

compatible with filtration and Gal(k/k)-action. Here Bqr = Bar (k, Oz) is Fontaine’s
field of p-adic periods. -
Moreover, there is a Gal(k/k)-equivariant isomorphism
Hi(Xl_gagrO M) = @Hﬁzﬁée(*){vé’) Rk ]%(_j) ;
J
where o ‘ ‘
Hyogge (X, €) = H'(X, g/ (DR()))
denotes the Hodge cohomology in bidegree (i — j,j) of €, using the de Rham-complex
DR(E) of £ with its natural filtration.
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Remark 7.12. Tt does not matter whether the de Rham and Hodge cohomology groups
are computed on the pro-étale, the étale, or the analytic site. If £ = Ox with trivial
filtration and connection, then gri(DR(E)) = % [=7], and hence

Hiiglae(X,€) = HI (X, 0%)
Proof. The de Rham complex of £ is
DRE) =050k 5.,
and it is filtered by the subcomplexes
Fil" DR(E) = (0 » Film & S FiIme0 0k S ...

On the other hand, one may replace M ®B§R Bgr by the quasiisomorphic complex

DR(E) @0, OBar = (0 = £ ® OBgr > £ @ OBqr @ Uk > ...)
with its natural filtration. There is a natural map of filtered complexes,
DR(E) — DR(€) ®o, OBg4R .
One gets an induced morphism in the filtered derived category
RI'(Xj, DR(E)) ®; Bar — RI'( X3, DR(E) ®0y OBar) -

We claim that this map is a quasiisomorphism in the filtered derived category. It suffices
to check this on gradeds. Further filtering by using the naive filtration of DR(E), one
reduces to checking the following statement.

Lemma 7.13. Let A be a locally free Ox-module of finite rank. Then for all i € Z, the
map

RT(X}, A) ®f g’ Bar — RT(Xj, A®0, gt OBagr)

is a quasiisomorphism.

Proof. Twisting, one reduces to i = 0. Then gr’ Bgr = k. The statement becomes the
identity

HY (X3, A) @5 k = H (X5, A®oy gr° OBag)

for all ¢ > 0. For this, cover X by affinoid open subsets on which A becomes free; one sees
that the left-hand side is H*(Xan, A) ® k, and the right-hand side is Hi(X]; e Az)s by
Proposition 6.16 (i). But coherent cohomology of proper adic spaces is finite-dimensional
and commutes with extension of the base-field, so we get the desired result. O

Now we get the comparison results. For example, for the Hodge-Tate comparison,
note that the i-th cohomology of gr® M is computed by

H (X, er'(DR(E) ®0y OB4R)) ,
which is identified with

P H' (X5, e (DR(E))) @ er ™ Bar = @) Hyp 2o (X, €) @ k(=)
J J

under the previous quasiisomorphism. O
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8. APPLICATIONS

Definition 8.1. Let X be a locally noetherian adic space or locally noetherian scheme.
A lisse Zy-sheaf Ly on X¢ is an inverse system of sheaves of Z/p"™-modules L, on Xg,
such that each L, is locally on X¢ a constant sheaf associated to a finitely generated
Z/p"-module, and such that this inverse system is isomorphic in the pro-category to an
inverse system for which Ly 1/p™ = L,.

Let Zp = LZ/p as sheaves on Xpo4. Then a lisse Z -sheaf on Xpo4r is a sheaf
L on -modules on Xprosr, such that locally in Xproer, Lo is isomorphic to Z ®z, M,
where M is a finitely generated Z,-module.

Using Theorem 4.9 and Lemma 3.18, one immediately verifies the following proposi-
tion.

Proposition 8.2. Let X be a locally noetherian adic space over Spa(Qp,Zy), and let

Lo be a lisse Zy-sheaf on Xg. Then L = IE: = @u*Ln s a lisse sheaf of Zp-modules

on Xprost- This functor is an equivalence of categories. Moreover, R’ T&ll/*Ln =0 for

> 0.

’ In particular, 1L R, (@p 5 a Qp = Zp[p_l]—local system on Xprost .- O
Let f : X — Y be a proper smooth morphism of locally noetherian adic spaces or

locally noetherian schemes, and let Ly be a lisse Z,-sheaf on X¢;. If f is a morphism of

schemes of characteristic prime to p, then the inverse system R fs.Le of the R’ fsi. Ly
is a lisse Zjy-sheaf on Yi.3 Moreover, as the higher R’ @V*Ln vanish, we have

Rifét*]Lo = Rifproét*Lo
Definition 8.3. Let k be a discretely valued complete monarchimedean extension of
Qp with perfect residue field k and ring of integers Oy, and let X be a proper smooth

adic space over Spa(k,Oy). A lisse Zp—sheafIL s said to be de Rham if the associated
BIR-local system M = LL ®3,, IB%(}LR is associated to some filtered module with integrable

connection (€,V,Fil®).

In the following, we write Ajn¢, Bint, etc., for the ’absolute’ period rings as defined by
Fontaine.

Theorem 8.4. Let k be a discretely valued complete nonarchimedean extension of Qp

with perfect residue field k, ring of integers Oy, and algeb(aic closure k, and let X be a

proper smooth adic space over Spa(k,Oy). For any lisse zp—sheafL on Xprost with as-

sociated B, -local system M = ]L®Zp B, we have a Gal(k/k)-equivariant isomorphism
H'(Xj,L) ®z, Big = H'(X;, M) .

If L is de Rham, with associated filtered module with integrable connection (€,V,Fil®),
then the Hodge-de Rham spectral sequence

Hiroine(X. &) = Hin(X.€)
degenerates, and there is a Gal(k/k)-equivariant isomorphism
H'(X},L) ®z, Bar = Hir(X,€) ®) Bar
preserving filtrations. In particular, there is also a Gal(k/k)-equivariant isomorphism
H'(Xp L) ©z, k= @) Hy il (X, ) @ k(=) -
J

3Even if the L, satisfy L,41/p"™ 2 L,, this may not be true for the Rifét*]Ln.
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Proof. First, note that for any n, H'(Xy,1L,) is a finitely generated Z/p"-module, and
we have an almost isomorphism

H'(Xp,Ln) ®z, Al = H'(Xp, Lo @) Afy) -

1r1f -

This follows inductively from Theorem 5.1 (using Proposition 3.15): For n = 1, the
desired statement was already proved in the proof of Theorem 5.1. Now the sheaves
Fn=Ln ®; A{  satisfy the hypotheses of the almost version of Lemma, 3.18. Therefore
we may pass to the inverse limit @fn =L ®Z A?

o> and get almost isomorphisms

1nf - inf

H'(X;,L) ®z, = i(X;;,]L®zP inf) -
Now we invert p and get almost isomorphisms

HZ(XI%L) ®Zp = i(X.EvL ®Zp IBianf) .

mf -
Multiplication by &* (using ¢ as in Lemma 6.3) then shows that
HY(X}, L) ®z, Bint/(ker 0)F = H' (X, L ®;, Bint/ (ker 0)%) ,

as the ideal defining the almost setting becomes invertible in By,t/(ker §)¥. Again, the
sheaves F, = L ®3, Bine/ (ker 0)* satisfy the hypothesis of Lemma 3.18, and we deduce
that A
H'(Xj,L) ®z, Bjg = H'(Xi, L®; Big)
as desired.
In particular, H*(Xz, M) is a free B§R—module of finite rank. This implies that

dim: H'(X, gr’ M) = dimp,, (H' (X3, M) © 5t Bar) -
But Theorem 7.11 translates this into the equality
Zdlmk Hﬁoﬁée X, &) = dimy, Hiz(X,€) ,

so that the Hodge-de Rham spectral sequence degenerates. The final statement follows
directly from Theorem 7.11. U

Our final application is a relative version of these results. First, we need a relative
Poincaré lemma. Here and in the following, we use subscripts to denote the space giving
rise to a period sheaf.

Proposition 8.5. Let f : X — Y be a smooth morphism of smooth adic spaces over
Spa(k, Ok), of relative dimension d. By composition with the projection Ql — Qﬁ(/y,
we get the relative derivation Vx y : OB(J{RX — (’)IB%;;RX Qo Qﬁf/y, and the following
sequence is exact:

O—>BdRX®f*

+
proét dR Y f;rOétOBdRY -
+ v XY Vx/y + d
— OB x VX OB}, x ®ox kv VAV OBJp x ®ox Wiy =0
It is strict exact with respect to the filtration giving QF Xy degree i.

Proof. Tt is enough to check the assertion in the case X = T", Y = T" ¢, with the
evident projection. There, the explicit description of Proposition 6.10 does the job
again. O

Lemma 8.6. Let f: X — Y be a proper smooth morphism of smooth adic spaces over
Spa(k, Or). Let A be a locally free Ox-module of finite rank. Then the morphism

(prroét*A) ®Oy gro OBdR,Y — prroét* (A ®OX grO OBdR,X)

s an tsomorphism in the derived category.
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Proof. We need to check that the sheaves agree over any U pro-étale over Y. Note that
this map factors as the composite of a pro-finite étale map U — Y’ and an étale map
Y’ — Y. Replacing Y by Y’, we may assume that U is pro-finite étale over Y. Moreover,
we can assume that Y is affinoid and that there is an étale map Y — T that factors
as a composite of rational embeddings and finite étale maps. Let K be the completed
algebraic closure of k. Let Y =Y xpm T%. One can also assume that U is a pro-finite
étale cover of Y, which we do.

Finally, we choose an open simplicial cover X, of X such that each X; admits an étale
map X; — T™ that factors as a composite of rational embeddings and finite étale maps,
fitting into a commutative diagram

X;—— 1T

|

Y —T™

where the right vertical map is the projection to the first coordinates. Let X; = X; Xn
T%-.

In this situation, we can control everything. The technical ingredients are summarized
in the following lemma.
Lemma 8.7. All completed tensor products are completed tensor products of Banach
spaces in the following.
(i) Let W; = U xy X; and W, =U X X;. Then W; is pro-finite étale over X;,

Ox (W;) = Oy (U)o, v)Ox (Xi) ,

and

A F A A +1/p> o0

Ox(WZ> = OX(Wi)®K<T$_1~_1,...,T$1>K<Tm+/1p e ,TT:LH/p > .
(ii) The ring @;(U) is flat over OF(Y') up to a bounded p-power, i.e. there is some integer
N such that for all O (Y)-modules M, the group Toré; (M, @;(U)) is annihilated

by p™.
(iii) In the complex

)

associated to the simplicial covering Xo of X, computing (R foroct«F)(Y), all boundary
maps have closed image.

(iv) We have
(g1’ OBar x)(W;) = Ox (W) V4, ..., Vil

where V, is the image of t~ log([T?]/T,) in gr® OBgr x. Moreover,
HY(W;,gr’ OBgg x) = 0
for q > 0.
Proof. (i) First, we use Lemma 6.18 to get
Oy (V) = Oy (V) @ypr gy KT, TRV
and o e
Ox(X) = Ox(Xi) &y pir ) KT L TEPTY
We may rewrite the latter as

A +1/p> 0o\ A +1/p> o0
(Ox (X)@ppr gy KTE T ™) o g KTV TEVT)

m41rtn

= (OX(XZ')GEOY(Y)@Y(Y/))®K<Ti1 T$1>K<T$i/lp°°’ . ’T;Ltl/poo> '

mt1
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Next, using that U — Y is pro-finite étale and that Y and X; are perfectoid, we get
O (Wi) = OF ()& g0 (5 OX" (Xi) 5
in particular,
O)((WZ) = Oy(U)QA@@Y(?)Ox(Xl) .
Using our description of Ox (Xl), this may be rewritten as
L . . . +1/p> oo
Ox (W) = (Oy (U)o, 1) Ox (X))@ rtr | mi K(TEVP Ty
Now one gets
Ox (W) = Oy (U)®0, (v)Ox (Xi)
by taking invariants under Z;~ ™, e.g. by using the computation in Lemma 5.5.

(ii) Note that (’A);(U ) is almost flat over @;(Y/) by almost purity. But up to a bounded
p-power, @;(Y/) is equal to

O;<Y)®Ok<Tlﬂ,...,T2§1>OK<T1i1/poo, . 7T$1/poo>
by Lemma 6.18, which is topologically free over (’);(Y)@ok Ok, and hence flat over
Of(Y)®0, Ok, which in turn is flat over Oy (Y).
(iii) This follows from the finiteness of cohomology, proved by Kiehl, [13].

(iv) The desired cohomology groups can be calculated using the Cech cohomology groups
of the cover W; — W;. The computation is exactly the same as in the proof of Proposi-

tion 6.16 (i), starting from the results of part (i).
U

By part (iv), one can compute

(R foroct (A @0y gr’ OBqr x))(U)
by using the complex given by the simplicial covering U xy Xo = W, of U xy X.
Moreover, parts (i) and (iv) say that it is given by (C®o, v)Oy (U))[V1,..., V). But
part (ii) says that the operation ®Oy(y)@Y(U ) is exact on strictly exact sequences of

Banach-Oy (Y)-modules, with part (iii) confirming that C' has the required properties
implying that it commutes with taking cohomology, so that

(Rifproét* (A R®ox gro OEdR,X))(U) = ((Rifproét*A) (Y)®Oy(Y)@Y(U))[V17 SR Vm] :
As (R fproetsA)(Y) is a coherent Oy (Y)-module, one can replace ®@Y(y)@y(U) by
®@Y(y)(§y(U). Also, by Proposition 6.16 (i),

Oy (U)[VA, ..., Vin] = g1 OBar y (U) .
Finally, Corollary 3.17 (ii) and Proposition 9.2 (ii) imply that
(Rifproét*A)(U> - (Rifproét*A)(Y) ®Oy(Y) OY(U) 5
so we get
(Rifproét* (“4 ®OX gro OBdPLX))(U) = (Rifproét*A)(U) ®OY(U) gro OIBdR,Y(U) )
as desired. 0

Theorem 8.8. Let f: X — }/ be a proper smooth morphism of smooth adic spaces over
Spa(k,Oy). Let L be a lisse Zy-sheaf on Xproe, and let

— +
M =L ®Zp BdR,X

be the associated IB%gRyx—local system. Assume that Rifpmét*IL, is a lisse Zp-sheaf on
Yorost- Then:
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(i) There is a canonical isomorphism
Rifproét*M = Rifproét*]L ®Zp B&FRY .
In particular, Rifproét*M s a IB%:{R y -local system on'Y', which is associated to Rifproét*L.

(ii) Assume that L is de Rham, and let (€£,V,Fil®) be the associated filtered Ox-module
with integrable connection. Then the relative Hodge cohomology R+ JHodgex(€) is a
locally free Oy -module of finite rank for all i,j, the relative Hodge-de Rham spectral
sequence

Ri_ijHodge* (5) = RZde*(g)
degenerates, and R’ Joroétsll s de Rham, with associated filtered Oy -module with inte-
grable connection given by R far.(E).

Remark 8.9. By Theorem 9.3, the assumption is satisfied whenever f : X — Y and LL
come as the analytification of corresponding algebraic objects.

Proof. (i) Let K be the completed algebraic closure of k. It suffices to check that one
gets a canonical isomorphism on Yproet/Yx. We start with the isomorphism

(R fare L) @ OF /p = R feu (L' @ O3 /p)

from Corollary 5.11, for any Fp-local system L' on X¢. By Corollary 3.17 (ii), we may
replace fe by fproét- Also, choose m € O with 7t = p. Then we get

(Rifét*L ) ® O+a/77 szproet*(L/ O+a/77) )
and by induction on m, also
(R forul') @ OF5 /7™ & R firoen(L' © OF5 /7™)
It is easy to see that this implies that for all m and n, we have
(R fereLn) R, Mgy /[7]™ = R forosts(Lin ®g, At x/[7]™) -

By assumption, all R’ fs,]L,, are locally on Yg; isomorphic to constant sheaves associated
to finitely generated Z/p™-modules. This implies using Lemma 3.18 that one can take
the inverse limit over m to get

(Rifét*Ln) ®Zp 1nf Y — = fproet* (L ®Z A?nf,X) :
Similarly, one may now take the inverse limit over n to get
Rifproét*]l‘ ®zp mf Y — R fproct* (L ®z A?nf,X) .

Then all further steps are the same as in the proof of Theorem 8.4.

(ii) We follow the proof of Theorem 7.11. Let us denote by DR(E) the relative de Rham
complex

DR(E) = (O—>5—>S®QX/Y—> D,
with its natural filtration. We claim that the map
prroét* (DR(E:)) ®Oy OBdR,Y — prroét*(DR(g) ®0X OBdR,X)

induces a quasiisomorphism in the filtered derived category of abelian sheaves on Yjo¢t.
As in the proof of Theorem 7.11, this reduces to Lemma 8.6. Moreover, by Proposition
8.5, the right-hand side is the same as

prroet* (M ®f*

proet

vy JoroetOBar,y) -
Using that R fprost«M is a B dr.y-local system, this may in turn be rewritten as

(prroét*M) ®BIR,Y OBdR,Y :
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To check that this gives a quasiisomorphism in the filtered derived category, it suffices
to check on associated gradeds, where one gets the identity

R fprosts (g’ M ® Frroe Oy Joroct gr' OBar y) = (R fprost« 81" M) ® g1’ OBar y

which follows from the fact that locally on Yo, grt OBgRr,y is isomorphic to gr? OBg4r,vy,
which in turn is a polynomial ring over Oy, i.e. abstractly an infinite direct sum of copies
of Oy.

Combining these results, we find that
prroét* (DR((S)) ®(9y OIBdR,Y = (prroét*M) ®IB;3'R v C/)IB%dR,Y
in the filtered derived category. In particular, in degree 0, the left-hand side gives

B R forosts (g’ (DR(E))) R0y 817 OBar,y = @D R frioages (€)@ 0y 21° OBar,y (—j) ,
J J

whereas the right-hand side evalutes to
(grO Rifproét*M) ®(§Y grO OIBdR,Y .

The latter is a sheaf of locally free gr° OBg4R,y-modules. As locally on Y0ét, gr? OB4r,y
is faithfully flat over Oy, it follows that R*~7J JHodgex(E) is locally free for all 7, j.
Similarly, we find that

R far+(€) ®0y OBary = (R’ forost«M) ®pt . OBary

compatibly with filtration and connection. Counting ranks of locally free modules, one
gets the desired degeneration result. Using part (i), the last displayed formula now
implies that R’ fs.L is de Rham, with associated filtered Oy-module with integrable
connection given by R’ fir«(&).

OJ

9. MISCELLANY

In this section, we recall some facts that are used in the paper. We start with
the following situation. Let K be some complete nonarchimedean field, let A be a
complete topologically finitely generated Tate algebra over K, and let Sy = Spec A,
with corresponding adic space S = Spa(A4, A°). Further, let fo : Xg — So be a proper
morphism of schemes, and let f : X — S be the corresponding morphism of adic spaces.

Theorem 9.1. (i) The category of coherent Ox,-modules is equivalent to that of coherent
Ox -modules.

(ii) Let Fo be a coherent Ox,-module with analytification F on X. Then for all i > 0,
R'f.F is coherent and equal to the analytification of R* foxFo.

Proof. This is the main result of Kopf’s thesis, [14]. For a more modern reference, see
Abbes’ book on rigid geometry, [1]. O

Further, we need to know that one can also use the étale site to compute coherent
cohomology. This is summarized in the following proposition.

Proposition 9.2. Let K be a complete nonarchimedean field. All adic spaces are as-
sumed to be locally of finite type over Spa(K,Of).

(i) Let F be a coherent module on an affinoid adic space X. Then the association mapping
any affinoid étale U — X to Oy(U) R (x) F(X) is a sheaf Fgy on Xg. Fori >0, the
higher cohomology group H'(Xg, Fet) = 0 vanishes.



54 PETER SCHOLZE

(ii) Let g : T — S be an étale morphism of affinoid adic spaces. Let f : X — S be proper.
Let Fx be a coherent Ox-module, let Y = X xgT, and let Fy be the pullback of Fx to
Y. Then for all i, we have an isomorphism

Hi(X, Fx) ®og(S) Or(T) = Hl(Ya Fy) .
In particular, (R foF)ss = R’ fetFot-

Proof. Part (i) follows from Proposition 3.2.5 of [8]. Using Proposition 3.2.2 of [8], one
easily reduces the assertion in part (ii) to the cases where T" C S is a rational subset,
and where T' — S is finite étale. The first case is dealt with by Kiehl in [13], Satz 3.5.
In the other case, choose some open affinoid cover of X and compute H*(X, Fy) via
the associated Cech complex C. Then H'(Y, Fy) is computed by C ®os) Or(T), as
Op(T) is a finite Og(S)-module. But Op(T) is flat over Og(S), so tensoring commutes
with taking cohomology, which is what we wanted to prove. O

Let us recall a comparison between algebraic and analytic étale cohomology. Let K
be some complete nonarchimedean field, let fo : Xg — Sp be a proper smooth morphism
of schemes over K, let S be an adic space locally of finite type over Spa(K, Ok), and
let S — Sy be some morphism of locally ringed topological spaces, which induces via
base-change a proper smooth morphism of adic spaces f: X — S.

Theorem 9.3. Let m be an integer which is invertible in K. Let Ly be a Z/mZ-sheaf
on Xos, which is locally on Xoe the constant sheaf associated to a finitely generated
Z./mZ-module. Recall that R foe.lL is locally on Sos the constant sheaf associated to a
finitely generated Z./mZ-module. Let IL be the associated sheaf on Xe. Then R fei,lL is
the analytification of R’ fosisLo.

Proof. This is Theorem 3.7.2 of [12]. O

Finally, we recall some facts about affinoid algebras over algebraically closed nonar-
chimedean fields. So, let K be an algebraically closed nonarchimedean field, and let R be
a topologically finitely generated Tate K-algebra, i.e. R is a quotient of K(T},...,T),)
for some n.

Theorem 9.4. Assume that R is reduced. Then R° is a topologically finitely generated

Ok -algebra, i.e. there is a surjection O(Ty,...,T,) — R° for some n. Moreover, if S

is a finite reduced R-algebra, then S° is a finite R°-algebra.

Proof. This follows from §6.4.1, Corollary 5, of [4]. O
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