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ABSTRACT. We construct a new cohomology theory for proper smooth (formal) schemes over
the ring of integers of C,,. It takes values in a mixed-characteristic analogue of Dieudonné mod-
ules, which was previously defined by Fargues as a version of Breuil-Kisin modules. Notably,
this cohomology theory specializes to all other known p-adic cohomology theories, such as crys-
talline, de Rham and étale cohomology, which allows us to prove strong integral comparison
theorems.

The construction of the cohomology theory relies on Faltings’ almost purity theorem, along
with a certain functor Ln on the derived category, defined previously by Berthelot—Ogus.
On affine pieces, our cohomology theory admits a relation to the theory of de Rham—-Witt
complexes of Langer—Zink, and can be computed as a g-deformation of de Rham cohomology.
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1. INTRODUCTION

This paper deals with the following question: as an algebraic variety degenerates from char-
acteristic 0 to characteristic p, how does its cohomology degenerate?

1.1. Background. To explain the meaning and the history of the above question, let us fix some
notation. Let K be a finite extension of Q,, and let O C K be its ring of integers. Let X be
a proper smooth scheme over Og;' in other words, we consider only the case of good reduction
in this paper, although we expect our methods to generalize substantially. Let k be the residue
field of O, and let k and K be algebraic closures.

There are many different cohomology theories one can associate to this situation. The best
understood theory is £-adic cohomology for £ # p. In that case, we have étale cohomology groups
H! (Xg,Z¢) and Hf (X;,Z¢), and proper smooth base change theorems in étale cohomology
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e use the fractal letter for consistency with the main body of the paper, where X will be allowed to be a
formal scheme.
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imply that these cohomology groups are canonically isomorphic (once one fixes a specialization
of geometric points),

Hgt(ffR,Zg) = Hét(:{l}aZ@) .

In particular, the action of the absolute Galois group G of K on the left side factors through
the action of the absolute Galois group Gy, of the residue field k on the right side; i.e., the action
of Gk is unramified.

Grothendieck raised the question of understanding what happens in the case £ = p. In that
case, one still has well-behaved étale cohomology groups Hf (Xy,Z,) of the generic fibre, but
the étale cohomology groups of the special fibre are usually too small; for example, if i = 1,
they capture at best half of the étale cohomology of the generic fibre. A related phenomenon
is that the action of Gx on Hf (X, Z,) is much more interesting than in the f-adic case; in
particular, it is usually not unramified. As a replacement for the étale cohomology groups of the
special fibre, Grothendieck defined the crystalline cohomology groups H¢, . (Xx/W (k)). These are
Dieudonné modules, i.e. finitely generated W (k)- modules equipped with a Frobenius operator ¢
which is invertible up to a power of p. However, H, (X, Zy) and HE,  (X1/W (k)) are cohomology
theories of very different sorts: the first is a variant of singular cohomology, whereas the second
is a variant of de Rham cohomology. Over the complex numbers C, integration of differential
forms along cycles and the Poincaré lemma give a comparison between the two, but algebraically
the two objects are quite unrelated. Grothendieck s question of the mysterious functor was to
understand the relationship between H (X, Z,) and HY,  (Xx/W (k)), and ideally describe each
in terms of the other.

Fontaine obtained the conjectural answer to this question, using his period rings, after inverting
p, in [32]. Notably, he defined a W (k )[ |-algebra Be,ys whose definition will be recalled below,
which comes equipped with actions of a Frobenlus v and of Gk, and he conjectured the existence
of a natural ¢, Gi-equivariant isomorphism

Hét(xka Qp) ®Q, Bcrys = Hcrys(xk/W(k))[%] ®W(k)[%] Bcrys :

The existence of such an isomorphism was proved by Tsuji, [63], after previous work by Fontaine—
Messing, [34], Bloch-Kato, [12], and Faltings, [27]. This allows one to recover H (}Ck/W(k‘))[%]

crys
from Hf (X, Q,) by the formula

Herys (X1/ W (K)) 5] = (Herys (X1/ W (K)) 5] @w (2] Berys) 2= (Hi (X, Q) ®0, Berys) "
Conversely, Fontaine showed that one can recover Hf, (X g, Q) from HE (X3 /W (k) [%] together
with the Hodge filtration coming from the identificaton H(, (Xx/W (k) @w ) K = Hig (Xk).

Unfortunately, when p is small or K/Q, is ramified, the integral structure is not preserved by
these isomorphisms; only when ie < p—1, where e is the ramification index of K/Q,, most of the
story works integrally, roughly using the integral version Acys of Berys instead, as for example
in work of Caruso, [19]; cf. also work of Faltings, [28], in the case i < p — 1 with e arbitrary.

1.2. Results. In this paper, we make no restriction of the sort mentioned above: very ramified
extensions and large cohomological degrees are allowed throughout. Our first main theorem is
the following; it is formulated in terms of formal schemes for wider applicability, and it implies
that the torsion in the crystalline cohomology is an upper bound for the torsion in the étale
cohomology.

Theorem 1.1. Let X be a proper smooth formal scheme over Ok, where Ok is the ring of
integers in a complete discretely valued nonarchimedean extension K of Q, with perfect residue
field k. Let C be a completed algebraic closure of K, and write X¢ for the (geometric) rigid-
analytic generic fibre of X. Fiz some i > 0.

(i) There is a comparison isomorphism
Hgt (}:Cv Zp) ®Zp Bcrys = Héryq(xk/w(k)) ®W(k) Bcrys )

compatible with the Galois and Frobenius actions, and the filtration. In particular,
H! (Xc,Qp) is a crystalline Galois representation.
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(ii) For all n > 0, we have the inequality
lengthyy () (Herys (X1e/W () )eor /0") = lengthy, (Hi (Xc, Zy)eor/p") -

In particular, if Hl,, (X,/W (k)) is p-torsion-free’, then so is H} (Xc,Zp).
(iii) Assume that H..  (Xx/W(k)) and HLL(Xk/W (k) are p-torsion-free. Then one can

crys crys

recover H (X /W (k)) with its p-action from H: (Xc,Z,) with its G k-action.

crys

Part (i) is the analogue of Fontaine’s conjecture for proper smooth formal schemes over O.
In fact, our methods work more generally: we directly prove the comparison isomorphism in
(i) and the inequalities in (ii) (as well as a variant of (iii), formulated below) for any proper
smooth formal scheme that is merely defined over O¢. For formal schemes over discretely valued
base fields, part (i) has also been proved recently by Colmez—Niziol, [20] (in the more general
case of semistable reduction), and Tan—Tong, [62] (in the absolutely unramified case, building on
previous work of Andreatta—Tovita, [3]).

Intuitively, part (ii) says the following. If one starts with a proper smooth variety over the
complex numbers C, then the comparison between de Rham and singular (co)homology says that
any class in singular homology gives an obstruction to integrating differential forms: the integral
over the corresponding cycle has to be zero. However, for torsion classes, this is not an actual
obstruction: a multiple of the integral, and thus the integral itself, is always zero. Nevertheless,
part (ii) implies the following inequality:

(1) dimy, Hijg (X)) > dimg, H. (Xc,Fp).

In other words, p-torsion classes in singular homology still produce non-zero obstructions to
integrating differential forms on any (good) reduction modulo p of the variety. The relation is
however much more indirect, as there is no analogue of “integrating a differential form against a
cycle” in the p-adic world.

Remark 1.2. Theorem 1.1 (ii) “explains” certain pathologies in algebraic geometry in character-
istic p. For example, it was observed (by classification and direct calculation, see [42, Corollaire
7.3.4 (a)]) that for any Enriques surface Sy over a perfect field k of characteristic 2, the group
H (}R(Sk) is never 0, contrary to what happens in any other characteristic. Granting the fact that
any such Sy, lifts to characteristic 0 (which is known, see [25, 52]), this phenomenon is explained
by Theorem 1.1 (ii): an Enriques surface Sc over C has H}, (Sc,F2) = Fy # 0 as the fundamental

group is Z/2, so the inequality (1) above forces H g (Sk) # 0.

Remark 1.3. We also give examples illustrating the sharpness of Theorem 1.1 (ii) in two different
ways. First, we give an example of a smooth projective surface over Z, for which all étale
cohomology groups are 2-torsion-free, while Hfrys has nontrivial 2-torsion; thus, the inequality
can be strict. Note that this example falls (just) outside the hypotheses of previous results
like those of Caruso, [19], which give conditions under which there is an abstract isomorphism
Hi (X /W (k) = H. (X, Zp) @z, W (k). Similar examples of smooth projective surfaces can
also be constructed over (unramified extensions of) Z,[(,], which shows the relevance of the bound
ie < p—1. Secondly, we construct a smooth projective surface X over O where Hé2t Xz Zp)tor =
Z/p*Z, while HZ (X3 /W (K))tor = k @ k; thus, the inequality in part (i) cannot be upgraded to
a subquotient relationship between the corresponding groups.

Part (iii) implies that the crystalline cohomology of the special fibre (under the stated hy-
pothesis) can be recovered from the generic fibre. The implicit functor in this recovery process
relies on the theory of Breuil-Kisin modules, which were defined by Kisin, [48], following earlier
work of Breuil, [17]; for us, Kisin’s observation that one can use the ring & = W (k)[[T]] in place
of Breuil’s S involving divided powers is critical. The precise statement of (iii) is the following.
As H! (X¢,Z,) is torsion-free by (ii) and the assumption, it is a lattice in a crystalline G-
representation by (i). Kisin associates to any lattice in a crystalline G i-representation a finite
free & = W (k)[[T]]-module BK(H{ (X¢,Z,)) equipped with a Frobenius ¢, in such a way that

2We show that this is equivalent to requiring Hp (%) being a torsion-free O -module (for any fixed ).
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BK(H{ (X¢,Zy)) ®s W(k)[l] (where the map & — W (k) sends T to 0 and is the Frobenius on
W (k)) gets identified with

(H (X0, Zp) ®2, Berys) ™ = Heyys (X1 /W (K))[3] -
Then, under the assumptions of part (iii), we show that
BK(H(Xc, Zy)) ©s W (k) = Hepyo (X /W (K))

as submodules of BK(H}, (X¢,Z,)) ®s W(k‘)[%] = HY o (X /W (K ))[ ].

As alluded to earlier, there is also a variant of Theorem 1.1 (iii) if K is algebraically closed. In
fact, our approach is to reduce to this case; so, from now on, let C' be any complete algebraically
closed nonarchimedean extension of Q,, with ring of integers O and residue field k. In this
situation, the literal statement of Theorem 1.1 (iii) above is clearly false, as there is no Galois
action. Instead, our variant says the following:

Theorem 1.4. Let X be a proper smooth formal scheme over O. Assume that H (X/W (k))
and HIL(X,/W (k) are p-torsion-free. Then ngys(f{k/W( ), with its @-action, can be recov-
ered functorially from the rigid-analytic generic fibre X of X. More precisely, the Z,-module
H! (X,Z,) equipped with the de Rham comparison isomorphism (as in Theorem 1.7 below) func-
torially recovers HE. (X/W (k)).

crys

The proof of this result (and the implicit functor) relies on a variant of Breuil-Kisin modules,
due to Fargues, [30], formulated in terms of Fontaine’s period ring A;,¢ instead of the ring &. To
explain this further, we recall the definitions first. The ring Aj,¢ is defined as

At = W(O")
where O" = @@ O/p is the “tilt” of O. Then O’ is the ring of integers in a complete algebraically

closed nonarchimedean field C” of characteristic p, the tilt of C; in particular, the Frobenius
map on O° is bijective, and thus Aj,s = W (") has a natural Frobenius automorphism ¢, and
Ainf/p = Ob'

We will need certain special elements of Aj,¢. Fix a compatible system of primitive p-power
roots of unity (,» € O; then the system (1,¢p, 2, . . .) defines an element € € O°. Let = [e] -1 €
Ajnr and

Y e|i/?
: o (p) 1/1’—1 Z:O '

There is a natural map 6 : Ay — O whose kernel is generated by the non-zero-divisor £&. Then
Acrys is defined as the p-adic completion of the PD envelope of Aj,; with respect to the kernel of
0; equivalently, one takes the p-adic completion of the A;,s-algebra generated by the elements %L,
n > 1, inside Amf[ ]. Witt vector functoriality gives a natural map Aj,r — W (k) that carries £
to p, and hence factors through Acys. Finally, the ring Be.ys that appeared in Fontaine’s functor
is

Bcrys = Acrys[i] .

This is a Qp-algebra as 1P ~! € pAcyys. We will also need B(J{R, defined as the £-adic completion of
Ainf[z%]; this is a complete discrete valuation ring with residue field C', uniformizer £, and quotient
field Byr := B;‘R[%].

With this notation, the relevant category of modules is defined as follows:

Definition 1.5. A Breuil-Kisin—Fargues module is a finitely presented Ains-module M equipped

with a p-linear isomorphism oy M[%] = M[ﬁ], such that M[%] is finite free over Ainf[%].

This is a suitable mixed-characteristic analogue of a Dieudonné module; in fact, these objects
intervene in the work [61] of the third author as “mixed-characteristic local Shtukas We note
that the relation to shtukas has been emphasized by Kisin from the start, [48]. For us, Fargues’
classification of finite free Breuil-Kisin-Fargues modules is critical.



INTEGRAL p-ADIC HODGE THEORY 5

Theorem 1.6 (Fargues). The category of finite free Breuil-Kisin—Fargues modules is equivalent
to the category of pairs (T,Z), where T is a finite free Zy-module, and = C T ®z, Bar is a
B(TR-lattice.

Let us briefly explain how to use Theorem 1.6 to formulate Theorem 1.4. Under the hy-
pothesis of the latter, by Theorem 1.1 (ii), the Z,-module T := H (X,Z,) is finite free.
The de Rham comparison isomorphism for X, formulated in Theorem 1.7 next, gives a B("IR—
lattice 2 := Hl (X /Biz) in T @z, Bar. The pair (T,Z) determines a Breuil-Kisin—Fargues
module (M, ¢ps) by Theorem 1.6. Then Theorem 1.4 states that the “crystalline realization”
(M, onr) @Ay, W (K) coincides with (H, (X/W (k)), @), which gives the desired reconstruction.

The preceding formulation of Theorem 1.4 relies on the existence of a good de Rham cohomol-
ogy theory for proper smooth rigid-analytic spaces X over C that takes values in BgR—modules,
and satisfies a de Rham comparison theorem. Note that H’y(X) is a perfectly well-behaved
object: it is a finite dimensional C-vector space. However, it is inadequate for our needs as there
is no sensible formulation of the de Rham comparison theorem in terms of Hig(X): there is no
natural map C — B(;FR splitting the map 6 : BIR — C (unlike the discretely valued case). Our
next result shows that H’y(X) nevertheless admits a canonical deformation across 6, and that
this deformation interacts well with p-adic comparison theorems. We regard this as an analogue
of crystalline cohomology (with respect to the topologically nilpotent thickening B;R — C'in
place of the usual W (k) — k).

Theorem 1.7. Let X be a proper smooth adic space over C. Then there are cohomology groups
HéryS(X/BgR) which come with a canonical isomorphism

Hl\o(X/BiR) ®ps, Bar = H} (X, Zy) ®z, Bar -

In case X = Xo®xC arises via base change from some complete discretely valued extension K
of Qp with perfect residue field, this isomorphism agrees with the comparison isomorphism

Hir(Xo) @k Bar = H{ (X, Zy) ®z, Bar
from [58] under a canonical identification
ngys(X/B;rR) = HAR(XO) ®K B(TR :

Moreover, H (X/BJR) is a finite free By -module, and we have the following:

(i) (Conrad-Gabber [21]) The Hodge—de Rham spectral sequence

By = HI(X, Q0) = Hig (X)
degenerates at E1.
(ii) The Hodge—Tate spectral sequence [59)

By = H(X, % ,0)(—j) = HL (X, 2,) ®2, C

degenerates at Fs.

We now turn to discussing the proof of Theorem 1.1. Our strategy is to construct a cohomology
theory for proper smooth formal schemes over O that is valued in Breuil-Kisin—Fargues modules.
This new cohomology theory specializes to all other cohomology theories, as summarized next,
and thus leads to explicit relationships between them, as in Theorem 1.1.

Theorem 1.8. Let X be a proper smooth formal scheme over O, where O is the ring of integers
in a complete algebraically closed nonarchimedean extension C' of Q,. Then there is a perfect
complez of Aing-modules

RT 4, (:{) )
equipped with a p-linear map ¢ : RT' 4, (X) — R 4,,,(X) inducing a quasi-isomorphism

RT 4, (¥)[§] = R 4,,,(¥) [ 535]

such that all cohomology groups are Breuil-Kisin—Fargues modules. Moreover, one has the fol-
lowing comparison results.
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(i) With crystalline cohomology of X:

RT a,, (%) @3, W (k) = RTcrys (X1 /W (K)) -
(ii) With de Rham cohomology of X:

RT 4, (%) ®%, , O ~ RTqr(X) .

(iii) With crystalline cohomology of Xo/p:

RT 4, (X) @4, Acrys = Rlerys(Xo/p/Acrys) -
(iv) With étale cohomology of the rigid-analytic generic fibre X of X:

RT 4, (%) ®a,., Ainf[%] ~ Rl'¢ (X, Zy) @z, Ainf[%] .

We note that statement (iii) formally implies (i) and (ii) by standard facts about crystalline
cohomology. Also, we note that (if one fixes a section k — O/p) there is a canonical isomorphism

chrys(xO/p/Acrys)[‘%] = RFcrys(%k:/W(k)) ®W(k) Acrys[%] ;

this is related to a result of Berthelot—Ogus, [7]. Thus, combining parts (iii) and (iv), we get the
comparison

RFcrys(xk/W(k)) ®I/V(k) Bcrys = R]‘—‘Ainf (}:) ®]IAM Bcrys = Rrét (X> Zp) ®Zp Bcrys ’
which proves Theorem 1.1 (i); note that since each Hjy (X)[5] is free over Ajne[7], the derived
comparison statement above immediately yields one for the individual cohomology groups.

The picture here is that there is the cohomology theory RI 4, ,(X) which lives over all of

Spec Ainr, and which over various (big) subsets of Spec A can be described through other
cohomology theories. These subsets often overlap, and on these overlaps one gets comparison
isomorphisms. However, the cohomology theory RT 4, (%) itself is a finer invariant which cannot
be obtained by a formal procedure from the other known cohomology theories. In particular,
the base change RT 4, (%) ®H;‘mf ©° does not admit a description in classical terms, and gives a
specialization from the étale cohomology of X with Fp-coefficients to the de Rham cohomology
of X (by Theorem 1.8 (ii) and (iv)), and is thus responsible for the inequality in Theorem 1.1
(ii).
Remark 1.9. It is somewhat surprising that there is a Frobenius acting on RT 4, ,(X), as there
is no Frobenius acting on X itself. This phenomenon is reminiscent of the Frobenius action on
the de Rham cohomology RT'4r(Y) of a proper smooth W (k)-scheme Y. However, in the latter
case, the formalism of crystalline cohomology shows that RT'4qr(Y') depends functorially on the
special fibre Yy; the latter lives in characteristic p, and thus carries a Frobenius. In our case,
though, the theory R4, (X) is not a functor of X/, (see Remark 2.4), so there is no obvious
Frobenius in the picture. Instead, in our construction, the Frobenius on RT 4, ,(X) comes from
the Frobenius action on the “tilt” of X.

Let us explain the definition of RI 4, ,(X). We will construct a complex AQx of sheaves of
Ajns-modules on Xyz,,, which will in fact carry the structure of a commutative A;,¢-algebra (in
the derived category).® Then

.R].—‘Ainf (:{) = RF(:{ZM, AQ;{) .
Let us remark here that, in the way constructucted in this paper, AQyx depends on the map
X — Spf O, and so it would be better to write AQx,» instead. We write AQx to keep notation
light.*
The comparison results above are consequences of the following results on AQx.

Theorem 1.10. Let X/O be as in Theorem 1.8. For the complex AQx of sheaves of Aing-
modules defined below, there are canonical quasi-isomorphisms of complexes of sheaves on Xz,
(compatible with multiplicative structures).

30ur constructions can be upgraded to make AQy into a sheaf of Foo-Aj,s-algebras, but we will merely consider
it as a commutative algebra in the derived category of A;jys-modules on X.
4In fact, by [8], AQx only depends on X itself.
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(i) With crystalline cohomology of X:

Here, the tensor product is p-adically completed, and the right side denotes the de Rham~—
Witt complex of X, which computes crystalline cohomology of Xy.
(ii) With de Rham cohomology of X:

L ~ ()®:cont
Al @ Ay 0~ QX/O )

inf

i,cont __ 1. i
where Qg0 =Hm, Qg /) /0/pm)-
(iii) With crystalline cohomology of Xo/p: if u: (X0 /p/Acrys)erys — Xzar denotes the projec-
tion, then

AQX@A Acrys =~ Ru*ocrys

xO/P/AcryS ’
(iv) With (a variant of) étale cohomology of the rigid-analytic generic fibre X over X: if
v : Xprost — Xzar denotes the projection, then

AQx ®a,,, Ainf[ﬂ ~ (RUAing,x) @A, Ainf[l%] :

inf

We note that Theorem 1.10 implies Theorem 1.8. This is clear for parts (i), (ii) and (iii). For
part (iv), one uses the following result from [58] (cf. [29, §3, Theorem 8]): the canonical map

Rrét (X7 Zp) ®Zp Ainf — Rrproét (X7 Ainf,X)

is an almost quasi-isomorphism; in particular, it is a quasi-isomorphism after inverting u. Here,
Aine x is a relative version of Fontaine’s period ring Ajn¢, obtained by repeating the construction
of A;ns on the pro-étale site.

Theorem 1.10 provides two different ways of looking at AQx. On one hand, it can be regarded
as a deformation of the de Rham complex of X from O to its pro-infinitesimal thickening A;,y — O,
by (ii). This is very analogous to regarding crystalline cohomology of X as a deformation of the
de Rham complex of X from k to its pro-infinitesimal thickening W (k) — k. This turns out to
be a fruitful perspective for certain problems; in particular, if one chooses coordinates on X, then
AQx can be computed explicitly, as a certain “g-deformation of de Rham cohomology”. This is
very concrete, but unfortunately it depends on coordinates in a critical way, and we do not know
how to see directly that AQx is independent of the choice of coordinates in this picture.

Remark 1.11. This discussion raises an interesting question: is there a site-theoretic formalism,
akin to crystalline cohomology, that realizes AQx? Note that AQx®%Y 4, Acrys does indeed arise
by the crystalline formalism thanks to Theorem 1.10 (iii). It is tempting to use the infinitesimal
site to descend further to A;,¢; however, one can show that this approach does not work, essentially
for the same reason that infinitesimal cohomology does not work well in characteristic p.”

On the other hand, by Theorem 1.10 (iv), one can regard AQx as being Ry, Ay x, up to
some p-torsion, i.e. as a variant of étale cohomology. It is this perspective with which we will
define AQ; this has the advantage of being obviously canonical. However, this definition is not
very explicit, and much of our work goes into computing the resulting A%, and, in particular,
getting the comparison to the de Rham complex. It is this computation which builds the bridge
between the apparently disparate worlds of étale cohomology and de Rham cohomology.

1.3. Strategy of the construction. We note that computations relating étale cohomology and
differentials, as alluded to above, have been at the heart of Faltings’ approach to p-adic Hodge
theory; however, they always had the problem of some unwanted “junk torsion”. The main
novelty of our approach is that we can get rid of the “junk torsion” by the following definition:

Definition 1.12. Let
v Xproét — XZar
denote the projection (or the “nearby cycles map”). Then
AQx = L’I]#(RV*Ainfvx) .

5Footnote added in print: The question raised in this remark has been answered affirmatively by the construc-
tion of the prismatic site that shall appear in the forthcoming [10].
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Remark 1.13. If one is careful with pro-sheaves, one can replace the pro-étale site with Faltings’
site, [29], [2], in Definition 1.12.

Here, p = [e] — 1 € Ajyr is the element introduced above. The critical new ingredient is the
operation Ly, defined on the derived category of A-modules’, for any non-zero-divisor f € A.
Concretely, if D* is a complex of f-torsion-free A-modules, then n;D*® is a subcomplex of D'[%]
with terms

(D) = {w € [ID' | dw € [ D
One shows that this operation passes to an operation L7y on the derived category. This relies
on the observation that

H'(nyD*) = H'(D*)/H'(D*)[f] -
In particular, the operation 7y has the effect of killing some torsion on the level of cohomology

groups, which is what makes it possible to kill the “junk torsion” mentioned above. We warn the
reader that Lny is not an exact operation.

Remark 1.14. We note that the operation Ln; appeared previously, notably in the work of
Berthelot—Ogus, [6, Section 8]. There, they prove that for an affine smooth scheme Spec R over
k, ¢ induces a quasi-isomorphism

RT¢.ys(Spec R/W (k)) =~ Ln, RT opys(Spec R/W (k)) ,

with applications to the relation between Hodge and Newton polygon. Illusie has strengthened
this to an isomorphism of complexes

WQ;{/JC = WpWQ;%/k )
cf. [42, 1.3.21.1.5].

Remark 1.15. For any object K in the derived category of Z,-modules equipped with a quasi-
isomorphism L, K ~ K, we show that the complex K/p™ admits a canonical representative K
for each n, with K} = H*(K/p"). In the case K = RTcys(Spec R/W (k)), equipped with the
Berthelot-Ogus quasi-isomorphism mentioned in Remark 1.14, this canonical representative is the
de Rham—Witt complex; this amounts essentially to Katz’s reconstruction of the de Rham—-Witt
complex from crystalline cohomology via the Cartier isomorphism, cf. [43, §III.1.5].

Next, we explain the computation of AQx when X = Spf R is an affine formal scheme, which
is “small” in Faltings’ sense, i.e. there exists an étale map

O:Spf R — G% = Spt O(T;, ..., TY)
to some (formal) torus; this is always true locally on Xz,,. In that case, we define

= +1/p> +1/p*
Roo:R@O(Tlilw.,Tfl)O<T1 /p PN /p ),

on which the Galois group I' = Zg acts; here we use the choice of p-power roots of unity in O.
Faltings’ almost purity theorem implies that the natural map

(2) RFcont (F, Ainf (Roo)) — RFproét (X7 Ainf,X)

is an almost quasi-isomorphism, in the sense of Faltings’ almost mathematics (with respect to the
ideal [m”] C Ajpns, where m” C O is the maximal ideal). The key lemma is that the Ln-operation
converts the preceding map to an honest quasi-isomorphism:

Lemma 1.16. The induced map
Ln,uRFcont (F7 Ainf(Roo)) — an,RFproét (X7 Ainf,X)
is a quasi-isomorphism.

6 1In fact, we define Ln; operation on any ringed topos, such as (Xz,y, Aint), which is the setup in which we
are using it in Definition 1.12.
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This statement came as a surprise to us, and its proof relies on a rather long list of miracles;
we have no good a priori reason to believe that this should be true. Part of the miracle is that the
lemma can be proved by only showing that the left side is nice, without any extra knowledge of the
right side than what follows from the almost quasi-isomorphism (2) above. In the announcement
[9], we did not use this lemma, and instead had a more complicated definition of AQx.

Moreover, the right side

L77/_L Rrproét (Xa Ainf,X)
is equal to AQg := RT'(Spf R, AQspr ). This is not formal as Ln does not commute with taking
global sections, but is also not the hard part of the argument.

Thus, one can compute AQg as

LnuRFcont (Fa Ainf(Roo» .

This computation can be done explicitly, following the previous computations of Faltings. Before
explaining the answer the general, we first give the description in the case of the torus; the result

i

is best formulated using the so-called g-analogue [i], := ‘2%11 of an integer i € Z.

Theorem 1.17. If R = O(T*1), then AQg is computed by the q-de Rham complex
9q

Amt(THY) 25 A (T T (1), T, g = [€] € Aung -

In closed form,

24 )y = L) I
o) =T
is a finite q-difference quotient.
In general, the formally étale map (’)(Tlﬂ, e ,Tdﬂ> — R deforms uniquely to a formally étale

map
Apg(TE L TEY — AR)E .
For each i =1,...,d, one has an automorphism ; of Aint (Tlﬂ, e ,Tj[1> sending T; to qT; and
T; to T; for j # i, where ¢ = [¢]. This automorphism lifts uniquely to an automorphism ~; of
A(R)® such that v; =1 mod (q — 1), so that one can define commuting “q-derivations”
9 _ wm—-1
i~ qT; = Ti
Then AQgr is computed by the g-de Rham complex

AR — AR .

9q 9q
" 9qTq

_9q i d
0— A(R)" ey (AR = ... = NAR)D) = ... > NAR)D)? =0,

where all higher differentials are exterior powers of the first differential.

In particular, after setting ¢ = 1, this becomes the usual de Rham complex, which is related
to part (ii) of Theorem 1.10. In fact, already in Agys, the elements [i], and ¢ differ by a unit,
which is related to part (iii) of Theorem 1.10.

Interestingly, the ¢-de Rham complex admits a natural structure as a differential graded alge-
bra, but a noncommutative one: when commuting a function past a differential, one must twist
by one of the automorphisms ;. Concretely, the Leibniz rule for ;}—‘JT reads

i (F(@)(T) = FT) 2L (o(T)) + a(aT) (£ (T))

o, I = g T, ’
where g(¢T) appears in place of g(T). (Note that this is not symmetric in f and g, so there are
really two different formulas.) If one wants to rewrite this as the Leibniz rule

S @) = (1) 2 a(D) + F(D)a(T)

0,T

one has to introduce noncommutativity when multiplying the g-differential ;Z“T( f(T)) by the
function ¢(T'); this can be done in a consistent way. Nevertheless, one can show that the ¢-
de Rham complex is an E.-algebra (over Ajne), so the commutativity is restored up to consistent
higher homotopies.
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Remark 1.18. The occurrence of the perhaps less familiar (and more general) notion of an Eo-
algebra, instead of the stricter and more hands-on notion of a commutative differential graded
algebra, is not just an artifact of our construction, but a fundamental feature of the output:
even when R = O(T*1), the E.-Ajns-algebra AQp (or even AQg/p) cannot be represented by a
commutative differential graded algebra (see Remark 7.8).

Finally, let us say a few words about the proof of Lemma 1.16. Its proof relies on a relation
to the de Rham-Witt complex of Langer—Zink [51]. First, recall that there is an alternative
definition of A;,; as

Ainf == I&HWT(O) ;
F

similarly, we have

Ainf(Roo) = %%HWT(ROO> .
Roughly, Lemma 1.16 follows by taking the inverse limit over r, along the F' maps, of the following
variant.

Lemma 1.19. For any r > 1, the natural map
Ly BT cont (T, Wi (Roc)) = Ly RT proge (X, W, (O%))

is a quasi-isomorphism; let WX)R denote their common value. Then (up to the choice of roots
of unity) there are canonical isomorphisms
H (W, Qp) = W,Q50"

where the right side denotes p-adically completed versions of the de Rham—Witt groups of Langer—
Zink, [51].

Remark 1.20. It is also true that WZR >~ AQpg ®HAM W, (0), and AQg = @T I/I//:TZR.

Here, the strategy is the following. One first computes the cohomology groups of the explicit
left side
L"]uchont (F; W7(Roo))

and matches those with the de Rham—Witt groups. These are made explicit by Langer—Zink,
and we match their description with ours; this is not very hard but a bit cumbersome, as the
descriptions are quite combinatorially involved. In fact, we can a priori give the cohomology
groups the structure of a “pro-F-V-complex” (using a Bockstein operator as the differential),
so that by the universal property of the de Rham—Witt complex, they receive a map from the
de Rham-Witt complex; it is this canonical map that we prove to be an isomorphism. In
particular, the isomorphism is compatible with natural d, ', V, R and multiplication maps.

After this computation of the left side, one proves a lemma that if D; — D> is an almost
quasi-isomorphism of complexes such that D; is sufficiently nice, then Ln,D; — Ln,D; is a
quasi-isomorphism, see Lemma 8.11. In fact, this argument only needs a qualitative description
of the left side, and one can prove the main results of our paper without establishing the link to
de Rham-Witt complexes.

We note that the complexes 17[_/:?2 g provide a partial lift of the Cartier isomorphism to mixed
characteristic. More precisely, Ajns admits two different maps 0, : Ajpg — W,.(O) and 0, = 0,.¢" :
Aing = Wi(O) to W,.(0), the first of which comes from the description A = @F W,.(O); the
map #; agrees with Fontaine’s map 6 used above. Then formal properties of the Ln-operation
(Proposition 6.12, Lemma 6.11) show that

AQx @Y. o W (0)

inf,

is computed by a complex whose terms are the cohomology groups WTQééc/%lt of

W0y = AQx &% = W,(0).

inf797‘

By the crystalline comparison, Ay ®HAM79T W,.(O) computes the crystalline cohomology of
X/W,.(O) (equivalently, of X¢,,/W;(0)). Thus, this reproves in this setup that Langer-Zink’s
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de Rham—Witt complex computes crystalline cohomology. On the other hand, after base ex-
tension from Ajnr to W(k), the maps 6, and 5,4 agree up to a power of Frobenius on W (k).
Thus, reformulating this from a slightly different perspective, there are two different deforma-
tions of AQx ®H;1mf W, (k) ~ WTQ?{k Jk to mixed characteristic: one is the de Rham—Witt complex
AQx ®HAM79T W, (0) ~ W,«Q;’?glt, the other is the complex AQx ®H;1;nf,§7- W,.(0) = W/Z?Zx whose
cohomology groups are the de Rham—Witt groups W,.Q)

e, cont
x/0
that these two specialize to the same complex over W,.(k) recovers the Cartier isomorphism.

. From this point of view, the fact

1.4. The genesis of this paper. We comment briefly on the history of this paper. The starting
point for this work was the question whether one could geometrically construct Breuil-Kisin
modules, which had proved to be a powerful tool in abstract integral p-adic Hodge theory. A key
point was the introduction of Fargues’ variant of Breuil-Kisin modules, which does not depend
on any choices, contrary to the classical theory of Breuil-Kisin modules (which depends on the
choice of a uniformizer). The search for a natural A;,¢-valued cohomology theory took off ground
after we read a paper of Hesselholt, [39], that computed the topological cyclic homology (or
rather topological Frobenius homology) of O = Oc,, with the answer being given by the Breuil-
Kisin—Fargues version of Tate twists. This made it natural to guess that in general, (a suitable
graded piece of) topological Frobenius homology should produce the sought-after cohomology
theory. A computation of the homotopy groups of TR"(R;p,Z,) then suggested the existence of

complexes ﬁ/:() r with cohomology groups given by Wrﬂgc/og)lt7 as in Lemma 1.19. The naive guess

RT prost (X, W, ((5})) for these complexes is correct up to some small torsion. In fact, it gets better
as r — oo, and in the limit » = oo, the naive guess can be shown to be almost correct; this gives
an interpretation of the “junk torsion” as coming from the non-integral terms of the de Rham—
Witt complex, cf. Proposition 11.17. Analyzing the expected properties of AQ g then showed that
one needed an operation like Ln with the property of Proposition 6.12 below: the naive guess
D = RT o6t (X, Aint,x ) has the property that H*(D/p) is almost given by WQ%C/%‘t, whereas the
correct complex AQ g should have the property that AQg/u is (almost) quasi-isomorphic to the
de Rham—Witt complex of R. In this context we rediscovered the Ln-operation. Thus, although
topological Hochschild homology has played a key role in the genesis of this paper, it does not
play any role in the paper itself (although it may become important for future developments).
In particular, we do not prove that our new cohomology theory is actually related to topological
Hochschild homology in the expected way".

1.5. Outline. Finally, let us explain the content of the different sections. As it is independent of
the rest of the paper, we start in Section 2 by giving some examples of smooth projective surfaces
illustrating the sharpness of our results.

In Sections 3 through 7, we collect various foundations. In Section 3, we recall a few facts
about perfectoid algebras. This contains much more than we actually need in the paper, but we
thought that it may be a good idea to give a summary of the different approaches and definitions
of perfectoid rings in the literature, notably the original definition, [57], the definition of Kedlaya—
Liu, [47], the results of Davis—Kedlaya, [22], and the very general definition of Gabber—Ramero,
[37]. Next, in Section 4, we recall a few facts from the theory of Breuil-Kisin modules, and
the variant notion over Aj,s defined by Fargues. In particular, we state Fargues’ classification
theorem for finite free Breuil-Kisin—Fargues modules. This classification is in terms of data that
can be easily defined using rational p-adic Hodge theory (using only the generic fibre). We recall
some relevant facts about rational p-adic Hodge theory in Section 5, including a brief reminder on
the pro-étale site. In Section 6, we define the Ln-operation in great generality, and prove various
basic properties. In Section 7, we recall that in some situations, one can use Koszul complexes to
compute group cohomology, and discuss some related questions, such as multiplicative structures.

In Sections 8 through 14, we construct the new cohomology theory, and prove the geometric
results mentioned above. As a toy case of the general statements that will follow, we construct

in Section 8 the complex Q R = V/V;?) gr. All statements can be proved directly in this case, but

"Footnote added in print: the reconstruction of the AQ complexes via topological Hochschild homology as
suggested in this paragraph has appeared in [8].
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the arguments are already indicative of the general case. After dealing with this case, we define
and study AQg in Section 9. In that section, we prove Lemma 1.19, and deduce Lemma 1.16,
except for the identification with de Rham—Witt groups. In Section 10, we recall Langer—Zink’s
theory of the relative de Rham—-Witt complex. In Section 11, we show how to build an “F-V-
procomplex” from the abstract structures of the pro-étale cohomology groups, and use this to
prove the identification with de Rham—Witt groups. It remains to prove the comparison with
crystalline cohomology, which is the content of Section 12. Our approach here is very hands-on:
we build explicit functorial models of both AQr and crystalline cohomology, and an explicit
functorial map. There should certainly be a more conceptual argument. In Section 13, we
give a similar hands-on presentation of a de Rham comparison isomorphism for rigid-analytic
varieties over C,, and show that it is compatible with the result from [58]. We use this to prove
Theorem 1.7. In the final Section 14, we assemble everything and deduce the main results.

1.6. Acknowledgements. We would like to thank Ahmed Abbes, Sasha Beilinson, Chris Davis,
Johan de Jong, Laurent Fargues, Ofer Gabber, Lars Hesselholt, Kiran Kedlaya, Jacob Lurie,
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were very helpful in improving the exposition of the paper.



INTEGRAL p-ADIC HODGE THEORY 13

2. SOME EXAMPLES

In this section, we record some examples proving our results are sharp. First, in §2.1, we give
an example of a smooth projective surface over Zy where there is no torsion in étale cohomology of
the generic fibre (in a fixed degree), but there is torsion in crystalline cohomology of the special
fibre (in the same degree); thus, the last implication in Theorem 1.1 (ii) cannot be reversed.
Secondly, in §2.2, we record an example of a smooth projective surface over a (ramified) extension
of Z,, such that the torsion in the étale cohomology of the generic fibre is not a subquotient of the
torsion in the crystalline cohomology of the special fibre; this shows that the length inequality in
Theorem 1.1 (ii) cannot be upgraded to an inclusion of the corresponding groups.

We note that both constructions rely on the interesting behaviour of finite flat group schemes
in mixed characteristic: In the first example, a map of finite flat group schemes degenerates,
while in the second example a finite flat group scheme itself degenerates.

2.1. A smooth projective surface over Zs. The goal of this section is to prove the following
result.

Theorem 2.1. There is a smooth projective geometrically connected (relative) surface X over
Zo such that

(i) the étale cohomology groups Hét(X@z,Zg) are free over Zo for all i € Z, and

(ii) the second crystalline cohomology group HZ . (Xw,/Zs2) has nontrivial 2-torsion given by
HZ,(Xr,/Zs)tor = Fa.

crys
We are not aware of any such example in the literature. In fact, we are not aware of any
example in the literature of a proper smooth scheme X over the ring of integers O in a p-adic
field for which there is not an abstract isomorphism
Hyyo(Xi/W (k) = Hiy (X g, Zy) ©2, W (k) -

crys

For example, Illusie, [42, Proposition 7.3.5] has proved that the crystalline cohomology of any
Enriques surface in characteristic 2 “looks like” the étale cohomology of an Enriques surfaces in
characteristic 0, and all other examples we found were of a similar nature.

We will construct X as a generic hypersurface inside a smooth projective 3-fold with similar
(but slightly weaker) properties. Let us describe the construction of this 3-fold first. We start
with a “singular” smooth Enriques surface S over Zo; here, singular means that Pic” (S) & us as
a group scheme, and it is equivalent to the condition that 7T1(SF2) =~ 7./27. For existence of S,
we note that there are singular Enriques surfaces over Fy (see below), and all of those lift to Zs
by a theorem of Lang and Ogus, [50, Theorem 1.3, 1.4]. In particular, there is a double cover
S = S, and in fact S is a K3 surface. Explicitly, cf. [13, pp. 222-223], one can take for §]F2 the
smooth intersection of three quadrics in IP’]%2 (with homogeneous coordinates x1, Za, T3, Y1, Y2, Y3)
given by the equations

xf+x2z3+yf+x1y120,
1’%+1‘11‘3+y§+$2y2=0,
T3+ 122+ Y5 + 23y3 =0 .

This admits a free action of Z/2Z given by (z; : y;) — (2; : 2; + y;). Then Sg, is a K3 surface,
and Sg, = Sk, /(Z/2Z) is a singular Enriques surface.®

Moreover, we fix an ordinary elliptic curve FE over Zs. This contains a canonical subgroup
we C E, and we get a nontrivial map

N:Z)22 — pe — E .

8The 7/2Z-action is free away from x1 = z2 = 3 = 0, which would intersect 51}-2 only when y1 = y2 = y3 =0,
which is impossible. To check smoothness, use the Jacobian criterion to compute possible singular points. The
minor for the differentials of yi,y2,y3 shows zjxex3 = 0; assume wlog ;7 = 0. Then the minor for z,x2,y2
shows x%xs =0, so wlog x2 = 0. Then the first equation gives y; = 0, and the second y2 = 0. Now the minor for

r1,x2,x3 shows z§y3 = 0, which together with the third equation shows x3 = y3 = 0.
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Note that 7ng, is nonzero, while np, is zero. Finally, we let 7 : D — S be the E-torsor which
is the pushout of the Z/2Z-torsor S — S along n; then D is a smooth projective geometrically
connected 3-fold.

Proposition 2.2. The smooth projective 3-fold D over Zo has the following properties.
(i) The étale cohomology groups H (D ,Zs) are free over Zy for i =0,1,2
(ii) The crystalline cohomology group HCrys (Dy,/Z2) has nontrivial 2-torsion, given by Fa.

Proof. We start with part (ii). Let k = Fy. Then Dy = S x Fj is the trivial Ej-torsor by
construction. Thus, the Kiinneth formula and Tllusie’s computation of Hg  (Sk/W(k)), [42,
Proposition 7.3.5], show that HZ  (Di/W (k))tor = k.

Now we deal with part (i). Let C = Q. It is a general fact that H} (D¢, Zs) is free over
Zs for i = 0,1. Let 71(D¢c)*? be the maximal abelian pro-2-quotient of 71 (D¢); equivalently,
71 (Dc)*”? = Hy ¢ (D, Z2). Then it is again a general fact that H t(DC,ZQ) is free over Zq if
and only if 7 (D¢g)?P? = Hy (D¢, Zs) is free over Z,. Indeed, this follows from the short exact
sequence

0 — Ext'(Hy ¢(Dc, Zs), Zo) — H%(De, Za) — Hom(Ha ¢ (D, Zs), Za) — 0 .

ab.2 i5 free over Z,. We can, in fact, compute the whole

Thus, it suffices to prove that 71 (D¢)
fundamental _group 7m1(D¢) of De. Namely7 pulling back SC — S¢ along ¢ : Do — S¢ gives a

Z./2Z-cover DC — D¢, and Dc = S’C x FE¢ decomposes as a product, which implies that
7T1(Dc) = 7T1(EC) = Z X Z .
Thus, 71(D¢) is an extension of (not necessarily commutative) groups
0— 7T1(EC) — 7'('1(DC) — Z/2Z —0.

On the other hand, we have the map 150 — F¢, which is by construction equivariant for the
Z/2Z-action which is the covering action of 50 — D¢ on the left, and is translation by 7 :
7/27. — E¢ on the right. As this action is nontrivial we may pass to the quotient and get a map
D¢ — Ec/n = Ef, where Ef, is another elliptic curve over C. We get a commutative diagram
with exact rows:

0——m(Ec) —=m(D¢) 727 0
0 —— m(Ec) — m(E}) 7)27 0.

~ ~

This shows that 71(D¢) = m1(EL) = Z x Z, so that in particular 71 (D¢)*?? =2 Zy x Zsy is free
over Zs. O

Proof. (of Theorem 2.1) Let D over Zsy be the smooth projective 3-fold constructed above. Let
X C D be a smooth and (sufficiently) ample hypersurface; this can be chosen over Zs: One has
to arrange smoothness only over Fs, so the result follows from the Bertini theorem over finite
fields due to Gabber, [36], and more generally Poonen, [54].

Let C = Q, as above. First, we check that H}.(Xc,Zs) is free over Zs for all i € Z. Clearly,
only ¢ =0,1,2,3,4 are relevant, and by Poincaré duality it is enough to consider ¢ = 0, 1,2, and
again ¢ = 0,1 are always true. Let U = D \ X, which is affine. Then we have a long exact
sequence

HZ o (Uc, Zn) = HG(Dc, Zn) — H(Xc, Za) — Hlg(Uo, Zo) —

Recall that as U is affine, smooth and 3-dimensional, HC «Uc,Zs) = H_. H! . (Uc,Z/27) = 0 for
1 < 3 by Artin’s cohomological bounds. In particular, HC «(Uc, L) is free over Zsy, and so the
displayed long exact sequence implies that H; t(Xc7 Zs) is free over Zs, as desired.

Let k =F5. We claim that the map

Heyy(Die /W (K)) = Heyyo (X3 /W ()

crys crys
is an isomorphism for 7 = 0, 1 and is injective for 4 = 2 with torsion-free cokernel, if X was chosen
sufficiently ample. This follows from a general weak Lefschetz theorem for crystalline cohomology
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by Berthelot, [5], but can also be readily checked by hand by reducing to the similar question for
H!n(Dg) = Hig(Xy), cf. Lemma 2.12 below. O

Remark 2.3. In this example, the cospecialization map
HE (Xs,, L) — HE(Xq,. Z2)

is not injective. Indeed, the left side contains a torsion class coming from the pullback of the
Z/2Z-cover Sg, — Sg,, whereas the right side is torsion-free.

Remark 2.4. In this example, the 3-fold D provides one lift of the smooth projective k-scheme
Dy ~ S x B}y to Zs, and has Hézt(D@Z,Zg) being torsion-free. On the other hand, the 3-fold
D’ := S x E gives another lift of Dy, to Zy such that H, é2t (Dé—22 , Z2) contains 2-torsion coming from
S. Thus, the torsion in the étale cohomology of the generic fibre of a smooth and proper Zs-
scheme is not a functor of the special fibre. In particular, the theory RI 4, (%) from Theorem 1.8
is not a functor of the special fibre X /p; in fact, not even RI'4, . (X)/p is.

2.2. An example of degenerating torsion in cohomology. Let O be the ring of integers in
a complete nonarchimedean algebraically closed extension C of Q,,.” Let k be the residue field of
O. The goal of this section is to give an example of a smooth projective surface H/O such that
the torsion in cohomology degenerates from Z/p?Z (in the étale cohomology of H¢) to k@ k (in
the crystalline cohomology of Hy); the precise statement is recorded in Theorem 2.10.

2.2.1. The construction. The strategy of the construction is to first produce an example of the
desired phenomenon in the world of algebraic stacks by using an interesting degeneration of group
schemes; later, we will push the example to varieties. The basic idea is to degenerate the constant
group scheme Z/p?Z to a group scheme that is killed by p; this is not possible in characteristic
0, but can be accomplished over a mixed characteristic base.

Lemma 2.5. Let E/O be an elliptic curve with supersingular reduction. Let x € E(C) be a
point of exact order p?, and let G C E be the flat closure of the subgroup generated by x. Then
Gc ~ Z/p*Z and Gy, = E[p).

Proof. We only need to identify Gy C Ey; but Ej has a unique subgroup of order p” for any r,

given by the kernel of the r-fold Frobenius. Thus, G = Ej[p] as both are subgroups of order
2

p-. O

Remark 2.6. With suitable definitions of étale and crystalline cohomology for stacks, the clas-
sifying stack BG of the group scheme constructed in Lemma 2.5 is a proper smooth stack over
O, and satisfies: H (BGc,Zy) ~ Z/p*Z, while HZ, (BGy/W (k)) ~ k @ k; this follows from the
computations given later in the section.

We now fix a finite flat group scheme G sitting in an elliptic curve E with supersingular
reduction as above. Our goal is to approximate BG by a smooth projective variety in a way that
reflects the phenomenon in Remark 2.6. First, we find a convenient action of G on a projective
space. (In fact, the construction below applies to any finite flat group scheme G.)

Lemma 2.7. There exists a projective space P/O with an action of G such that the locus Zp C P
of points with non-trivial stabilizers has codimension > 2 on the special fibre.

Remark 2.8. The number 2 in Lemma 2.7 can be replaced by any positive integer.

The closed set Zp C P mentioned above is (by definition) the complement of the maximal
open Up C P with the following property: the base change b : F — P of the action map
a: GxP — P x P given by (g,2) — (gx,z) along the diagonal A : P — P x P is an
isomorphism over Up. As b is finite surjective, one can alternately characterize the closed subset
Zp C P by the following two equivalent conditions:

(i) Zp is the set of those x € P such that the fibre of b over x(z) has length > 1.

(ii) Zp is the support of b,Op/Op.
In particular, the formation of Up and Zp (as subsets of P) commutes with taking fibres over
points of Spec(Q), and they are both G-stable subsets of P.

90ne can also realize the example over some sufficiently ramified finite extension of Qp.
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Proof. Choose a faithful representation G — GL(V), inducing a G-action on P(V'). By replacing
V' if necessary, we may also assume that the G-action on P(V) is faithful on each fibre. In
particular, there is a maximal G-stable open U C P(V) that is fiberwise dense such that the
G-action on U has no stabilizers (constructed as Up above). The complement Y C P(V) is a
closed subset that has codimension > 1 on each fibre. Now fix an integer ¢ > 2, and consider the
induced G-action on W :=T[];_, V. Set P := P(W). We claim that this satisfies the conclusion
of the lemma. B B

Let U C V — {0} be the inverse image of U under V — {0} — P(V), and let Y =V — U,
oY — {0} is the inverse image of Y. Note that 57, equipped with its reduced structure, is a
G, ,-equivariant closed subset of Kwith codimension > 1 on each fibre. Now consider 7 =
[T, Y CW = [I;_, V. Then Z’ (say with its reduced structure) defines a G.,-equivariant
closed subset of W of codimension > ¢ on each fibre. Removing 0 and quotienting by G, defines
a proper closed subset Z’ C P of codimension > ¢ on each fibre. It is easy to see that the locus
Zp C P of points with non-trivial stabilizers is contained in Z’, so Zp also has codimension
> ¢ > 2 on each fibre. O

Choose P and G as in Lemma 2.7. We can use this action to approximate BG by passing
to the quotient as follows. Let h: P — X = P/G be the scheme-theoretic quotient, so that X
is a projective scheme, flat over 0. Inside X, we have the open subset Ux C X defined as the
quotient Up /G, with complement Zx = X \ Ux.

Lemma 2.9. The construction satisfies the following properties.

(i) The closed subset Zx C X has codimension > 2 on the special fibre.
(ii) The map X — Spec(O) is smooth over Ux.

Proof. The map h is finite surjective and G-equivariant. Our construction shows that h(Zp) =
Zx, giving (i). For (ii), observe that Up — Ux is a G-torsor, and thus faithfully flat. Moreover,
the formation of this map is compatible by base change. Thus, since Up is smooth, so is Ux:
It is enough to check that Ux j is regular (by the fibral criterion of smoothness), equivalently
of finite Tor-dimension, which follows from the existence of the faithfully flat map Up — Ux i
from the regular scheme Up. [l

We now fix a very ample line bundle L on X once and for all. Let H C X be a smooth
complete intersection of dim(P) — 2 hypersurfaces of sufficiently large degree such that H C Ux.
Such H exist, as Zx C X has codimension > 2 on the special fibre, so a general complete
intersection surface H will miss Zx, i.e., HN Zx = () (first on the special fibre, and thus globally
by properness); thus, H C Ux. Since Uy is smooth, the general such H will also be smooth by
Bertini.

We will check that H is a sufficiently good approximation to BG for our purposes. More
precisely:

Theorem 2.10. The above construction gives a smooth projective (relative) surface H over
Spec(O) such that H2 (He, Zp)tor ~= Z/p*Z, while HZ.  (Hg /W (k))tor = k & k.

crys
Remark 2.11. In this example, one can also show that H}, (Hc,Z/p) ~ Z/p, while His (Hg) ~
k @ k. Thus, the inequality dimp, H'(Hc,F,) < dimy, H)g (Hy) coming from Theorem 1.1 (ii)
can be strict.

Proof. For étale cohomology, let H C P be the preimage of H, so H — H is a G-torsor. As
He C Pe is a smooth complete intersection of ample hypersurfaces, the weak Lefschetz theorem
implies that Hgt(Hc,Zp) is given by Z,, 0, and a torsion-free group, in degrees 0, 1, and 2,
respectively. Now we use the Leray spectral sequence for the G¢ = Z/p?Z-cover Ho — Hc,
Hi(Z/pQZ’Hgt(ﬁ@Zp)) = Héjj(Hc"Zp) .
This implies that
Hé2t(HCa Lp)tor = H2(Z/p2Z7Zp) = Z/p2Z .
For crystalline cohomology, consider the quotient Px E — (Px E)/G =: Xg. As G acts freely
on F, and thus on P x E, this is a G-torsor. We have a projection Xp = (Px E)/G — X = P/G,
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which is an E-torsor Ux, — Ux over the open subset Ux. In particular, over H C Ux, we get
an F-torsor Hgp — H.

Now note that Hg C Xgp = (P x E)/G is a smooth intersection of dim P — 2 sections of
L%“, for sufficiently large n, where Ly on Xpg is the pullback of the ample line bundle L on
X = P/G. Note that Lg is not ample, but it has the weakened Serre vanishing property that
for any coherent sheaf F on Xg, H(Xg, F ® L%") = 0 for all sufficiently large n and i > 1.
Indeed, this follows from Serre vanishing on X and the Leray spectral sequence for Xp — X.
By a version of the weak Lefschetz theorem in crystalline cohomology, cf. Lemma 2.12 below, we
see that the map

Hey oo (Xp i /W(k)) = H' (Hg /W (K))
is an isomorphism for ¢ = 0, 1, and injective with torsion-free cokernel for i = 2. The left side can
be computed by using the Leray spectral sequence for the projection Xg , = (P X Ey)/Gr —
E./Gy = Ej, with fibres given by Py. The result is that for ¢ = 0,1, the composite map
Hgr — Xg i — Ex/Gi = Ej induces an isomorphism

Hyyo(Ex /W (K)) = Hiy(Hp i /W (K))

crys crys

and H2.  (Hg x/W(k)) is torsion-free.

crys
Now we consider the Ej-torsor f : Hg  — Hy, and the associated Leray spectral sequence

He o (Hyy R forysi Oy ) = HE (Hp 1o /W (k)

crys crys

In particular, in low degrees, we get a long exact sequence

(3) 0— Hclrys(Hk/W(k)) — ngys(HE,k/W(k)) i> ngys(Hkv leCTyS*OHE,k)

= Hey (Hy /W (k) = Hey(Hp i /W (k) = ...
Fix a point € Hy; then the map a can be analyzed through the composition
Hyo (B /W (R) S Hoyo(Hp /W (k) = Hoyo (i, R foryse Ot ) < Hoyo(B /W (F)) .

crys crys crys
Here x* is the map given by restriction to the fibre E, of Hg, — Hj over x. The induced
endomorphism of H}, (Ey/W (k)) is induced by the map Ey — E/Gr = Ei/Ey[p] = Ej, and
is thus given by multiplication by p. This is injective, so it follows that a is injective. Moreover,
the image of x* is saturated, which forces z* to be an isomorphism. It follows that a is injective,
with cokernel given by H.,  (Ex/W(k))/p =k ® k.
Coming back to the sequence (3), we find HL  (Hg/W(k)) = 0, while HZ, (Hy/W (k))tor =

crys crys

k @ k, as desired. O
The following version of weak Lefschetz was used in the proof.

Lemma 2.12. Let k be a perfect field of characteristic p, and let X be a smooth projective variety
of dimension d over k, with a line bundle L. Let iy, > 0 be an integer such that for any coherent
sheaf F on X, the cohomology group H'(X, F @ L®™) vanishes if n is sufficiently large and i > ir,.

Then there exists some integer ng such that for alln > ng and any smooth hypersurface H C X
with divisor L™, the map

Hl,y (X)W () = Hly (H/W (K))

crys

is an isomorphism for j < d — iy — 1, and injective with torsion-free cokernel for j =d —ip — 1.

Proof. Berthelot, [5], proved this when L is ample, i.e. iy, = 0. His proof immediately gives the
general result: Let K be the cone of Rl cys(X/W(k)) = Rl cys(H/W(k)). It suffices to show
that K € D2972=1 with H? " ~1(K) torsion-free. As K is p-complete, this is equivalent to
proving that K/p € D=4~ =1 But K/p is the cone of RT'qr(X) — RTqr(H). Thus, it suffices
to prove that for any j > 0, the cone K of

RI(X, ) — RT(H, )

lies in DZ4—2=i=1 TLet T C Ox be the ideal sheaf of H; then Z =2 L®~". Now we have a short
exact sequence
0=T@0y Yyt = Q%/T = Q) —0.
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As RI(X,T ®0, Q) is Serre dual to RI(X,L%" @0, Q% ), it lies in D247 if n is large
enough. It remains to see that
RI(X,T ®0, ") € D477
if n is large enough; we will prove more generally that for any fixed r > 1,
RI(X, T @p, V') € D247
if n is large enough. For this, we induct on j. If j = 1, we use the short exact sequence
0— %0+ L 79" L 797 ®p, O — 0

to reduce to RT'(X, L®~™) € D24~ (and with 7+ 1 in place of 7) for sufficiently large n, which
follows from Serre duality and the assumption on L. For j > 1, we have a short exact sequence

0= I o, 072 - I @0, O = I ©0o, Q1 =0

By induction, RI of the first term lies in D297 =+1 and RT of the second term lies in D247z
this gives the required bound on the last term. O
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3. ALGEBRAIC PRELIMINARIES ON PERFECTOID RINGS

The goal of this section is to record some facts about perfectoid rings. In §3.1, we recall a
s~light1y non-standard perspective on Fontaine’s ring Aj,¢. In particular, we introduce the 6,. and
#, maps which play a crucial role in the rest of the paper; the construction applies to a fairly
large class of rings. In §3.2, we specialize these constructions to perfectoid rings; with an eye
towards our intended application, we analyze the kernel of the 6, and 6, maps in the case of
perfectoid rings with enough roots of unity. Along the way, we try to summarize the definitions
and relations between various classes of perfectoid rings in the literature. Finally, in §3.3, we
collect some results on perfectoid fields; notably, we prove in Proposition 3.24 that W,.(O) is
coherent for the ring of integers O in a perfectoid field.

3.1. Fontaine’s ring A, ;. Fix a prime number p, and let S be a commutative ring which is
m-adically complete and separated for some element 7 € S dividing p (note that it follows that
S is p-adically complete by, for example, [1, Tag 090T]). Denoting by ¢ : S/pS — S/pS the
absolute Frobenius, let S” := I'&nw S/pS be the tilt of S, which is a perfect Fp-algebra on which

we will continue to denote the Frobenius by . In this situation, we have Fontaine’s ring Aj,¢(.S).
Definition 3.1. Fontaine’s ring is given by
A () = W(S) ,
which is equipped with a Frobenius automorphism .
We start by recalling a slightly nonstandard perspective on Aj,¢(.S).

Lemma 3.2. Let S be as above, i.e., a ring which is m-adically complete with respect to some
element m € S dividing p.

(i) The canonical maps

lim § — 8 = lim §/pS — lim /75
%) ®

TP

are isomorphisms of monoids/rings.

(ii) For any f € S, the following inclusions hold: W,(f*"'S) C [fIW.(S) C W,.(fS); also
[p]? € pW,.(S) and p"W,.(S) C W,.(pS). It follows that the rings W,.(S) and W(S) are
complete for the [r], [p], and p-adic topologies.

(iii) The homomorphism

0o . 1: b . b
® .%HWT(S)—) ;nWT(S),

induced by the homomorphisms " : W,.(S8*) — W,.(S?) for r > 1, is an isomorphism.
(iv) The homomorphism

lim W,.(S") — lim W,.(S/7S) ,
F F

induced by the canonical map S° — S/wS, is an isomorphism.
(v) The canonical homomorphism

lim W, (S) — lim W, (S/75)
P F

s an isomorphism.

In particular, there is a canonical isomorphism

Aing(S) = @WT(S) .
F
Under this identification, the restriction operator R on the right side gets identified with ¢~' on

the left side; in particular, R is an automorphism of @F W,.(S).
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Proof. Parts (i) and (ii) are standard: for example, the proof of (i) is just as in [57, Lem. 3.4(i)];
to see that [p]> € pW,.(S) (which is true already for S = Z), note that [p] € VW,_1(S) +pW,.(9),
and VW,_1(S)? C pW,.(S) as follows from the identity

ViV = Villa) - V) = Vil ))
(using V(aF (b)) = V(a)b and FV = p) for i > j. Also, p* =0 in W,(5/p) (as W, (F,) = Z/p'Z).

so p"W,.(S) C W,.(pS). Part (iii) is a trivial consequence of S* being perfect.
For part (iv), note that since W, commutes with inverse limits of rings we have, using (i),

lim W,.(S°) = im lim W,.(S/7S) = lim [im W, (S/78) = Jim W.(S/75),
F F v ¢ F F

where the final projection is an isomorphism since ¢ induces an automorphism of the ring
lim W,-(S/7S) (thanks to the formulae Ry = R = F' in characteristic p).

Finally, for part (v): For any fixed s > 1 we claim first that the canonical morphism of
pro-rings

{WT(S/T(—SS)}T‘ wrt F — {WT(S/T(S)}T wrt F

is an isomorphism. As it is surjective, it is sufficient to show that the kernel {W,.(7S/7%S)}; is
pro-isomorphic to zero; fix r > 1. By (ii), there is some ¢ such that p© is zero in W,.(S/7%S), and we
claim that F*T¢: W, oy.(S/7°S) — W,.(S/7%S) kills the kernel W, 441 .(7S/m%S). Indeed, the
kernel is generated by elements V¢[a] for i > 0, a € 7S/7%S, and F*TVi[a] = 0 € W,.(S/7*S)
as either i > ¢, in which case F*t°Vi[a] = p°F*Vi=¢[a] = 0, or else i < ¢, in which case

FsteVila] = pi[a]’”™" = 0. This proves the desired pro-isomorphism, from which it follows that

y?m W, (S/m*S) = %n W,.(S/xS) .
Taking the limit over s > 1, exchanging the order of the limits, and using W,.(S) = 1'&13 W, (S/m5S)
completes the proof. O

Continue to let S be as in the previous lemma. According to the lemma there is a chain of
isomorphisms

Aine(S) = lm W,.(5”) & lim W, (8") — lim W,.(S/7S) «— Lim W,.(5) ,
R F F F

through which each canonical projection lim . W,.(S) — W,.(S) induces a homomorphism
O, : Aine(S) = Wi(S) .
Denoting by ¢ the Frobenius on Ajy¢(S), we define
0, = 0,0" : Aine(S) — W,(S)

for each 7 > 1. The maps 6, and especially §T are of central importance in the comparison

between the theory developed in this paper, and the theory of de Rham—-Witt complexes.
Explicitly, identifying @sz? S and S” as monoids by Lemma 3.2(i) and following the usual

convention of denoting an element x of S* as z = (2@, z(1) . .)€ @IHIP S, these maps are

described as follows.

Lemma 3.3. For any z € S” we have 0,.([z]) = [20] € W,.(S) and 0, ([z]) = [+] for r > 1.

Proof. This follows from a straightforward chase through the above isomorphisms. O

In particular Lemma 3.3 implies that 6 := 6 : Ajne(S) — S (and not 51) is the usual map of
p-adic Hodge theory, and also shows that the diagram

Ami(8) — = W,(S)

g |

W, (S*) —— W,.(S/pS)
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commutes, where the bottom arrow is induced by the canonical map S* = yLIlSO S/pS — S/pS,

z — 2(9. Indeed, by p-adic continuity it is sufficient to check commutativity of the diagram on
Teichmiiller lifts, for which it follows immediately from the previous lemma.
Further functorial properties of the maps 6, are presented in the following lemma.

Lemma 3.4. Continue to let S be as in the previous two lemmas. Then the following diagrams
commute:

Aint(8) T W1 (S) Awme(S) 2 Wi (S) At (8) 2 W41 (S)
idl iR @l lF AT+1¢1T TV
0 0, 0,

Aine(S) —— W,.(S) Aine(S) —— W,.(9) Aine(S) —— W,.(S)

where the third diagram requires an element A.41 € Aie(S) satisfying 0r11(Mry1) = V(1) in
Wi1(S). B
Equivalently, the following diagrams involving 6, commute.

Ort1 Ort1 Or41

Ainf(s)*> T+1(S) Ainf(s)*> T+I(S) Ainf(s)*> T+1(S)

A T

Ainf(S) — WT(S) Ainf(s) — WT‘(S) Ainf(s) WT(S)

Here, Xr+1 = " (\11) € At (S) is an element satisfying @H(XTH) =V(1) € W,41(5).

Proof. We check that the second set of squares commute. Under the above chain of isomorphisms
Aine(S) = @F W,.(S), we showed in Lemma 3.2 that the action of ¢! on Aj,;(S) corresponds
to that of the restriction map R on lim . W,-(S); hence the diagram

Ort1

Ainf(S) —= Wrn (S)

Al

Aint(S) — 2= W,(8)

commutes. Commutativity of the second diagram follows from the definition of the maps §T,
Finally, using commutativity of the second diagram, the commutativity of the third diagram
follows from the fact that V' F' is multiplication by V(1) on W,11(S). O

By the first diagram in the previous lemma, we may let 7 — oo to define a map 0o, : Ajs(S) —
W (S) satisfying O ([z]) = [#(9] for any € S°. We will analyze this map further in Lemma 3.23
below.

3.2. Perfectoid rings. We will be interested in the following class of rings.

Definition 3.5. A ring S is perfectoid if and only if it is w-adically complete for some element
m € S such that 7P divides p, the Frobenius map ¢ : S/pS — S/pS is surjective, and the kernel
of 0 : Aine(S) — S is principal.

Example 3.6. The following rings are examples of perfectoid algebras. First, any perfect F,-
algebra is perfectoid (where we take m = 0); here, perfect means that the Frobenius map is an
isomorphism. Moreover, the p-adic completion Z;yd of Z,[(p] is perfectoid; one may also take
the p-adic completion of the ring of integers of any other algebraic extension of @, containing the
cyclotomic extension. Another example is ZgY l(T'/P™) | and there are many obvious variants.

Remark 3.7. The original definition, [57], of a perfectoid K-algebra, where K is a perfectoid
field, was in a slightly different context. We refer to Lemma 3.20 below for the relation.

Remark 3.8. In [37], Gabber and Ramero define a “perfectoid” condition for a complete topo-
logical ring S carrying the I-adic topology for some finitely generated ideal I. In fact, S is
perfectoid in their sense if and only if S (as a ring without topology) is perfectoid in the sense of
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the definition above: From [37, Proposition 14.2.9], it already follows that their definition is inde-
pendent of the topology (which can be taken to be the p-adic topology). Now [37, Lemma 14.1.16
(iv)] shows that if S is perfectoid in their sense, then there exists a 7 € S and a unit u € S* such
7 = pu, and ¢ : S/pS — S/pS is surjective. The last condition that Ker 6 is principal is part of
their definition of a perfectoid ring. Conversely, if S is perfectoid in our sense and we endow it
with the p-adic topology, then by Lemma 3.9 below, there exists w € S and a unit u € S* such
that 72 = pu; taking I = () shows that S is a P-ring in the sense of [37, Definition 14.1.14].
Among P-rings, perfectoid rings in their sense are singled out by having the property that Ker 8
is principal, [37, Definition 14.2.1], which is also part of our definition.

In relation to this, let us discuss surjectivity properties of the Frobenius:

Lemma 3.9. Let S be a ring which is m-adically complete with respect to some element m € S
such that P divides p. Then the following are equivalent:

i) Every element of S/mpS is a p'™-power.
(i) Y P ptop
ii) Every element of S/pS is a p™"-power.
(ii) Y P p-p
(iii) Every element of S/7PS is a p*-power.
(iv) The Witt vector Frobenius F : W,41(S) = W,.(S) is surjective for all r > 1.
(v) The map 0, : Aine(S) — W,.(S) is surjective for all r > 1.

Moreover, if these equivalent conditions hold then there exist u,v € S* such that ur and vp admit
systems of p-power roots in S.

Proof. The implications (i)=-(ii)=-(iii) are trivial since mpS C pS C #PS.

Assuming (iii), a simple inductive argument allows us to write any given element z € S
as an infinite sum = = > 0 2PaP" for some z; € S; but then z = (Y} ;o z;7%)? mod prS,
establishing (i).

Condition (iv) states that the transition maps in the inverse system Hm W, (S) are surjective,

which implies that each map [9; is surjective, and hence that each map 0, is surjective, i.e., (v).

Next, (v) implies (ii) since any element of S in the image of § = 6, is a p"™-power mod p.

It remains to show that (ii) implies (iv), but we will first prove the “moreover” assertion
using only (i). Applying Lemma 3.2(i) to both S and S/7p implies that the canonical map
@ZH% S — yLnx'_mp S/mp is an isomorphism. Applying (i) repeatedly, there therefore exists
w € lim S such that w©® = 7 mod 7pS (resp. = p mod 7pS). Writing w® = 7 + mpa
(resp. w(®) = p+4 mpx) for some x € S, the proof of the “moreover” claim is completed by noting
that 1+ pz € S (resp. 1 +mx € §*).

Finally, assuming (ii) (which we have shown implies (i)), the “moreover” assertion implies
that there exist 7/ € S and v € S* satisfying 7?7 = vp. Note that S is 7’-adically complete,
and so we may apply the implication (ii)=-(i) for the element 7’ to deduce that every element of
S/m'pS is a p'M-power; it follows that every element of S/Ip is a p'"-power, where I is the ideal
{a € S :aP € pS}. Now apply implication “(xiv)" =(ii)” of Davis—Kedlaya [22] to complete the
proof. O

Next, we analyze injectivity of the Frobenius map.

Lemma 3.10. Let S be a ring which is m-adically complete with respect to some element m € S
such that 7P divides p, and assume that @ : S/mS — S/7PS is surjective.

(i) If Kerf is a principal ideal of Aine(S), then ¢ : S/mS — S/7PS is an isomorphism, and
any generator of Ker 6 is a non-zero-divisor.

(ii) Conversely, if ¢ : S/mS — S/7PS is an isomorphism and 7 is a non-zero-divisor, then
Ker 0 is a principal ideal (and hence S is perfectoid).

Proof. Since multiplying 7 by a unit does not affect any of the assertions, we may assume by
the previous lemma that 7 admits a compatible sequence of p-power roots, i.e., that there exists
7 € S satisfying 70 = 7.

We begin by constructing a certain element of Ker  (a “distinguished” or “primitive” element,
cf. Remark 3.11 below). By the hypothesis that 7% divides p, and Lemma 3.9, it is possible to
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write p = 7P0(—x) for some z € Aju¢(S), whence ¢ = p+ [1°]Px belongs to Ker  (recall here that
6([7°]) = m). Then there is a commutative diagram

Aini(9) /6 —L—> 5

| |

At (8)/ (€ [7°]) — S/n*S

in which the lower left entry identifies with Ai,¢(S)/(p, [7°]P) = S°/7°PS” and the lower horizontal
arrow identifies with the map S° /7rb”Sb — S/aPS induced by the canonical projection Sh =
Y&n@ S/mPS — S/7PS.

Suppose first that Ker 6 is principal and let £ be a generator; we claim that Ker 6 is actually
generated by the element &. Let & = (£),&],...) € Aine(S) be the Witt vector expansion. Write
& =¢&a for some a € Ajne(S), and consider the resulting Witt vector expansions:

2
(7°Px0, 147 1,... ) =p+[n’Pe =€ =Ea=(£,&,,.. Y ao,a1,...) = (Ehao, EPar +E4ab, .. )

It follows that &laf =1+ Wbple — fg’al. We claim that this is a unit of S°. To check this, using
that S* = %iinw S/mS, it is enough to check that the image of £{af) in S/7S is a unit. But this

image is simply 1, as both 7” and &) have trivial image in S/7S. So both & and ag are units of
S°: in particular, this implies that a € Aine(S)*, thereby proving that £ = £’a is also a generator
of Ker 0, as required.

Now, for part (i), if 6 : Ains(S)/€ — S is an isomorphism, then so is S°/7°?S”> — S/7PS by
the displayed diagram above. The map ¢ : S/mS — S/mPS gets identified with ¢ : S°/7°S" —
S° /m*P P which is an isomorphism. We also need to check that & is a non-zero-divisor (as then
any other generator of Ker differs from £ by a unit). So suppose that b € A;,¢(S) satisfies
(p + [7°]P2)b = 0. Then also (p” + [x°]P"2")b = 0 for any odd r > 1, since p + [7°]Px divides
P’ + [7°P" 2", and so p'b € [1°]P"Aine(S). Using this to examine the Witt vector expansion of
b = (bg,b1,...) shows that bfr e wP S for each i > 0; hence b; € 7P b since S is
perfect. As this holds for all odd r > 1, and as S” is n’-adically complete and separated, it
follows that b; = 0 for all i > 0, i.e., b = 0.

Conversely, for part (ii), assume that S/7S — S/7PS is an isomorphism, and that = is a
non-zero-divisor in S. Note first that the first condition implies that for all n > 0, S/ /P s -
S/ml/ P"'Sis an isomorphism, by taking the quotient modulo 7'/?". This implies that the kernel
of S — §/mS is generated by 7”: Indeed, given z = (z(@,z(M .. ) € §* = @I'_mp S with (0 ¢

n—1

7S, one inductively checks that z(") is divisible by 7!/?" | using that ¢ : S/7'/?" S — S/x1/P""" 8
is an isomorphism. This implies that z is divisible by 7°. Thus, we see that S°/7"S* — S/xS
is an isomorphism. Now let x € Aj,¢(S) satisfy #(z) = 0. Then one can write 2 = &yo + [1°]21,
where m0(z1) = 0([7°]z1) = 0. As 7 is a non-zero-divisor, this implies 6(x1) = 0, so we can
inductively write = &£(yo + [1°]y1 + ...), showing that Ker 6 is generated by &. O

Remark 3.11 (Distinguished elements). Let S be a perfectoid ring, and let £ € Ker . Then ¢ is
said to be distinguished if and only if its Witt vector expansion & = (£, &1, ...) has the property
that £, is a unit of S”. The argument in Lemma 3.10 shows that ¢ generates Ker 6 if and only if
it is distinguished.

For example, let £ € Ai,¢(S) satisfy 6,.(§) = V(1) in W,.(S) for some r > 1 (for any fixed r > 1,
such an element ¢ does exist by Lemma 3.9(v)). We claim that £ is a distinguished element of
Ker 6, whence it is a generator. Indeed, noting that V(1) = (0,1,0,...,0), the first diagram of
Lemma 3.4 shows that 8(£) = 0, while the commutative diagram immediately before Lemma 3.4

shows that 550) = 1 mod pS, whence & is a unit of S°.
We return to the maps 6,., describing their kernels in the case of a perfectoid ring:

Lemma 3.12. Suppose that S is a perfectoid ring, and let § € Ai¢(S) be any element generating
Ker 6. Then Ker 0, is generated by the non-zero-divisor

& =& ()T
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for any r > 1. Equivalently, Ker 5,, s generated by

& =" (&) = p(E) () - ¢"(€) .

Proof. We prove the result by induction on r > 1, the case r = 1 being covered by the hypotheses;
so fix r > 1 for which the result is true. By the previous remark we may, after multiplying £ by
a unit (depending on the fixed r > 1), assume that 6,1(§) = V(1). Hence Lemma 3.4 implies
that there is a commutative diagram

0 — Aint(S) X Ape(S) —2> 5 ——=0

lar ler-'—l

0 W.(S) - WT+1(S)—>S—>0

in which both rows are exact. Since Ker #,. is generated by o= 1(€) - - - o~ "1 (¢), it follows that
Ker 6,11 is generated by £p™1(€) - 77 (€), as desired. O

Henceforth we will often identify Ai¢(S)/&, with W,.(S) via 6,. Some Tor-independence
assertions related to this identification are summarised in the following lemma:

Lemma 3.13. Let S — S’ be a map between perfectoid rings. Then the canonical maps
W;(S) @, o5y At (") — W;(S"),  W;(S) @y, (5) Wi(S") — W;(S')

are quasi-isomorphisms for all 1 < j < r. Here, W;(S) is considered as a W,.(S)-module along
either the Frobenius or restriction map.

Proof. Let & € Ajne(S) be a generator of Kerf, and let g] be as in the previous lemma, which
is a non-zero-divisor of Aj,(S). The image of £ in Ajne(S’) is still a generator of Kerd, as
the condition of being distinguished passes through ring homomorphisms. Thus, we may apply
Lemma 3.12 to both S and S’ to see that

Wj(S) ®H&inf(5) Ainf(Sl) mf( )/EJ ®Amf )Ainf(s/) mf( )/fj - ( )

Note that this argument also works with §j replaced by &;.
Using this result also with r in place of j, we get

Wj(S)®H§VT(S)Wr(S/) = Wj(S)@’%VT(S)Wr(5)®]{&i,lf(5)Ainf(S/) = Wj(5)®ki,,f(5)Ainf(S/) =W;(9"),

as required; this works with either the restriction or Frobenius map (using either the 6 or the
f-maps implicitly). O

An important property of perfectoid rings is the automatic vanishing of the cotangent complex.

Lemma 3.14. Let S — S’ be a map between perfectoid rings. Then Lg /g ®HZ‘ F, ~ 0; in
particular, the (derived) p-adic completion Lg/ /g ~ 0.

Proof. Note that S = S ®]{A&inf(s) Ain¢(S7); thus, by base change for the cotangent complex, it is
enough to show that Ly, (57)/a..¢(5) ®HZ Fp = 0. But Ly, (5)/80m(5) ®HZ‘ Fp >~ Lgn /5. But for
any perfect ring R of characteristic p, Lr/r, ~ 0 (as Frobenius is both an isomorphism and zero
[?, Lem. 6.5.13(1)]), so that a transitivity triangle shows Lgs /g > 0. O

Example 3.15 (Perfect rings of characteristic p). Suppose that S is a ring of characteristic
p. Then S is perfectoid if and only if it is perfect. Indeed, if S is perfect, then the kernel
of § : W(S) — S is generated by p, and the other conditions are clear. For the converse, by
assumption ¢ : S — S is surjective. The element p € Ker(0 : Ajy¢(S) — ) is distinguished, and
thus a generator. Therefore, S = Aj(S)/p = S” is perfect.

In particular, in this case S* = S, 0 : Ajne(S) — W(S) is an isomorphism, and the maps
0, : Ajne(S) — W,.(S) identify with the canonical Witt vector restriction maps.
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Example 3.16 (Roots of unity). Suppose that S is a perfectoid ring which contains a compatible
system (pr, 7 > 1, of p-power roots of unity, where ¢, is a “primitive p-th root of unity” in the
sense that 1+ (p + ...+ C{,’_l = 0. Note that this includes the case that S is of characteristic p,
and all (pr = 1.

Define € := (1,(p, (p2,...) € 8" = , 5. We claim that

<i£1$'—>3’,'
Ei=1+ 7]+ [P+ 4 [Pt
is a generator of Ker 0 satisfying 6,.(§) = V(1) for all » > 1. Note that
0(€) =1+C+...+¢71=0

by assumption on (. It will then follow from Lemma 3.12 that Ker g, is generated by
~ p/r‘_l
& =)™ €) ¢ (O =) [
i=0
According to Remark 3.11 it is sufficient to check that 6,.(¢) = V(1) for all » > 1. By
functoriality it is sufficient to prove this in the special case that S := Z;yd as in Example 3.6,
which has the advantage that S is now p-torsion free. So the ghost map gh : W,.(S) — S” is
now injective and it is sufficient to prove that gh(6,.(£)) = gh(V(1)). But it follows easily from
Lemma 3.3 that the composition ghof, : Aj,¢(S) — S” is given by (6,0¢p,...,00" 1), and so in
particular that
gh(0,(€)) = (0(€),0(€), ... 09" (€))
Since §(¢) = 0 and gh(V (1)) = (0,p,p,p,...), it remains only to check that 6¢!(£) = p for all
i > 1, which is straightforward:

00 (€) =01+ " ]+ [ P+ TP =141+ +1=p.
This completes the proof of the assertions about &.

The most important case of perfectoid rings for the paper are those which are flat over Z,
and contain enough p-power roots of unity, for which we summarise in the following result some
additional properties of Aj,¢(S).

Proposition 3.17. Let S be a perfectoid ring which is flat over Z, and contains a compatible
sequence Cp,(p2,... of primitive p-power roots of unity; let € € S and g,é} € Aiye(S) be as in
Ezample 3.16, and set p = [e] — 1 € Aine(S). Then, for any r > 0:
(i) The element 0,.(11) = [Cpr] — 1 € W,(S) is a non-zero-divisor;
(ii) The element u € Aine(S) is a non-zero-divisor;
(i) The element p divides ©" () = [e2'] — 1, and & = ¢" () /.
(iv) The element p divides & —p.

Proof. The identity gr(,u) = [¢pr] — 1 follows from Lemma 3.3. To check that [(,r] — 1 is a
non-zero-divisor of W,.(S) for all » > 1, we note that since S is p-torsion-free, the ghost map is
injective and so we may check this by proving that

gh([Gpr] = 1) = (Gr — L, G —1,..., G — 1)
is a non-zero-divisor of S”; i.e., we must show that (,~ —1 is a non-zero-divisor in .S for all » > 1.
But (,» — 1 divides p, and S is flat over Z,.
This proves (i). We get (ii) by noting that A, (S) = lim W,-(S). Now (iii) is immediate from

E]pr —1 p"

the definitions. For (iv), observe that &, = [[5]771 = YP_[e]l""! by (iii). If we set p = 0, then
[e] =1, so & is congruent to > 5_; 1 = p” modulo p, as wanted. O

Corollary 3.18. Let S be a perfectoid ring which is flat over Z, and contains a compatible
sequence Cp, G2, ... of primitive p-power roots of unity. Then, for any 0 < j <7:
(i) The following ideals of W,.(S) are equal:

i 4 Cpil—1
Annyy, (5, VI(1), ker(W,(8) £ W, 5(8)), (23 (S) -
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(ii) The following ideals of W,.(S) are equal:

[¢,i]-1 j j
Anny,s) (7). VIOW(S), VIWy(8) -

(iii) The map F7 and multiplication by V(1) induce isomorphisms of W,.(S)-modules
[Cpil—1

i ~ ~ [Cpil—1
FIW,_5(S) & W, (S)/ 21 5 Ay, (s (W]—l) .

Remark 3.19. The proof also shows that if S is any perfectoid ring, then
Annyy, (5) V7 (1) = ker(W, (S) £5 W, 5(S)) , VI()W(S) = VIW,_(S) ,
and via FJ and multiplication by V7 (1),
W,—;(S) & W,(S)/ Annyy, sy V(1) = VIW,_;(S5) .

This is a partial analogue of the statement that for perfect rings S of characteristic p, W,.(.S)
admits a filtration (by p?W,.(S)) where all graded pieces are S.
Proof. (i): Injectivity of V7 : W,_;(S) — W,(S) and the identity zV7(1) = VI(F/(z)), for

x € W,.(5), show that the stated annihilator and kernel are equal. As W,.(S) = Ajn¢/&- and
Wy—;(S) = Ains/&—; (compatible with the transition map F7), it follows that the kernel is

generated by '9}(5},]-) = E”i}j
(ii): Surjectivity of F7 : W,.(S) — W,_;(S) (Lemma 3.9) implies that V7(1) generates the
ideal VIW,._;(S), since VI(Fi(z)) = 2VI(1) for z € W,(S). Since [(,r] — 1 is a non-zero-divisor

of W,.(S) by the previous proposition, the elements [(,;]—1 and E"i }j

Clearly V7(1) annihilates [(,;]—1, since ([(,]—1)VI(1) = VIFI[(,;]-VI(1) = VI(1)-VI(1) = 0.
Finally, if « annihilates [(,;] — 1 then R" 7 (z) = 0 since R"7([(,;] — 1) is a non-zero-divisor, and
sox € VIW,_;(S).

(iii): This follows from (i) and (ii). O

have the same annihilator.

Let us now compare the notion of a perfectoid ring introduced above with another notion,
that of a perfectoid Tate ring. Let R be a complete Tate ring, i.e., a complete topological ring
R containing an open subring Ry C R on which the topology is m-adic for some m € Ry such
that R = RO[%]. Recall that a ring of integral elements R™ C R is an open and integrally closed
subring of powerbounded elements. For example, the subring R° C R of all powerbounded
elements is a ring of integral elements.

In the terminology of Fontaine [33], extending the original definition [57], R is said to be
perfectoid if and only if it is uniform (i.e., its subring R° of powerbounded elements is bounded)
and there is a topologically nilpotent unit 7 € R such that 7P divides p in R°, and the Frobenius
is surjective on R°/7PR°.

Lemma 3.20. Let R be a complete Tate ring with a ring of integral elements RT™ C R. If R is
perfectoid in Fontaine’s sense, then R is perfectoid. Conversely, if R is perfectoid and bounded
in R, then R is perfectoid in Fontaine’s sense.

We remark that perfectoid K-algebras in the sense of [57] (as well as perfectoid Q,-algebras in
the sense of [47]) are complete Tate rings which are perfectoid in Fontaine’s sense (and conversely
a complete Tate ring which is perfectoid in Fontaine’s sense and is a K-, resp. Q,-, algebra is a
perfectoid K-, resp. Q,-, algebra in the sense of [57], resp. [47]).

Proof. Assume that R is perfectoid in Fontaine’s sense. First, we check that R° is perfectoid.
As R° is bounded, it follows that R° is w-adically complete. By Lemma 3.10, to show that R° is
perfectoid, we need to see that the surjective map ¢ : R°/7R° — R°/7PR° is an isomorphism.
But if x € R° is such that 2P = 7Py for some y € R°, then z = z/7 € R has the property that
zP = y is powerbounded, which implies that z itself is powerbounded, i.e. z € mR°. Thus, R° is
perfectoid.

Now we want to see that then also R is perfectoid. Note that mR° consists of topologi-
cally nilpotent elements, and so 7R° C R as the right side is open and integrally closed. By
Lemma 3.9 we know that any element of R°/prR° is a p-th power. Take any element & € R,
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and write x = y? + pmz for some y,z € R°. Then 2/ = mz € R, so that x = y? + pz’. It
follows that y? = x — pz’ € RT, and so y € RT. Thus, the equation z = yP + pz’ shows that
¢ : R*/p — R'/pis surjective, and in particular so is ¢ : Rt /tRT — Rt /7P R*. For injectivity,
we argue as for R°. Using Lemma 3.10 again, this implies that R is perfectoid.

For the converse, note first that since Rt C R is by assumption bounded, so is R° C R, as
mR° C R™T; thus, the first part of Fontaine’s definition is verified. It remains to see that there
is some topologically nilpotent unit 7 € R such that 7P divides p in R°, and the Frobenius is
surjective on R° /7P R°. Let assume for the moment that there is some topologically nilpotent
unit 7 € R such that 7P divides p in R°. Given z € R°, mz € R™ can be written as 7z = y? +prz
with 3, z € Rt, by Lemma 3.9. Note that 7 € RT can be assumed to have a p-th root 7*/? € R*
by changing it by a unit; then ¢y = y/wl/p € R actually lies in R° as y? = x —pz € R°. But then
x =y'P + pz with ¢/, 2 € R°, so Frobenius is surjective on R°/pR°, and a fortiori on R°/7PR°.

It remains to see that if RT is perfectoid, then there is some topologically nilpotent unit 7 € R
such that 7P divides p in R°. The problem here is to ensure the condition that 7 is a unit in R.

Pick any topologically nilpotent unit mg € R, so mp € R*. We have the surjection 6 :
Ains(RY) — RT whose kernel is generated by a distinguished element ¢ € A, ¢(R'). From
[45, Lemma 5.5, it follows that there is some 7” € (R*)” and a unit u € (R*)* such that
0([r°]) = umy. Now 7 = O([x"'/P"]) for n sufficiently large has the desired property. O

A related lemma is the following.

Lemma 3.21. Let Ry be a perfectoid ring which is w-adically complete for some non-zero-divisor
w such that mP divides p. Then R = RO[%], endowed with the m-adic topology on Ry, is a complete
Tate ring which is perfectoid in Fontaine’s sense. Moreover, mR° C Ry.

More precisely, Ry C R°, and the cokernel is killed by any fractional power of 7.
Proof. Argue as in [57, Lemma 5.6]. O

3.3. The case of a perfectoid field. Finally, we add some additional results in the case that
S = O = Ok is the ring of integers in a perfectoid field K of characteristic 0 containing all
p-power roots of unity. In this section, we abbreviate Aj,r = Ajne(O).

We let € = (1,(p, (p2,...) € O’ and consider the elements j = [¢] — 1 € Ajy¢ and & = ﬁ(u),
which generates the kernel of 8. We also have &, = w*/ii(u) which generates the kernel of 6,., and
Er = 00 which generates the kernel of gT, as in Proposition 3.17.

Before going on, let us recall some more of Fontaine’s period rings.

Definition 3.22. Consider the following rings associated with K.

(i) Let Acrys be the p-adic completion of the Ains-subalgebra of Ajnf[%] generated by all %,
m > 0. This is the universal p-adically complete PD thickening (compatible with the PD
structure on Zp) of O, or equivalently of O/p.

(ii) Let By = Acrys[%], and Bepys = Acrys[i] = Bctys[ﬁ], noting that uP~! = £ mod p €
Aing, and thus pP~1 € DAcrys.

(iii) Let BS{R be the -adic completion of BC";yS, which is a complete discrete valuation ring

with residue field K, and Bar = FracBjg = B(;FR[%].
Lemma 3.23. The kernel of the natural map

O Aing — W(O) = %HWT((’)) :

given as the limit of the maps 0., is generated by p. Equivalently,

m 7’5] Ainf = MAinf .
o= " (1)

T

In particular, the ideal (1) C Ains is independent of the choice of roots of unity.
The cokernel of 0 is killed by W(mb). If K 1is spherically complete, then 0. induces an
isomorphism
At/ 2 W(0) .
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Recall that a nonarchimedean field is spherically complete if any decreasing sequence of discs
a1+ 11 D as + Is D --- has nonempty intersection, or equivalently, @i]r = 0. This condition
is stronger than completeness as one does not ask that the radii of the discs goes to 0, and for

example C, = Q,, is not spherically complete. However, any nonarchimedean field K admits an

extension K /K which is spherically complete.

Proof. The kernel of 6, is the intersection of the kernels of the maps 8,., which are generated by
& = w%(u)' To check that

ﬂ %Ainf - ,UAinf 5
e ()
it suffices, since (p, &) is a regular sequence, to check that
€ — ]. b b
N0 =(c-10",
.
which follows from a consideration of valuations.
For each r > 1, we have a short exact sequence

0 — & Aint = Ains = Wi(0) = 0.
Passing to the limit gives a long exact sequence

0 = pdins = Aint = W(0) = lim'&, Aing = 0 .
Thus, it remains to prove that I'&nié}Ainf is killed by W(mb), and is 0 if K is spherically complete.
Writing down the similar sequences modulo p® for any s > 1 (which are still exact), one sees that
yﬁllgrAinf = yﬂl@lgrAinf/ps )

and one reduces to proving that
lim'¢, 0",
-

which is 0 if K” is spherically complete by the observation before the proof, is always killed by
m’. But for any m € m’, multiplication by m on the system (£,0°),. factors, for sufficiently large
7, through the constant system (uO”),, which has trivial @1. It remains only to observe that
if K is spherically complete then so is K°. Given a decreasing sequence of ideals I, of ©” with
radii not going to zero, we may rescale to assume that I, O 7°O" for all r, where 7° € O° satisfies
O /> = O /7 for some 7 € O; let J, C O be the corresponding ideal such that J, /7O = I, /7" O".
Then @il} = yLniIT/WbO" = T&niJr/w(D = @iJT = 0 by spherical completeness of K. O

Another result we will need is the following coherence result. For this, let O = Ok be the ring
of integers in any perfectoid field K.

Proposition 3.24. For any r > 1, the ring W,.(O) is coherent.

Unfortunately, in general A;ys is not coherent, cf. [46]. We start with some reminders on
coherent rings [1, Tag 05CU]. Recall that a ring R is coherent if every finitely generated ideal is
finitely presented. Equivalently, any finitely generated submodule of a finitely presented module
is finitely presented. Then the category of finitely presented R-modules is stable under extensions,
kernels and cokernels.

Lemma 3.25. Let R be a ring and I C R a finitely generated ideal.

(i) An R/I-module M is finitely presented as an R/I-module if and only if M is finitely
presented as an R-module.
(ii) If R is coherent, then R/I is coherent.

Proof. For part (i), if M is finitely presented as an R-module, then taking ® gR/I of any fi-
nite presentation of M as an R-module shows that M is finitely presented as an R/I-module.
Conversely, take a finite presentation

(R/I)" — (R/I)™ — M — 0 .
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This gives an exact sequence
Rrel™ -R™" —M—0,
giving finite presentation of M as an R-module, as I is finitely generated.
For part (ii), let J C R/I be any finitely generated ideal, with preimage J C R. As [ and J

are finitely generated (as an R-modules), J is finitely generated. As R is coherent, J is finitely
presented, so we can find an exact sequence

R" 5 R"™ —»J—0.
This gives an exact sequence
(R/I)™ — (R/I)™ — J/IJ =0,

so that J, /1 J is finitely presented as an R/I-module. On the other hand, we have an exact
sequence

I)1? = J/IJ = J =0
of R/I-modules, where I/I? is finitely generated. This makes J a quotient of a finitely presented

R/I-module by a finitely generated R/I-module, thus J is finitely presented as an R/I-module.
O

Lemma 3.26. Let S — R be a surjective map of rings with square-zero kernel I C S. Assume
that R is coherent and I is a finitely presented R-module. Then S is coherent.

Proof. Let J C S be a finitely generated ideal. One has an exact sequence
O0—=JNI—J—Jg—0,

where Jp C R is the image of J. Then Jp is a finitely generated ideal of R, and therefore finitely
presented as an R-module. By Lemma 3.25 (i), it is also finitely presented as S-module. As J
is finitely generated and Jg is finitely presented, it follows that J NI is finitely generated (as an
S-module, and thus as an R-module). Now J NI C I is a finitely generated R-submodule of the
finitely presented R-module I, making J N I finitely presented (as an R-module, and thus as an
S-module). Therefore, J is an extension of finitely presented S-modules, and hence itself finitely
presented. ([l

Lemma 3.27. Let R be a ring, f € R a non-zero-divisor. Assume that (R, f) satisfy the Artin-
Rees property, i.e. for every inclusion M C N of finitely generated R-modules, the restriction of
the f-adic topology on N to M s the f-adic topology of M. Then R is coherent if R[f~'] and
R/f are coherent.

Proof. First, observe that by Lemma 3.26 (and the assumption that f is a non-zero-divisor)
coherence of R/f implies coherence of R/f™ for all n > 1. Let I C R be a finitely generated
ideal, and choose a surjection R™ — I with kernel K C R™. We have to prove that K is finitely
generated. By assumption K[f~!] is finitely generated, so we may find a map R™ — K with
cokernel C' being f-torsion. Now C embeds into the cokernel of R™ — R"™; it follows from the
Artin-Rees property that the f-torsion-part of the cokernel of R™ — R™ is of bounded exponent.
(There is some N such that the preimage of fNR" lies in the image of fR™; then, if x is such
that fNx is in the image of R™, it is in fact in the image of fR™, so that f¥~!xz is already in
the image of R™.) This means that C is of bounded exponent: f¥NC = 0 for some N. Thus, it
is enough to prove that K/f is finitely generated, or even that K/f is finitely generated.
Note that as I C R has no f-torsion, K/f occurs in a short exact sequence

0—>K/f—>R'/f—=1I/fI—0.

Therefore, it is enough to prove that I/fI is finitely presented as an R/ f-module.

Now, by the Artin-Rees property again, there is some M such that I N fMR C fI. As R/fM
is coherent, I/(I N fMR) c R/fM is finitely presented as an R/f-module. As I/fI is a
quotient of I/(I N fMR) by the finitely generated module fI, it follows that I/fI is a finitely
presented R/f-module. By Lemma 3.25, it follows that I/fI is also finitely presented as an
R/ f-module. O
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Lemma 3.28. Let g : R — S be an injective map of rings, f € R such that both R and S are
f-torsion free. Assume moreover that the cokernel of g (as a map of R-modules) is killed by some
power f™ of f. Then (R, f) satisfies the Artin-Rees property if and only if (S, f) does.

Proof. The functors M — M ®pr .S and N — N induce inverse equivalences of categories between
the category of R-modules up to bounded f-torsion and the category of S-modules up to bounded
f-torsion. As the Artin-Rees property does not depend on bounded f-torsion, one easily checks
the lemma. O

After these preparations, we can prove that W,.(O) is coherent.

Proof. (of Proposition 3.24) Assume first that K is of characteristic p. Then O is a perfect valu-
ation ring of characteristic p, and in particular coherent. Moreover, W,.(O) — O is a successive
square-zero extension by a copy of O, which shows that W,.(O) is coherent by Lemma 3.26.

Thus, assume now that K is of characteristic 0. Note that as O is p-torsion free, the map
W, (0) = T1i_; O given by the ghost components is injective, with cokernel bounded p-torsion.
Note that O, and thus H2:1 O, is coherent and satisfies the Artin-Rees property with respect
to f = p. By Lemma 3.27 and Lemma 3.28, it is enough to prove that W,.(O)/p is coherent.
But W,.(O)/p = W,.(O/p")/p for N big enough, so that it is enough to prove that W,.(O/p") is
coherent.

Now we argue by induction on 7, so assume W,_;(O/p") is coherent. For any i = 0,..., N,
consider R; = W,.(O/pN)/V"=1(p'O/p™). Then Ry = W,_1(O/p") and Ry = W,.(O/p"). We
claim by induction on ¢ that R; is coherent. Note that R;;; — R; is a square zero extension

) , 1
by p'O/pt1O regarded as an R;-module via R; — O/pN — O/p RN O/p. This is finitely
presented as an R;-module, so the result follows from Lemma 3.26. ([l

Corollary 3.29. Let M be a finitely presented W,(O)-module. Then there are no non-zero
elements of M which are killed by W,.(m).

Note that W, (m) C W,.(O) defines an almost setting, of the nicest possible sort: that is, W,.(m)
is an increasing union of principal ideals generated by non-zero-divisors, cf. Corollary 10.2.

Proof. Assume that z € M is killed by W,.(m). The submodule M’ C M generated by x is
a finitely generated submodule of the finitely presented W,.(O)-module M, thus by coherence
of W,.(0), M’ is finitely presented. Thus, M’ = W,.(O)/I for some finitely generated ideal
I € W,(O). On the other hand, as z is killed by W,.(m), we have W,.(m) C I. Thus, M’ is a
quotient of W,.(O)/W,.(m) = W,.(k), where k is the residue field of O. As such, M’ = W,(k) for
some 0 < s < r. But the kernel I of W,.(O) — W (k) is not finitely generated: if it were, then
the kernel m of O — k would also be finitely generated. O
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4. BREUIL-KISIN-FARGUES MODULES

The goal of this section is to study the mixed characteristic analogue of Dieudonné modules,
i.e., Breuil-Kisin modules [17, 48] (for discretely valued fields) and Breuil-Kisin—Fargues modules
[30] (for perfectoid fields). We begin in §4.1 by recalling facts about Breuil-Kisin modules; the
most important results here are the structure theorem in Proposition 4.3 and Kisin’s theorem The-
orem 4.4 about lattices in crystalline Galois representations. The perfectoid analogue of Kisin’s
theorem is Fargues’ classification of finite free Breuil-Kisin—Fargues modules in Theorem 4.28,
which forms the highlight of §4.3. In between, in §4.2, we study the algebraic properties of the
Ajpe-modules that arise as Breuil-Kisin—Fargues modules; this discussion includes an analogue of
the structure theorem mentioned above in Proposition 4.13 (which rests on a classification result
of Kedlaya, see Lemma 4.6), and the length estimate in Corollary 4.15, which is crucial to our
eventual applications.

4.1. Breuil-Kisin modules. Let us start by recalling the “classical” theory of Breuil-Kisin

modules. Here, we start with a complete discretely valued extension K of Q, with perfect

residue field k, and let O = Ok be its ring of integers. Moreover, we fix a uniformizer = € K.
In this situation, we have a natural surjection

0:6 =Wk -0

sending T to w. We call this map 0 as it plays the role of 0 over Aing. The kernel of 0 is generated
by an Eisenstein polynomial E = E(T) € W(k)[[T]] for the element 7. There is a Frobenius ¢
on & which is the Frobenius on W (k), and sends T to T?.

Definition 4.1. A Breuil-Kisin module is a finitely generated &-module M equipped with an
isomorphism

©OM - M®6,¢ 6[%] = M[%] .
The definition may differ slightly from other definitions in the literature. With our definition,

the category of Breuil-Kisin modules forms an abelian tensor category.

Example 4.2 (Tate twist). There is a “Tate twist” in the Breuil-Kisin setup. This is given
by &{1} with underlying &-module & and Frobenius given by ¢g1y(z) = £¢(z), where z €
G{1} = 6 and u € & is some explicit unit depending on the choice of E. This object is ®-
invertible in the category of Breuil-Kisin modules. It can be defined as follows. For each r,
consider the map

6,:6 > 6S/E, ,
where E, :== Ep(E)---¢""Y(E) (so E; = E). Let
(6/E:){1} := Lie/E,)/e]-1] = E:6/E}6

which is a free §/E,-module of rank 1. Here, as everywhere else in the paper, we use cohomolog-
ical indexing. We claim that for r > s, there is a natural isomorphism (&/E,){1} ®s /5, 6/Es =
(6/E5){1}. Indeed, there is an obvious map

E.6/E*6 — E,6/E%6

and the image is precisely p"*E,&/E28, as g—: is congruent to a unit times p"~° modulo Fj.

Thus, dividing the obvious map by p"~*, we get the desired natural isomorphism
(6/E){1} ®s/E, 6/Es = (6/E,){1} .

We may now define 6{1} = @T(G/ET){I}, which becomes a free & = lim S /E,-module of
rank 1. Concretely,

6{1} = {(alEl,agEg, .. ) S HEZG/EEG | ai_HEH_l = pa; E; mod EZQ} s
i

which maps isomorphically to

{(alEl,EgEQ, .. ) S HE16/E130(E1_1)6 | Ei—‘—lEi—i-l = pﬁzEl mod Eng(El_l)} .
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There is a map
Eospy : 6{1} = &{1} : (a1 E1,a2Es,...) —=(0, Ep(a1)p(EL), Ee(az)p(Es),...)
= (0, p(a1)Ea, p(a2)Es, ...) € [ [ E:i6/Eip(Ei-1)& |
where on the target, we use the second description of G{1}. In particular, we get a map
vy : 6{1} ®s, 6[5] — S{1}[3] -
For any integer n, we define M{n} = M ®g G{1}®".

We have the following structural result. One reason that we state this is to motivate our
definition of Breuil-Kisin—Fargues modules later, which will have the condition that M [%] is
finite free as an assumption (as it is not automatic in that setup).

Proposition 4.3. Let (M,pp) be a Breuil-Kisin module. Then there is a canonical exact
sequence of Breuil-Kisin modules

0— (Mtor7<PMtor) — (M, o) — (Mfree750Mfree) = (M, p5) >0,
where:

(i) The module My, C M is the torsion submodule, and is killed by a power of p.
(ii) The module Mo is a finite free &-module.
(iii) The module M is a torsion &-module, killed by a power of (p,T).

In particular, M[%] = Mfree[%} is a finite free 6[%]-m0dule.

Proof. Let Mo, C M be the torsion submodule. Then M’ = M /M, is a torsion-free G-module.
As such, it is projective in codimension 1, i.e. M’ defines a vector bundle £ on Spec & \ {s},
where s € Spec is the closed point. As & is a 2-dimensional regular local ring, this implies
that Mgee = H°(Spec @ \ {s},£) is a vector bundle on Spec &, i.e. a finite free &-module. The
map M’ — My is injective, and the cokernel is supported set-theoretically at {s} C Spec &,
i.e. killed by a power of (p,T). All constructions are functorial, and thus there are induced
Frobenii on all modules considered.

It remains to prove that M, is killed by a power of p. Let I = Fitt;(M) C & be any Fitting
ideal of M. We have to show that if I # 0, then a power of p lies in I; equivalently, we must
check that &/I vanishes after inverting p. First, we remark that the existence of ¢ and the
base change compatibility of Fitting ideals imply that

I ®s, &[5 =11%],
and therefore

(4) (&/Dz] = (6/¢" )%l

as quotients of G[%} On the other hand, applying the Iwasawa classification of modules over &,
we find

A= (G/I)[%] = HKO[T]/(fi(T)m)»
i=1

where f;(T) € W(k)[T] is a monic irreducible polynomial congruent to 7% modulo p, n; > 1
is an integer, and f; # f; for i # j. We will show that A = 0. Fix an algebraic closure C' of
K, and consider the finite set Z := Spec(A)(C) of the C-valued points of A. By the condition
on f;, this set can be identified with a finite subset of the maximal ideal m C O¢ C C, i.e.,
of the C-points of the open unit disc of radius 1 about 0. Now equation (4) shows that if we
set Z' ={x em|aP € Z}, then ZNU = Z' NU where U = m — {my,...,m} with the m;’s
being the distinct roots of E in C' (with 7 = m, our chosen uniformizer). We will show that this
leads to a contradiction unless A = 0 (or, equivalently, Z = 0)). If Z # 0, choose z € Z with
|z] maximal. Then there exists some y € Z’ with y? = z. If |z| > |«|, then |y| > |z| > |7|, so
y € Z'NU = ZNU, and thus we obtain y € Z with |y| > |z|, contradicting the maximality in
the choice of . Thus |z| < |n| for all z € Z. But then x € ZNU = Z'NU, so aP € Z as well.
Continuing this way, we obtain that z?" € Z for all n > 0. As Z is finite and |z| < 1, this is
impossible unless x = 0. Thus, Z = {0}, which translates to A = Ko[T']/(T?) for some d > 0.
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Equation (4) then tells us that Ko[T]/(T) ~ Ko[T]/(T%). By considering lengths, we see that
d =0, and thus A = 0. This shows that (G/I)[%] =0, so p" € I for some n > 0. O

Let us now recall the relation to crystalline representations of Gx. Fix an algebraic closure
K of K with fixed p-power roots 7'/?" € K of 7, and let Ko, = K(n'/P”) C K. Let C be the
completion of K with ring of integers Oc C C, and Ajns = Aint(O¢), with corresponding Acys,
Berys. In particular, there is an element 7 = (m,m/P,..) € K°, with [r°] € Ajs. We have a
map & — A;,¢r which sends T to [ﬂ'b]p. Thus, the diagram

S (@]

.y

Aing — O¢

commutes. This diagram is equivariant for the action of Gx_ = Gal(K/K) (but not for
Gk = Gal(K/K)).
If V is a crystalline G g-representation on a Q,-vector space, we recall that there is an asso-
ciated (rational) Dieudonné module
Dcrys(v) =V ®q, Bcrys)GK )
which comes with a ¢, Gi-equivariant identification
Derys(V) @w (i) (2] Berys = V @q, Berys -

Theorem 4.4 ([48]). There is a natural fully faithful tensor functor T +— M(T') from Z,-lattices
T in crystalline Gk -representations V' to finite free Breuil-Kisin modules. Moreover, given T,
M (T) is characterized by the existence of a ¢, Gk._-equivariant identification

M(T) @s W(C") 2 T @z, W(C") .

We warn the reader that the functor is not exact: One critical part of the construction is the
extension of a vector bundle on the punctured spectrum Spec & \ {s}, where s € Spec R is the
closed point, to a vector bundle on Spec &, and this functor is not exact.

Remark 4.5. We will check below in the discussion around Proposition 4.34 that M (T) actually
satisfies the following statements.

(i) There is an identification

M(T) ®s Ainf[i] =T ®z, Ainf[ﬂ

which is equivariant for the ¢ and Gk __-actions.
(ii) There is an equality

M(T) ®s B:;ys = DcryS(V) ®W(k)[
as submodules of

M(T) Rs Bcrys =T ®ZP Bcrys = Dcrys(V) ®W(k;)[%] Bcrys .

+
%] Bcrys

In particular, there is an identification of rational Dieudonné modules M(T) Qg W(k)[%] =
Derys(V) by tensoring the second identification with W(l_c)[%], and passing to Gk __-invariants.
Thus,

M(T) ®e W (k) C M(T) ®s W (k)[;] = Derys(V)
defines a natural lattice in crystalline cohomology, functorially associated with the G k-stable
lattice T'C V. A main goal of this paper is to show that, at least under suitable torsion-freeness
assumptions, this algebraic construction is compatible with the geometry.

Proof. (of Theorem 4.4) The existence of the functor and the identification are stated in [49,
Theorem 1.2.1]. Assume that M(T')" is any other module with the stated property. By [48,
Proposition 2.1.12], to check that M (T') = M (T')’ equivariantly for ¢, it suffices to check this after
base extension to the p-adic completion &[%]) of &[£]. There, it follows from the equivalence

P
between finite free p-modules over &[F]/) and finite free Z,-modules with G _-action, see [44,
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Proposition 4.1.1] or [35, Proposition 2.32]. (Implicit here is that the functor from crystalline
G k-representations to G __-representations is fully faithful.) But this Gk __-representation is in
both cases T', by the displayed identification for M (T") and M (T)’. O

In Corollary 4.33, we will check that Z,(1) is sent to G{1} under this functor.

4.2. Some commutative algebra over A;,¢. In order to prepare for the definition of Fargues’
variant over Aj,¢, we study commutative algebra over the nonnoetherian ring Ajy¢.

We fix a perfectoid field K with ring of integers @. Let @” C K” be the tilt of © C K, and fix
an element x € Ay = W((’)b) which is the Teichmiiller lift of a nonzero noninvertible element of
O". We study modules over Ajy¢, and show that they behave somewhat analogously to modules
over a 2-dimensional regular local ring (such as ).

We begin by proving an analogue over Aj,¢ of the well-known fact that all vector bundles on
the punctured spectrum of a 2-dimensional regular local ring are trivial. In fact, the proof below
can be easily adapted to show the latter. This result is due to Kedlaya, and the proof below was
first explained in a lecture course at UC Berkeley in 2014, [61].

Lemma 4.6. Let s € Spec(Aiys) denote the closed point, and let U := Spec Ajus \ {s} be the
punctured spectrum. Then restriction induces an equivalence of categories between vector bundles
on Spec(Aint) and vector bundles on U. In particular, all vector bundles on U are free.

Proof. Let R = Ay, Ry = R[%], Ry = R[%], and Ris = R[ﬁ]. If we set U; = Spec(R;) for
xS {1,2, 12}, then U = U; UUs, and Uy NUy = Uys.

To show the restriction functor is fully faithful, it suffices to show that A,y — O(U) is an
isomorphism, since all vector bundles on A;,s are free. Using the preceding affine open cover of
U, and viewing all rings in sight as subrings of Ris, it suffices to show R = Ry N Ry C Ry2. This
follows easily by combining the following observations: The element x is a Teichmiiller lift, the
Teichmiiller lift is multiplicative, and each element of A;,; can be written uniquely as a power
series Y .~ @i - p* with a; being a Teichmiiller lift.

For essential surjectivity, we can identify vector bundles M on U with triples (M, My, h),
where M, is a finite projective R;-module, and h : M1 ®p, Ri12 >~ Ms ®p, Ri2 is an isomorphism
of Rio-modules; write M5 for the latter common value, and let d be the rank of any of these finite
projective modules. Let M := ker(M; @ My — Mi3). As a quasi-coherent sheaf on Spec(Aipnt),
this is simply j.M where j : U — Spec(Ajyus) is the defining quasi-compact open immersion. In
particular, we have M ®p R; ~ M; for ¢ € {1,2,12}. We will check that M is a finite projective
A;pe-module of rank d.

First, we claim that M is contained in a finitely generated Aj,s-submodule M’ C M; with
M'/M Xkilled by a power of p. Write M; as a direct summand of a free module F; over Ry,
and let FY C Fj be the corresponding free module over R; let ¢ : Fi — M; be the resulting
map. As n € Z varies, the images ¢(p~"Fy) C M; give a filtering family of finitely generated
Ains-submodules of M7, and we will show that M lies inside one of these. Let Fis := F} ®p, Ri2
be the corresponding free Rjs-module, and let FY, C Fio be the corresponding free Rs-module.
Then we have an induced projection i : Fia — Miy. Also, we know p™"FY = F1Np~"Fpy C Fig
for all n, so it is enough to show that M C Mjs is contained in some ¢(p~"Fy,) C Fia. As
M = My N Ma, it suffices to check that My C ¥ (p~™Ff,). But this is immediate as M, is finitely
generated, and U (p~"Fyy) = M. Thus, if we set M’ := ¢(p~™FY) for n > 0, then M’
is finitely generated and M C M’. To verify that M’/M is killed by a power of p, note that
M[%] = M’[%] = M;. Thus, M'/M is a finitely generated Aj,s-module killed by inverting p, and
so it must be killed by a finite power of p.

Next, we show dimy (M ®4,,, k) > d. For this, let W = W (k), and L = W[%] The inclusion
M C M, then defines amap M @4, . W — M; @4, W ~ L% The image of this map generates

inf

the target as a vector space (since M [%] = M) and is contained in a finitely generated W-
submodule of L®? by the previous paragraph. As W is noetherian, this image is free of rank d,
so the claimed inequality follows immediately by further tensoring with k.

Next, we claim that M is p-adically complete and separated. Note that M, is p-adically
separated as it is a finite projective module over the p-adically separated ring Rs. As M C Mo,

it follows that M is p-adically separated. For completeness, take any elements m; € M; we want

inf
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to form the sum Y, p'm;. Choose a surjection A7 ; — M’, and fix elements m; € Al ; lifting
the image of m; in M’. Then we can form the sum s =73 .., pim; € Al ¢, and the image s € M’
of 3 maps to 0 in M’/M, as M'/M is killed by a power of p; thus, s € M, and is the desired limit
of the partial sums.

As M is p-adically complete and p-torsion free, we immediately reduce to checking that M/p
is finite free of rank d: any map A%, — M that is an isomorphism after reduction modulo p is
an isomorphism (by arguing inductively with the 5-lemma modulo p™, and then passing to the

inverse limit). Now consider the exact sequence
0—-M—> M &My, —C—0,

where C' is defined as the cokernel. Then C' C M, is p-torsion free, so it follows that M/p —
M /p®Ms/pis injective. But My /p =0, s0 M — M /p is injective. Now My /p ~ Ma®p, Ra/p ~
M> ®r, K’ is a K’-vector space of dimension d. So we are reduced to checking that M/p C
My /p ~ (K*)? is a finite free O’-module of rank d. We already know that dimy(M/p @g, k) =
dimy (M ®a4,,, k) > d. By Lemma 4.7, we have dimy(M/p ®g, k) = d. Lemma 4.8 then gives the
claim. (]

The following two facts concerning modules over valuation rings were used above:
Lemma 4.7. Any O°-submodule E of (K*)? satisfies dimy,(E @ k) < d.

Proof. Assume towards contradiction that there exists a map f : F — E with F finite free of
rank > d such that f ® k is injective. Then the image F’ of f is a finitely generated torsion free
O’-submodule of E. As O is a valuation ring, any finitely generated torsion free module is free,
so F' is finite free of rank < d. But then the composite f @ k: F®k - F' @ k — E ® k has
image of dimension < d, which contradicts the assumption. [l

Lemma 4.8. If D C (K*)? is an O"-submodule with dimy(D ® k) = d, then D is finite free of
rank d.

Proof. We show this by induction on d. If d = 1, then D is one of three possible modules: a
principal fractional ideal, a fractional ideal of the form m” ® J = m® - J for a principal fraction
field J, or K" itself. One easily checks that the second and third possibility cannot occur: one
has D ® k = 0 for both those cases (using m” ® m’ ~ m” for the second case), contradicting
dimg(D ® k) = 1. Thus, D is a principal fractional ideal, and thus finite free of rank 1.

For d > 1, choose any map O — D that hits a basis element v after applying — ® k, and is
thus injective. Saturating the resulting inclusion ©@° C D defines an injective map ¢ : J — D
with torsion free cokernel such that J has generic rank 1, and the image g ® k has dimension > 1
(as it contains v). In fact, since dimg(J ® k) < 1 (by the d = 1 analysis above), it follows that
dimg(J ® k) = 1, and that g ® k is injective with image of dimension 1. This gives a short exact
sequence

0—-J—-D—-D/J—=0
where J and D/J are torsion free of ranks 1 and d—1 respectively. Applying —®k and calculating

dimensions gives dimy(D/J ® k) = d — 1. By induction, both J and D/J are then free, and thus
so is D. g

Next, we observe that finitely presented modules over A;,s are sometimes perfect, i.e. admit
a finite resolution by finite projective modules. Some of the subtleties here arise because (in
general) Aj,s is not coherent.

Lemma 4.9. Let M be a finitely presented A;ne-module such that M[%] 18 finite free over Ainf[%],
Then:
(i) The Ains-module M is perfect as an Ajng-complez.
(ii) The submodule Mioy C M of torsion elements is killed by p™ for n > 0, and finitely
presented and perfect over Ajpg.
(iii) M has Tor-dimension < 2, and Tory™ (M, W (k)) = 0. Moreover, if M has no x-torsion,
then TorzAi"f(M, W(k)) =0 fori> 0.

We freely use Lemma 3.25 and Lemma 3.26 in the proof below.
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Proof. For (i), assume first M [%] = 0. Then, by finite generation, M is killed by p™ for some
n > 0, and thus is a finitely presented Wn(Ob)—module. By induction on n, we will show that any
finitely presented Wn(Ob)—module M is perfect over Ajye. If n =1, then M is a finitely presented
O"-module. But then M is perfect over @° (as O” is a valuation ring), and thus also over Ay, (as
O° = Ajns /p is perfect as an A;,e-module). In general, for a finitely presented W, (Ob)—module

M, we have a short exact sequence
0—pM — M — M/pM — 0.

Then M /pM is finitely presented over O°, and thus perfect over Aj,¢ by the n = 1 case. Also, since
W, (O") is coherent, pM C M is finitely presented over W,,(O"). Moreover, p"~*-pM = p"M = 0,
so pM is a finitely presented W,,_;(O°)-module. By induction, pM is also perfect over Ajns. The
exact sequence then shows that M is perfect over Aj,s.

For general M, by clearing denominators on generators of M [%], we can find a free Aj,e-module
N and an inclusion N C M that is an isomorphism after inverting p. The quotient @ is then a
finitely presented A;j,s-module killed by inverting p, so @ is perfect by the preceding argument.
Also, N is perfect as it is finite free; it formally follows that M is perfect as well.

For (ii), choose N and @ as in the previous paragraph. Then M;,, "N = 0 as N has no torsion.
Thus, Mo, — Q is injective, so Mo, is killed by p™ for some n > 0, and so M, = M[p"]. Now
consider K := M ®1L4mf Aing/p™. This is perfect over Aj,s/p™ = Wn((’)b) by (i) and base change.
As W,,(0) is coherent, each H*(K) is finitely presented. But H~'(K) = M[p"], so M[p"] is
finitely presented over W, (0°), and thus also over Aj,;. The perfectness now follows from (i)
applied to M[p™].

For (iii), the fact that M has Tor-dimension < 2 follows easily from the previous arguments
using the fact that any finitely presented Ob—mgdule has Tor-dimension < 1 over @, and thus
Tor-dimension < 2 over Aj,¢. For the rest, let W = h_n)ln Ainf/(xl/pn), so we have a short exact
sequence

0 Q— W — W(k)— 0.

The last map in this sequence is the p-adic completion map and W is p-torsion-free. Thus, Q)
is an Ainf[%]—module, and thus Tor»* (M, Q) = 0 for i > 0 as M[%] is finite free. Also, since
T € Ajnr is a non-zero-divisor, the Aj,¢-module W has Tor-dimension 1; it follows from the long
exact sequence on Tor that Torg»! (M, W (k)) = 0. Now if M is further assumed to have no

z-torsion, then Torf““f(M, W) =0 for i > 0. Thus, we have a short exact sequence

Q—>M®a W (k) — 0.

As M [1%] is finite free, the first term above is killed after inverting p. On the other hand, p acts
invertibly on @ and thus on the second term above; thus Tor{f (M, W (k)) = 0, as wanted. [J

0— Torfinf (Ma W(k)) - M ® Ajne inf W - M & A

Next, we give a criterion for an Aj,¢e-module to define a vector bundle on U = Spec Ajy¢ \ {s}.
This is a weak analogue over Aj,¢ of the fact that a finitely generated torsion free module over a
2-dimensional regular local ring gives a vector bundle on the punctured spectrum.

Lemma 4.10. Let M be a finitely generated p-torsion-free Ajng-module such that M[%} 18 finite
projective over Ainf[%]. Then the quasi-coherent sheaf associated to M restricts to a vector bundle
onU.

Proof. Tt is enough to check that M ®a,,, Aing, (p) is finite free, where Ay () is the localization
at the prime ideal (p) C Ajns. But Ay (p) is a discrete valuation ring: The function sending
Y isolailp’ € A with a; € O° to the minimal integer i for which a; # 0 defines a discrete
valuation on Aj,¢, with corresponding prime ideal (p), and corresponding discrete valuation ring

Aint,(p)- As M @4, Aint,(p) is a finitely generated p-torsion-free module, it is thus finite free, as
desired. ([

Remark 4.11. In Lemma 4.10, it is unreasonable to hope that M itself is finite projective. For
example, if M is the ideal (z,p) C Ain¢, then M is not finite projective over Aj,¢, and yet restricts
to the trivial line bundle over U.
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Corollary 4.12. Let N be a finite projective Ainf[%}-module. Then N is free.
Proof. Let M C N be a finitely generated Ajns-submodule such that M[%] = N[%]. Then M
satisfies the hypothesis of Lemma 4.10, and thus by Lemma 4.6 there is some finite free Aj,¢-

module M’ such that the vector bundles corresponding to M and M’ agree on U = Spec Ajns\ {s}.

In particular, M’[%] = N[%], which is therefore finite free. O

Putting the above results together, we obtain the following structural result:
Proposition 4.13. Let M be a finitely presented Ajng-module such that M[%] is finite projective
(equivalently, free) over Ainf[z%]. Then there is a functorial exact sequence
0— My — M — Mo — M — 0

satisfying:

(i) Mior is finitely presented and perfect as an Ajns-module, and is killed by p™ for n > 0.

(ii) Miree is a finite free Aine-module.

(iil) M is finitely presented and perfect as an Apg-module, and is supported at the closed

point s € Spec(Aing), i.e., it is killed by some power of (x,p).

Moreover, M is a finite free Aing-module if either M ® 4, , W (k) is p-torsion-free, or if K has
characteristic zero and M ®4,,, O is p-torsion-free.

inf

Proof. Let Mior C M be the torsion submodule of M. Then (i) is immediate from Lemma 4.9.
Let N = M /M, so N is a finitely presented Ajne-module (by (i)) that is free after inverting p
(as M is so) and has no p-torsion. Lemma 4.10 then implies that N defines a vector bundle on
U. Lemma 4.6 implies that Mg := H°(U, N) is a finite free A;,s-module, giving (ii). Also, since
N had no p-torsion, the induced map N — My is injective and an isomorphism over U. Thus,
the cokernel M is a finitely presented Aj,e-module supported at the closed point s € Spec(Ainf),
proving most of (iii); the perfectness of M follows from the perfectness of the other 3 terms.

For the final statement, we first note that in general, if R is a local integral domain with
residue field ks and quotient field &), and M is a finitely generated R-module such that

dimy, (M ®p ky) = dimy, (M ®p k)

then M is finite free. Indeed, any nonzero Fitting ideal I C R of M has to be all of R, as
otherwise the rank of M ®g k, would differ from the rank of M ®g ks, since k,, & Spec(R/I)
while ks € Spec(R/I). Applying this to R = Aj,y¢ and the given module M gives the conclusion,

as the dimension at the generic point agrees with the dimension at W(k)[%] and (9[%] because
M [%] is finite free over Aimc[%], and this dimension agrees with the dimension of M ®4, , k by
assumption. O

We record an inequality stating roughly that rank goes up under specialization for finitely
presented modules.

Lemma 4.14. Let M be a finitely presented Wn(Ob)—module, Let M,, and M be the base change
of M along W,,(0") — W, (K®) and W,,(0°) — W,,(k) respectively. Then M, and M have finite
length over the corresponding local rings, and we have:

(M) < €M),

In the proof below, the length function ¢(—) applied to certain perfect complexes K over W, (k)
simply means the usual alternating sum Y ,(—1)"%4(H*(K)).

Proof. Note that M ®Ht;vn(ob) Wy(k) ~ M ®% W(k). By Lemma 4.9, it follows that each

b
Torfv”(o )(M7 Wy, (k)) has finite length, and vanishes for ¢ > 1.
‘We now show the more precise statement

(M) = £(My) — ¢(Tor!© (M, W, (k))).
The left hand side is £(M ®% W, (K")) as W,,(0°) — W,,(K") is flat, while the right hand

W, (OP)
side is (M ®vy;, (0 W, (k)) by the vanishing shown above. With this reformulation, both sides



38 BHARGAV BHATT, MATTHEW MORROW, AND PETER SCHOLZE

above are additive in short exact sequences in M. Writing M as an extension of M/p" 1M
by p"~tM/p" M, we inductively reduce down to the case n = 1; here we use the identification

M ®H‘;V” ) Wo(k) =~ M ®H{9> k when M is killed by p. By the classification of finitely presented

modules over valuation rings, we may assume M = O° or M = O"/(z") for suitable non-zero r
in the value group of K°. Both these cases can be checked directly: the relevant lengths are both
1 in the first case, and 0 in the second case. Thus, we are done. (I

Using this, we arrive at an inequality relating the specializations of certain Aj,-modules over
W (k) and W(K):
Corollary 4.15. Let M be a finitely presented Ains-module such that M[%} is free over Ainf[%].
Let My := M ®a,,, W(K”) and My := M ®4,,, W (k) be the displayed scalar extensions. Then:

(i) The modules My and My have the same rank.
(ii) For allm > 1, £(My/p™) > €(M;/p™).

inf

Proof. The first assertion is immediate as both Ml[%] and Mg[%] are base changes of the finite
free module M[%] Part (ii) follows by applying Lemma 4.14 to M/p™. O
The next lemma will help in understanding the crystalline specialization.

Lemma 4.16. Let C € D(Aint) such that Hj(C’)[%] is free for each j. Fix some index i. Then
the natural map H'(C) @a,, W (k) = H'(C @Y. W(k)) is injective, and bijective after inverting
p. Furthermore, if H'TY(C) has no x-torsion, then this map is bijective.

Proof. The bijectivity after inverting p is formal from the assumption on the H? (C)[}%] For the
rest, let W = ligAinf/(xl/pn), so W (k) is the p-adic completion of W. We first observe that

HY(C) @a,, W — H(C &Y W)
is injective: by compatibility of both sides with filtered colimits, this reduces to the corresponding
statement for Aj,¢/(x'/P"), which can be checked easily using the Koszul presentation for the
latter ring over Aj,¢. This analysis also shows that if H*™1(C) has no a-torsion, then the above
map is bijective. .

Now let Q = Ker(W — W (k)), so there is a short exact sequence

inf

O%QHW%WU@)%O.

Since W (k) is the p-adic completion of the p-torsion-free module W, it follows that @ is an
Ainf[}%]-module. In particular, by the hypothesis that all the H’ (C’)[%] are free, we have

H(C) @4, Q= H(C &, Q)

Now consider the following diagram of canonical maps:

inf

H' (C) @ A Q - Hz(C) ® A W - Hl(c) ® Ain

ST

i i d i
H'(C®y,, Q) —H(C&h W)——H(Cah Wk)).

W(k) —=0

Here both rows are exact, the map a is bijective, and the map b is injective (as explained above
for both). A diagram chase then shows that the map c is injective, as wanted.

Furthermore, we claim that the map labelled d then must be surjective. Indeed, the obstruction
to surjectivity is the boundary map H*(C ®HAinf W(k)) — HTYC ®EAM Q) extending the bottom
row to a long exact sequence; but this map must be 0 since the target is an Ainf[%]—module,
and we know that d[%] is surjective, as c[%] is. The diagram now shows that the surjectivity of
c follows from the surjectivity of b. But the latter was shown above under the hypothesis that
HT(C) has no z-torsion, so we are done. O

Combining Proposition 4.13 with Lemma 4.16, we essentially obtain:
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Corollary 4.17. Let C € D(Ans) be a perfect complex such that H’ (C)[%] is free over Ainf[%]
for all j € Z. Then, for every j, H?(C) is a finitely presented Ains-module. Moreover, for fized i,
if H(C ®HAM W (k)) is p-torsion-free, then H*(C) is a finite free Ajng-module, and in particular
H(C®Y W(K®)) = H(C) ®a,, W(K") is p-torsion-free. If moreover H'T1(C) @4,., W (k) is
p-torsion-free (e.g., by Lemma /.16, this happens if H*1(C ®HAM W (k)) is p-torsion-free), then

H'(C) @a,, W(k) = H'(C @3, W(k)) .

We remark here that the equality H'(C ®@% W(K”)) = H'(C) ®4,,, W(K") invoked above
follows from the flatness of Aj,y — W(K b)7 see proof of Lemma 4.10.

inf

inf inf

Proof. First, we check that H7(C) is a finitely presented Aj,s-module for all j. We prove this by
descending induction on j, noting that it is trivially true for all j > 0 as then H7(C) = 0. If it
is true for all j' > j, then H7'(C) is perfect for all j > j by Lemma 4.9. This implies that 7</C
is still perfect, so that H’(C') is the top cohomology group of a perfect complex, which is always
finitely presented.

Now if H*1(C) ®a4,.,, W(k) is p-torsionfree, then H*1(C) is finite free by the last statement
in Proposition 4.13, and thus has no z-torsion. The last statement in Lemma 4.16 now yields
the desired equality. O

The next lemma implies that torsion-freeness conditions on the de Rham or crystalline spe-
cializations are equivalent. Here, as well as in Lemma 4.19 and Corollary 4.20, we assume that
K is of characteristic 0 and contains all p-power roots of unity.

Lemma 4.18. Let C' € D(Aint) be a perfect complex such that Hj(C)[%] is free over Ainf[%] for
all j € Z. Fiz some indexi. Then H'(C®Y% W (k)) is p-torsion-free if and only if H'(C®Y_O)
is p-torsion-free.

Proof. Note that the stated hypothesis imply that each H7(C), and hence each truncation of C, is
perfect over Ajy¢ by the previous corollary and Lemma 4.9. Assume first that H/(C®% W (k)) is
p-torsion-free. Then H*(C) ® 4, . W (k) is p-torsion-free by Lemma 4.16, and then H'(C) is finite
free by Proposition 4.13. As Tori=f (H7(C), W (k)) = 0 for all j and i > 1 by Lemma 4.9 (iii),
this implies (7'C) @, W (k) ~ 72/(C @4, W(k)). Now 72/(C @, W (k)) @y k € D7 (k)
by the assumption that H'(C' @4 W(k)) has no torsion, so 7=/C @ &k € D='(k) as well.
Rewriting, we see (12'C' ®4 0O) ®g k € D=%(k). This implies the following: (a) the perfect
complex 7='C' @4 O € D(O) must lie in D=#(0), and (b) H* of this last complex is free; here
we use the following fact: a finitely presented O-module is free if and only if Tor{ (M, k) = 0 (see
the end of the proof of Proposition 4.13). The first of these properties implies that 72'C ®H;hnf O~
2H(C®Y4, 0), and the second then implies that H*(C @ ) is p-torsion-free, as wanted. The
converse is established in exactly the same way. O
We record a criterion for M [%] being finite projective.
Lemma 4.19. Let M be a finitely presented Ains-module. Let u = [e] — 1, with € as in Exam-

ple 3.16. Assume the following:
(i) M[ﬁ] is finite projective over Ainf[ﬁ].
(ii) M ®a,,, Blys is finite projective over B

inf crys”
Then M[%] is finite free over Ainf[%}.
Proof. Let R = Ainf[%], and let N = M[%] Then p € R is a non-zero-divisor; let R be the
p-adic completion of R. We first show that the canonical map R — R factors through Bl
To check this, we need to produce a canonical map Acrys — Ainf[%} /u™ for all n (which will
then factor through Bf . = Acrys[%]). Fix some such n. It suffices to show that the images

crys
of % S Ainf[%] for varying m belong to a bounded subalgebra of Ainf[%]/u”. Note that the
cokernel of the map Ajug/pu" — Aing/E™ © Ain/@ 1 (1)™ is bounded p-torsion: this cokernel is
finitely presented over Aj,¢, and acyclic after inverting p (since p = ¢ mod (¢ ~1u)). Certainly,
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% maps to 0 in Ainf[%]/fn for m > n, so it remains to handle the second factor. For this, note
m - (p—1)m
that £ = ¢~ ()P~! mod pin Ajut, so adjoining all % is equivalent to adjoining all “’1(’?”7,1)

Now these elements have trivial image in At /@~ (u)™ for m > n, finishing the proof that R —R
factors through BT,

crys:*
By the Beauville-Laszlo lemma, [4], and Corollary 4.12, it is enough to check that N [i} is
finite projective over R[i}, that N ®p R is finite projective over E, and that N has no u-torsion.

The first part is true by assumption (i). The second part follows from assumption (ii) as the map
R — R factors through the canonical map R — B;ys, as shown in the previous paragraph. It
remains to show that /N has no u-torsion. For this, observe that we have a short exact sequence

0—>R—>J§—>Q—>O

with @ being an R[%]—module. Tensoring this with N, and using that

Torf (N, Q) = Tory (N [2],Q) = 0

by projectivity of N [i], we get an injection N < N ®p R, which is u-torsion-free. O

Let us state a corresponding version of Corollary 4.17.

Corollary 4.20. Let C € D(Aing) be a perfect complex such that for all j € Z, Hj(C)[i] is free
over Aint| and HI(C ®%  BZ ) is free over BL .. Then, for every j, H(C) is a finitely

1

ﬁ] ’ inf © CTYS crys”

presented Aing-module with H? (C)[}%] free over Ainf[%].
Moreover, for fized i, if H(C ®HAM W (k)) is p-torsion-free, then H'(C) is a finite free Ant-

module, and in particular Hi(C'®HAian(Kb)) = H{(C)®a

HTHC) @24

_W(K?) is p-torsion-free. If moreover
W (k) is p-torsion-free (e.g., if H1(C' @Y% W (k)) is p-torsion-free), then

inf

H'(C) ®a,,, W(k) = H(C &Y, W(k)) .

inf

Proof. We only need to prove that Hj(C)[%] is finite free over Ainf[%]; the rest is Corollary 4.17.
For this, one argues again by decreasing induction on j, so one can assume that j is maximal with
HI(C) # 0. Then H’(C) satisfies the hypothesis of Lemma 4.19, which gives the conclusion. [

Remark 4.21. Using Lemma 4.18, the hypothesis on H*(C @ W (k)) in Corollary 4.17 and
Corollary 4.20 can be replaced by the same hypothesis on H'(C ®Y4 ~0).

inf
4.3. Breuil-Kisin—Fargues modules. Let K be a perfectoid field with ring of integers O =
Ok = K° € K. We get the ring Ainr = A (0) = W(Ob) equipped with a Frobenius auto-
morphism ¢, where O° = @1@ O/p as usual. Fix a generator £ of Ker(f : Ajs — O), and let

€= p(€).

Definition 4.22. A Breuil-Kisin—Fargues module is a finitely presented Ains-module M with an
isomorphism

oar M ® a0 Ami[2] = MIE]
such that M[%] is a finite projective (equivalently, free) Ainf[%]-module.
This should be regarded as a mixed-characteristic version of a Dieudonné module. The next

example illustrates why we impose the condition that M [%] is finite free.

Example 4.23. Let K = C where C' is a completed algebraic closure of Q,. Let u = [¢] — 1,
with notation as in Example 3.16. Set I = (), and M := A;n¢/I; this is a finitely presented
Ajps-module. As | p(p), we have ¢*(I) C I, which induces a map ¢y : ¢*M — M. Moreover,
as ¢*(I) C I becomes an equality after inverting E, so does ;.

Again, there is a version of the Tate twist.
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Example 4.24 (Tate twist). There is a Breuil-Kisin—Fargues module A;j {1} given by
1
Aine{1} = ;(Ainf ®z, Zp(1))

if K is of characteristic 0 and contains all p-power roots of unity. Here, u = [¢] — 1 as usual. The
Frobenius on A;,¢{1} is induced by the usual Frobenius on Aj,¢s. More canonically, we have the
following description. Recall the maps

0, : Aint — W, (0)
with kernel generated by 'g} Then the cotangent complex
W, (0){1} := L, (0)/2,[-1] = Liv, (0)/ s [~1] = & Aunt /€ Aint
is free of rank 1 over W,.(0). As in the Breuil-Kisin case, for r > s the obvious map
W (O){1} = & At /€ Aint — EAine /€2 Aine = W (0){1}
has image p" ~*W,(O){1}; thus, dividing it by p"~*, we can take the inverse limit
{1} = lim W, (0){1}

to get an A r-module which is free of rank 1. Again, it is equipped with a natural Frobenius.
Moreover, if K contains all p-power roots of unity and we fix a choice of roots of unity and
the standard choice £ = ﬁ with o = [¢] — 1, then the system of elements &, € W,.(0){1}
define a compatible system of elements (using that ¢(£) = p mod &), inducing a basis element
e € Ae{l}, on which ¢ acts by e — %e. More canonically, there is a map

leg : WT(O)X — Q‘I/VT(O)/ZP ,
which on p-adic Tate modules induces a map
dlog : Zp(1) = Ty, (0y/z,) = Wr(O){1} .

These maps are compatible for varying r, inducing a map Z,(1) — Ain¢{1} which is equivariant
for the trivial p-action on Zy (1), and thus a map Ain ®z, Z,(1) = Aine{1}, which can be checked
to have image pAine{1}. More concretely, this amounts to checking that the elements

( 1 d([Cw])) e Tp( by, 0)/2,) = Wr(O){1}

[Cp"‘} -1 [Cp“]

are generators.

If M is any Ajyr-module, we set M{n} = M @4, , Ains{1}®" for n € Z.

inf
Remark 4.25. Assuming again that K contains the p-power roots of unity, there is a nonzero
map A = Aing ®z, Zp(1) — Aing{1}, whose cokernel is the module from Example 4.23 above.

Thus, the category of Breuil-Kisin—Fargues modules is not stable under cokernels. It is still an
exact tensor category, where the Tate twist is invertible.

Let us discuss the étale specialization of a Breuil-Kisin—Fargues module. For this, we assume
that K = C is algebraically closed of characteristic 0, and fix p-power roots of unity giving rise
to e € C* and p = [¢] — 1 as usual.

Lemma 4.26. Let (M, o) be a Breuil-Kisin—Farques module, where the base field K = C s
algebraically closed of characteristic 0. Then

T = (M ®4,, W(C"))#»=
(where @pr means oy & @) is a finitely generated Z,-module which comes with an identification

W(C") =T @z, W(C") .

inf

M ®4

inf
Moreover, one has

M @ Ajns Ainf[%] =T ®ZP Ainf[ﬁ]
as submodules of the common base extension to W (C?).

Geometrically, T' corresponds to étale cohomology.
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Proof. As C" is an algebraically closed field of characteristic p, finitely generated W (C”)-modules
with a Frobenius automorphism are equivalent to finitely generated Z,-modules; this proves that
T is finitely generated and comes with an identification

M ®a,, W(C") =T @z, W(C") .

inf
To prove the statement
M ®a,, Ainf[i] =T ®z, Ainf[%] ;
one can formally reduce to the case where M is finite free, using Proposition 4.13 and the
observation that if M is p-torsion, then M ®4, . W(C”) = M ®4,, Aimc[i]. Thus, we assume
from now on that M is finite free.
First, we claim that T C M ®a4,,, Ainf[i]. To prove this, we may replace M by M{n} for

sufficiently large n so that 4,0541 maps M into M. In that case, we claim the stronger statement
T C M. Let r > 1, take any element t € (M ®4, , W,.(C”))¥»=!, and look at an element z € O°
of minimal valuation for which [z]t € M/p". Assume that z is not a unit. We have @y (t) =
t, or equivalently t = ¢/ (t), so [z]t = @3, ([z]Pt). But then [z]’t € [z]P~'M/p", and thus
o ([2]Pt) € [2]P~V/PM/pr, as ¢, preserves M by assumption. Thus, [z]t € [2]P=D/PM /pT,
which contradicts the choice of . Thus, z is a unit, so that ¢ € M/p". Passing to the limit over
r shows that T' C M, as desired.

Applying the result T®Aianinf[%] C M®a,, Ainf[i} also for the dual module M* and dualizing
again shows the reverse inclusion, finishing the proof that M ®4, , Ainf[i] =T Qg, Ainf[ﬁ}. O

Let us also mention the following result concerning the crystalline specialization, which works
whenever K is of characteristic 0.

Lemma 4.27. Let M be a Breuil-Kisin—Fargues module. Then M' = M ® 4, , W (k) is a finitely
generated W (k)-module equipped with a Frobenius automorphism after inverting p. Fiz a section
k — Ok /p, which induces a section W (k) — Ains. Then there is a (noncanonical) p-equivariant
isomorphism

+ o~ +

M ® A Bcrys = M’ ®W(k) Bcrys

reducing to the identity over W(k)[%]
Proof. This follows from a result of Fargues—Fontaine, [31, Corollaire 11.1.14]. g

We will see that in geometric situations, the p-equivariant isomorphism
M ® 4, B;ys =M QW (k) BZ

crys
is canonical, cf. Proposition 13.21. One can check using Lemma 4.19 that for Breuil-Kisin—
Fargues modules equipped with the choice of such an isomorphism, and morphisms respecting
those, the kernel and cokernel are again Breuil-Kisin—Fargues modules, so that this variant
category is an abelian tensor category in which the objects coming from geometry live. However,
the constructions for proper smooth (formal) schemes of this paper have analogues for p-divisible
groups where the resulting identification is not canonical. In that case, the phenomenon that
the category of Breuil-Kisin—Fargues modules is not abelian is related to the existence of the
morphism of p-divisible groups
Qp/Zy — ppeo

over Ok, if K contains all p-power roots of unity, which does not have any reasonable kernel or
cokernel as it is 0 in the special fibre, but an isomorphism in the generic fibre.

The main theorem about Breuil-Kisin—Fargues modules is Fargues’ classification; we refer
to [61] for a proof.

Theorem 4.28 (Fargues). Assume that K = C is algebraically closed of characteristic 0. The
category of finite free Brewil-Kisin—Fargues modules is equivalent to the category of pairs (T,Z),
where T is a finite free Z,-module, and = is a BQ'R-lattice in T ®z, Bar. Here, the functor is
given by sending a finite free Breuil-Kisin—Fargues module (M, ppr) to the pair (T, Z), where

T=(M®a,, W(C"))$u=t

inf

and

(1]

=M ®a,, B C M ®a,, Bar =T ®z, Bar -
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Remark 4.29. For the proof of our main theorems, we only need fully faithfulness of the functor
M — (T, =), which is easy to prove directly. Indeed, faithfulness follows directly from Lemma 4.26
and the observation that A,y — Ainf[i] is injective. Now, given two Breuil-Kisin—-Fargues
modules (M, ) and (N, o) and a map T'(M) — T(N) mapping =Z(M) into Z(NN), Lemma 4.26
gives a canonical y-equivariant map M [i] — N [i} We have to see that this maps M into N.
By finite generation of M, M maps into p~ "N for some n > 0, which we assume to be minimal.
Assume n > 0; replacing N by p~"T'N, we may reduce to the case n = 1. We claim that M
maps into ¢~ "(u) "IN for all r > 0, by induction on r. For this, we need to see that the induced
maps
M = o7 (W) TIN/eT T () TIN Z N/ (E)N = N @4 000m O = N ®4,,0,000m C

are zero, where the isomorphism is multiplication by ¢~ "(u). But note that by assumption,
E(M) = M ®a,,, Bjz maps into 2(N) = N ®4,,, Biz, and so by the diagram

inf

+ +
M ® Aint 7 BdR N O At o7 BdR

Nl‘»"ﬁl Nltpﬁy

M ®a,,; Biz N ®a,,; Bix

inf inf

also M ® 4, Big maps into N®a4,,, - Big for all7 > 0. Therefore, the map M — N®a4,,, gopr
C induced by multiplication by ¢~" () is zero, showing that indeed M maps into =" (u) N
for all r > 0. But now N = (), -, ¢ "(1) ' N by Lemma 3.23, so M maps into N, as desired.

We warn the reader that, like in Theorem 4.4, this equivalence of categories is not exact. More
precisely, the functor from Breuil-Kisin—Fargues modules to pairs (7, Z) is exact, but the inverse
is not.

As an easy example, Aine{1} corresponds to T' = Z,(1) and E = £~ 1T @z, Biy).

4.4. Relating Breuil-Kisin and Breuil-Kisin—Fargues modules. Let us observe that any
Breuil-Kisin module defines a Breuil-Kisin—Fargues module. For this, we start again with a
complete discretely valued extension K of Q, with perfect residue field k and fixed uniformizer
7 € K, and let C' be a completed algebraic closure of K with fixed roots 7'/?" € C, giving an
element 7” € C°. Then & = W (k)[[T]] is equipped with a Frobenius automorphism ¢, and the
map 6:6 — Og given by T +— m. The constructions over K and C' are related by the map
& — Ajyr that sends T to [7°]” and is the Frobenius on W(k); note that this map commutes
with ¢ and 6. We first check that this map is flat:

Lemma 4.30. The map & — A above is flat.

Proof. We must check that M ®Hé Ajne is concentrated in degree 0 for any G-module M. By
approximation, we may assume M is finitely generated. As & is regular, any such M is perfect.
Thus, M ®]é Ajnr is also perfect. In particular, it is derived p-adically complete, so we can
write M (X% Ajps ~ RUm(M/p" ®Hé Jpn Aing/p™); here we implicitly use the Artin-Rees lemma
over & to replace the pro-system {M ®g &/p"} with {M/p"}. It is now enough to check that
& /p™ — Aing/p™ is flat. As both rings are flat over Z/p™, we may assume n = 1, i.e., we need to
show &/p — Aine/p ~ O is flat; this is clear as the source is a discrete valuation ring, and the
target is torsionfree. ([l

Remark 4.31. More generally, one has: if A — B is a map of p-adically complete p-torsionfree
rings with A noetherian and A/p — B/p flat, then A — B is flat. To prove this, one simply
replaces perfect complexes with pseudo-coherent complexes in the proof above.

Base change along this map relates Breuil-Kisin modules to Breuil-Kisin—Fargues modules:

Proposition 4.32. The association M — M ®e Ains defines an exact tensor functor from
Breuil-Kisin modules over & to Breuil-Kisin—Fargues modules over Ajns.

Proof. Let (M, ) be a Breuil-Kisin module over &, i.e., M is a finitely presented G-module
equipped with an identification ¢as : (p*M)[5] =~ M[5], where E(T) € & is the Eisenstein
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polynomial defining 7. We claim that N := M ®g Ajns equipped with the identification (¢ ®id) :
(@*N)[ﬁ] o~ N[ﬁ] is a Breuil-Kisin—Fargues modules. For this, first note that £ := f(F) is

a generator of the kernel of 6 : Ay — O¢. Moreover, M[%} is free by Proposition 4.3, so N[%}
is free as well; this verifies that we obtain a Breuil-Kisin—Fargues module. The resulting functor
is clearly symmetric monoidal, and exactness follows from Lemma 4.30. U

Corollary 4.33. Under the functor of Theorem 4.4, Z,(1) is sent to &G{1}.

Proof. From the definition in terms of cotangent complexes, we see that G{1} ®e Aint = Ains{1}
as Breuil-Kisin-Fargues modules, compatibly with the Gx__-action. As there is a canonical
identification

Aie{1} = £ (Zp(1) ®z, Aine) ,

in particular we get a ¢, G k_ -equivariant identification
6{1} @e W(C") 2 Z,(1) ®z, W(C") ,
which by Theorem 4.4 proves that Z,(1) is sent to G{1}. O

Finally, we want to relate Theorem 4.4 with Theorem 4.28. Thus, let T" be a lattice in a
crystalline G g-representation V. We get

Dcrys(v) == (V ®Q,J Bcrys)GK )
which comes with a ¢, Gi-equivariant identification
Dcrys(V) ®W(k)[%] Bcrys =V ®QP Bcrys .

On the other hand, by Theorem 4.4, we have the finite free Breuil-Kisin module M (T') over &,
which gives rise to a finite free Breuil-Kisin-Fargues module M(T) ®g Ains. By Theorem 4.4
and Lemma 4.26, we have a Gk _ -equivariant identification

M(T) ®s Ainf[i] =T ®z, Ainf[i] :
Proposition 4.34. One has an equality

M(T) ®s B

crys — DCTyS(V) ®W(k)[ ] B,

1
= crys
P y

as submodules of
M(T) ®e Berys = T @z, Berys = Derys(V) ®W(k)[%} Berys -
In particular, under Fargues’ classification, M (T)®g Aint corresponds to the pair (T, =), where
E = Derys(V) @w iy Biy C T ®z, Bar ;

equivalently,
== DdR(V) KK B:{R cT ®Zp Bar ,
where Dar (V) = (T @z, Bar)®x.

The moral of the story here is that if one does p-adic Hodge theory over C, there is no
Galois action on T anymore, and instead one should keep track of a B;R—lattice in T'®z, Bar,
which is a shadow of the de Rham comparison isomorphism. In Section 13 below we will give a
geometric construction of a B;'R—lattice in étale cohomology tensored with Bgr for any proper
smooth rigid-analytic variety over C' (in a way compatible with the usual de Rham comparison
isomorphism).

Proof. This follows from Kisin’s construction of M (T), which starts with the crystalline side and

an isomorphism between M (T') and Dgys(V) ® 6[%] on some rigid-analytic open of the generic
fibre of Spf &, cf. [48, Section 1.2, Lemma 1.2.6]. O
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5. RATIONAL p-ADIC HODGE THEORY

In this section, we recall a few facts from rational p-adic Hodge theory, in the setting of [58].
Let K be some complete discretely valued extension of @, with perfect residue field k, and let
X be a proper smooth rigid-analytic variety over K, considered as an adic space. Let C be a
completed algebraic closure of K with absolute Galois group Gk, and let Bqr = Bar(C) be
Fontaine’s field of p-adic periods.

Theorem 5.1 ([58]). The p-adic étale cohomology groups H: (Xc,Z,) are finitely generated
Zp-modules, and there is a comparison isomorphism

H}(X¢,Zy) ®z, Bar = Hip(X) ®K Bar ,

compatible with the G -action, and natural filtrations. In particular, H. (Xc,Q,) is de Rham
as a Gk -representation.

In particular, the theorem gives a natural B;'R—lattice
Hg(X) @K Big C Hy(Xc,Zy) ®z, Bar

where Hip(X) = (H}(X¢,Zy) ®z, Bar)®*. Thus, by Theorem 4.28, the torsion-free quotient
of H (X¢,Z,) and this BgR—lattice given by de Rham cohomology define a finite free Breuil-
Kisin—Fargues module, which we will call

BKF(HY (Xc,Zyp)) -

Remark 5.2. Assume that the torsion-free quotient of HY (X¢,Z,) is crystalline as a Galois
representation. Then, by Theorem 4.4, there is an associated Breuil-Kisin module

BK(H(Xc, Zy)) -
By Proposition 4.34, we then have
BKF(H(Xc, Zy)) = BK(H (Xc, Zp)) @ At -
In fact, the BiR—lattice
Hig(X) ®x Big C Hy (X0, Zy) @2, Bar

depends only on X¢. We postpone discussion of this point until later, see Section 13. This
implies that the construction of BKF(H}, (X,Z,)) works for any proper smooth rigid-analytic
space X over C.

The goal of this paper is to show that if X is the generic fibre of some proper smooth formal
scheme X/Of, then this Breuil-Kisin—Fargues module can be constructed geometrically, and
deduce comparisons between the Breuil-Kisin—Fargues module and the crystalline cohomology
of the special fibre.

In this section, we will recall aspects of pro-étale cohomology following [58], and then briefly
recall the strategy of the proof of Theorem 5.1.

5.1. The pro-étale site of an adic space. We first recall the pro-étale site [58, Definition 3.9]
associated to a locally Noetherian adic space X. Let pro—Xg; be the category of pro-objects
associated to the category Xg; of adic spaces which are étale over X. Objects of pro—Xg will
be denoted by “@”iel U;, where I is a small cofiltered category and I — Xg, i — U; is a
functor. The underlying topological space of “@”iel U; is by definition @ieI |U;|, where |U;|
is the underlying topological space of U;.

An object U € pro—Xg is said to be pro-étale over X if and only if U is isomorphic in pro—Xg
to an object “li&l”iel U; with the property that all transition maps U; — U; are finite étale and
surjective.

The pro-étale site Xproer of X is the full subcategory pro—Xg; consisting of those objects which
are pro-étale over X; a collection of maps {f; : U; — U} in X106 is defined to be a covering
if and only if the collection {|U;| — |U|} is a pointwise covering of the topological space |U],
and moreover each f; satisfies the following assumption (which is stronger than asking that f; is
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pro-étale in the sense of [58, Definition 3.9], but the notions agree for countable inverse limits).'’
One can write U; — U as an inverse limit U; = @M< N U, of U, € X;,r0st along some ordinal A,

such that Uy — U is étale (i.e. the pullback of a map in X¢), and for all g > 0, the map
Up = Ucp:= lim Uy
w<p
is finite étale and surjective, i.e. the pullback of a finite étale and surjective map in Xg; (cf. [58,

Lemma 3.10 (v)]).
There is a natural projection map of sites

v Xproét — Xét )

with the property that
H (U V*'F) = ligH](Ui,]:)
iel
for any abelian sheaf F on Xg, j > 0, and any U = “@”iel Ui € Xprogt for which |U] is
quasi-compact and quasi-separated, [58, Lemma 3.16].

Suppose now that X is a locally Noetherian adic space over Spa(Qp, Z,). An object U € Xpro6t
is said to be affinoid perfectoid [58, Definition 4.3] if and only if it is isomorphic in Xpest to an
object “@”iel U; with the following three properties:

(i) the transition maps U; — Uj; are finite étale surjective whenever j > i;
(ii) U; = Spa(R;, R}") is affinoid for each i;
(iii) the complete Tate ring R := (@Z Rf)ﬁ ®z, Qp is perfectoid.

We note that the final condition implies that Rt := (hénZ RZ‘-")/\ is a perfectoid ring, by
Lemma 3.20.

Continuing to assume that X is a locally Noetherian adic space over Spa(Qy, Z,), it is known
that the affinoid perfectoid objects in X6, form a basis for the topology [58, Proposition 4.8].
We will only require this result when X is smooth over Spa(C, O), where C is a perfectoid field
of mixed characteristic and O = O¢ = C° C C is its ring of integers; in this case we recall some
details of the proof (see [58, Example 4.4, Lemma 4.6, Corollary 4.7]). Locally, X admits an étale
map to the d-dimensional torus

T := Spa(C(T;E, ..., T, O(TF, ..., TFY)
that factors as a composite of rational embeddings and finite étale covers. In this case, we have
the following lemma.
Lemma 5.3 ([58, Lemma 4.5]). Let X — T? be an étale map that factors as a composite of
rational embeddings and finite étale maps. Forr > 1, let
X, =X xqpa T,

where

T¢ = Spa(C(TEP" . TPy, o=V
Then “@”T X, € Xprogt 5 affinoid perfectoid.

)

)

We recall the main sheaves of interest on X,;04t, and explicitly state their values on an affinoid
perfectoid U = “lim”, _, Spa(R;, R;).
Definition 5.4. Consider the following sheaves on Xprogt -
(i) The integral structure sheaf O% = V*O}ét,
(ii) The structure sheaf Ox = v*Oxy, -
) The completed integral structure sheaf @} = lim ok /p.
(iv) The completed structure sheaf Ox = @}[%]
) The tilted (completed) integral structure sheaf @;b = 1'&1@ ot /p.
)

Fontaine’s period sheaf Ains x, the derived p-adic completion of W(@;b)
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Remark 5.5. The sheaves (7)\;2 and WT(@}) are derived p-adically complete (cf. Section 6.2 for
the definition of derived completeness). This follows from the next lemma and its natural version
for WT(@}) and the observation that almost zero modules are always derived complete in these
contexts. However, it is not clear to us whether W(@;,,) is derived p-adically complete. (Tts
failure to be derived p-adically complete is [mb]—torsion.) This is the reason that we define Ajn¢ x
as the derived p-adic completion of W(@;b) (which actually makes it a sheaf of complexes).

Lemma 5.6 ([58, Lemma 4.10, Lemma 5.10, Theorem 6.5]). Let U = “yLn”iUi € Xpross be
affinoid perfectoid, where the U; = Spa(Ri,Rj) are affinoid, such that the p-adically completed
direct limit (R, RT) of the (R;, R}") is perfectoid. Then

0% (U) =lim R} , Ox(U) =lim R; , O%(U) = R*,

Ox(U)=R, OL,(U)=R" , H'(U, Aint,x) = Aing(R") .
Moreover, fori > 0, the groups
H'(U,0x) = H'(U,0x) =0
vanish, the O-modules H'(U,0%) and H (U, 0%) are killed by m, the O”-module H'(U,0%,) is
killed by m®, and the Asne-module H' (U, Aine, x) s killed by [mb].
We note that using the argument from the proof of Theorem 5.7 below, it follows that
HY (U, Aint.x) is actually killed by T (m”).

Also, using the same formulae as Lemma 3.2, there is a chain of natural morphisms of sheaves
on Xprost:

W(03%,) = r%nwr(o;n & y?mwr(o;b) — r%nWr(O}/m — y%nwr((’)}) :
Each of these morphisms is an isomorphism of sheaves; this follows from sheafifying the proof of
Lemma 3.2. Therefore, there are induced morphisms

57- : Ainf,X — Wr(@j—() ’ 97' = gﬂﬂr : Ainf,X — WT(@;’_{) )

and 6 := 601 : Aiprx — (5}, as the target is in all cases derived p-adically complete already.
By checking on affinoid perfectoids, the results of Section 3 imply similar results on the level of
sheaves on Xpo¢t-

We will need the following result.

Theorem 5.7 ([58, proof of Theorem 8.4]). Assume that C is algebraically closed, and X is a
proper smooth adic space over C. Then the inclusion Ainy — Aine x induces an almost quasi-
isomorphism

RFét (X, Zp) ®Zp Ainf — RF(Xproéta Ainf,X) 5

more precisely, the cohomology of the cone is killed by W(mb).

Proof. The cohomology of the cone is killed by [m°], and derived p-complete (cf. Lemma 6.15).
Thus, it becomes a module over the derived p-completion of Aj,¢/[m"], which is given by W (k) =
Ajng/W (m®). In particular, it is killed by W (m”). O

Let us now briefly recall the proof of Theorem 5.1. Let X/K be a proper smooth rigid-analytic
variety. Theorem 5.7 implies that

RT&(Xc,Zy) ®z, Big = R proet (Xou BJg x)

where B, x is the relative period sheaf defined in [58]. On the other hand, one can define a
sheaf OBJ x as a suitable completion of Ox @w ) By x,"' which comes with a connection V
(induced from the Ox-factor), and there is a Poincaré lemma:

+ + v + 1
0—=Birx — OIB%dR’X — (’)]B%dR’X ®oy Ox — ...

HThe original definition was slightly wrong, cf. [60].
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is exact; this is inspired by work of Andreatta—Tovita, [3]. One finishes by observing that the
cohomology of OB:{R, +[€71] is the same as the cohomology of Ox®k Bqr, which follows from a
direct Galois cohomology computation, due to Brinon, [18].
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6. THE Ln-OPERATOR

Consider a ring A and non-zero-divisor f € A, and denote by D(A) the derived category of
A-modules. If M*® is a cochain complex such that M’ is f-torsion free for all i € Z, we denote
by nyM* the subcomplex of M‘[%] defined as

(M) = {z € fiM":dx € fT M} .
In §6.1, we show that the functor ny(—) descends to the derived category, inducing a (non-
exact!) functor Ln; : D(A) — D(A), and study various properties of the resulting construction.

In §6.2, we recall some basic properties of completions in the derived category, and study their
commutation with Ln.

6.1. Construction and properties of Ln. For applications, it will be important to have the
Ln-operation also on a ringed site (or topos), so let us work in this generality. Let (T, Or) be
a ringed topos. Let D(Or) be the derived category of Op-modules. Recall that D(Or) is, by
definition, the localization of the category K (Or) of complexes of Or-modules (up to homotopy)
at the quasi-isomorphisms.

Recall that a complex C* € K(Or) is K-flat if for every acyclic complex D* € K(Or), the
total complex Tot(C*® ®p,. D*) is acyclic, cf. [1, Tag 06YN]. Let us say that C* is strongly K-flat
if in addition each C? is a flat Op-module.

Lemma 6.1. For every complex D* € K(Or), there is a strongly K-flat complex C* € K(Or)
and a quasi-isomorphism C®* — D®.

In particular, D(Or) is the localization of the full subcategory of strongly K-flat complezes in
K(Or), along the quasi-isomorphisms.

Proof. The first sentence follows from [1, Tag 077J] (and its proof to see that the complex is
strongly K-flat, noting that filtered colimits of flat modules are flat). The second sentence is a
formal consequence. (]

Now let Z C O be an invertible ideal sheaf. Weakening the notion of strongly K-flat com-
plexes, we say that C* is Z-torsion-free if the map Z ® C* — C? is injective for all i € Z; we
denote its image by Z-C* C C"°.

Definition 6.2. Let C* € K(Or) be an I-torsion-free complex. Define a new (Z-torsion-free)
complex nzC® = (nzC)* € K(Or) with terms
(nzC) ={x € C"|dx €T -C"'} ®0, T
and differential
dnroyi + (nzC)" — (nzC)*
making the following diagram commute:

o d QT . .
(nC) ——ZI-CT @I%

d(nzc)i' \L l:

(nzc)i-&-l( it ®I®(i+1) i

Remark 6.3. The definition is phrased to depend only on the ideal Z, and not on a chosen
generator f € Z. If f € T is a generator (assuming it exists), then one has

(1z0)" = (;C)" == {z € f'C" [ dx € fHCHY,
and the differential is compatible with the differential on C'[%]. Moreover, in this case, there is
an isomorphism nz(C[1]) ~ (nzC)[1] given by multiplication by f in each degree.
One can describe the effect of this operation on cohomology as killing the Z-torsion:

Lemma 6.4. Let C* € K(Or) be an Z-torsion-free complex. Then there is a canonical isomor-
phism _ _ _ _
H'(nzC*%) = (H'(C*)/H'(C*)[Z]) ®o, T
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for alli € Z. Here,
HY(C*)[Z] = Ker(H (C*) — H'(C*) @0, I®™') c H(C®)
is the Z-torsion.
In particular, if a : C* — D® is a quasi-isomorphism of Z-torsion free complezes, then so is
nrza :nzC® — nrD°.

Proof. Let Z'(C®) C C*, Z'(nzC*®) C (nzC)* be the cocycles. Then there is a natural isomor-
phism

Z(C*) ®o, I% = Z'(nzC*)
inducing a surjection

H'(C*) ®0, T — H'(nzC*) .
Unraveling the definitions, one sees that if z € Z(C*®) ®p, Z% is a cocycle, then its image in
H'(nzC*) vanishes if and only if there is an element y € C*~! ®¢,, Z®(~1 such that

dy € Z' @0, IV =~ Homo,. (I, Z' @0, I
agrees with the map Z ¢ Or 5 Z(C®) ®p, I®". This happens precisely when z gives an
Z-torsion element of H*(C*®). The final statement follows formally. O

In particular, the following corollary follows.

Corollary 6.5. The functor nz from strongly K-flat complezes in K(Or) to D(Or) factors
canonically over a functor Lnz : D(Or) — D(Or). The functor Lnz commutes with all filtered
colimits.

Moreover, Lnz : D(Or) — D(Or) commutes with canonical truncations, i.e. for all a <b in
ZU{—00,00} and any C € D(Or), one has

Lz (rlo¥ o) = 7@t Ly ()
We repeat a warning made earlier:

Remark 6.6. The functor Lnz : D(Or) — D(Or) constructed above is not exact. For example,
when T is the punctual topos and Z = (p) C Z, then Lnz(Z/pZ) = 0, but Lnz(Z/p*Z) = Z/pZ +#
0.

The operation Lnz interacts well with the ®-structure:

Proposition 6.7. There is a natural lax symmetric monoidal structure on Lnr : D(Or) —
D(Or), i.e. for all C, D € D(Or), there is a natural map

LnzC ®¢, LnzD — Lnz(C ®, D),
functorial in C and D, and symmetric in C and D.
Proof. Let C*®, D® be strongly K-flat representatives of C' and D. Then one has a natural map
Tot((nzC)* ®or (12D)*) = nzTot(C* ®o, D*) ,
given termwise by the map
(n2C)* ®@oy (1zD)’ = nzTot(C* ®o, D*)™
compatible with
(C’i R0, I®i) Koy (Dj R0, I®j) — (Ci Royp Dj) Koy o0+
observing that if x € C* and y € D7 have the property dx € Z - C**! and dy € Z- D’*!, then
drzey)=droy+(-1)redycI (C" @0, D! ®C @0, D).

This map gives the structure of a lax symmetric monoidal functor nz : Kstrongly x-fiat(O1) —
D(Or), which factors uniquely over a lax symmetric monoidal functor Lnz : D(Or) — D(Or).
O
In an important special case, this operation even commutes with the ®-product:

Proposition 6.8. Assume that T is the punctual topos, and R = Ot is a valuation ring. Let
f € R be any generator of L. Then Lny is symmetric monoidal.
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Proof. As everything commutes with filtered colimits, it is enough to check that if C' and D are
perfect complexes, then the natural map

LnsC &, Ly D — Ly (C @, D)

is a quasi-isomorphism. Note that R is coherent, so that all cohomology groups of C' and D are
finitely presented. Moreover, finitely presented modules over valuation rings are finite direct sums
of modules of the form R/g for elements g € R, by the elementary divisor theorem. These are of
projective dimension 1, so that both C and D split as a direct sum @, H*(C)[—i], @, H (D)[—i].
Thus, we can reduce to the case C = (R/g)[i], D = (R/h)[j] for some elements g,h € R, i,j € Z.
We may assume ¢ = j = 0 as all operations commute with shifts (see Remark 6.3). If either g or
h divides f, then we claim that both sides are trivial. Indeed, assume without loss of generality
that g divides f. Then Ln;C = 0, and all cohomology groups of C ®% D are killed by g, and thus
by f, so that Ln;(C®% D) = 0 as well. Finally, if f divides both g and h, then Ln;C = R/(g/f),
LnsD = R/(h/f), and one verifies that

Lg(R/g @R R/h) = R/(g/f) @ R/(h/f) |
cf. Lemma 7.9 below for a more general statement. O

The next lemma bounds how far Lnz is from the identity.

Lemma 6.9. For any integer m, is a natural transformation
%" R0, TS 5 S Ing
of functors on D(Or). For any integer n, there is a natural transformation

TZ"LnI — 7" R0 Tz

of functors on the full subcategory of those C € D(Or) with H™(C) being Z-torsion-free. On this
subcategory, if n < m, then the composites

I®(m7n) RO T[n,m]LnI —y TOm R0, T[n,m] N T[n,m]LT’I ’
Zom R0y T[n,m] — 7_[n,m] Lz — zen ®0, T[n,m]
are the identity maps tensored with the inclusions I®m=—n) s Op resp. I®™ — T®n,

Proof. Tt suffices to construct similar natural transformations on the category of Z-torsion-free
complexes, so let C*® be an Z-torsion-free complex. For the first transformation, it suffices to
construct a map
zem Ror Tsmee 7710. .
But for i < m, (nzC)" contains Z®™ @ C* (where we regard Z®™ as embedded into Z®% by
regarding both as ideal sheaves), and if i = m, it still contains Z®™ @ Z™, where Z™ C C™
denotes the cocycles.
For the second transformation, let C'* be an Z-torsion-free complex with H™(C*®)[Z] = 0. We
will show that there is a canonical map
nrC® — I®" R0 rzZnee,
For this, note that (nzC)* is contained in Z®" ®¢,. C* for i > n, when both sides are viewed as
subsheaves of C”[%] in the usual way; this defines the preceding map in degrees > n. To get the
map in degree < n by the same recipe, it is enough to show that the sheaf Z®" ®¢,. C" ! contains
(and is thus equal to) the sheaf (nzC)"~!, as subsheaves in C"~![1]. But this immediate for
us: the quotient (nzC)"~!/(I®" ®p, C™71) is easily identified with Z®"~! @ H"(C)[Z], which
vanishes by hypothesis. This gives the desired natural transformation on the subcategory.
The identification of the composites is immediate from the definition. O

The following special case will come up repeatedly in the sequel:

Lemma 6.10. Let C € DZ°(Or) such that H°(C)[Z] = 0. Then there is a canonical map
LyzC = C.

Proof. This map is obtained by applying the second natural transformation constructed in
Lemma 6.9 for n =0 to C. O
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Composing two such operations behaves as expected:

Lemma 6.11. LetZ,J C Or be two invertible ideal sheaves, with product Z&o.,. J 57.9 COr.
There is a canonical equivalence of functors

L’I]I,J = [Inro L?]j : D(OT) — D(OT) .
Proof. Consider the category of Z - J-torsion-free complexes; this category is preserved by both
nz and 17, and nz.7 = nz o ny on this category. Deriving gives the desired equivalence. O

A crucial property is the following observation.'?

Proposition 6.12. If C € D(Or), construct a complex H*(C /L) with terms
H'(C/I) = H'(C ©6,. Or/T) ©o, T

and with differential induced by the Bockstein-type boundary map corresponding to the short exact
sequence
0—=Z/I?> = Op/I? = Or/T -0 .

Then there is a natural quasi-isomorphism
LnzC ®¢, Or/I = H*(C/T) .

More precisely, if C*® is an Z-torsion-free representative of C, then there is a natural map of
complezes
T]IC. KRor OT/I — H.(C/I) R

which is a quasi-isomorphism; moreover, the left side represents the derived tensor product.

Note that even when C' does not have a distinguished representative in K (Or), the proposition
shows that LnzC ®H@T Or/Z does have a distinguished representative as a complex, namely
H*(C/I). As we will see, this is related to the canonical representative (given by the de Rham-
Witt complex) of the complex computing crystalline cohomology.

Proof. 1t is enough to prove the assertion about C*®. Note that nzC*® is Z-torsion-free, and
for Z-torsion-free complexes, the underived tensor product with Op/Z represents the derived
product.
Note that there is a natural map
(7710)” — Z”(C'/I) Ko, zen
from the definition of (nzC)™. One gets an induced map
(nzC®)/L =nzC® ®o, Or/T — H*(C/I),

and one checks that this is compatible with the differentials.

Now we check that this map of complexes is a quasi-isomorphism; it suffices to check that one
gets an isomorphism on H? (as the situation at H™ is just a twist and shift). First, we check
injectivity of

H((12C*)/T) — HO(H*(C/T)) .
Let & € H((nzC*)/T). We can lift & to an element
ae(mC) ={yeC|dyez-C"},
with da € T - (nzC)?! (so that « is a cocycle modulo Z), and we have to show if & maps to 0 in
H°(H*(C/I)), then there is some
BemC) T ={yeC™ |dyeI - C°} ®o, I

such that d8 — « € T - (nzC)°. The assumption that & maps to 0 in H°(H®(C/Z)) means that
there is some

Be H HCO/T) @0, I®*
which maps to @ under the Bockstein. We may lift 3 to an element 8 € C~! ®¢p, Z¥~!. The
property that it is a cocycle modulo Z means that d3 € C°, and the property that the Bockstein

121 is this property of the Ln-operation that had initially led us to rediscover it.
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is @ means that d3 — a € Z-CY. Thus, in fact, implies d3 —a € Z - (n;C)°. Indeed, twisting the
defining equation of (n;C)® by Z, we have

Z-(C)°={yeT -C°|dyeI®. .C"},

and d(df — a) = —da € I - (n;C)' C 19?2 C.
It remains to check surjectivity of

H((1zC*)/Z) — H°(H*(C/T)) .

Thus, take an element & € H°(C/Z) which is killed by the Bockstein. This means that a lifts
to an element of H(C'/Z?), and so we can lift @ to an element o € C° with da € Z? - C*. But
this implies that o € (nzC)? and satisfies

dael- (nfC)l ,

as it lies in Z®2 . O and is killed by d. Thus, a defines a cocycle of (n7C*®)/Z, giving an element
of H°((nzC*®)/T) mapping to a. O

We observe that 1z preserves Z-torsion-free differential graded algebras, and that this structure
is compatible with the isomorphism from Proposition 6.12.

Lemma 6.13. Let R® be a differential graded Or-algebra with Z-torsion-free terms. Then nz R®
is naturally a differential graded algebra, with T-torsion-free terms. Moreover, H*(R®/I) has a
natural structure of differential graded algebra, where multiplication is given by the cup product.
The quasi-isomorphism

nzR® ®o,. Or/ZT — H*(R*/I)
is a morphism of differential graded algebras.

Proof. Easy and left to the reader. (Il

Finally, we observe that the Lyn-operation commutes with pullback along a flat morphism of
topoi. More precisely, let f : (T",Or/) — (T, Or) be a flat map of ringed topoi. Two important
cases are the case where f is a point of (T, Or), and the case where T'= T", which amounts to
a flat change of rings. Let Z C Op be an invertible ideal sheaf with pullback 7' = f*Z C O,
which is still an invertible ideal sheaf.

Lemma 6.14. The diagram
e
D(Or) — D(Orv)

anl ian/
e

commutes, i.e. there is a natural quasi-isomorphism Lnz f*C = f*LnzC for all C € D(Or).

Proof. Represent C by an Z-torsion-free complex C*®. Then f*C*® is Z'-torsion-free as f* is exact,
by flatness of f. One then verifies immediately that nz f*C*® = f*nzC*. O

6.2. Completions. In this section, we make a few remarks about completions, and their com-
mutation with Ln. The discussion works in a replete topos, [11, Definition 3.1.1], but the only
relevant case for us is the case of the punctual topos, so the reader is invited to forget about all
topoi. Throughout this section, we assume that T is replete.

Assume that J C Or is a locally finitely generated ideal, as in [11, §3.4]. Recall that by [11,
Lemma 3.4.12], a complex K € D(Or) is derived J-complete if K = IA(, where the completion
K is given locally by

frl Z[f177f7’]/(fin77fr’?)) ’

ceey

if J)u is generated by fi,..., fr.
Perhaps surprisingly, this condition on a complex can be checked on its cohomology groups.
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Lemma 6.15 ([11, Proposition 3.4.4, Lemma 3.4.14]). A complex K € D(Or) is derived J-
complete if and only if each Op-module H'(K) is derived [J-complete.

The category of derived [J -complete Or-modules is an abelian Serre subcategory of the category
of all Op-modules, i.e. closed under kernels, cokernels, and extensions.

Remark 6.16. We pause to remark that this statement is already interesting (and not very
well-known) in the simplest case of the punctual topos, Or = Z and J = (p). In this case, it
says that a complex K € D(Z) is derived p-complete, i.e.

K =~ Rlim(K % Z/p"Z) .

if and only if each H'(K) satisfies
H'(K) ~ Rlim(H'(K) ®% Z/p"Z) .

Note that any complex K whose terms are p-torsion-free and p-adically complete is derived p-
complete. However, its cohomology groups may not be separated, as for example in the case

of .
- Bz B,

n>1 n>1

Here, the differential is injective, but H'(K) is not p-adically separated: The element (1,p,p?,...)
projects to a nonzero element of H'(K), which is divisible by any power of p. Surprisingly, the
Zy-module M = H'(K) still has some intrinsic property, namely it is derived p-complete.

Recall that an Op-module M is classically J -complete if the natural map
: k
M — %M /T
is an isomorphism.

Lemma 6.17 ([11, Proposition 3.4.2]). Let M be an Or-module. Then M is classically J-
complete if and only if it is derived [J-complete and J -adically separated, i.e. (| J*M = 0.

We will often use the following lemma, identifying the cohomology groups of a (derived)
completed direct sum.

Lemma 6.18. Let C; € D(Or), i € I, be derived J-complete complexes, and assume that J is
locally generated by one element.

Assume that for eachi € I, H(C;) is classically J -complete, and H(C;)[T>°] = H°(C;)[T"]
for some n > 0 independent of i. Let C' be the derived J-completion of @, ; Ci. Then H°(C)
is the classical J-adic completion of @761 oy,

HO L@HO /jk

i€l

i€l

Proof. First, we observe that if M;, i € I, are derived J-complete modules, then the derived
J-completion of P, ; M; is again concentrated in degree 0. This may be done locally, so let f be
a local generator of 7. Then the only possible obstruction comes from the term mk D.cr M| Y
(where the transition maps are multiplication by f), which however embeds into
tim [ ] 61" = [ [ om ML) =
iel iel k
as each M; is derived f-complete.

In particular, the spectral sequence computing the cohomology of C' in terms of the derived
completions of the direct sums of the cohomology groups of the C; collapses, saying that H°(C)

is the derived completion of @,.; H°(C;).

Using the assumption H?(C;)[f*°] = H°(C;)[f"], one sees that @1; @D, H(C)[f*] = 0.
Thus, the derived inverse limit of {D,.; H°(C;)[f*]}« vanishes, so that in fact H°(C) is the
classical completion of @,.; H°(C}). O

Now we turn to relations between Ln and completions.
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Lemma 6.19. LetZ C Op be an invertible ideal sheaf, and let C € D(Or) be derived J -complete.
Then LnzC is derived [J-complete.

Proof. We have to see that ‘ A

H'(LnzC) = H*(C)/H*(C)[Z]
is derived J-complete. But H*(C) is derived J-complete by assumption, and hence so is H*(C)[Z]
as the kernel of a map of derived [J-complete modules, and thus also H?(LnzC) as a cokernel. [J

Note that the lemma does not say that Lnz commutes with J-adic completions. This is, in
fact, not true in general. However, it is true in the important case J = Z.

Lemma 6.20. Assume that Z C Or is an invertible ideal sheaf which is locally free of rank 1.
Let C € D(Or) with derived Z-adic completion C. Then the natural maps

LizC — LnzC — Rlim Lz (C ®%,, Or/I")

are quasi-isomorphisms. Here, the first map exists because ané is Z-adically complete.

Proof. We may work locally, and assume 7 is generated by a non-zero-divisor f € Op. Moreover,
all three complexes are derived f-complete. Thus, to prove that the maps are quasi-isomorphisms,
it suffices to check that they are quasi-isomorphisms after reduction modulo f. Now Proposi-
tion 6.12 shows that the first map is a quasi-isomorphism, as H*(C/f) = H'(C/f), and the
Bockstein stays the same.

Applying similar reasoning for the second map, it is enough to prove that

H(C/f) = {H'(C @6, Or/f™")/F)}n
is a pro-isomorphism. But in fact for any complex D of Op/f-modules (like D = C/f), the map
D = {D®¢, Or/f"}n

is a pro-quasi-isomorphism. O
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7. KOSZUL COMPLEXES
In this section, we collect various useful facts about Koszul complexes.

Definition 7.1. Let M be an abelian group with commuting endomorphisms f; : M — M,
i=1,...,d. The Koszul complex

Ku(fis--- fa)
is defined as

M(h%fd)@Ma @ M—... . — @ M—...,

1<i<d 1<i1<i2<d 1<ii<...<ip <d
where the differential from M in spot i1 < ... < ig to M in spot j1 < ... < jrt1 s nonzero only if
{i1, ..., ik} C{j1,---,dk41}, in which case it is given by (—1)™ 1 f;  where m € {1,...,k+ 1}
is the unique integer such that jm & {i1,...,ix}.

In other words,
d

Kar(fiy oo fa) = M @gp,, 5 QLA fa) 25 Zlf1, . L)

i=1

where the tensor product is taken over Z[f1, ..., fq], and the complex sits in nonnegative cohomo-
logical degrees. Note that this presentation shows that K/ (f1,. .., f4) is canonically independent
of the order of the f;, as the tensor product on cochain complexes is symmetric monoidal. Also,
Ky (f1,-.., fq) computes M ®Hi[f17---,fd] 7 up to a shift by |I|. We give one example of this
construction that will be quite useful in the sequel:

Example 7.2. Let A be a commutative ring, and let R = Axy,...,24]. For i = 1,...,d, let
fi + R = R be the A-linear endomorphism given by 8%1" Then Kg(f1,...,fq) is simply the
de Rham complex QF, /A

Lemma 7.3. Let [yise = H?ZlZ be the free abelian group on generators vi,...,7%4, and I' =
H?zl Zy, its p-adic completion.
(i) Let M be a Tgisc-module. The group cohomology RT (T gise, M) is computed by Kpr(y1 —

1,...,’}/d— 1)
(ii) Let N be a continuous I'-module that can be written as an inverse limit N = ]'glk>1 Ny

of continuous discrete I'-modules Ny, killed by p*. Then the natural map
chont (F7 N) — RF(Fdisca N)
is a quasi-isomorphism, and thus R cont (T, N) is computed by Kn(y1 — 1,...,74 — 1).
Proof. The first part is standard: One has a free resolution
Q(Z[Taise] “= Z[Taisc]) = Z
of Z as Z[Tgisc]-module, and taking homomorphisms into M gives a resolution of M by acyclic
T'gisc-modules, leading to the Koszul complex.

For the second, we may assume that N — Ny is surjective for any k (by replacing Ny by the
image of N — Nj). Then

RT cont(I', N) — Ry7 RT cont (I, Ni)

is a quasi-isomorphism, as follows from the description by continuous cocycles. The similar result
holds true for the cohomology of T'gisc by part (i). Thus, we can assume that N itself is a discrete
I'-module killed by a power of p. In that case, we have a similar free resolution

Q@,[[V)] "= Z[[1])) 2, ,

which leads to the same result. O
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We will often implicitly use the following remark to see that our constructions are independent
of the choice of roots of unity.

Remark 7.4. In part (ii), if one changes the basis v; € I" into ¢(i)y; for c(i) € Z), the resulting
Koszul complexes are canonically isomorphic. Indeed, let .J; C Z,[[I']] be the ideal generated by

i — 1; this is the kernel of Z,[[T']] — Zp[[l“/’yiz’?]], and so depends only on 7; up to scalar. Then

one has the free resolution
Qi = Z,[[T) = Z, ;

K3
mapping this into M gives a resolution by acyclic I'-modules, leading to a complex computing
RT cont (T, N). Once one fixes the generators v; — 1 € J;, this becomes identified with the Koszul
complex above.

Next, we analyze the multiplicative structure.

Lemma 7.5. Let R be a (not necessarily commutative) A-algebra, for some commutative ring
A, and let T gisc = H?Zl Z be a free abelian group acting on R by A-algebra automorphisms. Then

KR(ryl - 1a"'a’yd - 1)
has a natural structure as a differential graded algebra over A such that the quasi-isomorphism
KR(’Yl — 1, ey Yd — ].) >~ RF(FdiSC, R)

is a quasi-isomorphism of algebra objects in the derived category D(A). In particular, on coho-
mology groups, it induces the cup product.

Remark 7.6. Even if R is commutative, the resulting differential graded algebra will not be
commutative. However, if there is some element f € A such that the action of T" on R/f is
trivial, then Kr(y1 — 1,...,74 — 1)/ f is commutative.

Proof. We give a presentation of a differential graded algebra K}, over A, and then check that
as a complex of A-modules, it is given by Kr(y1 — 1,...,74 — 1), and is quasi-isomorphic to
RT'(Tgisc, R) compatibly with the multiplication.

Consider the differential graded algebra K}, over A which is generated by R in degree 0 and

an additional variable x; of cohomological degree 1 for each ¢ = 1,...,d, subject to the following
relations.
(i) Anticommutation: z;z; = —z;z;, 27 =0 for all 4,5 € {1,...,d}.

(ii) Commutation with R: For all r € Rand i =1,...,d,
zir =Y (r)z; .
(iii) Differential: da; =0 fori=1,...,d, and

d
dr = Z(%(r) —r)z; .
i=1
We observe that the Leibniz rule d(rr’) = r-dr’ +dr-r' for r,7’ € R is automatically satisfied:
d
reodr' +dr-r’ = Z (r(vi(r") = a4+ (vi(r) — r)ar’)
i=1

d
= Z (v (") = rr")ws 4+ (v (r)va (7)) = 79 (7))

d
= Z(’yi(rr’) —rr')z;

=d(rr') .

This, in fact, essentially dictates the rule z;r = ~;(r)xz; (which introduces noncommutativity even
when R is commutative).

It follows that in degree k, K, is a free R-module on the elements x;, A... Az, i1 < ... <.
The corresponding identification of the terms of K, with Kr(v1—1,...,74—1) is compatible with
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the differential. We leave it to the reader to check that it is compatible with the multiplication
on group cohomology. O

Let us discuss an example.

Example 7.7 (The ¢-de Rham complex). Let A be a commutative ring with a unit ¢ € A*,
and consider the A-algebra R = A[T jEl]. This admits an action of I'gise = ’yZ, where v acts by
T +— ¢T. In that case RI'(T'gisc, R) is computed by the complex

C*: R R= (A[T*) = A[T*Yz) :T" = (¢" — )T .

Here, we have used a formal symbol z for the generator in degree 1. In this case, the multiplication
is given as follows. In degree 0, the multiplication is the usual commutative multiplication of
A[T*1]. Tt remains to describe the products f(T)-(g(T)x) and (g(T)x)- f(T), where f(T),g(T) €
A[T*']. These are given by

() - (g(T)z) = f(T)g(T)z , (9(T)x) - f(T) = g(T)f(qT)x .
In other words, the only interesting thing happens when one commutes x past the function f(7),
which amounts to replacing f(T') by f(¢T).
We note that we can now also apply the operator n,—; to C*. This leads to the complex

Ng—10° : A[T*] — A[Til]dloqu :T" v [n]T"dlog, T .

Here, we use the formal symbol dlog, T (=(¢q — 1)) for the generator in degree 1, and [n], =
q;fll € A is the g-deformation of the integer n. We call this the ¢-de Rham complex ¢ - Qz[Tﬂ] /A
We stress that this complex depends critically on the choice of coordinates: there is no well-defined
complex g- Y, /A for any smooth A-algebra R. In closed form, the differential in the g-de Rham

complex is given by

fqT) — f(T) fqT) - f(T)
f(T) — leoqu = W%T ,

where we have formally set d,T" = Tdlog, T Note that if one sets ¢ = 1, this finite g-difference
quotient becomes the derivative. Again, this is a differential graded algebra, and the interesting
multiplication rule is

dlog, T - f(T) = f(qT) - dlog, T .

One can also define the ¢-de Rham complex in several variables
d

° _ .
q- QA[Tl:El’.“’Tjtl]/A = @ q- QA[Tiil]/A )
1=
where the tensor product is taken over A. This can be written as

Ng—1 K yppzr gy =100 — 1),

,,,,,

where ; acts by sending T; to ¢T;, and T} to T for j # ¢. In particular, this computes
L1y 1 RT (Caise, A[TEY, .., TEY)

The g-de Rham complex is still a differential graded algebra. In degree 1, it has elements dlog, T;
fori=1,...,d, and we have the multiplication rule

dlog, Ty - f(T1, ..., Ta) = f(T1,...,qTs,..., Ta) - dlog, Ty .

We briefly discuss (using some co-categorical language) why the g-de Rham complex does not
admit the structure of a commutative differential graded algebra.

Remark 7.8. Take A = Fy[¢™!] in Example 7.7, and R = A[T*!]. Set Ey := RI'(T'gisc, R) and
E\ = Lng_1E4, viewed as objects in the derived oco-category of A-modules. In this remark, we
freely use the following: (a) Eo admits an F..-A-algebra structure as RI'(Tgisc, —) is lax sym-
metric monoidal, (b) E; admits an E-A-algebra structure as Ln,_ is lax symmetric monoidal,
and (c) the map E; — FEs lifts to a map of E.-A-algebras. Granting these, we claim that the
F-Fy-algebra F; cannot be modeled by a commutative differential graded algebra over Fs.
Recall that the cohomology groups H*(E) of an E.-Fa-algebra E carry a functorial Steenrod
operation Sq° : H*(E) — H*(E) which acts as the identity on H*(X,Fy) for any space X,
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and vanishes on H'(D) for i > 0 when D is a commutative differential graded algebra over
Fy. Now observe that Sq°(z) = = for the element x € H'(F,) coming from z € C' (with
notation as in the previous example); this can be seen by using the canonical map C*(S*,Fy) ~
RT' (Tgise; Fa) — RT(Tgise, R) =: Eo, which carries the generator in H'(S!,Fy) to x € H(Es).
Since dlog, T € H'(E;) maps to (¢ — 1)z € H'(E;) and Sq” is @-linear on E.,-A-algebras, it
follows that SqO(dlogq T) € H'(E;) maps to (¢ —1)2z € H'(FE3). As the latter is non-zero, so is
SqO(dlogq T). In particular, Sq° acts non-trivially on H L(E1), so E; cannot be represented by a
commutative differential graded algebra over Fa.

Moreover, we need a lemma about the behaviour of Ln on Koszul complexes.

Lemma 7.9. Let f be a non-zero-divisor of a ring R, let M*® be a complex of f-torsion-free
R-modules, and let g1,...,9m € R be non-zero-divisors, each of which is either divisible by f or
divides f.
If there is some i such that g; divides f, then
nf(M* @r Kr(g1,--- 5 9m))
s acyclic.
On the other hand, if f divides g; for all i, then there is an isomorphism of complexes

nrKRr(91, - 9m) = Kr(g1/foo - 9m/f)

and more generally an isomorphism of complexes
ng(M* @r Kr(g1,---,9m)) =0 M* @r Kr(91/f,-- -, 9m/f) -

Proof. Arguing inductively, we may assume that ¢ = 1, and let g := ¢;. Assume first that g
divides f. Note that on any complex of the form M*® ®r Kr(g), multiplication by g is homotopic
to 0. As g divides f by assumption, it follows that multiplication by f is homotopic to 0, and in
particular all H(M*® ®g Kr(g)) are killed by f. This implies that n;(M*® ®r Kr(g)) is acyclic
by Lemma 6.4.

Now assume that f divides g. We embed K(g/f) = (R CZEN R) into K(g) = (R <% R) by

using multiplication by f in degree 1. The complex M*® ®g K(g) is given explicitly (in degree n
and n+ 1) by

i — MM S M e MY — -
One can realize ng(M*® @ K(g)) as the subcomplex of (M*® ®r K(g))[f~'] which in degree
n consists of those elements (x,y) € f"M"™ @ fP*M"~! with (dz,dy + (—1)"gy) € fA 1M1 @
frHIM™. Using the similar model for ngM®, this implies that © € (nyM)", and also y €
fne M), as dy + (—1)"gx € f"T1M", where gz € gf"M™ C f"TM" since f divides g.
Conversely, if z € (ngM)" and y € f(n;M)"~ !, then (dz,dy+(—1)"gy) € frT 1M1 frtipm,
so that we have identified 7y (M*® @ K(g)) with the complex
e (M) @ f (M) — (M) @ g M) — -
(,y) = (dv,dy + (—1)"g)
But this complex is precisely nyM*® ®g K(g/f), under the fixed embedding K(g/f) — K(g).
O
In some situations, one can compute the cohomology of Koszul complexes.

Lemma 7.10. Let g be an element of a ring R.

(i) Let M*® be a complex of R-modules. If multiplication by g on M® is homotopic to 0,
then the long exact cohomology sequence

c HPTN M) S HY Y (M®) = H™(M ®@p Kgr(g)) — HM(M®) 2 H(M®) = -+
for M*® ®@r Kgr(g) breaks into short exact sequences,
0— H" Y (M*) — H"(M* ®@p Kr(g)) — H"(M*) — 0,

which are moreover split.
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(ii) Let M be an R-module. If g1,...,g9m € R are all divisible by g, and g; is g times a unit
for some i, then there is an isomorphism of R-modules

H"(Kni(g,- - gm)) = Ay (9)"+) & M /g (R53)

Proof. (i): Given a cocycle x € M™, the assumption implies that gz = dz’ for some 2’ € M"~!
depending on z via a homomorphism (given by the homotopy); the association z — (x,2’) €
M™ @& M™! induces a well-defined homomorphism H"(M?®) — H"(M*® ®@r Kr(g)) which splits
the canonical map.

(ii): Without loss of generality, we may assume g; = ¢g. Then this follows by induction from
(i) applied to Kps(g1,.-.,9i—1) as g; is homotopic to 0 on Kr(g1,...,g9:—1) for each i. O
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8. THE COMPLEX Qx

Fix a perfectoid field K of characteristic 0 that admits a system of primitive p-power roots
Cpr, 7 > 1, which we will fix for convenience, although our constructions are independent of this
choice. Let O = Og = K° be the ring of integers, which is endowed with the p-adic topology.

Now let X/O be a smooth p-adic formal scheme, i.e. X is locally of the form Spf R, where R
is a p-adically complete flat O-algebra such that R/p is a smooth O/p-algebra; equivalently, by
a theorem of Elkik, [26], R is the p-adic completion of a smooth O-algebra. We will simply call
such R formally smooth O-algebras below. Let X be the generic fibre of X, which is a smooth
adic space over K. We have the projection

v Xproét — %Zar .

In everything we do, we may as well replace v by the projection Xy — X4, but the Zariski
topology is enough.

Definition 8.1. The complex ﬁgg € D(Xzar) is given by
Qx = LTKp—l(RV*@;_() 9
where (5} is defined in Definition 5./.

As the ideal ({, — 1) is independent of the choice of (,, so is ﬁgg In this paper, we consider
ﬁx merely as an object of the derived category (and not an oo-categorical enhancement). Then
ﬁx is naturally a commutative Ox-algebra object in D(Xza;), as both Ry, and Ln¢, 1 are lax
symmetric monoidal.

Our goal is to identify the cohomology groups of this complex with differential forms on X;
this identification involves a Tate twist (or, rather, a Breuil-Kisin—Fargues twist), so we define
that first, cf. Example 4.24.

Definition 8.2. Set
O{1} = TP(Q%Q/ZP) = H:(’)/Zp (1] = Loya,,[—1] = EAing /€ Ainr ;

this is a free O = Ainf/g—module of rank 1 that canonically contains the Tate twist O(1) as a free
submodule with cokernel annihilated exactly by (¢, — 1) = (p*/®~1).

Explicitly, if we regard the (,~ as fixed, one gets a trivialization O{1} = O with generator
given by the system of
1 d(Cpr)
Ol .
(™) emmby,

For any O-module M and n € Z, we write M{n} = M ®o O{n}. Our main result here is:

Theorem 8.3. There is a natural isomorphism
Hi(@) 2 0358 ()

of sheaves on Xg... Here, Q;C/%nt l&n EX/p")/(O/p") denotes the Ox-module of continuous
differentials. N
In particular, Qx is a perfect complex of Ox-modules.

Note that RV*@} is a complex that is only almost (in the technical sense) understood, using
Faltings’ almost purity theorem. It is thus surprising that in the theorem, we can identify the
cohomology sheaves of Qx = Lnc, _1Ru*(9 on the nose. This is possible as L, 1 turns certain
(but not all) almost quasi-isomorphisms into actual quasi-isomorphisms, cf. Lemma 8.11 below.

The theorem can be regarded as a version of the Cartier isomorphism in mixed characteristic,
except that Qx is not the de Rham complex; however, we will later see that its reduction to the
residue field £ of O agrees with the de Rham complex of R ®¢ k.

Remark 8.4. In Proposition 8.15, we also prove that the complex 731535 is canonically identified
with the p-adic completion of Ly /7 [-1]{—1}. Now the p-adic completion of Ly,z gives an

extension of Q;;glt by O{1}[1]; the corresponding Ext?-class measures the obstruction to lifting
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X to Aing/ 52. Thus, Tglﬁx also measures the same obstruction; this gives an integral lift of the
analogous Deligne-Illusie identification [24, Theorem 3.5] over the special fibre. In particular, if

X does not lift to Ajne/ 52, then (NZx does not split as a direct sum of its cohomology sheaves.

The rest of the section is dedicated to proving Theorem 8.3. It will be useful to prove a
stronger local result, which we will now formulate. The following definition is due to Faltings.

Definition 8.5. Let R be a formally smooth O-algebra. Then R is called small if there is an
étale map
Spf R — G, = Spf O(T, ..., T+ .
Let X = Spf R with generic fiber X = Spa(R[%}, R). We will denote such “framing” maps
=SpfO(T{, ...\ TFY)
to the torus by the symbol 0. Given a framing, we let

Roo = R®O(Tfl7...,Tfl)O<T1il/pooa T ’Tjd/poc> ’

0:%x - GY

m

which is a perfectoid ring, integrally closed in the perfectoid K-algebra Roo[%]. In particular, the
corresponding tower

73 P +1/p" +1/p" +1/p" +1/p"
lim” Spa(R ©ggetr _piny K(TT 7 T ) R g iy O(TE T

in Xp0¢t is affinoid perfectoid, with limit Spa(Roo[%], R), and so Lemma 5.6 applies. There is

an action of I' = Zp(l)d on R, where after a choice of roots of unity, a generator ~;, i = 1,...,d,
acts by T;/7" s (TP, TP s TP for j £
On the other hand, assume for the moment that Spf R is connected. Then we can consider the
completion R of the normalization R of R in the maximal (pro-)finite étale extension of R[%], on
which A = Gal(ﬁ[%]/R[}%]) acts. Again, R is perfectoid. Then R., C R and A surjects onto .
By Faltings’ almost purity theorem, the map
chont (Fa Roo) — RFcont (A, R)

is an almost quasi-isomorphism, i.e. all cohomology groups of the cone are killed by the maximal
ideal m of O.

Using [58, Proposition 3.5, Proposition 3.7 (iii), Corollary 6.6], one can identify the cohomology
groups on the pro-finite étale site with continuous group cohomology groups, to see that

RTeont(A, R) = RT(Xproter, O%) -

Note that the right side is well-defined even if SpfR is not connected.
In this situation, we can consider the following variants of Qx%.

Definition 8.6. Let R be a small formally smooth O-algebra as above, and let
O:Spf R — G% = Spf O(TF!, ..., T .
be a framing. Define the following complezes:
QR = L, -1 R cont (T, Roc)
QR = Lng, 1 RT (Xproter, O )
Q2O = Line, 1 RT(Xproct OF) -
Note that there are obvious maps
ﬁ% N Q%rofét N ﬁpRroét .

By the almost purity theorem, more precisely by [58, Lemma 4.10 (v)], and the observation that

Ln¢,—1 takes almost quasi-isomorphisms to almost quasi-isomorphisms, they are almost quasi-
isomorphisms. Finally, there is a map

QPO 5 RD(X,Qx)
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Theorem 8.7. Let R be a small formally smooth O-algebra. The maps
OF — Qprofét Pty RI(%, Q)
are quasi-isomorphisms; write QR for their common value. Then there are natural isomorphisms

HZ(QR) = Q;%C/O(;t{_z} )

where Q?}l%c/o(;lt denotes the locally free R-module Q%C/O(;t = Y&anR/pn)/(O/pn) of continuous differ-

entials.

Proof that Theorem 8.7 implies Theorem 8.3. As any sufficiently small Zariski open of X is of the
form Spf R for a small formally smooth O-algebra R, it suffices to check that the isomorphisms
Hi(QpR) = Q%C/O(;t{ —i} constructed in the proof of Theorem 8.7 are compatible with localization.
As these isomorphisms are multiplicative (Corollary 8.13 (ii)), we reduce to the case ¢ = 1. In this
case, the isomorphism Q;;Cgt — H! (§~2 r) is described in co-ordinate free terms in Proposition 8.15
and the following discussion. O
Remark 8.8. Without the assumption that R is small, one can still define ﬁ‘;{Ofét and Q‘;{Oét.

However, we do not know whether the maps

QProfet _, QProdt _y RI(X, Qx)
are quasi-isomorphisms without the assumption that R is small. (One can check that they are
almost quasi-isomorphisms.)

8.1. The local computation. Let R be a small formally smooth O-algebra with a fixed framing
O:%=SpfR— GY, .
Let
Roo = R®0(T$1,...,le>O<T1il/pma e deﬂ/poo>

which has a I' = Z,(1)%-action as above. We start by recalling the computation of the cohomology
groups of the complex

chont (Fa ROO) )
in a presentation which uses the choice of the framing [J and a choice of roots of unity (,. Note

that Q}z’;‘ggm is a free R-module with basis dlog(T}),...,dlog(Ty), and thus

st~ ARt~ RO

Proposition 8.9. For alli > 0, the map

cont (F7 ROO)

is split injective, with cokernel killed by (,—1. Moreover, H! . (I', Rso) and Hl (T, Roo)/(¢p—1)
have no almost zero elements.

/\Rd = Hciont(F7R) - HZ

Recall that an element m in an O-module M is called almost zero if it is killed by m.
Proof. Note that R — R, admits a I'-equivariant section, as R, is the p-adic completion of
b R-TM ... T5
al,...,adez[%]m[o,n

this shows that the induced map on cohomology is split injective. By [58, Lemma 5.5], the
cokernel is killed by ¢, — 1. In fact, the cokernel is given by

R®o B Hi (0,0 T T8
(0,..,0)#(a1,--,aa)€(ZI 5 ]N[0,1))

To check whether H¢ (T, Roo) and HY (T, Ro)/((p — 1) have almost zero elements, it remains

to check whether the displayed module has almost zero elements (as A" R% and A*(R/(¢, — 1))%
have no almost zero elements, using Lemma 8.10 below). As R is topologically free over O,
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cf. Lemma 8.10 below, it is enough to see that the big direct sum has no almost zero elements,
for which it is enough to see that each term in the direct sum has no almost zero elements. But
each direct summand is a cohomology group of a perfect complex of O-modules, which (as O is
coherent) implies that all cohomology groups are finitely presented @O-modules. Now, it remains to
recall that finitely presented O-modules do not have almost zero elements, cf. Corollary 3.29. O

The following lemma was used in the proof.
Lemma 8.10. Any formally smooth O-algebra R is the p-adic completion of a free O-module.

Proof. Let k be the residue field of O, and fix a section k¥ — O/p. Then, as R/p is a smooth
O/p-algebra and in particular finitely presented, we see that for r large enough, R/((,r — 1) is
isomorphic to Ry ® O/({r — 1), where Ry = R Qo k is the special fiber. Thus, as Ry, is a free
k-module, R/((pr — 1) is a free O/({,r — 1)-module. Picking any lift of the basis of R/({pr — 1)
to R gives a topological basis of R. ]

To check that the maps
ﬁ% - ﬁ};ofét N ﬁ[})%roét
are quasi-isomorphisms, we use the following lemma.

Lemma 8.11. Let A be a ring with an ideal I C A. Let f € I be a non-zero-divisor.

(i) Let M be an A-module such that both M and M/ f have no non-zero elements killed by
I. Let o« : M — N be a map of A-modules such that the kernel and cokernel are killed
by I. Then the induced map B : M/M|[f] — N/N|[f] is an isomorphism.

(ii) Let g : C — D be a map in D(A) such that for all i € Z, the kernel and cokernel of
the map H'(C) — HY(D) are killed by I. Assume moreover that for all i € Z, H'(C)
and H'(C)/f have no non-zero elements killed by I. Then Lnsg : LnsC — LngD is a
quasi-isomorphism.

Remark 8.12. The lemma is wrong without some assumptions on C. For example, in the case

A=0,I=m, f=_,—1, the almost isomorphism m — O does not become a quasi-isomorphism

after applying Ln¢,—1; here m/(¢, — 1)m has almost zero elements. Similarly, O/((, — 1)m —

0/(¢ — 1)O does not become a quasi-isomorphism; here O/(¢, — 1)m has almost zero elements.
It is a bit surprising that, in (ii), it is enough to put assumptions on C, and none on D.

Proof. Part (ii) follows from part (i) and Lemma 6.4. For part (i), as the kernel of « is killed by I
but M has no non-zero elements killed by I, « is injective. As M/M[f] = fM via multiplication
by f, this implies that g : fM — fN is injective. On the other hand, we have the inclusions
IfN C fM C fN C M as submodules of N. Thus, fN/fM < M/fM consists of elements
killed by I, and thus vanishes by assumption. Thus, fN = fM, and S is an isomorphism. O

The following corollary proves the first half of Theorem 8.7; the natural identification of the
cohomology groups with differentials will be proved as a consequence of Proposition 8.15 below.
Corollary 8.13. Let R be a small formally smooth O-algebra with framing O.

(i) The maps
ﬁ% - ﬁprofét N Qproét
R R
are quasi-isomorphisms. _ o o
From now on, we will write Qg for any of Qf, Q%r')fet and Q%°°, using superscripts
only when the distinction becomes important.
(ii) For all i > 0, there is an isomorphism (depending on our choice of framing)
RS HY(QR) ,

whose exterior powers induce isomorphisms

ARWiHﬁhy
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(iil) For any formally étale map R — R’ of small formally smooth O-algebras, the natural
map
QR ®H}% R — QR’
18 a quasi-isomorphism.
(iv) The map
Qr — RI(X, Q%)

18 a quasi-isomorphism.
Proof. For part (i), let C = RT¢ont (T, Rso), and let D be either of
RF(Xprofétaé\j_() ) RF(Xproétvé\;_() .
Then we have a map g : C — D which is an almost quasi-isomorphism, and C satisfies the
hypothesis of Lemma 8.11 (with A = O, I =m, f = (, — 1) by Proposition 8.9. It follows that
the map
L77(p—19 : anp_lC — L?’]CP_lD
is a quasi-isomorphism, as desired.
Part (ii) follows from Proposition 8.9 and the formula
H'(Lne,1C) = H'(C)/H'(C)[G — 1] ,
which is compatible with cup products. Using this identification of the cohomology groups, part
(iii) follows.
For part (iv), note that there is an induced map
QR XR Ox — Qx s
and it is enough to show that this is a quasi-isomorphism in D(Xza..), as the left side defines

a coherent complex whose RI" is Qr. Note that for any affine open {4 = Spf R’ C Spf R with
generic fibre U, by part (iii) the left side evaluated on il is given by

Lng, 1 BT (Uproer, OF) -
To check whether the map
Qpr @ Ox — Qx ,
is a quasi-isomorphism, we can check on stalks at points, so let x € X be any point. The stalk of
the left side is

liﬂ LUCP—IRF(UpTOéta 6}’_{) 5
Usx
and (using that Ln commutes with taking stalks by Lemma 6.14), the stalk of the right side is
L77<p—1 hgl RF(Uproét> 6;{) :
Usx

But Ln commutes with filtered colimits, so the result follows. O

Note that by functoriality of the pro-étale (or pro-finite étale) site, the assocation R +— Qp is
functorial in R. We end this section by observing a Kiinneth formula for Q.

Proposition 8.14. Let Ry and Rs be two small formally smooth O-algebras, and let R =
Ri®oRy. Then the natural map N N N
Qr,®0flr, = Qg

is a quasi-isomorphism.
Proof. Choose framings [0; and [y for Ry and Ry, and endow R with the product framing
0 = 0y xOs. We may, using part (iii) of Corollary 8.13, reduce to the case Ry = O(Tlil, e ,Tdil1>,
Ry = O(T;}H, e ,Tji_(b). In that case, one has

Reo = O(TTV7" LT P™) = Ry sc®oRa oo -
As the continuous group cohomology of I' = Zp(l)d1+d2 =T'; x I's is given by a Koszul complex,
one deduces that

RFcont (F7 Roo) = chont (F17 Rl,oo)&x\)ORFcont (FQa R2,oo) .
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It remains to see that Ln,—1 behaves in a symmetric monoidal way in this case, i.e. the induced
natural map

~0 ~ ~0O -
QR BoQp? — OF
is a quasi-isomorphism. This follows from Proposition 6.8 and Lemma 6.20 (noting that p-adic

and ¢, — 1-adic completion agree). (I

8.2. The identification of TSISNIR. As before, let R be a small formally smooth O-algebra, with
X=SpfRand X = Spa(R[%}7 R). In this subsection (and the next), we want to get a canonical
identification of 710 r with the p-adic completion of

Lgyz, [-1{-1} .

First, we construct the map. Consider the transitivity triangle
~ ~L = ~
L(’)/Zp[_l] Ko OX — L@;/Zp[_l] — L@;/O[—l]
of p-completed cotangent complexes on Xp;04t. Observe that IE@+ Jo = 0 as in fact L s/0 ~ 0 for
X
any perfectoid O-algebra S, see Lemma 3.14. We obtain a map

Lryz,[~1] = RT(Xproét: Lot 15 [~1]) = RT(Xproer Loz, [~1] ®0 O%) 2 RT(Xprost, O%){1} .

0% /Zp
Proposition 8.15. The map
f[:R/Zp [_1]{_1} — RF(Xproé‘m 6}'—()

just constructed factors uniquely over a map

Lz, [=1{=1} = Lig, -1 BT (Xproas, O%) = O
and this induces an equivalence

Lgyz, [-1{-1} 5 75'Qp .
Note that from the transitivity triangle
Loz, [-1] ®0 R = Lgz,[-1] = Lr/o[-1],

one sees that the cohomology groups of

Lg/z,[-1{-1}
1,cont

are given by R in degree 0 and Q /0 {—1} in degree 1. Thus, the proposition gives a canonical
identification

1,con ~ o

Qpro{-1} = H'(Qr) ,

and combining this with Corollary 8.13 finishes the proof of the canonical identification
(i} = Hi ()

thereby also finishing the proof of Theorem 8.7, and thus of Theorem 8.3.

Proof. First, we check that the factorization is unique. This is the content of the following lemma.

Lemma 8.16. Let A be a ring with a non-zero-divisor f, and let a: C' — D be a map in D(A)
such that H'(C) = 0 fori > 1, H(D) = 0 fori < 0, and H(D) is f-torsion-free. Then there
is at most one factorization of o as the composite of a map B : C — LnyD and the natural map
LnsD — D from Lemma 0.10, and it exists if and only if the map

HY(C @i A/f) — H (D&% A/f)

is zero, which happens if and only if the map H*(C) — HY(D) factors through fH' (D).
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Proof. First, we make the elementary verification that H'(C @4 A/f) — HY(D &Y A/f) is
zero if and only if H'(C) — H'(D) factors through fH!(D). Note that H'(C) surjects onto
HY(C®Y A/f), and HY(D)/ f injects into H*(D®% A/ f). Thus, the claim follows from observing
that in the diagram

HY(C) HY(D)/f

| |

HY(C®% A/f) —= HY (D &5 A/f)

the lower arrow is zero if and only if the upper arrow is zero.

Note that H*(D) = 0 for i < 0 and H°(D) is f-torsion free. By Lemma 6.10, there is a natural
map LnyD — D. We may assume that HY(D) = 0 for i > 1, as « factors through 7<'D, and
Lny commutes with truncations (so that any factorization 3 : C'— LnyD factors uniquely over
7S1LnsD = Lns(7='D)). For such D with H (D) = 0 for i > 1 or i < 0 and H°(D) being
f-torsion-free, there is a distinguished triangle

LnsD — D — H'(D/f)[-1] ,
where the second map is the tautological map D — D/f — 721D /f = HY(D/f)[—1]. Applying
Hom(C, —) gives an exact sequence
Hom(C, H'(D/f)[-2]) — Hom(C, Ln; D) — Hom(C, D) — Hom(C, H*(D/f)[-1]).

Now Hom(C, H'(D/f)[-2]) = 0 since C € D<!(A). This shows that there is at most one
factorization of o : €' — D through a map 8 : C — LnsD. Moreover, such a (3 exists if
and only if the composite C % D — H'(D/f)[—1] vanishes. This composite is identified with
the composite C — C/f — HY(C/f)[-1] Ha/h) HY(D/f)[—1]. Thus, such a 3 exists if and
only if H(a/f) = 0; this gives everything but the last phrase of the lemma. For the last
phrase, it is enough to observe that H'(C/f) = H'(C)/f and HY(D/f) = H'(D)/f since
C,D € DSY(A). O

This applies in particular in our situation to imply that the factorization in the proposition is
unique if it exists.
Now we do a local computation, so fix a framing (1 : X — G%,. Let S = O(Tlil, . ,Tdﬂ), SO
we have a formally étale map S — R. Then by Corollary 8.13, we have a quasi-isomorphism
QS ®s R — QR .
Similarly, there is a quasi-isomorphism
Ls/z, ®s R — Lgz, ,
by the transitivity triangle and the vanishing of L r/s- Thus, if we can prove the proposition for
S, giving an equivalence
]LS/ZP [—1]{—1} E) Tglgs s
then the result for R follows by base extension.
Thus, we may assume that R = (’)(Tlil, . ,Tdﬂ>. Also, we may replace the map
Lz, [=1{~1} = BT (Xprosr, 0% )
by the map
=~ +1/p> +1/p>
Lz, [~1{~1} = Rl ot (Z,(1)%, O(T7/77 L TPy

constructed similarly, as the resulting Q r-complexes agree. By Lemma 8.16, to check that the
desired factorization exists and gives the desired quasi-isomorphism, we have to see that

R=HLps [-1{~1}) = Hw(Zp (), OTEYP™ L TP

cont
is an isomorphism and

1 :l:l oo :l:l [e's)
QRS {—1} = Hl (2, () 0@V Tt PTy)
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is an isomorphism onto ({, — 1)HZ . The first statement follows directly from the definitions.
For the second statement, we note that both Q}:é;%nt{—l} and (¢, — 1)HZ . are isomorphic to

R? with bases on either side coming from the choice of coordinates (and the choice of roots of
unity). It is enough to check that basis elements match, which by functoriality reduces to the
case d = 1. We finish the proof of Proposition 8.15 in the next subsection. (]

8.3. The key case X = G,,. Assume now that X = G,, = Spf R, where R = O(T*!). Set
Roo = O(TFY/P7) and let T = Zy(1) be the natural group acting R-linearly on Ro.
We recall the map considered above. We start with the map
]ER/Z,, — H/:RDO/ZP
induced by p-completion of the pullback. Since R — R, is [-equivariant, this induces a map
H/:’R/Zp — Rl cont (Fv I/[:ROO/Z,J) =R m RT cont (Fu ]LRDC/ZP ®% Z/pn) :

We want to describe the image of dlog(T) = 4 € HO(]IAJR/ZP) = Q}é;(gt under this map; note

that this is an R-module generator of Q}%’;‘ém.

Proposition 8.17. Under the identification
RTeons(T, L /2,) = Rl comt(T', Ro)[1{1}
the image of dlog(T) € Ho(iR/ZP) in
Hgont(rv LROO/ZP) = Hclont(rv ROO){l}
is given by the image of
d10g®1 € Hclont(]'—‘v O{l}) ®O R = Hclont(F7 O{l} ®O R) — Hgont(]'—‘7 0{1} ®O ROO) ’
where dlog € HY (T, 0{1}) = Homcont(F,Tp(Q}Q/ZP)), I'=7Z,(1) = Tp(pp(0)), is the map on
p-adic Tate modules induced by the map dlog : p,es (O) — Q%D/Zp'
Note that by Proposition 8.9, the map
Hclont(rv O{l}) ®o R = Hclont (Fv 0{1} ®o R) — Hclont(rv 0{1} ®o ROO)
induces an equality
(CP - 1)H(}ont(1—‘7 O{l}) ®o R = (<P - 1)Hclont(r7 O{l} ®o ROO) ’
and the element dlog € HL . (T',0{1}) = O{1}(—1) is a generator of (¢, — 1)O{1}(—1); thus,
the proposition gives the remaining step of the proof of Proposition 8.15.

Proof. Since we work with p-complete objects, it is enough to describe what happens modulo p™
for all n. In this case, we can compute Rl cont(I', Lr__/z, ®% Z/p™) by the total complex of

-1
1 9 1
Q. sz, — Qreosz,

p" T p" T ’

-1
1 9 1
Oz, — sz,

where top left term is in bidegree (0,0), and g € T' is a generator, corresponding to a choice of
p-power roots of unity (,r, r > 1. Now dlog(T") defines an element of the top left corner of this
bicomplex, and we have
dlog(T) = p" - dlog(T"/?") .
Thus, in H® of the totalization of the above bicomplex, the element dlog(T) coming from the
top left corner is equivalent to
(g — D)dlog(TY?") = gdlog(T?") — dlog(TY/*") = dlog(Cm T /P") — dlog(T/*")
= dlog((pn) + dlog(TP") — dlog(TYVP") = dlog(Cpm) ,

viewed as coming from the bottom right corner. The result follows. O
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9. THE COMPLEX AQx

Let X/O be a smooth formal scheme with generic fibre X as in the previous section. In this

section, we extend the complex Qgg from O to Ajns = W(Ob) along g : Aing — O, i.e. we construct
a complex AQx € D(Xzar) of Ajpg-modules such that

AQx @Y 0= Qx .

inf>0

9.1. Statement of results. The definition is very analogous to the definition of ﬁg Fix a sys-
tem of primitive p-power roots of unity (,~, 7 > 1, which give rise to an element € = (1,{p,...) €
©°, and let p = [¢] — 1. Note that the ideal (1) is independent of the choice of roots of unity by
Lemma 3.23.

Definition 9.1. The complex AQx € D(Xza;) is given by
AQx = Lnu(RV*Ainf,X) .

Note that AQx admits a structure of commutative ring in D(Xz,,) by Proposition 6.7, and is
an algebra over (the constant sheaf) Aj,¢.

Theorem 9.2. The complex AQx has the following properties.
(i) The natural map
AQx @y 5O = Lng,1(Rn.0x) = Qx

18 a quasi-isomorphism.
(ii) More generally, for any r > 1, the natural map

AQx @ = Wo(0) = Lig, -1 (Rea W, (0%)) = W,z

inf797‘
18 a quasi-isomorphism.
(iii) For anyr > 1 and i € Z, there is a natural isomorphism

H'(W,Qz) = W, Q355 (i}

of sheaves on Xy, where WTQ;C/%M = @W"‘Qéx/pn)/(o/p") is a continuous version of
the de Rham-Witt sheaf of Langer—Zink, [51], and {—i} denotes a Breuil-Kisin—Fargues
twist as in Example /.24.

Note that part (iii) extends the corresponding result for Q proved in the last section. As in
the previous section, it will be important to formulate a stronger local statement.

Definition 9.3. Let R be a small formally smooth O-algebra, and let
O:Spf R — G = Spf O(TF, ..., T |
be a framing, giving rise to
R = R per i O(TFP™ L TP
on which the Galois group T = Z,(1)% acts. Define the following complezes:
Wifp = L, 11 RT comt (T, W(Roo)

—~— profét

WTQR = L’[’][CPT,]flRF(Xproféta WT(@\}))

—~——proét

WTQR == Ln[gp"']*lRF(XprOét’ WT(C”’)\})) ’

as well as
AQD = LnuRFcont (F7 Ainf<ROO))

AQR = Ly RY (X protét, Aint x)
flngroét = Ln/LRF(XproétyAinf,X) .

We will prove the following result, which implies Theorem 9.2.



70 BHARGAV BHATT, MATTHEW MORROW, AND PETER SCHOLZE

Theorem 9.4. Let R be a small formally smooth O-algebra with a framing O, and let X = Spf R
with generic fibre X .

(i) The natural maps

AT @L  WL(0) - Wy
R Aie b T TR

are quasi-isomorphisms.
(ii) The natural maps
———profét —~——proét

W, — W™ L wan™ & RO, W0x)

are quasi-isomorphisms; we denote the common value by WX)R.
(iil) The natural maps

AQT — AQPO _y AQPT% y RI(X, AQx)

are quasi-isomorphisms; we denote the common value by AQg.
(iv) For anyr > 1 and i € Z, there is a natural isomorphism

H'(W,Qp) = Q;ﬁgt{ i}
i,cont : %
where W, Qp o =M Wolip ) oy )0 /pm)-

In this section, we will prove these theorems, except for part (iv) of Theorem 9.4 (and the
corresponding part (iii) of Theorem 9.2), which will be proved in the next sections.

9.2. Proofs. Let O = Ok be the ring of integers in a perfectoid field K of characteristic 0,
containing all primitive p-power roots of unity (,-, giving rise to the usual elements £, i € Ajny =
W(O”). Let R be a small formally smooth O-algebra, with framing

0:X=SpfR— G = SpfO(TF,... TF) .

As usual, let
Roo = R8¢ pr iy O P TP

on which T' = Z,(1)? acts. We get the complexes
AQD = anchont (Fv Ainf(Roo)) P

——0
WTQR = Ln[cpr]fercont (Fa Wv(Roo)) 5

note that both of them have canonical representatives as actual differential graded algebras, by
computing the continuous group cohomology as the standard Koszul complex (which gives a
p-torsion-free, resp. [(,r] — 1-torsion-free, resolution on which one can apply 7, resp. 77[(}77,],1).

It turns out that AQE can be described (up to quasi-isomorphism) as a g-de Rham complex,
at least after fixing the system of p-power roots (,. Let us first define the relevant version of the
g-de Rham complex. Consider the surjection

At (US") = O(T) , Ui = Ty,

which is given by 0 : Ajr — O on Ajne. As O is (formally) étale, one can lift R uniquely to a
(p, p)-adically complete Ajne-algebra A(R)2 which is formally étale over Apg(U*). Moreover,
there is an action of I' = Zp(l)d on A;ps (Qﬂ): if we fix the p-power roots of unity and let v; € T’
be the corresponding i-th basis vector, then it acts by sending U; to [€]U;, and U; to U; for j # 1.
This action respects the quotient O(T*!) and is trivial there. As A (UT!) — A(R)Y is étale,
this action lifts uniquely to an action of I" on A(R)P which is trivial on the quotient A(R)" — R.
Actually, as the T-action becomes trivial on Aj,;(US")/([e] — 1), the T-action on A(R)" is also
trivial on A(R)9/([¢] — 1).
In particular, for any i = 1,...,d, we can look at the operation
8q Y 1
Oqlog(U;) [l —1

c AR)P — A(R)E .
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If R=O(T*"), then A(R)Y = Aje(U*?), and

9 nj| _ ... n;
9, log(U;) E[Uj _[nl]ql}Uj )

where as usual ¢ = [¢]. Using this, one verifies that the following definition gives in this case
simply the (p, u)-adic completion of the g-de Rham complex g- Q% (U] A from Example 7.7.
Definition 9.5. The g-de Rham complex of the framed small formally smooth O-algebra R is
given by

0 7)
-Q° - K “__ a )
=22 A(R)D / Ains A(R)H <8qlog(U1) 9q10g(Uq)

]

(aq 1o§(Ui))i d
—

= A(R)” (AR - (AR)T)E) - .. = (AR .

To connect this to AQ%, we first observe that there is a canonical isomorphism

AR)PB 4wy Aint UFP7Y 3 Ar(Roo) , UMY s (7,107

7 2

equivariant for the I'-action. Indeed, this is evident modulo &, and then follows by rigidity.
Reducing along 6, : Aips — W,.(O), we get a quasi-isomorphism

K3

3 o, ~ s rts
AR)D/& 8w, 0y = Wr(O)UHP) S W, (R) , U = (TP

cf. Lemma 3.3 for the identification of the map. The following lemma proves part (i) of Theo-
rem 9.4.

Lemma 9.6. There are injective quasi-isomorphisms
q_Q;!(R)D/A;nf = nq—lKA(R)D('Vl — 1, e Vd — 1) — AQ% = nq—lKAinf(Roo)(% — 1, ceesYd — 1)
and
. ~ ——U0
q—QA(R)D/AM/fr — W, Qg .

Moreover, the left side represents the derived reduction modulo gr, and so the natural map

—0
= W, (0) = W,Qp

O oL
AQR ®Ainf,9r
is a quasi-isomorphism.
Proof. We will prove only the first identification of AQ% as a ¢-de Rham complex; the identifica-

——0
tion of W,.Qp works exactly in the same way. For the final statement, note that the g-de Rham

complex has &,.-torsion-free terms.
We start from the identification

AR)B 4,y Ame (U7 5 Anr(Reo) -
Using this, we get a '-equivariant decomposition
Aint(Rog) = A(R)” @ Ain (Roo)™"™™
where A(R)D is the “integral” part, and the second summand is the nonintegral part, given by
the completed tensor product of A(R)P with the (p, u)-adically complete Ay, <Qi1>—subm0dule

of Ais(U +1/p Oo> generated by non-integral monomials. First, we observe that all cohomology
groups

%
Hcont

(F, Ainf(Rm)nonint)
are killed by ¢~'(u) = []'/? — 1 (and thus by p), so that in particular
L BT cont (T, At (Roo)""™)
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is 0. In fact, we will check that multiplication by ¢ =!(1) on RTcont (T, At (Roo ) ") is homo-
topic to 0. By taking a decomposition according to the first non-integral exponent, we have a
decomposition

d
Ay (Roo)nonint — @Ainf(Roc)nonint,i )
i=1

Now, to prove that multiplication by ¢~!(u) on
chont (P, Ainf(Roo)nonint’i) = KAinf(Roo)nonint,i (’71 - ]-7 sy Vd — 1)

is homotopic to 0, it suffices to show that multiplication by ¢ ~!(u) on

Ainf(Roo)nonint’i 'Y’__} Ainf(Roo)nonint,i

is homotopic to 0. Indeed, the whole Koszul complex is built from this complex by taking
successive cones, to which this homotopy will lift. Thus, we have to find the dotted arrow in the
diagram

Ainf (Roo)nonint,i L_1> Ainf (Roo )nonint,i

w‘l(u)l h o iw_l(u)
>

Ainf(Roo)nonint’i ﬂ) Ainf(Roo)nonint,i )

This decomposes into a completed direct sum of many pieces of the form
vi—1: A(R)D . Tia(i) H,le'l(j) N A(R)D . Tia(i) HT;;(J‘) ’
J#i J#i

where a(i) = m/p" € Z[%], r > 1, m € Z\ pZ. This complex is the same as

rem/pT_
AR)P LT Ar)P

Up to changing the roots of unity, we may assume that m = 1. Moreover, the map ~; [61/ pr} -1

divides the map 'ﬁril [e]'/P —1, so it is enough to produce a homotopy h for yf-fil []'/P —1. This
amounts to finding a map h : A(R)Y — A(R)™ such that

r—1

W (h(@)dY? —h(a) = ¢~ (wa .

As %pr_l = id modulo u, we can write 'yfr_l = id +ud for some map ¢ : A(R)® — A(R)P. The
equation becomes
pé(h(a))[eV/? = ¢~} (u)(a - h(a))
or equivalently
h(a) = a — &5(h(a))[d]"/? .

By successive ¢-adic approximation, it is clear that there is a unique solution to this. This handles
the non-integral part of AQ%.
On the other hand, by the existence of the g-derivatives

94 -1
3 Tor@) ~ [ =1 : A(R)” — AR)Y |

the differentials in the complex calculating

RTcont (T, A(R)P) = Ky gyo(n — 1,...,7a — 1)

are divisible by p = [¢e] — 1, and one gets (by Lemma 7.9)

O -1 Ya—1 .
M Bl cont (T ACR)Z) = K aryo ([4 —1T - 1) = AR e

Next, we need some qualitative results on the complex RTcont (T, W,.(Rso))-
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Lemma 9.7. Consider the Koszul complex
C* = KWT(ROO)(’yl -1,... y Yd — 1)

computing R cont (T, W.(Rso))-

(i) The complex C* can be written as a completed direct sum of Koszul complexes

KWT(O)([CM] -1,..., [Cad] - 1)
for varying a1, ...,aq € Z[%]. Here * € O is short-hand for C};a if k= p% € Z[%].
(ii) The cohomology groups
H'(W,Qpg) = H'(n¢,.1-1C"°)

are p-torsion-free.
(iii) For any perfect complex E € D(W,.(O)), the W,.(O)-modules

H'(C* ®%V,(O) E), H'(C* ®HI;V,\(O) E)/([Gpr] = 1)
have no almost zero elements, i.e. no elements killed by W, (m).
Proof. We begin with a rough computation of
RTconi (T, W (O(T=1/77)))

as a complex of W, (O)(U*")-modules, where U; s [T}]. Here, we normalize the action so that
the i-th basis vector v; € T' = Z,(1)? acts by sending [Til/p ] to [gpsTj/” ]
We can write

— d
RT cont (T, W, (O(TF1/77)) = D RT cont (T, W (O)(UH) - [[IT]*) -
a1,...,aq€Z[£]N[0,1) i=1

Moreover, each summand can be written as a Koszul complex

d
chont(rv WT(O)<Qi1> : H[Tl]ab) = KWT(O)<Qi1>([<a1] -1,..., [Cad] - 1) .

i=1
Next, we want to get a similar description of

RFcont <F7 W’r (ROO)) .
Recall that Aine(Roo) = Aing(UTYP )R 4

inf

<Q11>A(R)D, so that by base change along 6,., we get
W, (Roo) = W (0N U PV 0y AR) 7 /& 5

also, W,(OWUTYP™Y = W,.(O(TFYP™)) by passing to the p-adic completion in Lemma 9.8
below. This implies

RT cont (T, Wi (Roc)) = RTcont (T, Wi (OTEP )@y oy w1y AR)Z /& 5

note that the tensor product is underived modulo any power of p by étaleness. Therefore, we get
a decomposition

-

RT cont (T, Wy (Rog)) = b Kamyoye, (€] =1,...,[¢*] = 1) .
al,...,adGZ[%]ﬂ[O,l)

Finally, as in Lemma 8.10, A(R)P /¢, is topologically free over W,.(©), finishing the proof of (i).
For (ii), note that by Lemma 7.9,

i, -1 Kw, o) (€] = 1,...,[¢*] = 1)

is acyclic if p"a; & Z for some i, and otherwise it is given by

[Cm] -1 [Cad] -1
o (51 1)
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The cohomology groups of this complex are p-torsion-free by Lemma 7.10 and Corollary 3.18.
Also, n¢,-j—1 commutes with the completed direct sum by Lemma 6.20. Thus, we can apply
Lemma 6.18 to compute the cohomology groups

N .
H' (W, Qp) = H' (ni¢,r-1C"°)
as a classical p-adic completion of the direct sum of the p-torsion-free cohomology groups of the
Koszul complexes above. In particular, they are p-torsion-free.

For (iii), assume first that K = Ky, (0)([(*"*] = 1,...,[¢**] — 1) is a Koszul complex. Then
K ®H§VT(O) E is a perfect complex of W,.(O)-modules. Thus, as W,.(O) is coherent, every coho-
mology group is finitely presented, and thus contains no almost zero elements by Corollary 3.29;
the same argument works for H/([(,r] — 1).

Now we have a decomposition C® = C™t @ CPonint where C** is a completed direct sum of
Koszul complexes

Kw, o) ("] =1,...,[¢™] = 1),
where the denominator of each a; is at most p”, and C™°™™ is a completed direct sum of Koszul
complexes

Kw, o) ("] = 1,...,[¢*] = 1)
where the denominator of some a; is at least p"™!. Note that C"°Mnt is actually just (quasi-
isomorphic to) the direct sum of these Koszul complexes, as multiplication by [¢,~]—1 is homotopic
to 0 on each of the Koszul complexes, and thus on their direct sum.

It suffices to prove the similar assertions for H'(C™ @y, ) E) and H'(C*™™ @y, ) E).
Note that only finitely many different Koszul complexes appear in C'"*; by taking a corresponding
isotypic decomposition, we can reduce to the case that C'"* is the p-adic completion of a direct
sum of copies of one Koszul complex

K =Ky, o([¢"] = 1,...,[¢*"] = 1) .
In that case, H!(C'™ ®H‘;VT(O) E) is the classical p-adic completion of a similar direct sum of

copies of the finitely presented W,.(O)-module H*(K ®HV‘VT(O) E) (by Lemma 6.18, using that the

p-torsion submodule of finitely presented W,.(O)-modules is of bounded exponent), for which
we have already checked the assertion. Similarly in the second case, H®(Cmonint ®H‘7VT(O) E)

decomposes as a (noncompleted) direct sum of the cohomology groups of H(K ®H‘;VT ©) E) for
Koszul complexes K.

We used the following lemma in the proof.
Lemma 9.8. Let S be any ring. There are natural inclusions
W, (S[TP ..., %)) C Wo(S)[Uy, ..., Ud) C Wo(S[Th, ..., T4]) ,
and
W, (ST .. TP ) € Wo(S)[UE, ..., U ¢ W(S[TE, ..., TEY) ,

where U; = [T;]. In particular, by passing to a union over all p-power roots, we have equalities

W, (SITYP™ TV = W)U, uirT

+1/p> +1/p™ +1/p™ +1/p>
W,(S[TEVP™ L TEPT ) = ws) T o)

Proof. The Laurent polynomial case follows from the polynomial case by localization. The poly-
nomial case follows for example from [51, Corollary 2.4]. O

Moreover, we need the following base change property.

Lemma 9.9. Let R be as above, and let R — R’ be a formally étale map, i.e. R/p™ — R'/p"™ is
étale for all n, and R’ is p-adically complete. Let O be the induced framing of Spf R'. Then the
natural map

——0O —
W’!QR®W,(R)W’!(R,) — WT‘QR/

s a quasi-isomorphism.
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Remark 9.10. We note that modulo p”, the tensor product is underived by Theorem 10.4.
Indeed, by Elkik, [26], we may always find a smooth O-algebra Ry and an étale Ry-algebra Ry
such that R — R’ is the p-adic completion of Ry — R{. Then W,.(Ry) — W,(R}) is étale and
hence so is W,.(Rp)/p" — W, (R{)/p™, which agrees with W,.(R)/p™ — W,.(R')/p".

Proof. Fix a map Ry — R{, as in the remark. By Theorem 10.4,
Wr(Rgo) = WT(ROO)@)WT(R)WT(R/) ’
where the tensor product is underived modulo p”. Taking cohomology, we get
R cont (T, Wi (RL)) = R cont (T, Wi (Roo))@w, () Wi (R') -

Moreover, using Lemma 6.20 and the observation that Ln commutes with flat base change
W, (Ro) = W,(R]), cf. Lemma 6.14, we get

Ln[(pv-]flRl—‘cont (F7 W’I’(R/oo)> = Ln[Cpr]fercont (F; Wr (Roo))(g)Wr(R) W’I‘(R/) 5
as desired. ]
We can now prove part (ii) of Theorem 9.4.

Corollary 9.11. The natural maps

profét —~——proét

W, - Won™ L wal™ 5 R, W0.)
are quasi-isomorphisms.
Proof. Let C' = Rl ¢ons (T, W,.(Rso)), and let D be either of
RT (Xprotet, Wi(0X)) 5 B (Xpross, Wr(0F))

where X is the generic fibre of X = Spf R. Then the map g : C' — D is an almost quasi-
isomorphism, and hence by Lemma 8.11 applied with A = W,.(O), I = W,.(m), f = [{pr] — 1,
the induced map L¢,,)-19 is a quasi-isomorphism, as by Lemma 9.7, C' satisfies the necessary
hypothesis.

For the comparison to RI'(%, VI/ZT)XL we look at the map

WrQR®W,,.(R)Wr(03e) — W, Qx .
The same arguments as in the proof of Corollary 8.13 (iv) show that this is a quasi-isomorphism

in D(Xza;), using Lemma 9.9. Passing to global sections gives the result. (]

Finally, we prove part (iii) of Theorem 9.4. Once more, we need a lemma that L7, turns
certain almost quasi-isomorphisms into quasi-isomorphisms. Recall that the ideal W(mb) C At
does not in general satisfy W (m”)? = W(m’), so we have to be careful about the meaning of
“almost” here.

Lemma 9.12. Let f : C — D be a map of derived p-complete complezes in D(Aint), and assume
that the following conditions are satisfied.
(i) The morphism f ®%p F, in D(O”) is an almost quasi-isomorphism.
(ii) For alli € Z, the map H'(Ln, f) : H'(Ln,C) — H'(Ln,D) is injective.
(i) For alli € Z, one has
N Lwi)=um'(©).
meW (m?),m|u m
Then Ln, f : Ln,C — Ln,D is a quasi-isomorphism.
Proof. We need to show that for all ¢ € Z, the map
B+ H'(Ln,C) = H'(C)/H'(C)[p] — H'(D)/H'(D)[u] = H'(Ln,.D)
is an isomorphism; let
a: HY(C) — HY(D)

be the map inducing 5. By assumption (ii), 8 is injective.
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To prove surjectivity of 3, we have to see that the map
H'(D)[u] — Coker a
is surjective. For this, we observe first that for all » > 1, the map
f&5, LIp"%: C ey L/p"%— D&y L/p'Z
is an almost quasi-isomorphism with respect to the ideal W, (m”) C W,.(O°). This implies that
the induced map
W, (") @y, (ov) (C ®F, Z/p"Z) = W (W) @y, o) (D @5, Z/p"Z)
is a quasi-isomorphism. In particular, there is a map
W, (m) @y, (ov) (D @5 Z/p"Z) = W, (m’) @y, (ony (C ®F Z/p"Z) - C @5 L/p'L .
Thus, for any element m € W (m”), there is a canonical map
> . L T L T
m.D®ZPZ/p Z—>C®ZPZ/p Z
whose composite with f ®HZ‘p Z/p"Z (on either side) is multiplication by m. Passing to the limit
over r, using that C and D are p-complete, we get a canonical map m : D — C whose composite

with f (on either side) is multiplication by m.
Now, pick any element Z € Coker v, and lift it to z € H*(D). We claim that

iz e N %Hi(C)C pH(C) .

meW (m?),m|u

By assumption (iii), we get that ji(z) € uH*(C), so after subtracting (the image in H'(D) of
an element of HY{(C) from z, we may assume that g(z) = 0, so that in particular pz = 0
ie. z € H'(D)[u]. Thus, H'(D)[u] — Coker a is surjective, finishing the proof. a

Indeed, for any m € W(m®), we have m(z) € H'(C), and then fi(z) = Lm(z) € LH'(C).
of)

Lemma 9.13. Let
C= chont (Fa Ainf (Roo)) S D(Ainf) .
Then for all i € Z, the intersection
Koy i
N —HY(C) = pH'(C) .
meW (m?),m|pu
We note that it is actually not so easy to find many elements m € W(m”) with m|g. The only

elements we know are the ¢ ~" (1), and we will only use these elements in the proof. In particular,
we do not know whether one can write y as a product of two elements in W (m”).

Proof. We will freely make use of

ﬂ %Ainf - HAinf 5

mEW(m"),mW
cf. Lemma 3.23. We may decompose C' = C'"* @ C"°"t according to the decomposition
Api(Roo) = Ainf(Roo)int ® Ainf(Roo)nonint

from the proof of Proposition 9.6.

We handle first the non-integral part C™°""*, This can be written as a completed direct sum
of complexes of the form

KA(R)D(’Yl [e]a(l) - 17 s 77d[€]a(d) - 1) )

where a(1),...,a(d) € Z[%] N [0,1), not all 0. We compute the cohomology groups of each of
the summands. Permuting the coordinates, we may assume that a(1) = m/p" has the largest
denominator p”. The argument for existence of h in the proof of Proposition 9.6 shows that
71[e]*) — 1 has image precisely [e]'/?" — 1. Moreover, the image of v;[€]*® — 1 is contained in
the image of [¢]'/?" — 1, as 3, =1 mod .
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Applying Lemma 7.10 (ii) for the commutative algebra of endomorphisms of A(R)™ generated
by g = Hl/pr —-1,9;= %[G]a(i) —1 and % shows that

H'(K ymonle™™ = 1,... 7al @ = 1))

can be written as a finite direct sum of copies of A(R)Y/([¢]'/?" —1). This is a topologically
free Aint/([e]'/?" — 1)-module. It follows that the cohomology groups of C™°""* are a p-adically
completed direct sum of copies of Ajne/( [e]l/ - 1) for varying r > 1. Thus, by Lemma 6.18, it
suffices to prove the similar assertion for Ai¢/([e]'/?" — 1), which is easy.

It remains to handle the integral part

cint :KA(R)D('YI —1,...,7a—1).

Here, we note that all 7; — 1 are divisible by p. This implies that H {(C™Y) /i is isomorphic to
Z*(C™*) /. Thus, it remains to prove that

ﬂ ﬂZi(Cint) _ ﬂZi(Cint) )
mEW (mh) i
But as the cocycles form a submodule of the corresponding term of K, po(y1 —1,...,74 — 1),
which is a complex of u-torsion-free modules, it suffices to prove the similar result for the terms
of the Koszul complex. Now any term is a topologically free Aj,¢-module, for which the claim is
known. O

Proposition 9.14. The canonical maps
AQY — AQPTOE  AQPT L RT(X, AQx)
are quasi-isomorphisms.
Proof. Let C' = Rl ¢ont (T, Aing(Roo)), and let D be either of
RT(Xprotét, Aine,x) , BRI (Xprost, Ainf,x )

so there is a natural map f : C' — D. We want to verify the conditions of Lemma 9.12. Condition
(i) is immediate from the almost purity theorem. Condition (iii) is the content of Lemma 9.13.
It remains to prove that

H'(Ln,C) — H'(Ln,D)
is injective. For this, we note that for each r > 1, there is a commutative diagram

In,C ———In,D

l i

——0O —~——proét

WTQR —_— WTQR
(More precisely, one has such a commutative diagram in the derived category of N-indexed
projective systems, where the upper row is regarded as a constant system.) Passing to the limit
over r, we get a commutative diagram

Ln,C ————— Ly,D

| i

3 —0 . —~——proét
Rl&nr W, Qp —— R@r W,Qp
Now we note that by Lemma 9.6, the left vertical map is a quasi-isomorphism. By Corollary 9.11,
the lower horizontal map is a quasi-isomorphism. Thus, looking at cohomology groups, we get
the desired injectivity.
This shows that ) )

AQY ~ AQPTORE o gQPrott
we denote them simply AQp in the following. It remains to show that AQr ~ RI(X, AQx).
Previously, we argued by extending some variant of AQp to (some kind of) a quasicoherent
sheaf, and did the comparison on the sheaf level. However, AQ g is not a module over R, or
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any variant of R (like W,.(R)), so this does not work here. Instead, we argue by reducing to the
known case of m by an inverse limit argument.

Let %EZ}; be the presheaf topos on the set of affine opens Spf R’ C X. There is a map of topoi
7 Xz — %gz};, where j, is the forgetful functor, and j* is the sheafification functor. We can
form

AQI;Sh = L?’]HRVEShAinﬁX 5

where vPh = jov : Xprosr — xgz}; By Lemma 6.14, the value of AQp;h on an affine open

Spf R’ C X is given by AQ‘]’;I,Oét = AQpg/. Moreover, using Lemma 6.14 again, we have
j*AQp;h = j*LT]#Rj*RV*Ainf,X = Lnuj*Rj*Rl/*AianX = Ln#RV*Ainf,X = AQx ,
i.e. AQx is the sheafification of AQI;:h. By adjunction, we get a map
AQP" 5 Rj, AQx = Rj.j*AQR™" |

which we want to prove is a quasi-isomorphism (as then on global sections, it gives the desired
quasi-isomorphism AQg ~ RT(X, AQx)). In other words, we want to prove that AQ‘;ESh is already
a sheaf. But as for any Spf R’ C X, we have

AQR/ = R@AQR//&- = RLi_IanTQR, N

T

we have an equality
—~——psh

AQR = RlmW,Qx

———psh —~——psh
for the evident definition of WTQ; . By Theorem 9.4 (iii), we know that WTQ; is a sheaf, i.e.

/-\_/psh . b*/-\_/psh

Wiy — Rj.j W, Qx
is a quasi-isomorphism. We conclude by using the following lemma, saying that an inverse limit
of sheaves is a sheaf (which holds true in vast generality).

Lemma 9.15. Let C, € D(%gz}rl), r > 1, be a projective system, with homotopy limit C =

Rlim C,.. Assume that for each r > 1, C, is a sheaf, i.e. C,. — Rj,.j*C, is a quasi-isomorphism.
Then C is a sheaf, i.e. C' — Rj,j*C is a quasi-isomorphism.

Proof. Let C, = 7*C,, and let C = R@ér € D(Xzar); we note that this is not a priori given

by j*C. There is a quasi-isomorphism C' = Rj,C, given as a limit of the quasi-isomorphisms
C, = Rj,.C,. Applying j* shows that j*C = j*Rj,C = C, and thus C' = Rj,j*C as desired. [

d

9.3. Further properties of AQ). Let us end this section by noting several further properties of
AQx. First, the complex AQpg satisfies a Kiinneth formula.

Lemma 9.16. Let R; and Ry be small formally smooth O-algebras with completed tensor product
R = Ri®pRs. Then the natural map

AQp, @4 AQp, — AQp

inf

is a quasi-isomorphism.

Proof. As both sides are derived «g—complete7 it suffices to check modulo E, where it follows from
Proposition 8.14. O

Also, by construction AQx comes equipped with a Frobenius.

Proposition 9.17. Let R be a small formally smooth O-algebra. Then there is a natural ¢-
linear map ¢ : AQr — AQg which factors as the composite of a p-linear quasi-isomorphism
AQp ~ LngAQR and the natural map LngAQR — AQg.

In particular, if X is a smooth formal scheme over O, then there is a @-linear map ¢ : AQx —
AQx factoring over a p-linear quasi-isomorphism AQzx ~ LngAQx.
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Proof. Let X be the generic fibre of X = Spf R. The Frobenius ¢x is an automorphism of
RT hroet (X, Aing, x ), and thus induces a quasi-isomorphism

QD*AQR = @*LnuRrproét (X; Ainf,X) = Lntp(u) SQ*RFproét (X, Ainf,X)
= LngLnu* Rl prost (X, Aing x) = LngLn, BT prost (X, Aint x) ~ LngAQp .
O

Moreover, let us note that Ln behaves in a symmetric monoidal way in a relevant case.

Lemma 9.18. Let R be a small formally smooth O-algebra, and let D = RTpr060 (X, WT(@})),
so that W,.Qp = Lu¢,.)-1D. Let E € D(W,.(O)) be any complex. The natural map

Liie,r1-1D @1, 0y Lie,r1-1E = Lnje,r1-1(D @y, 0y E)

is a quasi-isomorphism.

In fact, the same result holds if D is replaced by any complex which admits an almost quasi-
isomorphism RTcont (T, Wi(Roo)) = D, where RT cont (T, Wi (Roo)) is defined using a framing as
usual.

Proof. We may assume that E is perfect, as the general result follows by passage to a filtered
colimit. Choose a framing 0, and let C' = RTcon(I', W;.(Rx)) using standard notation. In that
case, the argument of Corollary 9.11 works to prove that
Ln[Cpr]fl(C ®HV‘VT(O) E) = Ln[cpr]fl(D ®]II/‘VT(O) E),
using the general form of Lemma 9.7 (iii). Thus, it is enough to show that
Lni,)-1C @3y, 0) L)1 B = Lnge,11(C @iy, o) B)

is a quasi-isomorphism. But C decomposes into a completed direct sum of Koszul complexes.
Thus, the result follows from the case of Koszul complexes, Lemma 7.9, and the commutation of
Ln with p-adic completion, Lemma 6.20. O
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10. THE RELATIVE DE RHAM—WITT COMPLEX

In this section we review the theory of de Rham—Witt complexes.

10.1. Witt groups. Let A be a ring. As before, we use W,.(A) to denote the finite length p-
typical Witt vectors (normalized so that W1 (A) = A) and W(A) := im W.(A). In this section
we recall some results about how ideals of A induce ideals of W,.(4).

If I C A is an ideal then W,.(I) := Ker(W,(A) — W, (A/I)), which may be alternatively
defined as the Witt vectors of the non-unital ring I. We also let [I] C W,.(A) denote the ideal
generated by {[a] : a € I}, which is contained in W,.(I).

Lemma 10.1. Suppose that I is a finitely generated ideal of a ring A, and let ¥ C I be a finite
set of generators. Then the following five chains of ideals of W,.(A) are all intertwined:

([@®]:aex) [IF ] W) W,(I°), s>1.

(The first denotes the ideal generated by the elements [a®], for a € X.) More precisely, we have
containments

W.(IFIP) c ([a®] s a € ) C [I)° C [I*] € W,.(I®), [T} € W,(I)* € W,(I*)

Proof. Firstly, any element of W,.(A) may be written as Z:;Ol V'la,] for some unique ag, .. ., a,_1;
applying the same observation to A/I we see that W,.(I) is precisely the set of elements of W,.(A)
such that each element a; occurring in this expansion belongs to I. Moreover, for any two ideals
J1,JJo C A, we have W,.(J1+J2) = W,.(J1)+W,.(J2) (induct on r and use the formula for [a]+ [b]).
The inclusions ([a®] : a € £) C [I]* C [I*] € W,(I*) and [I]® C W,(I)® are then clear,
and W,.(I)® C W,(I®) is a consequence of the identity V[a]V7[b] = p! V([ab?" ]) (cf. proof of
Lemma 3.2) for all a,b € A and ¢ > j, and do not require finite generation of I. Conversely,
IPIPs © (qP"s . g € 2, and
We((a”*rae X)) => W,(a""A),
a€EX
by the additivity of W, of ideals. Finally, W,.(a?" *A) C [a]*W,.(A). Combining these observations
shows that
W,.(IZIP") c ([a®] :a € D) .
d

Corollary 10.2. IfI C A is an ideal satisfying I = I? such that I can be written as an increasing
union of principal ideals generated by non-zero-divisors, then W,.(I) = [I], and W,.(I) C W,.(A)
is again an ideal satisfying W,.(I)> = W,.(I) such that W,.(I) can be written as an increasing
union of principal ideals generated by non-zero-divisors.

Proof. Write I = r f;A, where f; € Ais a non-zero-divisor. Applying the previous lemma to all
f;A and passing to a direct limit over j (noting that the constants are independent of j) shows

that the sequences of ideals

U[fj]sWr(A) (=) i weI) s we(lf), s> 1

J

are intertwined, and are all contained in the last sequence W,.(I¥). However, this last sequence
is constant as I = I? = I? = .... Thus, all systems are constant and equal, and in particular
[1] = W(I) = U,[fj]Wr(A). Since the Teichmiiller lift of a non-zero-divisor is still a non-zero-
divisor, this completes the proof. O

The next lemma shows that [p]-adic and p-adic completion are the same:

Lemma 10.3. Let A be a ring. The following chains of ideals are intertwined:
Wi (A)  Wi(pA)® p"Wi(4), s=>1.
More precisely,

[P Wi(A) Cp°Wi(A) , p"Wi(4) C Wi(pA)*, Wo(pA)P" C [pPWi(4) .
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Proof. Recall from Lemma 3.2 that [p]> € pW,.(A); this implies [p|**W,.(4) C p*W,.(A). Asp” =0
in the W,.(F,,) = Z/p"Z-algebra W,.(A/pA), we have p" € W,.(pA) and thus p"*W,.(4) C W,.(pA)*.
Finally, the last inclusion was proved in Lemma 10.1. O

Let us also recall that Witt rings behave well with respect to the étale topology. The first
part of the following theorem appeared first in work of van der Kallen, [64, Theorem 2.4]. Under
the assumption that the rings are F-finite, the result is proved by Langer—Zink in [51, Corollary
A.18]. The general result appears (in even greater generality) in work of Borger, [14, Theorem
9.2, Corollary 9.4].

Theorem 10.4. Let A — B be an étale morphism. Then W,.(A) — W,.(B) is also étale.
Moreover, if A — A’ is any map with base extension B' = B ®4 A’, then the natural map

WT(A/) ®WT(A) WT(B) — WT(B/)
is an tsomorphism.

Proof. If R is a Z[%]—algebra, then W, (R) ~ [],_; R as rings functorially in R via the ghost
maps. Thus, if A (and thus every ring involved) is a Z[%]—algebra, the claim is clear. As the
functor W,.(—) commutes with localization, we may then assume that A (and thus every ring
involved) is a Zy)-algebra. Now if A and B are F-finite (e.g., finitely generated over Z,)) and
A’ is arbitrary, this is [51, Corollary A.18]. Let us observe that this formally implies the general
case: Indeed, we may find a finitely generated Z,-algebra Ay and an étale Ap-algebra By such

that B = By ® 4, A along some morphism Ay — A. Then W,.(By) is étale over W,.(4y), and
Wi (Bo) @w, (ae) Wr(A) = W,(B)

is an isomorphism. Thus, W, (B) is étale over W, (A), as the base extension of an étale map.
Similarly,
W (Bo) @w, (aq) Wr(A') = W,(B')

is an isomorphism, so that
W’I‘(A/) ®WT(A) W’I‘(B) = W’I‘(A/) ®WT(A0) WT(BO) = WT(B/) )
as desired. (|

10.2. Relative de Rham—Witt complex. We recall the notion of an F-V-procomplex from
the work of Langer-Zink, [51]. From now on, we assume that A is a Z,-algebra.

Definition 10.5. Let B be an A-algebra. An F-V-procomplex for B/A consists of the following
data (W2, R, F,V, \;):

(i) a commutative differential graded W,.(A)-algebra W = @, Wi for each integerr > 1;
(i) morphisms R: W2 | — RW? of differential graded W,.1(A)-algebras for r > 1;

iii) morphisms F : Wp_| — F.W2 of graded Wy.1(A)-algebras for r > 1;

iv) morphisms V : FW? — W, | of graded W, 1(A)-modules for r > 1;

(v) morphisms A, : W,.(B) — W? for each r > 1, commuting with the F, R and V maps;
such that the following identities hold: R commutes with both F' and V, FV = p, FdV = d,
V(F(z)y) = 2V (y), and the Teichmiller identity

Fd) 41 (b)) = A ([b])P~dA (b))

(
(

forbe B, r>1.

In the classical work on the de Rham—Witt complex, the restriction operator R is regarded as
the “simplest” part of the data; however, in our work, it will actually be the most subtle of the
operators (in close analogy to what happens in topological cyclic homology). In particular, we
will be explicit about the use of the operator R, and it would probably be more appropriate to
use the term F-R-V-procomplex, but we stick to Langer—Zink’s notation.

Remark 10.6. The Teichmiiller rule of the previous definition is automatic in the case that W}
is p-torsion-free, since one deduces from the other rules that dF'(x) = FAVF (x) = Fd(V(1)z) =
F(V(1)dz) = pFdz, and thus

PA[B)P T AN ([b]) = dA([b]F) = dFArs1 ([B]) = pFdAr41([b) -
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There is an obvious definition of morphism between F-V-procomplexes. In particular, it makes
sense to ask for an initial object in the category of all F-V-procomplexes for B/A.

Theorem 10.7 ([51]). There is an initial object {W’I"Q.B/A}T‘ in the category of F-V -procomplezes,
called the relative de Rham-Witt complex.

In other words, if W2, R, F,V,\;) is any F-V-procomplex for BJA, then there are unique
morphisms of differential graded W,.(A)-algebras

AL W QB 4 — W

which are compatible with R, F,V in the obvious sense and such that \0 : W,.(B) — W? is the
structure map A, of the Witt complex for each r > 1.

10.3. Elementary properties of relative de Rham—Witt complexes. In this section we
summarise various properties of relative de Rham—Witt complexes.

Lemma 10.8 (Etale base change). Let A — R be a morphism of Zp)-algebras, and let R’ be an
étale R-algebra. The natural map

Wk 4 @w, (r) We(R') S WeQ 4
is an tsomorphism.

Proof. If p is nilpotent in S or S is F-finite, this is [51, Proposition 1.7]; this assumption is
used in [51] only to guarantee that W, (R) — W, (R’) is étale, which is however always true by
Theorem 10.4. Thus, one can either reduce the general case to the F-finite case by Noetherian
approximation, or observe that by Theorem 10.4, the argument of [51] works in general. (I

The next lemma complements Lemma 10.1; if I C R is an ideal, then we write

Lemma 10.9 (Quotients). Let A — R be a morphism of Z,)-algebras, and I C R an ideal.
Then:
(1) Do Wi U'g 1)/ 18 the differential graded ideal of W23, 4 generated by W,.(I).
(ii) If I is finitely generated and ¥ C I is a finite set of generators, then the following two
chains of ideals of WTQ;%/A are intertwined:

<[QS] a e E>WTQ;%/A WTQ(.R,IS)/A 5 S Z 1.

Proof. (1): Write @,,5 W;Q?R 1y/4 for the differential graded ideal of W, Qf, , generated by
W (I); certainly W;QE’R’I)/A C WTQ?RJ)/A and so there is a canonical surjection

T Wk A/ Wk 1y = Welklr 1)/a -

Elements of W,’.Q?R) 1)/4 are by definition finite sums of terms of the form agda; - - - da,, where
at least one of ag,...,a, € W,.(A) belongs to W,(I). From this it is relatively straightfor-
ward to prove that R(WiQg y,4) C Wi Qg a0 FOWIQR 1)) © Wi 1Q(g y/4, and
VIWi_1QR 1y/4) © WiQUR 1,47 we refer the reader to [38, Lemma 2.4] for the detailed ma-
nipulations, where the same result is proved for the absolute de Rham—Witt complex. Since
W,.(R)/W,.(I) = W,.(R/I) by definition, it follows that the quotients WTQ;%/A/WT/QZR,I)/A’ r>1,
inherit the structure of an F-V-procomplex for R/I over A. The universal property of the relative
de Rham—Witt complex therefore implies that 7 has a section; since 7 is surjective, it is therefore
actually an isomorphism and so W;QERJ)/A = WTQERJ)/A, as required.

(ii): The inclusion ([a®] : a € X)W, Q% C Wi Qg 1.y 4 is clear. Conversely, in Lemma 10.1
we proved that for each s > 1 there exists ¢ > 1 such that W,.(I*) C ([a®] : a € ). Tt follows that
any element of WT’Q?RJ,,)/A is a finite sum of terms of the form w = agda; - - - da,, where at least
one of the elements aq, ..., a, € W,(R) may be written as [a°]b, with a € ¥ and b € W,.(R); the
Leibniz rule now easily shows that w € ([a*~'] : a € Z)W, Q% ,, as required. O
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Corollary 10.10. Let A — R be a morphism of Z)-algebras, and I C A a finitely generated
ideal. Then the canonical map of pro-differential graded-W,(A)-algebras

W% 4 ®w, ) We(A) /L] s — AW g 1:py j(a/15) ts

is an isomorphism. In particular,
Nm W Q% 4 Qw,(a) W, (A)/[I°] = W WSk 1o Ry Ay 19

Proof. This follows directly from part (ii) of the previous lemma, noting that WTQER JIR)/A =
Wolkw 10 r) a0

In particular, we make the following definition, where the stated equality follows from the
previous corollary applied to I = pA, and we use Lemma 10.3.

Definition 10.11. The continuous de Rham—Witt complex of a morphism A — R of Z,)-
algebras is given by

i,cont __ 1. 1 1 3
Wy = Im WeSg )0y jaypey = W Wl 0 /p° -

It would perhaps be more appropriate to let this notion depend on a choice of ideal of definition
cont

of A, but we will only need this version in the paper. We note that WTQ% /A still has the structure
of an F-V-procomplex for R/A.

10.4. Relative de Rham—Witt complex of a (Laurent) polynomial algebra. We now
recall Langer—Zink’s results concerning the relative de Rham—Witt complex of a polynomial
algebra A[T] := A[Ti,...,Tyq]. We will be more interested in the Laurent polynomial alge-
bra A[T*'] := A[TE,... TF'], and trivially extend their results to this case by noting that
WTQZ[Zﬂ} /A is the localisation of the W, (A[T])-module WTQZ[I] /a at the non-zero-divisors
[T4],..., (T4 by [51, Remark 1.10].

Fix a function a : {1,...,d} — p~"Z (this notation is slightly more convenient than thinking of
a as an element of p~"Z?), which is usually called a “weight”. Then we set v(a) := min; v(a(i)),
where v(a(i)) = vp(a(i)) € Z U {oo} is the p-adic valuation of a(i); more generally, given a
subset I C {1,...,d}, we define v(a|r) := min;e; v(a(i)). Let P, denote the collection of disjoint
partitions Iy, ..., I, of {1,...,d} satisfying the following conditions:

(i) I1,...,I, are non-empty, but Iy is possibly empty;

(ii) all elements of a(l;_1) have p-adic valuation < those elements of a(l;), for j =1,...,n;

(iii) an additional ordering condition, strengthening (ii) and only necessary in the case that
v:{l,...,d} = Z is not injective, to eliminate the possibility that two different such
partitions might be equal after reordering the indices; to be precise, we fix a total ordering
<o on {1,...,d} with the property that v : {1,...,d} — Z is weakly increasing, and
then insist that all elements of I;_; are strictly =<,-less than all elements of I;, for
j=1...,n.

Fix such a partition (Ip,...,I4) € P,, and let p; be the greatest integer between 0 and n such
that v(alz, ) <0 (take p; = 0 if there is no such integer); similarly, let po be the greatest integer
between 0 and n such that v(alr,, ) < oc.

It is convenient to set u(a) := max{—wv(a),0}. Then, given € W,_,)(A), we define an
element e(z,a, lo,...,I,) € WTQZ[Iﬂ]/A as follows:
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Case 1: (Iy # 0) the product of the elements

’U(alIO Jj H a(z (G\Io)))

i€lp
) v(alr.)
dv*v(ahj) H [Ti]a(l)/p ; .] = la < P1s
i€l;
”a|1 dH ﬂ()/ vtelry) j=p1+1
1 yoe ey P2,
icl;
dlog [ 73] j=p2+1,...n
iEI_j

Case 2: (Ip =) and v(a) < 0) the product of the elements

vl (¢ T ()0 preindy
i€l

dv= v(alr;) H a( )/Pv(a‘[j) j=2,...,p1,
icl;

’U(llI dH U«(Z)/Pv(a” ) ]:p—f— 1,...,p2,
icl;

dlog [ 73] j=p2+1,....n
i€l
Case 3: (Ip =) and v(a) > 0) the product of z € W,.(A) with the elements

FU(LL\I )dH a()/P(‘Ij) j=1...,p2,

i€l
dlogH[Ti] j=p2+1,...,n
i€l
Theorem 10.12 ([51, Proposition 2.17]). The map of W,.(A)-modules
e: P P VW@ (A) — W a4

a:{l,...,d}—=p~"Z (Lo,....,In)EP,
given by the sum of the maps
VHUIW, o) (A) = Wl iy g, VO (@) = e(,a, 1o, -, In)
s an isomorphism.

Proof. Langer—Zink prove this for A[T] in place of A[T" il], in which case p~"Z should be replaced
by p™"Z>o. To deduce the desired result for Laurent polynomials, recall that W,.Q" A[TE1)/A is the
localisation of the W,.(A[T ]) module W, 7,4 at the non-zero-divisors [T1], ..., [T4], and hence
W, QA[Til /A= =UjsolM]™ - [Ta]™ IW, Q% 7)/4 is an increasing union of copies of Wi 7y 4.
We also remark that LangerZink work with weights whose valuations are bounded below by

1 — r rather than —r; since W, _ax(r,0)(A) = 0 this means that we are only adding redundant
zero summands to the description. O

The integral part WthA[Til /A of W,.Q¢ A[TE1)/A is its differential graded W, (A)-subalgebra
generated by the elements [T}]*!, ..., [Td]il € W,(A[T*']). In other words, the integral part is
the image of the canonical map of differential graded W,.(A)-algebras

7Oy s wea) — Wl
induced by U; — [T;]. We note that the integral part depends on the choice of coordinates.

Theorem 10.13 ([51, Proof of Theorem 3.5]). The map of complexes T is an injective quasi-
isomorphism.
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Proof. In terms of the previous theorem, the image of 7 is easily seen to be the W,.(A)-submodule
spanned by the weights a : {1,...,d} — p~"Z with v(a) > 0, i.e., with value in Z. One then checks
directly firstly that the complement, i.e., the part of W,.Q% AT1)/A corresponding to weights with

v(a) < 0, is acyclic, and secondly, by writing a similar explicit description of QW (A U]/ W, (A)

that 7 is an isomorphism onto its image.

10.5. The case of smooth algebras over a perfectoid base. Finally, we want to explain
some nice features in the case where the base ring A is perfectoid, and R is a smooth A-algebra.
The next proposition will be applied in particular to the homomorphism O — k of perfectoid
rings.
Proposition 10.14. Let A — A’ be a homomorphism of perfectoid rings, and R a smooth
A-algebra, with base change R' = R®4 A'.

(i) The Wy(A)-modules W%, and Wy.(A") are Tor-independent.

(ii) The canonical map of differential graded W, (A’)-algebras

W’I‘Q;C/A ®WT(A) WT(A/) — WTQ;%’/A’
s an isomorphism.

Proof. Both statements can be checked locally on Spec R, so we may assume that there is an
étale map A[T*'] = AT, ... , TF'] — R. In that case, Lemma 10.8 shows

W Q4 = We(R) @w, (apr1)) Weypea 4 5
and similarly
WTQ%,/A, = WT(R/) ®W,.(A'[Iil]) WTQZX’[Zil]/A’ .
From Theorem 10.12, Lemma 3.13 and Remark 3.19, we see that WTQ:}‘[Tﬂ]/A is Tor-independent
from W,.(A") over W,.(A), and
WTQZ[Zil]/A Qw,.(A) WT(A/) = WTQZ’[Iil]/A’ .
As W,(R) is flat over W,.(A[T*']), we see that W, 4 is Tor-independent from W,.(A") over
W, (A), and
WT'Q%’/A’ - (R/) ®W (A/Lil]) W QA’[Til]/A’
(R) ®W A[Til]) W (A [ ]) ®WT(A,[Ii1]) WTQZ’[Iil]/A’
( ) ®W A[Til]) W QA/ Til]/A’
= W’I"(R) ®WT(A[Z:E1]) WTQA[Iil]/A ®WT(A) WT(A/)
= WTQE/A ®W7‘(A) WT(A/) 9
using Theorem 10.4 in the second step. O
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11. THE COMPARISON WITH DE RHAM—WITT COMPLEXES
In this section, we will give the proof of part (iv) of Theorem 9.4:

Theorem 11.1. Let R be a small formally smooth O-algebra. Then for r > 1,1 > 0, there is a
natural isomorphism

H (W, Qp) = W, Q0 —i} .

We start with a general construction that starts from a complex like R prost (X, Ainr,x) and
produces the structure of an F-V-procomplex. In this way, we define first the elaborate structure
of an F-V-procomplex on the left side, and then show that the resulting universal map is an
isomorphism (that is then automatically compatible with the extra structure).

11.1. Constructing F-V-procomplexes. Let S be a perfectoid ring and £ a generator of Ker 6 :
Ame(S) — S which satisfies 6,.(¢) = V(1) for all r > 1; in particular, 6,(¢) = p for all r > 1.
Let D € D(Ain(S)) be a commutative algebra object, with H'(D) = H(D/¢) = 0 for i < 0,
equipped with a @-linear automorphism ¢p : D 5 D. Note that by assumption H (D) is &-
torsion-free, and thus also ¢"(§)-torsion-free for all » € Z; in particular, it is §~T-torsion—free for
all 7 > 1, and so H (D/E,) = 0 for i < 0.

11.1.1. First construction. We now present a construction of (essentially) an F-V-procomplex
from D. It is interesting to see the rather elaborate structure of an F-V-procomplex emerge from
the rather simple input that is D. It will turn out that this preliminary construction must be
refined, which will be done in the next subsection.

For each r > 1 we may form the algebra D @&

Ko (9) 5. W,.(S) over W,.(S) = Aine(S )/{,« and

take its cohomology
W} (D)pre := H*(D @, (s) Aint(5)/)

to form a graded W,.(S)-algebra. Equipping these cohomology groups with the Bockstein differ-
ential d : W2 (D)pre — W2TH(D)pre associated to

0 — D®f, (s Aint(S)/& 5 D s (5) Aini(9)/€2 — D D fone () Aint(8)/& — 0

makes W) (D)pr into a differential graded W, (S)-algebra.

Now let , N *
R : T+1(D)pre — WT (D)pre

F Wi (D)pre = WiH(D)pre
VW (D) pre = Wrp1 (D)pre
be the maps of graded W,.(S)-modules induced respectively by

o7l
D ®kinf(s mf( )/§r+1 —D> D ®]{& £(S) mf( )/fr
D ®kinf(s) lnf( )/£T+1 o prOJ D ®A af (S) Amf( )/gr

e
D®kinf(s mf( )/fr —> D®A ae(S) mf( )/§T+1;
c.f. Lemma 3.4. Instead of R’, we will be primarily interested in
R:=0,(6)"R : W (D)pre = W(D)pre -

Proposition 11.2. The groups W (D)pre, together with the F', R, V, d and multiplication maps,
satisfy the following properties.
(1) W2(D)pre is a differential graded W, (S)-algebra, and satisfies the (anti)commutativity
zy = (=1)I*¥lya for homogeneous elements x,y of degree |x|, |y|;
(ii) R’ is a homomorphism of graded W,.(S)-algebras, and R is a homomorphism of differ-
ential graded W,.(S)-algebras;
) V is additive, commutes with both R’ and R, and satisfies V(F (z)y) = 2V (y);
iv) F is a homomorphism of graded rings and commutes with both R’ and R;
(v) FdV =d;
) FV is multiplication by p.
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We note that in general, W2 (D) may fail to be a commutative differential graded algebra,
as the equation 22 = 0 for |z| odd may fail (if A is 2-adic).

Proof. Part (i) is formal.
(ii): R’ is a homomorphism of graded rings by functoriality; the same is true of R since it is
twisted by increasing powers of an element. Moreover, the commutativity of

Erp1

0—— Ainf( )/§T+1 — Alnf( )/E?Jrl - Ainf(S)/gr-H —0

- -

00— Aue(S) /& — > Ain(8)/€2 ——> Ae(S) /& —=0

and functoriality of the resulting Bocksteins implies that

n d mn
Wr+1 (D)pre - r-|J-r11 (D)pre

R’J/ l@-(f)R'

Wrn(D)pre a4 W:H_l(D)pre

commutes; hence d commutes with R.

(iii): V is clearly additive, and it commutes with R’ since it already did so before taking co-
homology; it therefore also commutes with R. Secondly, V(F(x)y) = 2V (y) follows by tensoring
the commutative diagram below with D over A;,¢(S) (resp. with D ® D over Aj,(S) @ Ajne(S)
on the left), and passing to cohomology:

Aint(S)/Ers1 ® Aing(S) /€y —2 Aint(8) /611
id®wr+1(f)T

Aint(9)/Ert1 ® Aine(S) /&, e E)
Aint(8)/& ® Aint(9) /& e Aint(S)/&

(iv): F'is a graded ring homomorphism, and it commutes with R’ by definition, and then also
with R.

(v): This follows by tensoring the commutative diagram below with D over Aj,¢(S), and
looking at the associated boundary maps on cohomology:

00— A (S /ET Ainf(s)/gg 4>Ainf(5)/gr —0

& ~ =
0 —— Ainf /gr $’ Alnf( )/€T£r+l —— Ainf /67"-&-1 —0

can. proj.T T

00— Aint(8)/Ersr 2 Aint(8)/€2 1 —— Aint(8)/Epp1 —— 0

(vi): This is a consequence of the assumption that 6,(¢"71(¢)) = p for all r > 1 (which is
equivalent to 6,.(§) = p for r > 1). O
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Now suppose further that there exists an S-algebra B and W,.(S)-algebra homomorphisms
Ar : Wi (B) = WY(D) which are compatible with R, F,V, i.e., such that the diagrams

r+

Wyi1(B) 225 HO(D/E1) Woia(B) 22 HODJEes1) Wit (B) ~22 HO(D/E,11)

Rl l(pgl Fl J/can. proj. VT TLPTJA(&)

W(B) ——H'(D/§)  Wi(B) —=—>H"(D/&)  W(B) —"—H"(D/E,)
commute, and which satisfy the Teichmiiller rule Fd\,11([b]) = \.([b])?~*d\.([b]) for b € B,
r > 1. Moreover, assume that W2 (D)pe is a commutative differential graded algebra; the only
remaining issue here being the equation 22 = 0 for |z| odd.

Then the data W2 (D)pre, R, V, F, \;) form an F-V-procomplex for B over S, and so there
exist unique maps of differential graded W (S)-algebras A} : W, Q% , — W2(D)pre which are
compatible with R, F,V and satisfy \) = \,..

Remark 11.3 (The need to improve the construction). Unfortunately, from the surjectivity of
the restriction maps for W,.Q% /s and the definition of the restriction map for W2 (D)pre, we see
that
ImA? C () Im(OV7(D)pre A W (D) pre) C () 0n ()" W (D) pre
s>1 s>1

where the right side is in practice much smaller than W' (D)pre. Hence W2 (D)pre is too large
in applications: in the next section we will modify its construction to cut it down by a carefully
controlled amount of torsion.

11.1.2. Improvement. Let D € D(Aiy¢(S)) be an algebra as above, equipped with a Frobenius
isomorphism ¢p : D 5 D. Moreover, we assume that there is a system of primitive p-power
roots of unity (,» € S, and S is p-torsion-free, so we are in the situation of Proposition 3.17
above. This gives rise to the element € = (1,(p,(p2,...) € S and p = [€] — 1 € Ay(S), which
is a non-zero-divisor. We let £ = 11/~ (1), which satisfies the assumption 6,.(¢) = V(1) for all
r > 1. Finally, we assume that H°(D) is u-torsion-free.

We can now refine the construction of W2 (D), in the previous section by replacing D by the
algebra Ln, D over Ai,¢(S), on which ¢p induces a ¢-linear map ¢p : Ln,D = Lng(LnuD) —
Ln,D (as LngLnH = Lng# = Lny(). Moreover, there is a natural map Ln,D — D by
Lemma 6.10, and the diagram

Ln,D -2~ Ln,D

|,

D—* . D

commutes.
More precisely, we consider the cohomology groups

WD) = H™(Ln,D &, sy Aint(S)/E:) -

Equipped with the Bockstein differential, they form a differential graded W,.(S)-algebra as before
(satisfying the Leibniz rule, and the anticommutativity zy = (—1)“1”||y|yac7 but not necessarily
z? =0 for |z| odd), and the map Ln,D — D induces a morphism of differential graded W,.(S)-
algebras

i W (D) — W (D)pre -
Moreover, letting F': W, (D) — W (D) and V : W (D) — W', (D) be the maps induced
respectively by
LnuD &%, (s) At (S)/&ri1 B LD &% o) Aune(S) /&
and

LoD &%, ) hine(8)/& T LnaD @k ) Aue(S) /&,
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it is clear that i commutes with F' and V. It is more subtle to define R : W', | (D) — W}*(D); in
the proof below, we give a “point-set level” construction based on picking an actual model of D
as a complex. It is not clear to us whether the construction is independent of the choice of this
model, so we impose the following assumption which helps us prove independence; it is verified
in our applications.

Assumption 11.4. For allr > 1, n >0, the group W*(D) is p-torsion-free.

Proposition 11.5. Assume that Assumption 11.4 is verified. Then the following statements
hold.
(i) The differential graded W,.(S)-algebra W2 (D) is commutative; in particular, it satisfies
22 =0 for |z| odd.

(if) For allr™>1, n >0, the map W (D) — W (D)pre is injective.

(iii) The maps F,R : W' 1 (D)pre = WH(D)pre,» V : WH(D)pre = W1 (D)pre and d :
WE(D)pre = WET(D)pre induce (necessarily unique) maps F, R : W, (D) — W*(D),
VWD) — W=, (D) and d : WMD) — WrtY(D). In the case of F, V and d, these
agree with the maps described above.

(iv) The map R : Wy (D) — RIWV?(D) is a map of differential graded W,,1(A)-algebras,
the map F : Wp, (D) — FIW(D) is a map of graded W,,1(A)-algebras, the map
Vi FEWR(D) — Wr (D) is a map of graded W,41(A)-modules, and the identities
RF =FR, RV =VR, V(F(z)y) =2V (y), FV =p and FdV = d hold.

(v) Assume that B is an S-algebra equipped with W,.(S)-algebra maps A, : W,.(B) — W?(D)
forr > 1, compatible with F', R and V. Then the Teichmiiller identity

Fd) 41 ([b]) = A ([b])P A ()

holds true for all x € B, r > 1. In particular, W2 (D) forms an F-V-procomplez for
B/S, and there is an induced map

A W Qg 6 = WE(D)
of differential graded algebras for r > 1, compatible with the F', R and V maps.

Proof. For (i), we only need to verify that 22 = 0 for || odd, which under the standing assumption
follows from 2x? = 0, which is a consequence of the anticommutativity.

For part (ii), the statement does not depend on the algebra structure of D, so we may assume
that D € DO+ (A;,¢(S)) by passing to a truncation; note that this does not change W (D) e =
H™(D/&,) or Wi(D) = H”((Ln#D)/gr) for any r. Then there are maps D — Ln,D, Ln,D — D
whose composite in either direction is multiplication by px"*! by Lemma 6.9. Since p divides p”
modulo Er by Proposition 3.17 (iv), the kernel of the map

H"((Ln,D)/&) — H"(D/&)

is p-torsion. By our assumption, W (D) = H”((LnuD)/g) is p-torsion-free, so we get the desired
injectivity.

In part (iii), it is clear that the d, F' and V maps defined above commute with the corresponding
maps on W' (D)pre. It remains to handle the case of R, so fix n > 0. Note that the definition of

R depends only on D € D(Aj(S)) with the automorphism ¢p : D = D, but not on the algebra
structure of D. We may assume that D € D7+t (A;(S)), and then pick a bounded above
representative D*® of D by projective Ajn¢(S)-modules. Then ¢p : D — D can be represented
by a map ¢pes : D* — D®. Replacing D® by the homotopy colimit of D*® under ¢ps, we can
assume that D*® is a bounded above complex of flat A;,¢(S)-modules, on which there is a ¢-linear
automorphism ¢pe : D* = D°.

n

Now pick an element & € W}, (D) = H”((%D.)/Er+1)~ This can be represented by an
element o € " D™ with da = &1 for some B € p"1D"+1. The element o = £"av € ()" D™
satisfies o o _

da’ = €"6 1B € p(&)E" M TIDM Y = (&) p(p)" D

so that o/ € (1,(,)D)". Thus, R(a) := ¢pn(a’) € (n,D)", and it satisfies

d(R()) = @pnir (o) € ¢B£+l(@(g)¢(#)n+1Dn+1) — & Dt
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so that in fact d(R(a)) =0 € (n@(H)D)”‘H/{;. This shows that R(e) mod &, induces an element

of H”((nuD')/gr). One checks that under the inclusion W*(D) < W/ (D)pre, this is the image
of @ under R.

In part (iv), all statements follow formally from the results for W' (D)pre, and (ii).

Finally, in part (v), the Teichmiiller identity always holds after multiplication by p, cf. Re-
mark 10.6, so that by our assumption, it holds on the nose. (]

Note also that the map W (D) — W) (D)pre has image in 0, ()" Wi (D)pre, and is an isomor-
phism if n = 0.

Remark 11.6. Assume in addition that for all » > 1, the natural map

(LU#D)/ET — L77M<D/§T)
is a quasi-isomorphism, as is the case for D = RI'p0st (X, Aint,x ) by Theorem 9.2 (i), where X is
the generic fibre of X = Spf R for a small formally smooth O-algebra R. In that case, the image
of
WD) = H"((LnuD)/&) = H"(Lnu(D /&) — H"(D/&) = Wi (D)pre

is exactly 6, (11)"W"(D)pre. Indeed, in general the image of H"(Ln;C) — H"(C), for C € D=°
with H°(C) being f-torsion-free, is given by f"H™(C'). This makes it easy to see that R preserves
W(D). Moreover, one can give a different description of the restriction map, as follows. Indeed,
composing the map

WD) = H"(Ln,(D/&)) — H"(Lnu(D/&))/H" (Lnu(D/&))[€] = H" (LngLn,(D/¢r))
with _ ~ ~
H"(LngLnu(D/fr)) = H”(L%(u)(D/ﬁr)) — H"(L%(u) (D/‘P(grfl)))
=" H"(Ln,(D /& 1)) = W1 (D)

defines the restriction map.

11.2. A realization of the de Rham—Witt complex of the torus. Let O = Ok C K be the
ring of integers in a perfectoid field K of characteristic 0 containing all p-power roots of unity; we
fix a choice of (,» € O, giving rise to the elements ¢ = (1,(,,...) € O°, = [e] =1 € Apyr = W(O?)
and & = u/@~(n) as usual.

Consider the Laurent polynomial algebra

A [UFVPT) o= A UEYPT L UFVPT)

It admits an action of Z% = @?:1 7%, where the element ; acts by sending Uil/ P to [e]*/P" Uil/ P T,
and Ujl/p to Ujl/p for j # i. We consider

D = RI(Z%, Ains[UEYP7)) € D(Aint) ,

which is a commutative algebra in D(Ajy). Note that H'(D) = 0 for i < 0, and H°(D) C
Aing [Qil/ p oo] is torsion-free. We will see below in Theorem 11.13 that D satisfies Assumption 11.4;
thus, we may apply the constructions of Section 11.1. Our goal is to prove the following theorem.

Theorem 11.7. There are natural isomorphisms

WMD) = H"(Ln,D @Y, . At /&) = w,Qn

[T T 00

compatible with the d, F', R, V and multiplication maps.

We begin by computing Ln,D. The result will turn out to be the g-de Rham complex

d
4= ) A = ® (Aint[UF'] — AU dlogUs),  UF — [k],UF dlog U;

i=1

from Example 7.7, where ¢ = [¢], the tensor product is taken over Aj,f, and [k], = q;:11 is the
g-analogue of the integer k € Z.

Note that there is a standard Koszul complex computing D, namely the complex

D* = Ky pemyn = Lot = 1)
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Recall also that there is a Frobenius automorphism ¢p of D, coming from the automorphism
of Ainf[gil/p | which is the Frobenius of Aju¢, and sends U; to UF for all i = 1,...,d. This
automorphism ¢p of D lifts to an automorphism ¢ pe of D®, given by acting on each occurence of
Ains [Qil/p ]. Note that D*® is a complex of free Aj s-modules, so that one can use it to compute
Ln,D.
Proposition 11.8. There is a natural injective quasi-isomorphism
[6] - Q;linfgil]/Ainf = nq_lKAinf[Qil](fyl B 17 o 7"}/d - 1)
= 0uD® = g1 Ky ey — 1,070 — 1)
Moreover, the natural map
(LnuD) /& — Lne,.1-1(D /&)
is a quasi-isomorphism.

Proof. This is an easier version of Lemma 9.6. Note that Ain¢[UT'/P” ] is naturally Z[%]d—graded,
and this grading extends to the complex D*, giving a decomposition

d
Do @D @ (U A )
a:{1,...,d}—2[1] i=1
Here, the complex

a(i) _q

(Ainf U VT Ay Uia(i)) = (Ainr 95 Aing) = K, ([¢]°D = 1),

so that

D. - @ KAinf([e]a(l) - 17 ey [E]a(d) —_ 1) .
a:{l,...,d}—)Z[%]

Observe that if k ¢ Z, then [¢]* — 1 divides y = [¢] — 1; indeed, this is clear for [¢]'/?" — 1, and in
general if k = j/p" with j € Z\ pZ, then [¢]* — 1 differs from [¢]'/?" — 1 by a unit. On the other
hand, if k € Z, then p = [¢] — 1 divides [¢]® — 1, with quotient [k],, where ¢ = [€].

Now, we distinguish two cases. If a(i) € Z for some 4, then

MK g ([ =1, [9D = 1)
is acyclic by Lemma 7.9. On the other hand, if a(i) € Z for all 4, then by the same lemma,
UHKAmf([e]a(l) -1,..., [e]a(d) -1)= KAinf([a(l)}q7 T [a(d)]q)
where ¢ = [e]. Assembling the summands for a : {1,...,d} — Z gives precisely [¢] - Q5 (U A

The final statement follows by repeating the calculation after base extension along 6, : A,y —
W, (0). O

It will be useful to have an a priori description of the groups
WD) = H"((Ln.D)/&r) -
Lemma 11.9. For each n > 0 there is an isomorphism of W,.(O)-modules

W:}(D) = @ Wr—u(a)(o)(:)

a{l,..,d}—p="Z
where u(a) is as in Section 10.4. In particular, W(D) is p-torsion-free.
Proof. Using the interpretation of Ly, D as a g-de Rham complex from Proposition 11.8, we have
d
LD~ @ @ U A ) = @@ Kay(alys - la(@)],)
a:{1,...,d} =7 i=1 a:{l,...,d} =7
where as usual ¢ = [¢]. Taking the base change along 0, : At — W,.(0), we get

- -1 -1
LnﬂD/é-T = @ KWT(O) ( [Cpr]_l e [C;D’“]_l ’
a{l,...,d}—Z
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e -1
[Cpr]_l
with it up to a unit, it follows from Lemma 7.10 (ii) that the Koszul complex in the summand

on the right side has cohomology

Since each element on the right side is divisible by , and at least one element agrees

d—1 d—1
[CUT(‘P_TG)]il ( n ) [CUT(‘P_TG)]il (nfl)
Annyw, (o) ( p[cpr]1> 82 (WT(O)/’WWT(O)) -
This is isomorphic to W,._y,,-rq)(O) () by Corollary 3.18 (iii). Renaming p~"a by a finishes the
proof. O

Remark 11.10. It may be useful to contrast the p-torsion-freeness of W' (D) with the coho-
mology groups W' (D)pre = H™(D /f:) obtained without applying Ln,, which are well-known to
contain a lot of torsion, coming from the summands parametrized by nonintegral a. This is one
important motivation for introducing the improved construction of Section 11.1.2.

In order to equip W? (D) with the structure of an F-V-procomplex for O[T*']/O, it remains
to construct the maps A, : W,.(O)[T*'] — WO(D). This is the content of the next lemma.

Lemma 11.11. There is a unique collection of W,(O)-algebra morphisms A, : W,.(O[T*]) —
W2(D) for r > 1, which satisfy \-([T;]) = U; fori=1,...,d and which commute with the F, R
and V. maps. Moreover, each morphism A, is an isomorphism.

Proof. We have
W(D) = H((LnuD) /&) = HO(Lngc,.1-1(D/&)) = HY(D/,) ,
as H(D/&,) is p-torsion-free (and thus [¢pr] — 1-torsion-free). Note that by definition of
D = RT(Z%, Aie[UFYPT))

HO(D/E,) = W,(O)[U*Y/P™ 12" .

where v; acts by sending Uil/ps to [Cpr+s]Ui1/ps, and Ujl/ps to Ujl/ps for j # 4; let us recall that
[e]/P" 5 [¢pr++] by Lemma 3.3.
Now note that by (a renormalization of) Lemma 9.8, there is an identification

WT(O)[Qil/poo} = WT(O[Iil/Pw]) 7 Uil/ps s [T‘l/p""Fs] .

K3

Under this identification, 7; acts by sending Til/ps to CpsTil/pS, and le/ps to le/ps for j # i;
in particular, the Z%-action on W,(O[TFY?7]) is induced by an action on O[T*/P™], with
invariants O[T*!]. Tt follows that

H(D/&) = Wo(O[L*/77 )% = w,(0[*]) ,

and one verifies compatibility with F', R and V. (I
Corollary 11.12. There are unique maps

AP WTQB[Iﬂ]/O — W2 (D)
compatible with the d, F', R, V and multiplication maps.
Proof. This follows from Proposition 11.5 (v), Lemma 11.11 and Lemma 11.9. U

We can now state the following more precise form of Theorem 11.7.

Theorem 11.13. For each r > 1, n > 0, the map

AR Wil paay 0 — Wi (D)

is an isomorphism.
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Proof. We first observe that the source and target of A\’ look alike. More precisely, both admit
natural direct sum decompositions according to functions a : {1,...,d} — p~"Z, by Theo-
rem 10.12 and Lemma 11.9 respectively, with similar terms. We need to make this observation
more explicit.

Define an action of Z[%]d = @;.1:1 Z[%]% on O[T*] and A [UEYPT), via O- resp. Ajns-
algebra automorphisms, by specifying that 1%% acts via T; — (prT; and T — T} for j # 1,
resp. U; — [€]'/P"U; and Uj — Uj for j # 4. In the latter case this action is of course extending
the action of Z% on Aj,¢(S)[U +1/p w] which has been considered since the start of the section; in
the former case, the action of Z¢ C Z[]? is trivial.

There are induced actions of Z[%]d on W?(D) and Wi 41 which are compatible with
all extra structure and (thus) commute with A?.

Lemma 11.14. Fiz n > 0. Then the W,(O)-modules W(D) and WS ipa1y )0 admit unique

direct sum decompositions of the form @a:{l,‘. rg Ma, where

Ld}y—p~
(i) the decomposition is compatible with the action on[%]d, in such a way that 1%% € Z[%]d
acts on M, as multiplication by | ;s(i)] € W,.(0), where (gs(i) = C[’:Tf(l)
(ii) each M, is isomorphic to a finite direct sum of copies of Wy_ya)(O);
(iil) the decompositions are compatible with AI'.

Moreover, Al is an isomorphism if and only if A\ @w, o) Wr(k) is an isomorphism.
Remark 11.15. The reader may worry that the description of the action in (i) does not seem
to be trivial on Z? C Z[}%]d; however, [(,-]P"*®) does act trivially on W,_,(4)(0), and thus on
M, by (ii).

Proof. In the case of W,«Qg@ﬂ] /o We use Theorem 10.12: by directly analysing Cases 1-3 of the
definition of the element e(z,a, Iy, ..., I,) one sees that the weight a part of WTQZ[TﬂVA has
property (i); it has property (ii) by Corollary 3.18 (iii). In the case of W (D), the result follows

from Lemma 11.9.

Now, knowing that both sides of the map A} : WTQEQ[Iﬂ] 0™ W!(D) admit decompositions
satisfing (i) and (ii), we claim that the map is automatically compatible with the decompositions.
This follows by a standard “isotypical component argument” from the observation that if a :
{1,...,d} — p~"Z is non-zero and z € W;(O) is an element fixed by [C;S(z)] for all #%, then
x = 0; this observation is proved by noting that the hypotheses imply that x is killed in particular
by [¢,i] — 1, which is a non-zero-divisor of W;(O) by Proposition 3.17 (i).

For the final statement, it suffices to prove that if f : M — N is map between two W,.(O)-
modules M, N which are finite direct sums of copies of W;(O) for some fixed 0 < j < r (regarded
as W,.(O)-module via F"~7), and f @w, o) Wr(k) is an isomorphism, then so is f. To check this,
we may assume that j = r. Now W,.(O) is a local ring, over which a map of finite free modules
is an isomorphism if and only if it is an isomorphism over the residue field. (]

By the lemma, it is enough to prove that

X: = AL ®w,(0) W.(k) : WTQZDQ:H]/O QOw,.(0) W,.(k) = W (D) Qw,.(0) W,.(k) =: W (D)
is an isomorphism. By Proposition 10.14, the source

Weors1))0 @w,0) Wr(k) = Weldpaay . -
Lemma 11.16. There is an isomorphism of differential graded algebras
We (D) = WTQ;[Iﬂ]/k .

In degree 0, it is compatible with the identification X} @w, o) Wy(k) : WH(D)r = W, (k[TEY).

Note that we do not a priori claim that this isomorphism is related to ..

Proof. First, we note that W(D) is Tor-independent from W,.(O) over W,.(k) by part (ii) of the
previous lemma and Lemma 3.13; this implies that

WD)k = H" (Ln,D &%, Wi ()) -

nf
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This identification is multiplicative; the differential on the left is induced from the Bockstein
differential in the triangle

Ln,D ®HAM W, (k) == Ln, D D, War(k) = Ln,D ‘gﬁmf W (k) .

inf
But one has an identification between Ly, D®Y W (k) and QW(k)LﬂVW(k) by Proposition 11.8,

noting that the g-de Rham complex becomes a usual de Rham complex over W (k) asqg=[¢] — 1 €
W (k). This identification is compatible with the multiplicative structure. We get an isomorphism
of graded algebras

WD) = H (LD &%, Wi (k) = H (D, im0 wy) = Wi,

inf
using the Cartier isomorphism [43, §I11.1.5] in the last step. This identification is compatible
with the differential, as both are given by the same Bockstein. One checks that in degree 0, this
is the previous identification. O
Thus,
A : WQ;[T:EI]/]C % W.(D)k g W Q.[Til]/k

can be regarded as a differential graded endomorphism of W,.2% which is the identity in

k[T:tl]/k7
degree 0. But W,»ngil] /k is generated in degree 0, so it follows that the displayed map is the

identity, and so X; is an isomorphism. (I

11.3. Proof of Theorem 11.1. Finally, we can prove part (iv) of Theorem 9.4. Recall that this
states for a small formally smooth O-algebra R, there is a natural isomorphism

H' (W, Qr) = W, Q50 i} .
Proof. Note that we have already proved in Lemma 9.7 and Corollary 9.11 that all
H'(W,Qg) = H'(Ln,D/&)
are p-torsion-free, where D = RT 106t (X, Aing, x ). Moreover, we have

HO(W,Qp) = X, W (0%)) = Wi(R) .

proet (

Thus, we can apply the machinery from Section 11.1 to get canonical maps of F-V-procomplexes
Ap e WTQ;{/O — H*(W,.QpR) .

To verify that these are isomorphisms after p-completion, we use Elkik’s theorem, [26], to choose a
smooth O-algebra Ry with an étale map O[T*!] — Ry which after p-completion gives O(T+) —
R, and consider the diagram

W i1y 0 Ew, (o(z1)) We(Ro) —= H" (W, Qo r+1)) @w, o(z+1)) Wr(Ro)

| |

W HP (IV,60)

Here, the left vertical map is an isomorphism after p-completion by Lemma 10.8 (and the equation
W, Qgcfgt = W, QZ/C?DM) the upper horizontal arrow is an isomorphism after p-completion by
Theorem 11.13, and the right vertical arrow is an isomorphism after p-completion by Lemma 9.9.

Note that in this section, we have regarded roots of unity as fixed; undoing the choice introduces
the Breuil-Kisin—Fargues twist, as can easily be checked from the definition of the differential in

Section 11.1 as a Bockstein for
0— gTAinf/gEAinf — Ainf/ggAinf — Ainf/grAinf —0.

Finally, to see that the isomorphism for r = 1 agrees with the one from Theorem 8.7, it suffices

to check in degree i = 1 by multiplicativity. It suffices to check on basis elements of Q}%’;c(’gm, SO

one reduces to the case R = O(T*!), where it is a direct verification. O
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11.4. A variant. Let us end this section by observing that as a consequence, one gets the
following variant. Let R be a small formally smooth O-algebra as above, with X the generic fibre
of X = Spf R.

Proposition 11.17. For any integers v > 1, s > 0, there is a natural isomorphism

Hi(LW[C ]—IRFproét(Xa WT(@;))) =4 Hi(WH—SQR ®H‘;V (0) W,(0))

r+s

= (W s Q0 [V Wi}

pr+s

where the map Wy 5(0) — W,.(O) is the restriction map.

Note that as s — oo, the left side becomes almost isomorphic to H, 4 (X, WT(@})), so this
gives an interpretation of the “junk torsion” (i.e., the cohomology of the terms coming from
non-integral exponents a in the computation) in terms of the de Rham-Witt complex.

Proof. The first isomorphism follows from Lemma 9.18 applied to WZ::Q r and E = W,.(0)
considered as W, s(O)-module via restriction, as

WT(@\;—() = WT‘FS(@\;}) ®H1;VT+S(O) WT(O)

by Lemma 3.13. For the identification with de Rham—Witt groups, note that there is an exact
triangle

—~— stLg)..o5tT (¢
W O W 0, 5 WQs @) WH(O)

as one has a short exact sequence

SHLey. .
0 w,(0) ¢ @t

s+r

O W,ta(0) = Wo(0) > 0,
and ITV:S/I R= I/I//T_:S/Q R ®H1;VT+S(O)’ r Ws(O). Passing to cohomology, we get a long exact sequence
n,con N VT n.con . ner o
co = W QR =i} == Wy Qi =i} = H'(Wep Qg @, (0) Wr(O) = ...

As V7" is injective (since F"V" = p" and the groups are p-torsion-free), this splits into short exact
sequences, giving the result. O
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12. THE COMPARISON WITH CRYSTALLINE COHOMOLOGY OVER Agpys

Let X/0O be a smooth p-adic formal scheme, and let Y = X X gpr 0 Spec O/p be the fiber modulo
p of X. Note that this is a large nilpotent thickening of the special fiber X xgp¢ o Speck.

Let w: (Y/Zp)crys = Yzar = Xzar be the canonical map from the (absolute) crystalline site of
Y down to the Zariski site. Recall that Ay is the universal p-adically complete PD thickening
of O/p (compatible with the PD structure on Z,), so we have (Y/Zp)crys = (Y/Acrys)erys, and for
psychological reasons we prefer the second interpretation. Recall that we have defined AQx =
Ln,(Rv,Aine, x), where X is the generic fibre of X. Our goal is to prove the following comparison
result:

Theorem 12.1. There is a canonical isomorphism

AQx@A Acrys = Ru*ogfr/y:crys

inf
in D(Xzar). In particular, if X is qcgs, this gives an isomorphism
RF<%3 AQ.'{)@A Acrys = chrys(Y/Acrys) .

inf

The first step of the proof is to construct the identification locally using a framing of X in §12.1.
To globalize, in §12.2, we reinterpret the previous identification in a choicefree fashion: instead
of working with étale maps (i.e., the framing) attached to a finite set of units, we work with
closed immersions provided by working with “all possible units”; this gives a strictly functorial
isomorphism, and thus globalizes.

12.1. The local isomorphism. We start by verifying the assertion in the case X = Spf R for a
small formally smooth O-algebra R, with a fixed framing

O: Spf R — Spf O(TE, ... TFY) = Spf O(T*!) .
The isomorphism will a priori be noncanonical.

Recall that in this situation we have a formally smooth Aj,¢-algebra A(R)™, with A(R)7/¢ =
R; more precisely, it is formally étale over A, (UX'). The action of ' = Z,(1)? which lets the
basis vector v; € T' act by sending U; to [e]U; and U; to U; for j # i lifts uniquely to an action
on A(R)Y, and we have the g-derivatives

8q _ vi—1 .
Oglog(U;) e -1
This gives rise to the ¢g-de Rham complex

) 0
_ Q. — K q e 2 .
9= 2 A(R)D/ Ajny A(R)P (8q log(U1)" """ 0, 10g(Ud)>

On the other hand, we have the usual de Rham complex

0 0
Q° =K .
A(R)B/Ain A(R)H (810g(U1)’ ’alog(Ud))
written using the basis dlog(U1),...,dlog(Uy) of QZE?{)‘E e Also, define the Agys-algebra
Aarys(R)F = A(R)P& 4, Acrys; then

inf

L] oy ~
QA(R)D/Ainf®Ai“fAcrys = QAcrys(R)D/Acrys !
Before go on, we observe a few facts about elements of Acyys.

Lemma 12.2. Let ¢ = [¢] € Acrys as usual.

(i) The element % lies in Acrys, and it is topologically nilpotent in the p-adic topology.
(ii) For anyn > 0, the element % lies in Acrys, and converges to 0 in the p-adic topology
as n — oo.

(i) The element log(q) € Acrys can be written as log(q) = (¢ — 1)u for some unit u € Acyys.
In particular, the elements

nl(g—1) n!
lie in Acrys, and converge to 0 in the p-adic topology.

log(g)" _ nlg—D""
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Proof. For (i), note that £ = 1/,, 7 lies in Kerf : Acrys — O. Thus, = € Acrys. On the other

hand, ¢&? = (¢ — 1)»~! mod p, already in Aj,s. Therefore, % € Acrys. As it lies in the
kernel of 6 : A¢rys — O, it has divided powers, and in particular is topologically nilpotent.
For part (i), let m = [ ]. Then by part (i)
(g = 1"
p'"L
converges to 0 as m — co. But note that the p-adic valuation of (n+1)! is bounded by m. Thus,

€ Acrys

(q — 1) _ ( _ 1)n—m(p—1) p" (q — 1)m(p—1) c
= q ] o crys s
(n+1)! (n+1)! P

where each factor lies in Ay, and the last factor converges to 0.
Finally, for part (iii), write

log(q) =

n>1

We claim that the sum is topologically nilpotent. As all the terms with n > p are divisible by p
by (ii), it suffices to check that the terms with n < p are topologically nilpotent. This is clear if
n <p—1,as ¢ — 1 is topologically nilpotent, and for n = p — 1, it follows from (i). O

In the sequel, the following torsionfreeness property of Acrys(R)D shall be used freely.
Lemma 12.3. The ring Acrys(R)P is p-torsionfree.

Proof. Let us first note that AcryS(R)D is the derived p-completion of a free Acys-module: by
base change (first along Ainf — Acrys and then along Ainy — O), this reduces to showing that R
is the derived p-completion of a free O-module. As both R and O are p-torsionfree, it suffices to
show any smooth O/p-algebra S is free as a O/p-module. But this is clear: any such S is the
base change of a smooth algebra defined over an artinian subring of O/p (as O/p is 0-dimensional
and thus a direct limit of its artinian subrings), and any flat module over an artinian ring is free.

We now show Acpys(R)"[1] = 0 by showing that the Koszul complex Kos(Aerys(R)Y; 1) has
no H;. By the previous paragraph, the complex Kos(AcryS(R)D; u) is the derived p-completion
of a complex of the form Kos(®7Acrys; 1) for some set I. Since Aqys is itself p-torsionfree,
we have Kos(®rAcrys; 1) @IAcrys/u via projection to H®. We are thus reduced to showing
that H; (@ 1Aays/1) = 0, where & denotes the derived p-completion of the direct sum. By
general properties of derived completions of abelian groups, this Hy is identified with the p-adic
Tate module Ty, (®1Acrys/1t). But the obvious map T),(®7Acrys/ 1) — [1; Tp(Acrys/ 1) is trivially
injective, and T, (Acrys/1t) = 0 as Aerys/pe is already derived p-complete, so we get the desired
vanishing. O

The following formula expresses the g-derivative in terms of the derivative, via a Taylor ex-
pansion.

Lemma 12.4. One has an equality of endomorphisms of ACYYS(R)D,

9,  loglg) 0 log(q)? ( d >2+
dqlog(U;)  q—1 8log( D) 2(g—1) \9log(U;)

Z log(q 0 "
N nl(q — 1 dlog(U;) ’

n>1

Proof. As Aqys(R) is u—torsionfree the formula is equivalent to the formula

log(q 0 " 0
i P (Mog(Ui)) = oploal@ 5100wy

To check this formula, we must show that the right side is a well-defined continuous Ac,ys-algebra
endomorphism of AcryS(R)D, reducing to the identity on R = AcryS(R)D ®a....00, and that the
identity holds in the case R = O(T*!) (as these properties determine ;).

crys»
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The formula is well-defined by Lemma 12.2. Moreover, it defines a continuous Ac,ys-linear
map. Multiplicativity follows from standard manipulations. Also, after base extension along
0 : Acrys — O, log(q) vanishes, and the formula reduces to 1 = 1. Finally, we need to check the
action on the Uj is correct. Certainly, the right side leaves U; for j # i fix. It sends U; to

Z log(g)" U; = qU;

n!
n>0
as desired. O

Corollary 12.5. There is an isomorphism of complezes
q - QA(R)D/Ainf ®Aiancrys = qucrys(R)D/Acrys
inducing the identity A(R)"® 4, Acrys = Aceys(R)7 in degree 0.

Note that as Aeys(R)Y is a (formally) smooth lift of R/p from O/p to Aerys, the right side
computes RI'o.ys((Spec R/p)/Acrys). Also recall from Lemma 9.6 that q'Q:A(R)D/Amf computes
AQpr. Thus, the proposition verifies the existence of some isomorphism as in Theorem 12.1 in
this case. We note that the isomorphism of complexes will not be an isomorphism of differential
graded algebras (as the left side is non-commutative, but the right side is commutative).

The isomorphism constructed in the proof will agree with the canonical isomorphism from

Theorem 12.1 in the derived category.

Proof. For each i, one can write

9 0 log(q) log(q)" d nl
5,108 ~ DlogU) | -1+ 2 nllg - 1) <alog<Ui>) ’

n>2

where the second factor is invertible. Indeed, lzg_(tlz) is invertible, and iﬁ{géq_):) € Acrys is topologi-
cally nilpotent and converges to 0 by Lemma 12.2.
In general, if g;, i = 1,...,d, are commuting endomorphisms of M, and h;, i = 1,...,d, are

automorphisms of M commuting with each other and with the g;, then
Ku(giha, ..., gaha) = Ku(g, - -5 9a) -

Applying this in our case with M = Acrys(R)D, gi = ﬁ(w) and g;h; = %, where h; itself
is given by the formula above, we get the result. O

12.2. The canonical isomorphism. In this subsection, we modify the construction of the
previous subsection to construct specific complexes computing RI'c,ys(Spec(R/p)/Acrys, O) and
AQp® A Aerys, and a map of complexes between them, which is a quasi-isomorphism. These
explicit complexes, and the map between them, will be functorial in R, and thus globalize.

Let R/O be a formally smooth O-algebra. Assume that R is small, i.e., there is an étale map
Spf R — ([A}fln Here, we assume additionally that there is a closed immersion Spf R C @:‘n for
some n > d; let us call such R very small. Of course, any formally smooth O-algebra R is locally
on (Spf R)zar very small.

The (simple) idea is to extra roots not just of some system of coordinates, but instead of any
sufficiently large set of invertible functions on R. Thus, fix any finite set ¥ C R* of units of R
such that the induced map Spf R — @%, n = |X|, is a closed embedding, and there is some subset
of d elements of ¥ for which the induced map Spf R — @;’ln is étale. Let Syx; be the group algebra
over Aeys of the free abelian group @,y Z generated by the set X; for v € ¥, we write x,, € Sy
for the corresponding variable. This gives a torus Spec(Sy;) over Acys. There is an obvious map
Sy ®4,,,. O — R sending w,, to u, and we get a natural closed immersion Spec(R/p) C Spec(Sx)
by assumption on R. Let Dy be the p-adically completed PD envelope (compatible with the PD
structure on Agys) of Sx — R/p; as R/p is smooth over O/p, Dy, is flat over Z,.

Let S5, = Soo,» be the map on group algebras corresponding to the map
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of abelian groups, so there is a well-defined element ¥ € S, 5 for each u € ¥ and k € Z[%],
extending the obvious meaning in Sy, if k£ € Z. Using this, let Ro 5 be the p-adic completion of
the normalization of R in (R ®gy, Seo g)[ ]. Note that Ry is perfectoid.

There is a natural map Sz, — Ains(Reo, ) sending z,, to [u°], where u” = (u, u'/?, ul/pz, ...) €
Rboo,E is a well-defined element, as we have freely adjoined p-power roots of u. This extends to a
map Dy, = Aays(Roo,z/p) by passing to p-adically complete PD envelopes. Here, Acyys(Roo,5/P)
denotes the universal p-adically complete PD thickening of R x/p compatible with the PD
structure on Z,; equivalently,

Acrys(Roo,Z/p) = Ainf(RCXD,Z)@Ainf Acrys .
Let I' = [],cx Zp(1) be the corresponding profinite group, so there is a natural T'-action on
Sy, Dy, Seo,5» and Ry 5. Explicitly, if one fixes primitive p-power roots (,» € O, giving rise to
[€] € Ainr, then the generator 7, € I' corresponding to u € ¥ acts on S 5 by fixing xq,/p es

for u # v € %, and sends xu/p to [6]1/” . }/p .

Let Liel' 2 ], .. Z,(1) denote the Lie algebra of T'. In this simple situation of an additive
group, this is just the same as I', and there is a natural “exponential” isomorphism e : Liel' = I"
(which is just the identity HueZ p(1) = [uex Zp(1)).

Lemma 12.6. There is a natural action of LieT on Dsx;, via letting g € LieT' (withy =e(g) € T')

act via the derivation )
—1)n— .
=log(7) = Y =0 T)l (v—1)
n>1
One can recover the action of I' on Dy from the action of Lie' by the formula
—eolg) = Y%
n>0 nl

Moreover, the action of the basis vector g, € Liel' corresponding to u € ¥ (and a choice
of primitive p-power roots of unity) is given by log([e])ﬁ@); recall here that the derivations
WD@) of Sx; extend uniquely to continuous derivations of the p-adically completed PD envelope
Ds.

Proof. Note first that v — 1 takes values in ([¢] — 1)Dyx. Indeed, acting on Sy, it is clear that
~v — 1 takes values in ([¢] — 1)Sx. Now, if z € Sy lies in the kernel of Sy, — R/p with divided
power %l € Dy, then vo = x + ([e] — 1)y for some y € Sy, and thus

() - et § e (4o

n! n! m!
:0

m
x’ﬂ

=L (d-)

y" e r+(ld-1Ds

3

where we use that (G b i € Dy by Lemma 12.2.

m!
Therefore, the n-fold composition (y — 1)™ takes values in ([e] — 1)"Dx. The element w
lies in Dy, and converges to 0 as n — oo; this shows that the formula for log(y) converges to an
endomorphism of Dy, which in fact takes values in ([¢] — 1)Dyx. For this last observation, use

that in fact w lies in Dy, by Lemma 12.2. Similarly, using the same lemma, one checks
that exp(g) converges. To verify the identity v = exp(g), note that exp(g) defines a continuous
Acrys-algebra endomorphism; it is then enough to check the behaviour on the elements x,, which
is done as in the proof of Lemma 12.4 above.

By uniqueness, the formula for the action of Liel" can be checked on Sy. This decomposes
into a tensor product of Laurent polynomial algebras in one variable, so it suffices to check the
similar assertion for the action of Z,(1) on Aeys[X*!]. Here,

o) = 3 TV (g - 1y = og(()X° = ilog([d) X

n>1
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Corollary 12.7. Consider the Koszul complex

Kpy, ((9u)ues)

corresponding to Dx, and the endomorphisms g, for all uw € X; it computes the Lie algebra

cohomology RT'(LieT', Dyy).

(i) There is a natural isomorphism of complexes

MQ;?(xw)uez) = 0uKpy, ((9u)uesx) -

Here, the left side computes R cys(Spec(R/p)/Acrys, O).
(ii) There is a natural isomorphism of complexes

Kps ((9u)uex) = Kpg (Vu — Duex) »
where the right side computes R cont (I, Dy).

KDZ((

In particular, there is a natural map

0
))uEZ) — nuKDz((’yu - 1)u62) — nuKAcrys(Roo,z/p)((’Yu - 1)u62) ,

a(z):z : KD:((W

where the source computes RT crys(Spec(R/p)/Acrys, O).

We note that a similar passage between group cohomology and Lie algebra cohomology also
appears in the work of Colmez—Niziol, [20].

Again, the isomorphism in (ii) is not compatible with the structure of differential graded
algebras. However, the left side is naturally a commutative differential graded algebra, and one
can check that it models the E.-algebra Rl cont (T, Dy).

Proof. By the formula g, = 1og(p)ﬁ(mu) and the observation that log(u) = pv for some unit
v € Agrys, cf. Lemma 12.2, part (i) follows from Lemma 7.9.

For part (ii), one uses that g, = (7, — 1)h,, for some automorphism h,, of Dy, commuting with
everything else, as in the proof of Corollary 12.5 above. O

The map aOR is essentially the map we wanted to construct, but unfortunately we do not know

whether the target actually computes AQ Ré)i At Acrys. The problem is that Ae.ys is a rather
ill-behaved ring, and notably Acys/p is not p-adically separated. However, we have the following
lemma.

Lemma 12.8. Let Ag';,l C Acrys be the p-adic completion of the Aing-subalgebra generated by g—],
for j <m, so that Acrys is the p-adic completion of ligm Aé’,?;)s

(i) If m > p2, then gr = p"v for some unitv € A£C§)S, and Lemma 12.2 holds true with Ag?;)s
in place of Acrys-
(ii) The systems of ideals ({z | px € p”A((;;';,)s )r and (pTAgr;,)s)r are intertwined.

(iil) The intersection
K (m) — , A(m)
Acr s MAcr s
ﬂ (p—r('u) y y

(iv) For any m > p?, the natural map

r

(K po (i) (= D) S AT = K, o

inf

Aﬁ’r’y”s((’y“ —Duex)
18 a quasi-isomorphism. Here, the left side computes AQR@Aiang?;)s,
(v) Under the identification Acrys(Roo,x/D) = Ainf(Rm72)®Aiancrys, the map

0
af: KDE((m)UEE) = MK Ay (Roo 2 /p) (u — Dues)
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of complexes factors canonically over a map of complezxes
A

Aﬁ;’;)s((%t - 1)u€2)> )

p

0 .
Qg : KDE((m)ueE) - (%”#Kmnf(l%x,z)@fx-

inf

where the left side computes R c1ys(Spec(R/p)/Acrys) as before, and the right side com-
putes AQr®L 4, Acrys-

inf

Proof. For part (i), the arguments given in the case of Ac.ys work as well for A((;f;,)b For parts
(ii) and (iii), we approximate the situation by noetherian subrings. More precisely, consider

Ao = Z,[[T]] C Ajnt, where T is sent to [¢]'/P. Then the element p € Ay, is the image of TP — 1,
and £ is the image of §g = TP~!+...+T+1 € Ay. One can then define analogues Ag crys, Agzzys
of Acrys and Ag;,)s; for example, Acyys is the p-adic completion of the PD envelope of Ag — Ag/&o.

Then Aerys = oncr},s@AoAinf and AE?;,)S =AM @AOAinf. As Ay is topologically free over Agp,

0,crys
it suffices to prove the analogue of (ii) for A(()?ZZYS. But Ag?zzys is a noetherian ring. Thus, the

Artin—Rees lemma for the inclusion (T? — 1)Aé?zzys C A(()fzzys and the p-adic topology gives (ii).
Part (iii) is equivalent to the statement

[] Al /=0
o (p) /

But by part (ii), Ag?,)s/p = 1‘&13 Aﬁ?;)s/(u,ps), so it suffices to prove the similar statement for
Af;’;l (1, p*). Now note that

AGRL/(1,9%) = AGedy o/ (TP = 1,0%) @aag o —1.pe) Aune/ (4,9 -
We claim that more generally, for any Ag/(T? — 1, p®)-module M, there are no elements in

M ®A0/(TP—1,p%) Aint/ (1, p%)

that are killed by ¢~ "(u) for all » > 1. Assume that = was such an element. In particular, z is
killed by ¢g—1, so as Aing/(p, p°) is flat over Ao /(TP —1,p%), x lies in M’ ® 4, /(1o —1,p*) Aint /(11 P°),
where M’ C M is the T — 1-torsion submodule. We can then assume that M = M’ is T — 1-
torsion, i.e. an Ag/(T — 1,p®) = Z/p*Z-module. We can also assume that pz = 0; if not, replace
x by p'z with ¢ maximal such that p’z # 0. In that case, we can assume that M is p-torsion,
and thus an [F)-vector space. Finally, it remains to see that

Fp ® o) (1r—1,p¢) At/ (11, P°) = A /(07 (1), p) = O"/(/? — 1)

has no elements killed by all €!/?" — 1, which is clear.

For part (iv), pick an étale map O : Spf R — Spf O(T!, ... ,Tfl), corresponding to fixed
units u1,...,uq € X; this exists by choice of 3. This gives rise to R C R 5, on which the
quotient Hle Zy(1) of T acts.

The proof of Proposition 9.14 shows that

T

nHKAinf(Roo)((’yui - 1)7;=17~-7d) - T]NKAinf(Roo,Z)((fyu - 1)u62)
is a quasi-isomorphism (in particular, the right side computes AQg), and the proof of Lemma 9.6
shows that
(nMKAinf(Roo)((’yui - 1)i:1,..‘,d))®]LAian<(:$)s — WMKAM(ROO)@A_ Alm) ((Vub - 1)i:1;~~7d)

inf ©TCTYS

is a quasi-isomorphism.
It remains to see that

B ()8 a g a2 (s = Dimtoa) 2 By )5, ai) ((u = Duex)

crys inf
is a quasi-isomorphism. This can be proved using Lemma 9.12 (one does not need a variant

for A‘(g?;,)s) Let C* = KAi;]f(R@Q)@Aiang;";';((,yui —1)i=1,...,q) and D* = KAinf(Roo,E)@Aiané;;)S(<7u -

1)uex). Condition (i) is immediate from Faltings’ almost purity, and condition (iii) is proved
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like Lemma 9.13, using part (iii) of the current lemma. Finally, in order to verify the injectivity
condition (ii) of Lemma 9.12, we will momentarily prove that the map

L, C* — Rlim(Ly,(C*/E,))

is a quasi-isomorphism, and for each r, Ln,(C*/&,) — Ln,(D*®/¢,) is a quasi-isomorphism; the
commutative diagram

Ly, C* Ln,D*

| l

Rlim (Ln,(C*/&,)) —= Rlim (Ln,(D*/&,))
then proves the desired injectivity. Note that Lemma 9.18 shows that
L, (D* /&) = Lnu(C® /&) = WeQp@hw, (o) In(AG /&) = AQRSE ay, L (ASSL /&)

and, as LnH(Ag?;)S/gT) = AE?;)S/{a: | px € §TA£§’;)S}, parts (i) and (ii) show that (as AQp is derived
p-complete)

R@(AQR@LAMLW(AE?;)S/%;)) - AQR®LAiang7rr;)s :

For part (v), one can write Dy, similarly as the p-adic completion of the union of p-adically
complete subrings D(Em) C Dy, where D(Em) C Dy only allows divided powers of order at most m.
Following the construction of a% through with D(Em) in place of Dy gives, for m large enough,

F) . .
maps from Kng((m)ueE) to nﬂKAinf(Rm,z@AmfAg;';)s(W“ — 1)yex). Passing to the direct
limit over m and p-completing gives the desired map ap. [l

To finish the proof of Theorem 12.1, it remains to prove that apr is a quasi-isomorphism:
Passing to the filtered colimit over all sufficiently large X, all our constructions become strictly
functorial in R, and thus immediately globalize.

Proposition 12.9. The map

A
0 .
o Ko (o) > (B a0~ D))
m P
s a quasi-isomorphism.

Proof. Pick an étale map OJ : Spf R — SpfO(Tlil, e ,Tjﬂ) as in the previous proof. We get a
diagram

Spec R/p ———— Spf Acrys (R)D

lu
Spf Ds; —— Spf Acryo(TiE, .., TED).

As Spf Dy is a (pro-)thickening of Spec R/p, the infinitesimal lifting criterion for (formally) étale
maps shows that there is a unique lift Spf Dy; — Spf Acpys(R)™ making the diagram commute.
One can then redo the construction of ap using only the coordinates T7,...,Ty, and (using
notation from the previous proof) one gets a commutative diagram

A
KAcryS(R)D ((ﬁ(n))izl"”’d) (hgm n'uKAinf(Roo)(gAmng;;)s ((/7”1 N 1)i:1""’d))p

| |

N
K s (gt ue) (ttg 590,52 (T~ D)

Here, the right vertical map is a quasi-isomorphism, as was proved in the previous proof, and the
left vertical map is a quasi-isomorphism, as both compute R c,ys(Spec(R/p)/Acrys, O). Finally,
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the upper horizontal map is a quasi-isomorphism by Corollary 12.5 (noting that in this situation,
the map

A
(h%“”uKAinf(Rm@Amng;;;((%i - 1)i—1,.~.,d)> = MK Ay (R /) (Vs — 1)i=1,..0)
P
is a quasi-isomorphism, as both sides compute AQ%@ A Acrys)- O

12.3. Multiplicative structures. The previous discussion had the defect that it was not com-
patible with the structure of differential graded algebras. Let us note that this is a defect of the
explicit models we have chosen. More precisely, we claim that the isomorphism of Theorem 12.1
can be made into an isomorphism of (sheaves of) E-Ac,ys-algebras. For this discussion, we ad-
mit that Ln can be lifted to a lax symmetric monoidal functor on the level of symmetric monoidal
oo-categories. Then AQr = L, RT proet (X, Aing,x ) is an Eo-Aine-algebra, and we want to show
that e
chrys(speC<R/p>/Acrysz O) = AQR®]LA Acrys

as Eoo-Aarys-algebras, functorially in R. This implies formally the global case (as the Eo-
structure encodes all the information necessary to globalize).

We want to redo the construction of the previous section by replacing all Koszul complexes
computing group cohomology by the Fo.-algebra RT cont (I, —). This has the advantage of keeping
more structure, but the disadvantage that we have no explicit complexes anymore. However, the
construction of the map a% in Corollary 12.7 is done in two steps: Part (i) is an isomorphism
of commutative differential graded algebras, which gives an isomorphism of F,-algebras. On
the other hand, part (ii) can be checked without reference to explicit models, and indeed one
can check directly that the commutative differential graded algebra Kp, ((gy)uex) models the

inf

E-algebra RTcont (', Dx). These steps work exactly the same with D(Zm) in place of Dy. As
the final map

Ly BT cont (U, DE™) = Ly BT cont (T, A (Roo, )B4, AT)
is a map of E.-algebras, this gives (by passing to the filtered colimit over all sufficiently large
Y)) the desired functorial map of Eoo-Acys-algebras

ap @ Rlcrys(Spec(R/p)/Acrys, O) — AQR@A

which we have already proved to be an equivalence.

Acrys )

inf
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13. RATIONAL p-ADIC HODGE THEORY, REVISITED

Let C be an algebraically closed complete extension of Q,, with ring of integers O and residue
field k£ as usual. The goal of this section is to prove a de Rham comparison theorem for rigid
spaces over C'. As the continuous projection B(TR — C does not admit a continuous section, the
usual formulation of the de Rham comparison theorem does not make sense in this case. On
the other hand, as the map B:R — C can be regarded as pro-infinitesimal thickening of C', one
has a well-behaved crystalline cohomology for proper smooth C-schemes taking values in B:{R—
modules, and deforming usual de Rham cohomology along B:{R — C'. Tt is then natural to wonder
if this deformation of de Rham cohomology to B(YR can be compared with étale cohomology. The
primary goal of this section is to explain how to construct this deformation more generally for
proper smooth rigid spaces, and to prove the de Rham comparison theorem:

Theorem 13.1. Let X be a proper smooth adic space over C. Then there are cohomology groups
ngys(X/BgR) which come with a canonical isomorphism

Héryb(X/B(JirR) ®BIR BdR = Hgt(Xa ZP) ®Zp BdR .

In case X = XoRxC' arises via base change from some complete discretely valued extension K
of Qp with perfect residue field, this isomorphism agrees with the comparison from Theorem 5.1
above, under the identification

H!.(X/BJr) = Hir(Xo0) ®k By

crys

of Remark 15.20 below.

Our strategy is to define a cohomology theory RIc.ys(X/ B(TR) for any smooth adic space
X by imitating one possible definition of crystalline cohomology, namely, in terms of de Rham
complexes of formal completions of embeddings of X into smooth spaces over B:{R; in order to
get a strictly functorial theory, we simply take the colimit over all possible choices of embeddings.

More precisely, for any smooth affinoid C-algebra R equipped with a sufficiently large finite
subset ¥ of units in R°, we consider the canonical surjective map B (XI1)ues) — R, viewed
roughly as (dual to) an embedding of Spa(R, R°) into a smooth rigid space over Bjy; the precise
language to set this up involves taking a limit over n of “rigid geometry over B(YR &’ and is
set up in Lemma 13.4. The completion Ds;(R) of B ((XE!)uex) along the kernel of this map
is then shown to be a well-behaved object, roughly analogous to the formal completion of the
afore-mentioned embedding; the precise statement is recorded in Lemma 13.12, and the proof
entails approximating our smooth C-algebra R in terms of smooth algebras defined over a much

smaller base A. The de Rham complex ° + is then shown to be independent of ¥ up
Ds(R)/Biy

to quasi-isomorphism in Lemma 13.13; the key point here is that Q;DE (R)/B /€ is canonically
dR

R)/
identified up to quasi-isomorphism with Q3 /C which is obviously independent of 3. Taking a

filtered colimit over all possible choices of ¥ then gives a functorial (in R) complex, independent
of all choices. For a general smooth adic space X over C, this construction gives a presheaf of
complexes on a basis of X whose hypercohomology is (by definition) RTcrys(X/Bjiz); when X is
proper, this theory is then shown to satisfy Theorem 13.1.

Remark 13.2. It is probably possible to develop a full-fledged analogue of the crystalline site in
this context (which actually reduces to the infinitesimal site), replacing the usual topologically
nilpotent thickening W (k) — k by BCTR — C'. Our somewhat pedestrian approach, via building
strictly functorial complexes on affinoid pieces, is engineered to be compatible with the Agpys-
comparison of the previous section.

As an application of the construction of the BgR-cohomology theory, we can prove degeneration
of the Hodge-Tate spectral sequence, [59], in general.

Theorem 13.3. Let X be a proper smooth adic space over C'.
(i) (Conrad-Gabber) The Hodge—de Rham spectral sequence

BEY = HI (X, Q% o) = Hif (X)

degenerates at E.
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(ii) The Hodge—Tate spectral sequence

EY = H'(X, % 0)(—)) = H (X, Z,) @, C

degenerates at Es.

Both parts of Theorem 13.3 rely on the work [21] of Conrad-Gabber yielding a “Lefschetz
principle” for proper rigid spaces. In fact, the degeneration of the Hodge-de Rham spectral
sequence follows directly from (and was one of the motivations for) [21]; the degeneration of the
Hodge-Tate spectral sequence also uses the B(TR—cohomology theory. The work [21] relies on
establishing a relative version of classical results in the deformation theory of proper varieties.
Since the classical version actually suffices for our application, we give a self-contained exposition
of the relevant statements in §13.2.

13.1. The B;R-cohomology of affinoids. In this section, we explain how to construct the
B;’R—cohomology for certain smooth affinoids. To do so, we need some basic lemmas on “rigid
geometry over B, /¢"”. Note that B, /E" = At /{”[%] is a complete Tate-Q,-algebra.
Lemma 13.4. Let R be a complete Tate-B:{R &™-algebra.
(i) The following conditions on R are equivalent.

(a) There is a surjective map By /£"(X1, ..., Xm) = R for some m.

(b) The algebra R/E is topologically of finite type over C.

In case they are satisfied, we say that R is topologically of finite type over B(TR/Q“”,

(ii) If R is topologically of finite type over Bg‘R/fn, the following further properties are
satisfied.

(a) The ring R is noetherian.
(b) Any ideal I C R is closed.

(iil) A p-adically complete p-torsion free Aine/E™-algebra Ry is by definition topologically of
finite type if there is a surjective map Aint/E"(X1,..., Xm) — Ro for some m. In this
case, the following properties are satisfied.

(a) The ring Ry is coherent.
(b) Any ideal I C Ry such that Ro/I is p-torsion free is finitely generated.
(c) The Tate—B(TR/fn—algebm R= RO[%] is topologically of finite type.

(iv) If R is topologically of finite type over BCTR/fn, then there exists a ring of definition

Ry C R such that Ry is topologically of finite type over Ai,s/E™.

We note that all assertions are well-known for n = 1, i.e. over B;'R /€ = C. We will use this
freely in the proof.

Proof. For (i), clearly condition (a) implies (b). On the other hand, given a surjection
C{Xy,...,Xn) = R/E,
one can lift the X; arbitrarily to R; they will still be powerbounded as R — R/ has nilpotent

kernel. Thus, one gets a map B(;FR/«S”(Xh ..., Xm) — R, which is automatically surjective.
In part (ii), it is enough to prove these assertions in the case R = Bj;R/gn (X1,...,Xm). This
is a successive square-zero extension of the noetherian ring C(X;,..., X,,) by finitely generated

ideals, and thus noetherian itself. We will prove part (b) at the end.

For part (iii), part (c) is clear, and the other assertions reduce to Ry = Ajns/§" (X1, .., Xim)-
This is a successive square-zero extension of the coherent ring O(Xy, ..., X,,) by finitely presented
ideals, and thus coherent itself, cf. Lemma 3.26. For part (b), let more generally M be a finitely
generated p-torsion free Rg-module; we want to prove that M is finitely presented. Applying
this to M = Ry/I gives (b). Let M = im(M — M/f[%]) Then M is a p-torsion free finitely
generated Ry/&-module, and thus finitely presented as Rg/¢-module, and thus also as Ry-module,
cf. Lemma 3.25 (i). Therefore, M’ = Ker(M — M) is also a finitely generated p-torsion free
Ro-module. But M’ is killed by "~ 1: If m € M’, then pFm € ¢M for some k, and then
& lpkFm € €"M = 0. As M is p-torsion free, this implies that £"~'m = 0. We see that M’ is a
finitely generated p-torsion free Ry/¢" 1-module, so induction on n finishes the proof.
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In part (iv), if Bj/€"(X1,..., Xm) — R is surjective, then the image of
Ainf/§n<Xla e 7Xm> — R

defines a ring of definition Ry C R which is topologically of finite type.

Finally, for (ii) (b), let I C R be any (necessarily finitely generated) ideal, and Ry C R a ring
of definition which is topologically of finite type. Let I = INRy. Then Ry/Iy C R/I is p-torsion
free, and thus I is finitely generated over Ry. This implies that Iy is p-adically complete, and
thus Iy C Ry is closed, and so is I C R. O

Definition 13.5. Let R be a smooth Tate C-algebra of dimension d. We say that R is very small
if there exist finite subsets {T1,....., Ty} C X C (R°)* with the following properties:
(i) The map
CUXi uen) = R
defined by X, — u is surjective.
(ii) On adic spectra, the map

Spa(R, R°) — T% := Spa(C(T, .., T, (T, ..., TFY)

by the T;’s is étale and factors as a composition of rational embeddings and finite étale
maps.

Note that the subset ¥ C (R°)* appearing in the definition of very smallness is not fixed; in
particular, we are allowed to enlarge ¥ without affecting either of (i) or (i¢) above. Let us explain
how to construct pro-infinitesimal thickenings of very small rings relative to B&*‘R.

Construction 13.6. Fix very small R and subset {T1,...,T;} C ¥ C (R°)* as in Definition 13.5.
We have a surjective map
Bd+R<(Xfl)ueE> - R,
sending X! to u™!. Here, for any finite set I,
Bir (X )ier) = lim B /€" (X )ier) -
s
For v € 3, there are natural commuting continuous derivations
0 0

= . nt +1 + +1
dlog(X,) Xo X, : B (X g ues) = Bip((Xy ues) -

Now let Dx;(R) be the completion of B, ((XE!),ex) with respect to the ideal
I(R) = Ker(BIp((Xy ues) = R) -

By Lemma 13.4, all powers I(R)" C B ((X£!),ex) are closed, so that with its natural topology,
Dx(R) is a complete and separated B(;FR—algebra. The derivations ﬁ(}() for u € ¥ extend
continuously to Dy (R).

To proceed further, we shall need the following noetherian approximation lemma that roughly
says that a very small smooth Tate C-algebra can be defined over a smooth algebra over a
discretely valued field in such a way that the set of units witnessing “very smallness” are p-
adically close to units that also descend.

Lemma 13.7. Let R be a very small smooth Tate C-algebra R; fix finite subsets {11, ...,Tq} C
¥ C (R°)* as in Definition 13.5. Then, at the expense of enlarging ¥, we can find the following:
(i) A smooth adic space S = Spa(A, A°) of finite type over W(k’)[%] for some perfect field
kK C k and a W(K')-algebra map A — C.
(ii) A smooth morphism Spa(Ra, RS) — Spa(A, A°) and an identification R~ Ra® 4C'.
(i) Finite subsets {T1,...,Tq} C X4 C (RS)* such that
(a) The identification Ra&AC ~ R carries ¥4 into ¥ while preserving the T;’s.
(b) The map
A(X T ues,) = Ra

defined by X, — u is surjective.
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(¢) On adic spectra, the map
Spa(Ra, Ry) — Té := S Xspaca, z,) SPa(Qp(T5, .., TF), Z, (T, ... TFY))

by the T;’s is étale and factors as a composition of rational embeddings and finite
étale maps.

The proof below shows that we can take k' = F,, in (i), i.e., we can take A to be a smooth
Tate Qp-algebra.

Proof. By de Jong’s theorem [23], we can write O as a filtered colimit of finite type regular
Z,-algebras B; (and thus Bi[%} is smooth over Q). We shall show that taking A = Bj[%] for j
sufficiently large does the job; note that Spa(C, Q) £ lim; Spa(]%[%], ]§Z)

Consider the étale map

Spa(R, R°) — T = Spa(C(T{, ..., TFY), O(TE, .. TEY).

This map factors as a composition of rational embeddings and finite étale maps by hypothesis.
As both rational embeddings and finite étale maps admit suitable “noetherian approximation”
results, setting A = EJ[%] for sufficiently large j, we immediately get (i), (i), and and a map
as in part (c) of (iii) that descends the previous map. It remains to show that, after possibly
enlarging ¥ and replacing A with a finer approximation, we can also find the subset ¥4 C (R%)*
satisfying parts (a) and (b) in (iii). For this, we first enlarge ¥ by adding in small perturbations,
and then replace A with rational localizations. More precisely, we first note that there exists
some N > 0 such that any map
CU(Xyues) = R

defined by X, — u+p~a, (for some a, € R°) is surjective: this follows from Lemma 13.8 below
applied to the map on power bounded elements (and our hypothesis that this map is surjective
when all the a, equal 0). Now the map

@R%@Eé, — R°
has dense image in a ring of definition. It follows that at the expense of enlarging j, we can
choose a subset ¥4 C (R9)* containing {T7, ..., Ty} such that the correponding map

a:B = A(<X7:Ltl)u€2,4> — Ra

is surjective after base change along A — C'; this immediately gives (iii) (a). We also obtain
the surjectivity required in (iii) (b) by replacing A with a rational localization around the point
x € Spa(A, A°) determined by the map A — C using Lemma 13.9 below. O

The next three lemmas were used above.

Lemma 13.8. Let f: M — N be a map of p-torsionfree and p-adically complete abelian groups
with f[1/p] is surjective. There exists some m > 0 such that any map g : M — N with g = f
mod p™, the map g[1/p] is also surjective.

Proof. By the open mapping theorem, there exists some n > 0 such that N’ := p"N C f(M).
Write M’ := f~1(N’), so f restricts to a map f’' : M’ — N’ that is surjective. We shall show
that taking m = n + 1 does the job. Fix amap h: M — N, and let g = f + p"T'h. We must
show that g[1/p] is surjective. Now if z € M’, then f(z) € N and p"*'h(z) = p - p"h(z) € pN.
It immediately follows that g carries M’ into N’ and that the induced map ¢’ : M’ — N’ agrees
with f/ modulo p. In particular, ¢’ surjective modulo p. But then ¢’ must be surjective: any
map between derived p-complete modules that is surjective modulo p is surjective: apply [1, Tag
09B9] to the cokernel. It is also clear that ¢'[1/p] = g[1/p], so the claim follows. O

Lemma 13.9. Let A — B = C be maps of affinoid algebras that are topologically of finite type
over a nonarchimedean field K. Assume that there exists a rank 1 point x € Spa(A, A°) such that
B®ak(x) 2% CRak(x) is surjective. Then there exists some rational subset U C Spa(A, A°)
containing = such that ay : By — Cy is surjective; here Ay = Ospa(A’Ao)(U), By := B4 Ay
and similarly for Cy .
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The assumption that = be a rank 1 point is critical to the conclusion above. In fact, taking
x be any point of rank > 1 on any affinoid A gives a counterxample as follows. Take A = B
and let C' = Ay be the rational localization corresponding to a rational subset V' C Spa(A, A°)
that contains the unique rank 1 generalization 4., of z but does not contain x; these exist as
rational subsets give a basis for the topology. As k(z) = k(gen), the map « is bijective. Now
if U is any rational open that contains x, then the map ay : Ay — Ap®@aAy ~ Apny is a
rational localization corresponding to the inclusion UNV C U. If ay were surjective for some U
containing z, then U NV C U would be a closed subset by [41, §1.4.1]. But this is impossible as
U NV is not closed under specialization in U: the point x4, lies in U NV and its specialization
x lies in U (by assumption on U) but not in V' (by choice of V).

Proof. In this proof, the symbol U will be reserved to denote an element of the collection 4l of
all rational subsets of Spa(A, A°) that contains z. Let us begin by fixing some compatible rings
of definition. Without loss of generality, we may assume A = K(T1,...,T;,) is a Tate algebra.
In particular, for each U € Y, we simply use Aoy := Af, as the ring of definition for Ay;
write A9 = Agspa(a,a0) for the ring of definition of A itself. Write C = A(Y1,...,Y,)/I for
some ideal I, write f; € C for the image of Y;, and choose a ring of definition Cy C C that
contains the f;’s as well as the image of Ay. By writing B as a quotient of a Tate algebra, we
may assume without loss of generality that B = A(Xy,...,X,), so By = Ag(X1,...,X,) C B
is a ring of definition. We may enlarge the ring of definition Cy if necessary to ensure that
a(By) C Cy. Then By, = By®a,k(z)t =~ k(z)*(X1,.,X,) is a ring of definition of B, :=
B@Akz(x) ~ k(z)(X1, ..., X,); similarly, By y = BO®A0A07U C By is a ring of definition. The
p>®-torsion in Co® 4, Ao,y and Co® 4, k(2) T is bounded by [16, Lemma 1.2 (c)], and the quotients
Co.v = Co®a, Ao,/ (p>-torsion) and Cj . := Co®a,k(x) /(p™-torsion) give rings of definition
of Cy and C,, respectively. For future reference, note that the natural maps hger « Bov — Bog

and li_r>nU€ « Co,u — Cp  are isomorphisms after p-adic completions, and that Cy and C, are

topologically generated by the f;’s over Ay and k(z) respectively.

Next, let us fix some constants that we are allowed to perturb the f;’s by without affecting
the fact that they topologically generate C or its localizations. Recall that we have chosen a
presentation C' = A(Y7, ..., Y,)/I. In particular, the natural map Ay (Y1, ...,Y;) = Cy is surjective
after inverting p. By the open mapping theorem, this map has a cokernel annihilated by p™
for some fixed N > 0. By base change, the cokernel of the map Aoy (Y1,...,Y:) = Cou is also
annihilated by p" for U € 4. It follows from Lemma 13.8 (and its proof) that any f! € Co s
such that f/ = fi mod pN*1Cp ¢y also provides a topological generating set for Cyy over Ay for
all U € il as well as for C,, over k(x).

Now consider the map «, : B, — C,. By assumption, this map is surjective. By the open
mapping theorem, the induced map «,, : By, — Cp 5 has cokernel killed by p™ for some m > 0.
So we can choose g1, ..., gr € Bo such that a,(g;) = p™f; for all i. Moreover, note that both
a,(Bo,z) and Cp, are topologically finitely generated rings of definition of the tft k(x)-algebra
C,. Their integral closures must coincide with the subring C? of power bounded elements by [15,
§6.3.4, Proposition 1] (see also [40, Lemma 4.4]). In particular, C  is integral over a;(Bp z). So
for each i € {1, ...,7}, there exists a monic polynomial Q;(T") € By ;[T such that a,(Q;)(f;) =0.

As the natural map @Ueu Byuv — By, is surjective modulo any power of p, we can find
hi,...;hr € By for a sufficiently small U € U such that the image of h; in By, differs from
gi by pN*tm 1By .. Then ay(hi) € Cou are elements whose image in Cp, differs from p™f;
by pN+m+1C, .. As the map lim . Cou — Cog is an isomorphism after p-adic completion, it
follows that after possibly shrinking U € 4, we can ensure that ay(h;) — p™fi € pN T 1Ch .
Dividing by p™ shows that f/ := % € Coy and that f/ — f; € pN*1Cy . By our choice
of N in the second paragraph of this proof, it follows that f1,..., f. € Cou give a topological
generating set that lies in the image of BO,U[%] = By — Cy.

By shrinking U € 4 further, we can find monic polynomials P;(T") € By y[T] such that the
image of P;(T) in By [T differs from Q;(T) by pBy.. Since f! — f; € pN*t1Co v, it follows that
the image of ay(P;)(f]) in Cyy lies in pCy . By shrinking U € Y further, we can ensure that
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ay(P)(f]) € pCou. Applying Lemma 13.10 below to the inclusion im(Byy — Cov) C Cou
and the elements f1, ..., f € Co,u then gives the result. O

Lemma 13.10. Let By C Cy be an inclusion of p-adically complete and p-torsionfree rings such
that Cy is generated as a p-adically complete By-algebra by fi,..., fr € Cy. Assume this data
satisfies the following:

(i) We have f; € Bo[ | for all i.

(ii) There exist monic polynomwls Py, .., P. € Bo[x] such that Pi(f;) € pCy.

Then p*Cy C By for some k> 0.

Proof. 1t is enough to show that Cj is a finite Bg-module. Indeed, then each f; would satisfy a
monic polynomial over By, so (i) would show BO[%] = C’O[%}, whence p*Cy C By for k > 0 by
the open mapping theorem. To show the finiteness, by Nakayama’s lemma and completeness, it
is enough to show the same modulo p. But then it is clear: By/p — Cy/p is a finite ring map
simply because the generators fi, ..., f» € Co/p are integral over By /p by (ii). O

For the rest of this section, fix notation as in Lemma 13.7, though we shall use the flexibility
of enlarging ¥ as necessary. Note that by smoothness of A over a discretely valued field, there
are continuous maps A — B(TR lifting the map to C; we fix one such map. Let Dy, (R4) be the
completion of

A<(Xui1)u€EA> — Ry .
Again, all powers of the ideal Ker(A{(X')yex,) — Ra) are closed, and thus this defines a
complete and separated algebra. Our next goal is to compare this with Construction 13.6.

For this, we shall need a structural property that we prove first. Let RA® AB be defined as
the inverse limit of RA® ABdR /€™, where we note that R4, A and BIR /€™ are all complete Tate
Q,-algebras, and hence there is a well-defined completed tensor product: if S < 57 — S3 is a
diagram of complete Tate-Q,-algebras with rings of definition Sg < S1,0 = 53,0, then

S5®sg, 83 = (im(S2,0 ®s, o S3,0 = S2 Vs, 53));\[%] .
The structural property that we need is the following:
Lemma 13.11. The algebra RA@)ABg'R s a &-adically complete flat B;'R—algebm, with
(Ra®aBiR) /¢ =R
and more generally
(Ra®aBy, /&= RA® 4B, r/E"
which is topologically free over B /€™

Proof. Tt is enough to see that R4 ® AB &" is topologically free (in particular, flat) over B r/&"
for all n > 1, with (Ra®4Blg /&™) /€ = R

There is a ﬁnltely generated A° [Tlil, . Til]—algebra R 4 a1g, étale after inverting p, such that
Ra = (Raag)) [ ] by [41, Corollary 1.7. 3 (iii)]. Fix any topologically finitely generated ring of

definition (BgR/fn)o C Bji/€" containing £ and the image of A°. Then
Ra®aBr/€" = (Raaig ©a0 (Bir/E")0)/ (p—torsion)) 1] .

Now S, = Ra alg® a0 (Big /€™)o is a finitely presented (Bjy /€™ )o-algebra which is smooth, and in
particular flat, after inverting p. Then S,, /€ is a finitely presented O-algebra which is smooth after
inverting p. As it is finitely presented over O, the p-power torsion T' C S, /€ is finitely generated;
thus, there is some power of p killing T. Now, if S,, has no connected components living entirely
over the generic fibre Spec By /€™, then also (S,/€)/T has no connected components living
entirely over SpecC, and thus (S,/€)/T is free over O by a result of Raynaud-Gruson, [55,
Théoréme 3.3.5]. We assume that this is the case; in general one simply passes to the biggest
direct factor of S, with this property. Pick a basis (5;);es of (S,/€)/T as O-module, and lift the
elements §; to s; € S,,. This gives a map

a: @P(BR/EMo = Su

i€l
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We claim that « is injective, and that the cokernel of « is killed by a power of p. For injectivity,
it is enough to check that

D Bir/€" — Sulj]

il
is an isomorphism. But both modules are flat over B(J{R /€™, so it is enough to check that

P — Su/eld]
iel
is an isomorphism, which follows from the choice of the s;. Now, to check that the cokernel of
« is killed by a power of p, it suffices to check modulo &; there, again the result follows from the
choice of the s;, and the fact that T is killed by a power of p.
It follows that in the formula

RA® 4B /€" = (Sn/(p—torsion))p[1] ,

one can replace S, by @ieI(BJ'R/E”)O, which shows that RA@AB(TR/fn is topologically free over
B, /&". Moreover, the proof shows that (Ra®4Bj;/€")/¢ = R. O

We can now give the promised comparison between Dy, (R4) and Dyx(R).

Lemma 13.12. One has the following description of Dy, ,(Ra) and Dx(R).

(i) There is a unique isomorphism of topological algebras

Dy, (Ra) = Ra[[(Xu — Wues o uztTy ... Ty )]

compatible with the projections to Ra, and the structure of A{(XE')uex,)-algebras,
where X1, — T; on the right.
(ii) If ¥ is sufficiently large, there is an isomorphism of topological algebras

Ds(R) = (RA®aBIp)[[(Xu — Wuesurr.... ]l 5

compatibly with the projection to R, and the structure of Bin ((XE!)uex)-algebras (via
Xr, — T;). Here, u € RA@A@AB;'R is a lift of u € Ra®@4C. In particular, Dx(R) is
&-adically complete and &-torsion-free.

Proof. For (i), we first want to find a lift R4 — Dx,(R4) of the projection Dy, (Ra) — Ra.
The strategy is to pick the obvious lifting on A(Tlﬂ, . ,Tdﬂ> sending T; to X, and then extend
to R4 by étaleness; however, the second step needs some care because of topological issues.

As above, there is a finitely generated A° [Tlﬂ, T jd]—algebra R g, étale after inverting
p, such that Ra = (Ra,ai)p[3] by [41, Corollary 1.7.3 (iii)].

The map AO[Tlil, . ,Tfl} — Ds,(Ra) given by T; — Xp, lifts uniquely to Ra ... We
claim that it also extends to the p-adic completion. For this, note that the completion of
A{(XEYyes) — Ry is an inverse limit of complete Tate A-algebras D; which are topologically
of finite type, with reduced quotient R4. In particular, the subring of powerbounded elements
D3 C Dj is the preimage of R C R4. Thus, R4 is a finitely generated A°-algebra mapping
into D7; as such, it maps into some ring of definition of D;, and therefore the map extends to
the p-adic completion. This gives the desired map R4 — Dx, (R4).

In particular, we get a canonical continuous map

Ra[[(Xu — Wuesauzty ... 1,]] = Ds,(Ra) .

We claim that this is a topological isomorphism. For this, we use the commutative diagram

A((XF Y uex ) — Ral[(Xu — wues s upty ... 1]

T |

D5, (Ra) ————— Ra,

X, —u\ "
X;l =yt (1+ u)
u

where we use the identity
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in RA[[(Xu —w)ues A ,ut,..., )] to define the upper map. The upper part of the diagram implies
that there is a continuous map

Dy, (Ra) = Ra[[(Xu — Wues s uzt ... 1] -

The maps are inverse: In the direction from Dy, (R4) back to Dyx,(R4), this follows by con-
struction. In the other direction, the resulting endomorphism of the separated ring R4[[(X, —
W ues a,utTy ..., T,;)] must be the identity on R a1 and all X, and thus by continuity everywhere,
finishing the proof of (i).

For part (ii), we repeat the same arguments, using Lemma 13.4 and Lemma 13.11. O

As observed in Construction 13.6, the derivations ﬁ(}() extend continouously to Dy (R).
Thus, we can build a de Rham complex

Kpy(r) <<8loga(Xu))“€E> ,

which starts with

(Oi)u
0— Ds(R) "5 @B Ds(R) — ... .
uex
By abuse of notation, we will denote it by Q;D (R)/B
colimit over all sufficiently large X, is our explicit model for (the so far undefined)

cryS(Spa(R RO)/BdR) :

. o e . . e .
We note that in Lemma 13.13, we will check that the transition maps 2 D (R)/BL, - Q Do (R)/BL,
are quasi-isomorphisms, for any inclusion ¥ C ¥’ of sufficiently large subsets of R°*.

We want to compare crystalline and de Rham cohomology. For this, it is convenient to

introduce an intermediate object: Namely, let EE(R) be the completion of

(Ds(R)/€)&cR — R .

This complex, or rather the filtered

This comes with derivations W for u € ¥, and 3 O(T‘) fori=1,...,d, and one can build a
corresponding de Rham complex Q B (R)/C (taking 1nto account both derivations). Note that this
complex does not actually depend on the choice of coordinates T, ..., Ty, as one can parametrize

the second set of derivations canonically by (the dual of) Q}%;Cglt Then there are natural maps
of complexes

QDE(R)/B+R/£ = Q5 myyo & ke -
Again, there is also a version taking into account the algebra R4. Namely, let 132 (R4) be the
completion of

Ds(R)®p+ (Ra®aBf) = R .
In this case, there are natural maps of complexes as follows:
Uy, ™ Wairarst, © Yrasa®aBin -
Lemma 13.13. The maps
e

(R)/Biy 1€ = Q5 myc & Yrye

and
2, (R)/Bj _>QD2(RA)/B+ <_QRA/A®ABdR

are quasi-isomorphisms.
In particular, for any inclusion ¥ C X' of sufficiently large subsets of R°*, the map

Q° B, —Q°

Ds(R)/ Dy/(R)/Bly

s a quasi-isomorphism.
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Proof. Explicitly, _
Bs(R) = RI(X. - wues] |

which easily shows that the second map is a quasi-isomorphism. On the other hand, we claim
that

Ds(R) = (Ds(R)/&)[[(T; — X1,)i=1,...al] -
This presentation implies that the first map is a quasi-isomorphism. To check the claim, we use
Lemma 13.12 to see that Dy (R) is the completion of

R[[(Xu — u)uEE,u;ﬁTh.“,TdH@C’R — R.

But the completion of R®cR — R is given by R[[(T; ® 1 — 1 ® T})i=1,...4]]. Combining these
observations, we see that Dx(R) = (Ds(R)/&)[[(Ti — X1,)i1.....d]], as desired.

The second part follows, as everything is derived {-complete (as the terms of the complexes are
&-adically complete and &-torsion free), so it suffices to check that one gets a quasi-isomorphism
modulo &, which reduces to the first part. O

Using the last statement of the preceding lemma, one can define a fully functorial B(}'R—Valued
cohomology theory on the category of very small smooth affinoids over C' as follows.

Definition 13.14. For a very small smooth Tate C-algebra R with X := Spa(R, R°), define
+ . + o .
the Byg-complex Cg, (X/Bjg) as the filtered colimit lim ., QDE(R)/BIR where o ranges over all

sufficiently large finite subsets of units in R°. Write RfcryS(X/BQ'R) GVD(B;'R) for the image of
Ceys(X/BJR) in the derived category.

It is easy to see that the Cg, (—/ Bjr) gives a presheaf of Bj;-complexes on the category
of very small smooth affinoids over C'. Moreover, by Lemma 13.13, we have a natural quasi-
isomorphism

BT erys (X Bly) 0. C = O
We shall later extend these constructions to proper smooth rigid spaces over C.

13.2. Interlude: spreading out proper rigid spaces, following Conrad-Gabber. In this
section, we prove that any proper rigid space can be realized as the fibre of a family defined over
a discretely valued field (Corollary 13.16). Our strategy is to reduce to a similar statement about
formal models. The latter is a special case of the following result.

Proposition 13.15. Let (W, m) be a complete noetherian local ring with residue field k. Let O
be an m-adically complete local W -algebra such that the local ring O/mO is 0-dimensional with
residue field k. Let Xo /O be a proper flat adic formal scheme, where O is topologized m-adically.
Then there exist the following:

(i) A complete noetherian local W-algebra R with residue field k, and a proper flat adic
formal scheme X /R, where R is topologized by powers of its mazimal ideal.
(ii) A W-algebra map n: R — O and an isomorphism ¥ : n*Xr ~ X0 of formal O-schemes.

Note that any ring R as in (1) above is a quotient of a formal power series ring over W: if
ai,...,a, € R are generators of the maximal ideal, then the map W{[z1, ..., z,]] 2%, Ris a
surjection of local rings.

Proof. For any discrete O-algebra B, write Xp/B for base change of X /O; as B is discrete,
Xp/B is a proper flat B-scheme. In particular, the special fibre X /k is a proper k-scheme; we
shall construct the required pair Xg/R as a versal deformation of X /k relative to W.

Let Art be the category of artinian W-algebras with residue field k. Consider the functor
Defyx, : Art — Set of deformations of Xy, i.e., Defx, (4) is the set of isomorphism classes
of lifts of X, to proper flat A-schemes. By Schlessinger [56, Proposition 3.10] (see also [,
Tag 0ET6]), this functor admits a versal deformation, i.e., there exists a complete noetherian
local W-algebra R with residue field k£ and a proper flat adic formal scheme Xr/R (where R is
topologized by powers of its maximal ideal) deforming X /k such that the induced classifying
map hpr := Homwy (R, —) — Defx, is formally smooth, i.e., for any surjection B — A in Art, the
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map hp(B) = hr(A) Xpery, (4) Defx, (B) is surjective. We shall check that this construction
does the job. Note that (i) and (ii) are clear from the construction.

Let us first explain how to extend functors defined on Art to a slightly larger class of W-
algebras that includes rings of the form O/mQ. Let IndArt be the category of local 0-dimensional
W-algebras A with residue field k. Note that Art C IndArt, and each O/m"O also lies in
IndArt. Further, the maximal ideal m4 of any A € IndArt is locally nilpotent as Spec(A)
has a single point by 0-dimensionality. We can thus write such an A as a filtered colimit of
its artinian W-subalgebras: any finite subset S := {a1,...,a,} C my4 lies in the image of the
map W{[z1, ..., xn]] ZiT%, A, and this image is artinian as some power of the maximal ideal
of W([z1,..,z,]] maps to 0 by local nilpotence of m4. By length considerations, it follows that
Art C IndArt is exactly the category of compact objects, and that the map Art — IndArt realizes
the target as the Ind-completion of the source. In particular, any functor F' : Art — Set has a
unique extension E> : IndArt — Set that preserves filtered colimits: explicitly, if A € IndArt,
then we simply set £ (A) := lim, _ F (A;), where the colimit runs over all artinian subalgebras
of A. Crucial to our purposes will be the following stability property of this construction: if
F — G is a formally smooth map of functors on Art, then F — is also formally smooth,
Le., for any surjection B — A in IndArt, the map E(B) — E(A) X Ga) G(B) is surjective.
To see this, one first observes that the surjection B — A can be written as a filtered colimit
of surjections B; — A; in Art: write B as a union of its artinian subalgebras B; C B, and set
A; C A to be the image of B;. The desired surjectivity now follows as the formation of filtered
colimits in the category of sets commutes with fibre products and preserves surjections.

We now specialize the considerations in the previous paragraph to the functors of interest.
First, note that the extension hp : IndArt — Set as defined above coincides with Homyy (R, —)

as R is a quotient of a formal power series ring over W in finitely many variables. Similarly, as
the functor specifying finitely presented schemes or their isomorphisms commutes with filtered
colimits of rings, the set Defx, (A) is simply the set of isomorphism classes of deformations of

A f A € IndArt. Al h i h, the i Def f
Xk to A for any A € IndArt so, by the previous paragraph, the induced map fg — Defy, o

functors on IndArt is formally smooth.
Let us now give the proof of (iii). We have a canonical map 7y : R — k and an isomorphism
Yo 1 nX R ~ Xj of k-schemes. Applying the formal smoothness of lg — Defy, to the surjection

O/mO — k in IndArt, we can choose a map 7; : R — O/mO lifting 7y and an isomorphism v :
N Xr ~ Xo/mo of O/mO-schemes lifting 1)9. Similarly, we can inductively choose a compatible
system of maps 7, : R — O/m™O and isomorphisms ¥, : 7;Xr ~ Xp/mno of O/m"O-schemes
for each n > 1. The proposition now follows by taking an inverse limit in n. O

Corollary 13.16 (Conrad-Gabber [21]). Let C/K be an extension of complete nonarchimedean
fields with the same residue field. If X/C is a proper rigid space, then there exists a proper flat
morphism f: X — S of rigid spaces over K such that X/C arises as the fibre of f over a point
n € S(C). If X/C is smooth, then we may choose S, X and f to be smooth.

In particular, any proper smooth rigid space over C can be realized as the fibre of a proper
smooth morphism of smooth rigid spaces defined over a discretely valued subfield of C'.

Proof. We are free to replace K with smaller complete nonarchimedean subfields of C' in proving
the corollary. Taking K to be the fraction field of a Cohen ring of the residue field of C', we may
thus assume that K is discretely valued. Let W C K and O C C be the valuation rings, so W is
discrete. By the theory of formal models, the proper rigid space X/C arises as the generic fibre of
a proper flat adic formal scheme X/O (see [53, Lemma 2.6] for an explanation of the properness
of the formal model). Choose Xg/R and the map 7 : R — O¢ as in Proposition 13.15. Setting
X /S to be the generic fibre (i.e., the base change along Spa(K, W) — Spf(W) in the language of
adic spaces) of Xr/R then gives the desired family. The smoothness assertions in the last part
follow immediately: given a proper flat morphism f : X — S of rigid spaces over K and a point
n € S(C) where f is smooth, we may replace S by a suitable locally closed subset containing 7
to conclude that both S and f (and hence X') may be taken to be smooth. O
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Remark 13.17. With a little extra effort, the method described in this subsection can be used
to prove a refinement of Corollary 13.16 where the assumption that C' and K have the same
residue field is relaxed to the assumption that the residue field of C is purely inseparable over
that of k. We do not spell this out as the preprint [21] proves a strong form of Corollary 13.16 by
dropping the assumption on the residue field completely. In particular, for a p-adic field C, they
show that any proper rigid space X/C arises as the fibre of a family that is defined over Q,. This
stronger statement is not necessary for our purposes. It is also considerably more complicated to
prove as the necessary analog of Proposition 13.15 entails developing an analog of Schlessinger’s
work [56] for the versal deformation rings of proper schemes over positive dimensional base rings
(arising by approximating the residue field k£ with smooth algebras over the prime field).

13.3. B&*‘R-cohomology of proper smooth rigid spaces. We may extend the construction of
the BOTR-Valued cohomology theory from small affinoids to the proper case by taking hypercoho-
mology.

Definition 13.18. For a proper smooth adic space X/C, write Rl crys(X/BiR) € D(BiR) for
the hypercohomology of the presheaf U +—> Cgrys(U/B;R) defined on the category of all smooth
open affinoids U C X that are very small.

Glueing analogous isomorphisms for affinoids shows that

RUerys(X/BiR) ®HéIR C =~ RIgr(X) .

As RTcrys(X/Bjg) is derived é-complete and de Rham cohomology is finite-dimensional, this
implies, in particular, that each Hérys(X / B;{R) is a finitely generated B(;FR—module which vanishes
for |i| > 0. In particular, RT¢,ys(X/B{) is a perfect Bj;-complex. In fact, we can do better:

Theorem 13.19. Let X/C be a proper smooth adic space. Then Hérys(X/B(TR) is finite free
over B:R for alli e Z.

Proof. If k denotes the perfect residue field of C, then we can split the projection O¢/p — k by
the ind-smoothness of k/F,. By deformation theory, this lifts uniquely to a map W (k) — Oc¢,
and thus gives an inclusion W(k)[}%] =: K C C of complete nonarchimedean fields with the same
residue field. By Corollary 13.16, we can find a proper smooth map f : X — S of smooth adic
spaces over K such that X/C arises as the fibre of f at a point n € S(C). By shrinking S, we
may assume S := Spa(A, A°) is a smooth affinoid, so the map 7 corresponds to a continuous map
A — C of Tate K-algebras. By the smoothness of A/K, we can lift this to a continuous map
A— BIR. Write Rfqr«Ox for the relative de Rham cohomology of f, viewed as a complex of
A-modules. Applying Lemma 13.13 to a hypercover of X' by small smooth affinoids gives a map

Rfar+Ox ®% Bin — Rlerys(X/Big)

in D(B:R) that is an isomorphism after applying — ®HJ‘BIR B;{R & by base change for de Rham

cohomology along the map A — C. Now each R’ fqr.Oyx is a coherent Og-module equipped with
an integrable connection, and therefore locally free. In particular, both the source and target of
the above map are derived £-complete; as the map was an isomorphism modulo £, it must thus
be an isomorphism. Since each R f4r.Ox is a finite projective A-module, it now follows that
each H, . (X/ Bj) is a finite projective, and hence finite free, Bj;-module. O
Remark 13.20. In the special case of Theorem 13.19 where the proper smooth adic space X/C
arises as the base change of a proper smooth adic space Xy/K defined over a discretely valued
subfield K C C, the proof above shows that there is a canonical identification

Hip(Xo/K)®k Bjg ~ H!

1
crys

(X/Bjr)

of B;{R—modules7 where the implicit map K — BS{R is the unique continuous lift of K — C' that
exists since K is discretely valued.

Finally, we can prove Theorem 13.1 and Theorem 13.3.
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Proof of Theorem 13.1. We start by constructing a natural map
RT 1y (X/B;{R) — RI'(Xproét, Bjmx) = R« (X, Zy) @z, BGTR .

Afterwards, we will check that after inverting £, this gives a quasi-isomorphism. Our strategy is
to construct a strictly functorial map of complexes locally, so that this map is already locally a
quasi-isomorphism after inverting &; this reduces us to the local case.

In the local situation, assume that X = Spa(R, R°) admits an étale map to the torus T¢
that factors as a composite of rational embeddings and finite étale maps. In this case, for any
sufficiently large ¥ C R°*, we have the BJj-algebra Dy (R) which is defined as the completion
of

Bd+R<(Xuil)u€2> - R.
Moreover, we have a canonical pro-finite-étale tower Xo v = “@”iXi — X which extracts
p-power roots of all elements v € ¥. In particular, this tower contains the tower of Lemma 5.3,
so that Xoo s = “lim”, X; is affinoid perfectoid. Let I' = [, cx Zp(1) be the Galois group of the
tower Xoo x/X. Then, by Lemma 5.6 and [58, Corollary 6.6], we have

RI‘(XproétaBjR7X) = chont (F7B3—R(Roo,2)) )

where (R, R;,z) is the completed direct limit of (R;, R}"), where X; = Spa(R;, R}").

Let us fix primitive p-power roots of unity (,» € O; one checks easily that the following
constructions are independent of this choice up to canonical isomorphisms. We get basis elements
Yu € T for each u € X, and one can compute RI cong (RIB%XR(ROO’E)) by a Koszul complex

( u_l)u
Kgt (roe 5)((u = Duex) : Bl (Roos) @BIR(ROO’E) .
u

Now, by repeating the arguments of Section 12.2, there is a natural map of complexes

Is]
(Freacxay )

Ds.(R) ®. Ds(R)

| |

(Yu=1)u
B;R(ROO,E) @u BIR(R(XJ,E) —_— ...

Here, the map Dy (R) — Bz (Reo x) in degree 0 comes via completion from the map
B(TR((Xfl)u) - BIR(Roo,E)

sending X, to [(X,, X7 )] € Bix(Roo,x), which is a well-defined element as we have freely
adjoined p-power roots of all X,.
We claim that this induces a quasi-isomorphism between Q;DE( R)/BZ, and 7 KB:R (Roo.s) (Yu —

1)uex), which finishes the proof of the comparison. This is completely analogous to the proof of
Proposition 12.9.

To check that this construction is compatible with the isomorphism from Theorem 5.1, use
that in that case R = Rx®xC comes as a base change, and there is a commutative diagram

Ds(R) —— Ds(Rg) =—— Rx®xBix

i l

BXR(ROO,Z) - OBJR(ROO,E) ~ RK@KBSFR

Here, the left vertical arrow gives rise to the comparison isomorphism just constructed (after
passing to Koszul complexes), the lower row encodes the comparison isomorphism from Theo-
rem 5.1 (after simultaneously passing to Koszul and de Rham complexes), and the upper row
encodes the comparison between crystalline and de Rham cohomology in Lemma 13.13. The
commutativity of the diagram (together with the relevant extra structures) proves the desired
compatibility. O
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Proof of Theorem 13.3. Using Corollary 13.16, we may realize X/C' as the fibre of a proper
smooth morphism f : X — S of smooth adic spaces over a discretely valued subfield K C C. By
passage to a suitable locally closed subset, we can assume that R? f*QJX /s is a locally free Og-
module for all 7 and j, as is R’ fqr+Ox, and everything commutes with arbitrary base change. To
check (i), we need to check that the ranks of Hodge cohomology add up to the rank of de Rham
cohomology. This can now be checked on classical points, where it is [58, Corollary 1.8].

Thus, we see that the dimension of de Rham cohomology is the sum of the dimensions of
Hodge cohomology. On the other hand, the dimension of de Rham cohomology is the same as
the rank of the free Bj;-module Hi. (X /Bgz), which is the same as the rank of the free BJ;-
module H} (X,Z,) ®z, B(;FR by Theorem 13.1. This, in turn, is the same as the dimension of
étale cohomology; it follows that the Hodge—Tate spectral sequence degenerates. O

13.4. The B;R-cohomology in the good reduction case. Let us give an alternate description
of Rfcrys(X / B;{R) in the good reduction case in terms of the A.,ys-cohomology theory. Let X be
a proper smooth formal scheme over O, with generic fibre X. In this situation, we can consider
the scheme Y = X xgpr 0 Spec O/p. The universal p-adically complete PD thickening (compatible
with the natural PD structure on Z,) of O/p is Fontaine’s ring Ac,ys. Thus, we can consider the
crystalline cohomology groups

Crys(Y/AcryS) .
On the other hand, we can consider the special fibre ¥ = ¥ Xspf o Speck, and its crystalline
cohomology groups

Hey (Y /W ()
which are finitely generated W (k)-modules.

Proposition 13.21. Fiz a section k — O/p. Then there is a canonical p-equivariant isomor-
phism

Crys(Y/ACI"yS)[ } = crys(Y/W( )) ®W(k) Acrys[%] .
In particular, Hcrys(Y/Acrys)[g] is a finite free Acrys[g]-module.

This is a variant on a result of Berthelot—Ogus, [7].

Proof. First, we check that for any qegs smooth O/p-scheme Z, the Frobenius

cryq(Z/ACFyS) ®Acrysv¢ ACY}’S - crys(Z/Acrys)
is an isomorphism after inverting p. Indeed, this reduces to the affine case. In that case, there is
an isomorphism Z = Z Xgpeck Spec O/p, where Z = Z Xgpec 0/, Spec k (as by finite presentation,
there is such an isomorphism modulo p'/?" for some n, and one can lift this isomorphism by

smoothness), and the result follows by base change from the case of Z/k.
Note that

crys(Y/AcryS) ®Acryé © Acrys =H' (YO/pl/p /80 1( CryS)) ®S0_1(Acrys)7§0 Acrys
by base change. Repeating, we see that

CI‘yS(Y/ACTYS) ®Acxy57§0” ACI"yb — H (Yo/pl/pn /SO n( Crys)) ®L,07"(Acrys)»¢n Acrys 3
where the left side agrees with H?,  (Y/Acys) after inverting p. On the other hand, if n is large

crys
enough, then there is an isomorphism

Y X prom = Y Xspeck Spec O/p'/P"

reducing to the identity over Spec k, by finite presentation. Moreover, any two such isomorphisms
agree after increasing n. Base change for crystalline cohomology implies the result. (I

Remark 13.22. The choice of section k¥ — O/p in Proposition 13.21 is unique in the important
special case when k = F,. Indeed, to see this, it is enough to observe the following: if R — F,, is
a surjection of F,-algebras with a locally nilpotent kernel, then there is a unique section F, — R.
To prove this, we can write R = @Ri as a filtered colimit of its finitely generated [Fj-algebras
R; C R. Passing to a cofinal subsystem, we may assume that the composite R; -+ R — F, is
surjective for each ¢. But then R; is an artinian local F,-algebra with residue field Fy, so there is
a unique section F, — R since F,, — F, is étale.
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In particular, we get a finite free BérR—module
Heyyo(Y/Acrys) ®a
Proposition 13.23. There is a natural quasi-isomorphism
chryS(Y/AcryS> ®Acrys BS_R = RFcryS(X/B;R) .

In particular, Hf;rys(X/B(J{R) is free over Bij.

+
Big -

crys

Proof. The crystalline cohomology of Y over Ay can be computed via explicit complexes as in
the definition of RT ¢yys(X/ B:{R), as in Section 12.2. Using these explicit models, one can write
down an explicit map, which is locally, and thus globally, a quasi-isomorphism (as locally, both
complexes are quasi-isomorphic to de Rham complexes for a smooth lift to Acys, resp. B:{R). O
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14. PROOF OF MAIN THEOREMS

Finally, we can assemble everything to prove our main results. Let C be a complete alge-
braically closed extension of @, with ring of integers O and residue field k. Let X be a smooth
formal scheme over O, with generic fibre X. Recall Theorem 1.10:

Theorem 14.1. There are canonical quasi-isomorphisms of complexes of sheaves on Xza, (com-
patible with multiplicative structures).

(i) With crystalline cohomology of Xj:

AQx @b, W (k) = WO, w -

inf

Here, the tensor product is p-adically completed, and the right side denotes the de Rham~—
Witt complex of X, which computes crystalline cohomology of Xy,.
(ii) With de Rham cohomology of X:

L ~ ()®;cont
AQx ®Ainf 0~ QI{/O )

i,cont _ 7. i
where Q)0 =Hm Qe pn) 0 /pm)-
(iii) With crystalline cohomology of Xo/p: If u : (X0 p/Acrys)erys —+ Xzar denotes the pro-
jection, then

L -~ crys
AQX@ A Acrys = RU*Oxo/p/Acrys .

(iv) With (a variant of) étale cohomology of the generic fibre X of X: If v : Xprost — Xzar
denotes the projection, then

AQx ®a,,, Ainf[ﬂ ~ (R Aing,x ) @A Ainf[i] .

Remark 14.2. In fact, this result needs only that C is perfectoid, with all p-power roots of
unity.

inf

Proof. Part (iii) is Theorem 12.1, and part (iv) follows directly from the definition of AQx.
Moreover, part (iii) implies parts (i) and (ii).

Alternatively, one can use the relation to the de Rham-Witt complex to prove (i) and (ii).
For simplicity, let us fix roots of unity for this discussion. For example, one can prove (ii) via

AQx ®amf,e O = (LnuRviAing x) ®g‘“f’a ©

~ ¢
— (Lnap(u)RV*Ainf,X) ®H;xinf’§ @)

= LU@(LWRV*Ainf,X) ®]l,:1i,,f,§ 0

= (L’l]gAQx) ®iinf7§(9

~ H*(AQz /%)

~ (Oe®cont
= Q35/(9 )

using Proposition 6.12 in the second-to-last step, and Theorem 8.3 in the last step. More generally,
for any r > 1,

AQx @Y, 6, Wi(O) = (LnuRvihing x) @, 0, Wr(O)
E)W (Lngr () RvsAing x ) ®HAM,5T W.(0)
= L (LnuRvihint,x) @ 5 Wie(O)
= (Lng AQx) ® 5 W (0)
> H*(AQx /&)

~ e cont
= W,0%50"

f79r

using Theorem 11.1 in the last step. Extending this quasi-isomorphism from W,.(O) to W, (k)
and taking the limit over r proves (i).
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Note that we now have two quasi-isomorphisms

AQx @34, 0, Wi (0) = WQ0"

The one just constructed, coming from Theorem 11.1, and the one resulting from Theorem 12.1
by extending along Ac,ys — W, (O) and using Langer—Zink’s comparison, [51, Theorem 3.5],
between de Rham—-Witt cohomology and crystalline cohomology. Let us give a sketch that these
quasi-isomorphisms are the same; for this, we use freely notation from Section 12. We look at
the functorial complex

nuKAiuf(Roo,z)((’Yu - 1)u€E)
computing AQp for very small affine open Spf R C X (where we are suppressing the filtered
colimit over all sufficiently large ¥ C R°* from the notation). By Proposition 6.12, this admits
a map of complexes

nuKAinf(Roo,E)((’yu - 1)u62) — H.((ngo*7'(u)KAinf(Roo,z)((’Yu - 1)u62))/§7“) =3 H.(AQR/gT) )

as above. Now we observe that this map factors through a map

A ~
(B 98 0 4l (O = D)) HO(ADR/Ey)

inf

Indeed, for any m, there is a natural map

Ag’r’;)s(('yu - 1)7162))/57") )

n’“'KAinf(Roo,Z)®Aian£:’) ((’Yu - 1)u€2) — H.((ntp_r(u)KAinf(Roo,E)(gA-

ve int
and there is a quasi-isomorphism
77‘P7T(IL)KAinf(RxYZ)®A_ Ag;';;((% — Duesx) =¥ AQR@AMSDT(AEZ;)Q

inf
by the usual arguments. Therefore,
H.((nwf"'(#)KA;nf(Roo,z)@),q, Alm) ((Yu = Duex)) /&) =4 H.(AQT@)Amf@T(A((:@)s)/gT) )

inf ©TCTYS

and there is a natural map (p’(Ag’;,)s) /& — W,(0), leading to a canonical map

A ~
(n#KAinf(Roc,):)@A-ang?;)s((’yu - ].)ueE))p — H*(AQRr/&) = WTQR’;?Qnt 7

i

as desired. This map is compatible with multiplication by construction; to check compatibility
with the Bockstein differential, use that the target is p-torsionfree, and that there is a map
¢ (Acrys(m))/E215] = At /&1,

In particular, one can compose the map ap from Lemma 12.8 (v) with this map to get a
functorial map of complexes

8 L] n
KD): ((m)uez) — WTQR’;%t .
In fact, this is a map of commutative differential graded algebras: To check compatibility with
multiplication, use that ar becomes compatible with multiplication after base extension to
W, (0).

Here, the left side is the complex computing crystalline cohomology in terms of the embedding
into the torus given by all units in 3. One can then check that this map agrees with the
similar map constructed by Langer—Zink in [51, §3.2]: As it is a continuous map of commutative
differential graded algebras generated in degree 0, one has to check only that it behaves correctly
in degree 0. ]

Now assume that X is also proper. Recall Theorem 1.8:

Theorem 14.3. Let X be a proper smooth formal scheme over O with generic fibre X. Then
RT 4, . (X) = RT'(X, AQx)

inf
is a perfect complex of Ains-modules, equipped with a @-linear map ¢ : RT 4, ,(X) — RT 4, ,(%)
inducing an isomorphism R 4, , (f{)[%] ~ RI‘AM(%)[ﬁ], such that all cohomology groups are
Breuil-Kisin—Fargues modules. Moreover, one has the following comparison results.
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(i) With crystalline cohomology of X:
RT A, (%) @Y%, W(k) = Rl crys (X /W (k)) -
(ii) With de Rham cohomology of X:
RT 4, (%) ®%,, O ~ RT4r(X) .
(iii) With crystalline cohomology of Xo/p:
RT 4, (%) @7, Acrys = Rlexys(X0/p/Actys) -
(iv) With étale cohomology of X :

RT 4, (X) @ a,; Aint[1] = RUet (X, Zy) @z, Aine[1] .

inf I m
Proof. The comparison results (i), (ii), (iii) and (iv) follow immediately from Theorem 14.1, using
Theorem 5.7 for part (iv).

Note that AQp is derived &-complete for any small affine open Spf R C X by Lemma 6.19;
thus, AQx is derived ¢-complete, and so is RT 4, ,(%). Then, to prove that R 4, ,(X) is perfect,
it is enough to prove that RI 4, (X) ®} o O is perfect, which follows from (ii).

By Proposition 9.17, there is a (-linear quasi-isomorphism

inducing in particular a @-linear map ¢ : AQx — AQx. This induces a similar map on R[4, (%),
which becomes an isomorphism after inverting E = ¢(&).

It follows that all cohomology groups are finite free after inverting p by Corollary 4.20 and
comparisons (iii) and (iv), using also Proposition 13.21. Thus, all cohomology groups are Breuil—
Kisin—Fargues modules. U

Remark 14.4. In the situation of Theorem 14.3, if we fix a cohomological index i, then the
following conditions are equivalent:

(i) Hiys(Xr/W(k)) is torsion-free.
(ii) Hig(X) is torsion-free.
Indeed, this follows by combining parts (i) and (i) of Theorem 14.3 with Remark 4.21. The

weaker equivalence where both H? and H**! are simultaneously required to be torsion-free can
be proven easily using the universal coefficients theorem relating Hjy (X) and Hp. . (X/W(k))

crys
with Hj (Xk). However, for a fixed index i as above, we do not know a direct “crystalline” proof
of this equivalence.

Let us now state a version of Theorem 1.1 over C.

Theorem 14.5. Let X be a proper smooth formal scheme over the ring of integers O in a
complete algebraically closed extension of Qp, with residue field k; let X be the generic fibre of
X. Leti>0.

(i) There is a canonical isomorphism
Hérys(xo/p/ACryS) © Acrys Berys = Hgt(X, Zp) ®z, Berys -
It is compatible with the isomorphism
Hérys(X/BgR) ®BIR BdR = Hét(Xa Zp) ®Zp BdR
via the identification
Hérys(xO/p/ACryS) ®Acrys B(;LR = Hérys(X/B;rR) .
(ii) For all n > 0, we have the inequality
lengthyy () (Herys(X1e/W (k))or /p") > lengthy (He (X, Zp)ior/p") -
In particular, if H.(Xx/W (k)) is p-torsion-free, then so is H (X, Zy).
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(iii) Assume that H:. (Xk/W(k)) and HL:L(X,/W(k)) are p-torsion-free. Then one can

crys crys

recover Héryb(fk/W(k‘)) with its p-action from H} (X, Z,) with the natural B -lattice
(X/Big) C Hiy(X,Zy) @z, Bar -

cryb

More precisely, the pair of H}(X,Z,) and this BIR—lattice give rise to a finite free
Breuil-Kisin-Fargues module BKF(H¢ (X, Z,)) by Theorem J.28. Then, assuming only
that HE, (X /W (k)) is p-torsion-free, we have a canomnical isomorphism

crys
H},,,(X) = BKF(H (X, Z,)) ,
and _
Hyo (X1 /W (k) D BKF(H{ (X, Zp)) @4, W(k) ,

compatibly with the p-action. If HL(Xy /W (k)) is also p-torsion-free, then the last
inclusion is an equality.

Proof. The isomorphism in part (i) follows from Theorem 14.1. The compatibility with the B:{R—
lattice ngyS(X / BJR) amounts to the compatibility between the isomorphisms of Theorem 12.1
and Theorem 13.1, which one checks on the level of the explicit complexes.

For part (ii), we use Theorem 14.1, Lemma 4.16 and Corollary 4.15 together with the observa-
tion that for any injective map M < N of finitely generated W (k)-modules with torsion cokernel
Q’

lengthyy ) (N/p™) > lengthy, ) (M/p")

as follows from the exact sequence

ory” QW (k) /p™) = M/p" — N/p" — Q/p" — 0,
and the equality

lengthw(k)Tori/V(k)(Qa W (k)/p") = lengthy, () (Q/p") .

which holds for any torsion W (k)-module.
For part (iii), we use the equivalence of Theorem 4.28 together with Corollary 4.20, and the
identification of the Bj;-lattice in part (i). O

Finally, we can prove Theorem 1.1:

Theorem 14.6. Let X be a proper smooth formal scheme over O, where O is the ring of integers
in a complete discretely valued nonarchimedean extension K of Q, with perfect residue field k,
and let i > 0. Let C be a completed algebraic closure of K, with corresponding absolute Galois
group G, and let X/K be the rigid-analytic generic fibre of X.

(i) There is a comparison isomorphism
He?t(XCWZP) ®Zp BCT.VB - Hérys %k/W(k)) ®W(l€) Bcrys )

compatible with the Galois and Frobenius actions, and the filtration. In particular,
H! (Xc,Qp) is a crystalline Galois representation.
(ii) For alln > 0, we have the inequality

lengthyy ) (Hepys (Xk/W (F))or/p") > lengthy (H (X, Zyp)tor/P") -

In particular, if H.\(Xx/W (k)) is p-torsion-free, then so is Hi (Xc, Zy).
(ili) Assume that He . (Xx/W (K)) and HLLL(X/W (k) are p-torsion-free. Then one can

recover H,  (Xy/W (k)) with its p-action from HE (Xc,Z,) with its Gk -action.

crys
More precisely, Theorem 4./ associates a finite free Breuil-Kisin module

BK(Hét(XC’Zp))
over & = W (k)[[T]] to the lattice H (Xc,Zy) in a crystalline G i -representation. This
comes with an identification
BK(H{ (Xc, Zyp)) @6 By = Hiyo(Xk/W (K)) @w (k) Baeys
by Proposition /.34 and part (i). In particular, by extending scalars along BCryS
W(k)[%], we get an identification BK(HE (X¢,Zy)) ®e W (k )[ | = HE (X /W (K ))[ ].
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Then
BK(H}(Xc,Zy)) ©s W (k) = Hyyo (X0 /W (k)
as submodules of the common base extension to W(k)[%]
Proof. Note that in this situation, there is a canonical section & — O/p — O¢/p, so part (i)

follows from Theorem 14.5 (i) and Proposition 13.21. For the compatibility with the filtration,
we also use that the isomorphism

Hérys(XC/Bc—ii_R) ®B§R BdR = Hét(XCa Zp) ®Zp BdR
from Theorem 13.1 is compatible with the isomorphism
Hig(X) ®@k Bar = Hy (X0, Zp) ®2, Bar

from Theorem 5.1.
Part (ii) is immediate from Theorem 14.5 (ii). Finally, part (iii) follows from Theorem 14.5
(iii) and Proposition 4.34. O

Remark 14.7. Using Remark 14.4, each torsion-freeness hypothesis on H,  (X/W (k)) in parts
(ii) and (iii) of Theorem 14.5 and Theorem 14.6 can be replaced by the hypothesis that the O-
module Hi (X) is torsion-free.
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