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ABSTRACT. The main result of this paper is the existence of Galois representations asso-
ciated with the mod p (or mod p™) cohomology of the locally symmetric spaces for GL,,
over a totally real or CM field, proving conjectures of Ash and others. Following an old
suggestion of Clozel, recently realized by Harris-Lan-Taylor-Thorne for characteristic 0 co-
homology classes, one realizes the cohomology of the locally symmetric spaces for GL,, as
a boundary contribution of the cohomology of symplectic or unitary Shimura varieties, so
that the key problem is to understand torsion in the cohomology of Shimura varieties.

Thus, we prove new results on the p-adic geometry of Shimura varieties (of Hodge
type). Namely, the Shimura varieties become perfectoid when passing to the inverse limit
over all levels at p, and a new period map towards the flag variety exists on them, called
the Hodge-Tate period map. It is roughly analogous to the embedding of the hermitian
symmetric domain (which is roughly the inverse limit over all levels of the complex points
of the Shimura variety) into its compact dual. The Hodge-Tate period map has several
favorable properties, the most important being that it commutes with the Hecke operators
away from p (for the trivial action of these Hecke operators on the flag variety), and that
automorphic vector bundles come via pullback from the flag variety.



Contents

[Chapter [.  Introduction|

[Chapter II.  Preliminaries|
[[I.1.  Constructing formal models from affinoid covers
[[1.2.  Closed Embeddings ot perfectoid spaces|
[[I.3. A Hebbarkeitssatz for perfectoid spaces|

[Chapter III. The perfectoid Siegel space|
(L1, Introductionl

[[II.2. A strict neighborhood of the anticanonical tower|
[[II.3. The Hodge-Tate period map|

[Chapter IV. p-adic automorphic forms|
[[V.1. Pertectoid Shimura varieties of Hodge type]|
[[V.2. Completed cohomology vs. p-adic automorphic forms|
[[V.3.  Hecke algebrasg|

[Chapter V. Galois representations|

(V.1. Recollections|

[V.2. The cohomology of the boundary]
[V.3.  Divide and conquer|

V.4, Conclusionl

11
11
13
16

27
27
31
54

65
66
69
72

79
79
84
91
100

105






CHAPTER I

Introduction

This paper deals with p-adic questions in the Langlands program. To put things into
context, recall the global Langlands (— Clozel — Fontaine — Mazur) conjecture.

CONJECTURE L.1. Let F' be a number field, p some rational prime, and fix an isomorphism
C=Q,. Then for any n > 1 there is a unique bijection between

(i) the set of L-algebraic cuspidal automorphic representations of GL,(Ar), and

(ii) the set of (isomorphism classes of) irreducible continuous representations Gal(F/F) —

GL,(Q,) which are almost everywhere unramified, and de Rham at places dividing p,
such that the bijection matches Satake parameters with eigenvalues of Frobenius elements.

Here, an L-algebraic automorphic representation is defined to be one for which the (nor-
malized) infinitesimal character of 7, is integral for all infinite places v of F'. Also,

Ar=T[F

denotes the adeles of F', which is the restricted product of the completions F, of F' at all
(finite or infinite places) of F'. It decomposes as the product Ap = Ap s X (F' ®g R) of the
finite adeles Ap s and F' ®g R =[], ., Fo = R™ x C", where ny, resp. no, is the number of
real, resp. complex, places of F'.

For both directions of this conjecture, the strongest available technique is p-adic interpo-
lation. This starts with the construction of Galois representations by p-adic interpolation,
cf. e.g. [64], [59], but much more prominently it figures in the proof of modularity theorems,
i.e. the converse direction, where it is the only known technique since the pioneering work
of Wiles and Taylor-Wiles, [65], [60].

For these techniques to be meaningful, it is necessary to replace the notion of automorphic
forms (which is an analytic one, with C-coefficients) by a notion of p-adic automorphic forms,
so as to then be able to talk about p-adic families of such. The only known general way to
achieve this is to look at the singular cohomology groups of the locally symmetric spaces for
GL,, over F. Recall that for any (sufficiently small) compact open subgroup K C GL,,(Af ),
these are defined as

v]oo

Xr = GL,(F)\[D x GL,(Ary)/ K],
where D = GL,(F ®¢ R)/R-¢K is the symmetric space for GL,(F ®q R), with K., C
GL,(F ®gR) a maximal compact subgroup. Then one can look at the singular cohomology
groups
H'(Xg,C),
which carry an action by an algebra Ty of Hecke operators. By a theorem of Franke,
[33], all Hecke eigenvalues appearing in H* (X, C) come (up to a twist) from L-algebraic
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6 I. INTRODUCTION

automorphic representations of GL,(Ar). Conversely, allowing suitable coefficient systems,
all regular L-algebraic cuspidal automorphic representations will show up in the cohomology
of Xx. Unfortunately, non-regular L-algebraic cuspidal automorphic representations will not
show up in this way, and it is not currently known how to define any p-adic analogues for
them, and thus how to use p-adic techniques to prove anything about them. The simplest
case of this phenomenon is the case of Maass forms on the complex upper half-plane whose
eigenvalue of the Laplace operator is 1/4 (which give rise to L-algebraic cuspidal automorphic
representations of GLy(Ag)). In fact, for them, it is not even known that the eigenvalues
of the Hecke operators are algebraic, which seems to be a prerequisite to a meaningful
formulation of Conjecture |I|

It is now easy to define a p-adic, or even integral, analogue of H*(Xg,C), namely
H'(Xg,Z). This discussion also suggests to define a mod-p-automorphic form as a system
of Hecke eigenvalues appearing in H'(Xf,F,). One may wonder whether a mod-p-version
of Conjecture [[.1| holds true in this case, and it has been suggested that this is true, see e.g.
the papers of Ash, [5], [6].

CONJECTURE 1.2. For any system of Hecke eigenvalues appearing in H'(Xy,F,), there
is a continuous semisimple representations Gal(F/F) — GL,(F,) such that Frobenius and
Hecke eigenvalues match up.

There is also a conjectural converse, generalizing Serre’s conjecture for F' = Q, n = 2, cf.
e.g. [7], [8]. It is important to note that Conjecture|[[.2]is not a consequence of Conjecture[L.1]
but really is a complementary conjecture. The problem is that H'(Xf, Z) has in general a lot
of torsion, so that the dimension of H* (X, F,) may be much larger than H*(Xy, C), and not
every system of Hecke eigenvalues in H'(X g, F,) is related to a system of Hecke eigenvalues
in H(Xg,C) (which would then fall into the realm of Conjecture [.1). In fact, at least
with nontrivial coefficient systems, there are precise bounds on the growth of the torsion in
H'(Xg,Z), showing exponential growth in the case that n = 2 and F is imaginary-quadratic
(while H(Xg,C) stays small), cf. [12], [50]. In other words, Conjecture [I.2] predicts the
existence of many more Galois representations than Conjecture [[.1]

The main aim of this paper is to prove Conjecture |[.2| for totally real or CM fields:

THEOREM 1.3. Conjecture[[.3 holds true if F' is CM, and contains an imaginary-quadratic
field. Assuming the work of Arthur, [4], it holds true if F is totally real or CM.

In fact, we also prove a version for H'(Xf,Z/p™Z), which in the inverse limit over m
gives results on Conjecture [.1}

THEOREM 1.4. There are Galois representations associated with reqular L-algebraic cus-
pidal automorphic representations of GL,(Ar), if F is totally real or CM.

The second theorem has recently been proved by Harris-Lan-Taylor-Thorne, [36]. For
the precise results, we refer the reader to Section [V.4

In a recent preprint, Calegari and Geraghty, [18], show how results on the existence of
Galois representations of the kind we provide may be used to prove modularity results, gener-
alizing the method of Taylor-Wiles to GL,, over general number fields. This is conditional on

1Although of course Deligne proved the Weil conjectures by simply choosing an isomorphism C 2 @p,
and deducing algebraicity of Frobenius eigenvalues only a posteriori.
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their [18] Conjecture B], which we prove over a totally real or CM field (modulo a nilpotent
ideal of bounded nilpotence degree), except that some properties of the constructed Galois
representations remain to be verified. Once these extra properties are established, Conjec-
ture might be within reach for regular L-algebraic cuspidal automorphic representations
(corresponding to Galois representations with regular Hodge-Tate weights) over totally real
or CM fields, at least in special cases or ‘potentially’ as in [10].

To prove our results, we follow Harris-Lan-Taylor-Thorne to realize the cohomology of
Xk as a boundary contribution of the cohomology of the Shimura varieties attached to
symplectic or unitary groups (depending on whether F' is totally real or CM). In particular,
these Shimura varieties are of Hodge type.

Our main result here is roughly the following. Let G be a group giving rise to a (con-
nected) Shimura variety of Hodge type (thus, we allow Sp,,, not only GSp,,), and let Sk,
K C G(Ay) be the associated Shimura variety over CH Recall the definition of the (com-
pactly supported) completed cohomology groups for a tame level K? C G(AI}),

H} jop = limlim HY(Sk, xr, Z/p"'Z) .
m K

The statement is roughly the following; for a precise version, see Theorem

THEOREM 1.5. All Hecke eigenvalues appearing in I:ji’Kp can be p-adically interpolated
by Hecke eigenvalues coming from classical cusp forms.

In fact, only very special cusp forms are necessary, corresponding to cuspidal sections of
tensor powers of the natural ample line bundle wx on Sk.

Combining this with known results on existence of Galois representations in the case of
symplectic or unitary Shimura varieties (using the endoscopic transfer, due to Arthur, [4]
(resp. Mok, [48], in the unitary case))} one sees that there are Galois representations for
all Hecke eigenvalues appearing in ﬁ; xp in this case. By looking at the cohomology of the
boundary, this will essentially give the desired Galois representations for Theorem [[.3] except
that one gets a 2n + 1-, resp. 2n-, dimensional representation, from which one has to isolate
an n-dimensional direct summand. This is possible, and done in Section

Thus, the key automorphic result of this paper is Theorem The first key ingredient
in its proof is a comparison result from p-adic Hodge theory with torsion coefficients proved
in [54]. Here, it is important that this comparison result holds without restriction on the
reduction type of the variety — we need to use it with arbitrarily small level at p, so that
there will be a lot of ramification in the special fibre. The outcome is roughly that one can
compute the compactly supported cohomology groups as the étale cohomology groups of the
sheaf of cusp forms of infinite level.

Fix a complete and algebraically closed extension C' of Q,,, and let S be the adic space
over C' associated with Sk (via base-change C =2 @p < (). Then the second key ingredient
is the following theorem.

2We need not worry about fields of definition by fixing an isomorphism C 2 @p.

3These results are still conditional on the stabilization of the twisted trace formula, but compare the
recent work of Waldspurger and Moeglin, [47]. In the unitary case, there are unconditional results of Shin,
58], which make our results unconditional for a CM field containing an imaginary-quadratic field, cf. Remark
v
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THEOREM 1.6. There is a perfectoid space Si» over C such that

SKP ~ @SKPKP .
Kp

Thus, the Shimura variety becomes perfectoid as a p-adic analytic space when passing
to the inverse limit over all levels at p. In fact, one needs a version of this result for the
minimal compactification, cf. Theorem[[V.1.1} One can then use results on perfectoid spaces
(notably a version of the almost purity theorem) to show that the étale cohomology groups of
the sheaf of cusp forms of infinite level can be computed by the Cech complex of an affinoid
cover of (the minimal compactification of) Sk». The outcome of this argument is Theorem
comparing the compactly supported completed cohomology groups with the Cech
cohomology of the sheaf of cusp forms of infinite level. Besides the applications to Theorem
[[.5], this comparison result has direct applications to vanishing results. Namely, the Cech
cohomology of any sheaf vanishes above the dimension d = dim¢ Sk of the space. Thus:

THEOREM L.7. For v > d, the compactly supported completed cohomology group ﬁ]éKp
vanishes.

By Poincaré duality, this also implies that in small degrees, the (co)homology groups
are small, confirming most of [17, Conjecture 1.5] for Shimura varieties of Hodge type, cf.
Corollary [[V.2.3|

Thus, there is a complex, whose terms are cusp forms of infinite level on affinoid subsets,
which computes the compactly supported cohomology groups. To finish the proof of Theorem
[[.5] one has to approximate these cusp forms of infinite level, defined on affinoid subsets, by
cusp forms of finite level which are defined on the whole Shimura variety, without messing
up the Hecke eigenvalues. The classical situation is that these cusp forms are defined on the
ordinary locus, and one multiplies by a power of the Hasse invariant to remove all poles.
The crucial property of the Hasse invariant is that it commutes with all Hecke operators
away from p, so that it does not change the Hecke eigenvalues. Thus, we need an analogue
of the Hasse invariant that works on almost arbitrary subsets of the Shimura variety. This
is possible using a new period map, which forms the third key ingredient.

THEOREM L.8. There is a flag variety U with an action by G, and a G(Q,)-equivariant
Hodge-Tate period map of adic spaces over C',

7THT28Kp —)EE’

which commutes with the Hecke operators away from p, and such that (some) automorphic
vector bundles come via pullback from FL along mut. Moreover, Tyt 18 affine.

For a more precise version, we refer to Theorem [[V.I1.1} In fact, this result is deduced
from a more precise version for the Siegel moduli space (by embedding the Shimura variety
into the Siegel moduli space, using that it is of Hodge type). In that case, all semisimple
automorphic vector bundles come via pullback from .%#¢, cf. Theorem [[11.3.18. For a more
detailed description of these geometric results, we refer to the introduction of Chapter [[T]]
We note that the existence of Tyt is new even for the moduli space of elliptic curves.

In particular, the ample line bundle wg» on Sk» comes via pullback from wg on ZL.
Any section s € wg pulls back to a section of wg» on Skr that commutes with the Hecke
operators away from p, and thus serves as a substitute for the Hasse invariant. As mgr
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is affine, there are enough of these fake-Hasse invariants. In fact, in the precise version of
this argument, one ends up with some integral models of the Shimura variety together with
an integral model of w (constructed in Section [[L.I)), such that the fake-Hasse invariants
are integral sections of w, and are defined at some finite level modulo any power p™ of p.
Interestingly, these integral models are not at all related to the standard integral models
of Shimura varieties: E.g., there is no family of abelian varieties above the special fibre.
Perhaps this explains why the existence of these fake-Hasse invariants (or of myr) was not
observed before — they are only defined at infinite level, and if one wants to approximate
them modulo powers of p, one has to pass to a strange integral model of the Shimura variety.

Finally, let us give a short description of the content of the different chapters. In Chapter
M we collect some results that will be useful later. In particular, we prove a version of
Riemann’s Hebbarkeitssatz for perfectoid spaces, saying roughly that bounded functions on
normal perfectoid spaces extend from complements of Zariski closed subsets. Unfortunately,
the results here are not as general as one could hope, and we merely manage to prove exactly
what we will need later. In Chapter [[TI}, which forms the heart of this paper, we prove that
the minimal compactification of the Siegel moduli space becomes perfectoid in the inverse
limit over all levels at p, and that the Hodge-Tate period map exists on it, with its various
properties. In Chapter [[V] we give the automorphic consequences of this result to Shimura
varieties of Hodge type, as sketched above. Finally, in Chapter [V], we deduce our main results
on Galois representations.
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perfectoid in the inverse limit, and that the Hodge-Tate period map exists on them), as well
as the application to Theorem [[.7], were known to the author for some time, and he would like
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wants to thank them heartily for the explanation of their method. The author would also like
to thank the organizers of the Hausdorff Trimester Program on Geometry and Arithmetic
in January — April 2013 in Bonn, where these talks were given. These results (especially
Chapter were the basis for the ARGOS seminar of the summer term 2013 in Bonn,
and the author would like to thank all participants for working through this manuscript,
their very careful reading, and their suggestions for improvements. Finally, he would like to
thank Bhargav Bhatt, Vincent Pilloni, Michael Spiess, Benoit Stroh, Thomas Zink and in
particular the referees for very useful feedback. This work was done while the author was a
Clay Research Fellow.






CHAPTER 1II

Preliminaries

This chapter provides various foundational statements needed in the main part of the
paper.

In Section |LI.1} we recall how one can construct formal models of rigid spaces starting
from suitable affinoid covers. This will be used in the proof of Theorem to construct
new formal models of Shimura varieties, on which the ‘fake-Hasse invariants’ are defined. In
the context of Lemma [[I.1.1], these are given by the sections ;.

In Section [[I.2] we define Zariski closed embeddings of perfectoid spaces, and prove
various basic properties about this notion. In fact, this notion comes in two flavours, called
Zariski closed, and strongly Zariski closed, respectively, and both notions are useful later.
The most important property here is that something Zariski closed in a perfectoid space
is again perfectoid. This is used later to deduce that Hodge type Shimura varieties are
perfectoid at infinite level, once this is known for the Siegel case. On the other hand, it will
be important to know that the boundary of the Shimura variety is strongly Zariski closed.
Intuitively, this says that the boundary is ‘infinitely ramified’: One extracts lots of p-power
roots of defining equations of the boundary.

Finally, in Section [[I.3] we prove a version of Riemann’s Hebbarkeitssatz for perfectoid
spaces, saying roughly that bounded functions on normal perfectoid spaces extend from
complements of Zariski closed subsets. |I| This section is, unfortunately, extremely technical,
and our results are just as general as needed later. The most important use of the Heb-
barkeitssatz in this paper is to show the existence of the Hodge-Tate period map. A priori,
we can only construct it away from the boundary, but the Hebbarkeitssatz guarantees that
it extends to the boundary. However, there is a second use of the Hebbarkeitssatz in Section
[I1.2.5 Here, the situation is that one wants to show that a certain space is perfectoid, by
showing that it is the untilt of an (obviously perfectoid) space in characteristic p. This is
easy to show away from boundary; to deduce the result, one needs the Hebbarkeitssatz to
control the whole space in terms of the complement of the boundary.

II.1. Constructing formal models from affinoid covers

Let K be a complete algebraically closed nonarchimedean field with ring of integers Ok.
Choose some nonzero topologically nilpotent element w € Og. We will need the following
result on constructing formal models of rigid-analytic varieties.

LEMMA I1.1.1. Let X be a reduced proper rigid-analytic variety over K, considered as an
adic space. Let L be a line bundle on X. Moreover, let X = J,c;U; be a cover of X' by finitely
many affinoid open subsets U; = Spa(R;, R). H For J C I, letUy = (;c,U; = Spa(Ry, RY).

IFor a version of Riemann’s Hebbarkeitssatz in the setting of usual rigid geometry, see [i1].
2Here, R = R? is the subset of powerbounded elements.

11



12 II. PRELIMINARIES

Assume that on each U;, one has sections
sg-i) € H(U;, L)
for 5 € I, satisfying the following conditions.
(i) For alli € I, sgi) is invertible, and
Ko
L e H'U;, 0%) .

K

(ii) For alli,j € I, the subset U;; C U; is defined by the condition

(iii) For all iy,i9,j € I,

on ?/lm-z .

Then for J C J', the map Spf R}, — Spf R} is an open embedding of formal schemes,
formally of finite type. Gluing them defines a formal scheme X over Ok with an open cover
by Lh; = Spf R ; define also U; = (;,c; % = Spf RY. The generic fibre of X is given by X.

Moreover, there is a unique invertible sheaf £ on X with generic fibre L, and such that
s e HO(W;, £) € HO(Us, £) = HO(3, £)[w 1],
with sl(-i) being an invertible section. There are unique sections
5, € H'(X, L/w)

such that for alli € I, 5; = sgi) mod @ € H°(;, £/w).
Furthermore, X is projective, and £ is ample.

PROOF. By [14] Section 6.4.1, Corollary 5], R is topologically of finite type over Ok.
By assumption (i), there is some f € R} such that Uy C U, is defined by |f] = 1. One
formally checks that this implies that RY, is the w-adic completion of R} [f~']. In particular,
Spf R}, — Spf R} is an open embedding. One gets X by gluing, and its generic fibre is X.
As X is proper, it follows that X is proper, cf. [39, Remark 1.3.18 (ii)]. ]

To define £, we want to glue the free sheaves £; = 31@(9112. of rank 1 on ;. Certainly,
£, satisfies the conditions on £y, and is the unique such invertible sheaf on i(;. To show
that they glue, we need to identify £;|y,; with £;]g,,. By (ii), £ily,; is freely generated by
sy). Also, by (iii) (applied with i, = j, i = i), £|y,; is freely generated by sgl), giving the
desired equality.

3Note that there is only one notion of a proper rigid space, i.e. in [39, Remark 1.3.19 (iv)], conditions
(a) and (b) are always equivalent, not only if the nonarchimedean field is discretely valued. This follows
from the main result of [61].
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To show that there are the sections §; € H(X, £/w), we need to show that for all 4y, is
and j,
() = 5% mod @ e H(8;,;,, &/w) .

8] J

Dividing by sgl) translates this into condition (iii).

It remains to prove that £ is ample. For this, it is enough to prove that £/ is ample on
X Xgpro, Spec Ok /w. Here, the affine complements ; Xgyr0, Spec Ok /w of the vanishing
loci of the sections §; cover, giving the result. O

We will need a complement on this result, concerning ideal sheaves.

LEMMA I1.1.2. Assume that in the situation of Lemma |[l.1.1], one has a coherent ideal
sheaf I C Oy. Then the association

U — H'(U;, TN OF)
extends uniquely to a coherent Ox-module J, with generic fibre I.

PROOF. From [15, Lemma 1.2 (c¢), Proposition 1.3], it follows that H°(U;,Z N OF) is a
coherent R;"-module. One checks that asUy C U, for J C J' is defined by the condition | f| =
1 for some f € R}, H*(U;,ZNO%) is given as the w-adic completion of H(U;, ZNOL)[f~1].
Thus, these modules glue to give the desired coherent Ox-module J. From the definition, it
is clear that the generic fibre of J is Z. 0

I1.2. Closed Embeddings of perfectoid spaces

Let K be a perfectoid field with tilt K”. Fix some element 0 # o € K° with |&°| < 1,
and set w = (’)f € K. Let X = Spa(R, R*) be an affinoid perfectoid space over K.

DEFINITION 11.2.1. A subset Z C |X| is Zariski closed if there is an ideal I C R such
that
Z={xeX||f(x)]=0forall fel}.

LEMMA 11.2.2. Assume that Z C X is Zariski closed. There is a universal perfectoid
space Z over K with a map Z — X for which |Z| — |X| factors over Z. The space
Z = Spa(S,ST) is affinoid perfectoid, the map R — S has dense image, and the map
|Z| = Z is a homeomorphism.

As the proof uses some almost mathematics, let us recall that an Og-module M is
almost zero if it is killed by the maximal ideal myg of Ok. The category of almost Og-
modules, or Of%-modules, is by definition the quotient of the category of Ox-modules by
the thick subcategory of almost zero modules. There are two functors from O%-modules to
Ox-modules, right and left adjoint to the forgetful functor. The first is

M — M, = Hompa (Of, M) ,
and the second is
M — M =mg Qo M, .

The existence of left and right adjoints implies that the forgetful functor N +— N commutes
with all limits and colimits. For this reason, we are somewhat sloppy in the following on
whether we take limits and colimits of actual modules or almost modules, if we are only
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interested in an almost module in the end. For more discussion of almost mathematics, cf.
[34] and, for a very brief summary, [53], Section 4].

PROOF. One can write Z C |X| as an intersection Z = (1), U of all rational subsets
U C X containing Z. Indeed, for any fi,..., fr € I, one has the rational subset

Up,.pe =tz e X [|fi(x) <1, i=1,... .k},

and Z is the intersection of these subsets. Any Uy, _r = Spa(Ry, 5, Ry, ;) is affinoid
perfectoid, where

.....

~~~~~~~~~~ Kk’

St/w = hﬂRﬁ

.....

It follows that Frobenius induces an almost isomorphism (S*/w!/P) 2 (S*/w)?, so that
(St/w)® is a perfectoid (O /w)*-algebra. Thus, S is a perfectoid O%-algebra, and S =
S*[ew™1] is a perfectoid K-algebra, cf. [53] Section 5]. Let £ = Spa(S, ST). All properties
are readily deduced. O

REMARK 11.2.3. More precisely, for any affinoid K-algebra (T, 7") for which TT C T is
bounded, and any map (R, R™) — (T,T7) for which Spa(T,T") — Spa(R, R") factors over
Z, there is a unique factorization (R, R™) — (5,S") — (T, T"). This follows directly from
the proof, using that 7" is bounded in proving that the map

g Rj,_j, = T
extends by continuity to the w-adic completion S*.

We will often identify Z = Z, and say that Z — X is a (Zariski) closed embedding.

REMARK I1.2.4. We caution the reader that in general, the map R — S is not surjective.
For an example, let R = K(T/?™) for some K of characteristic 0, and look at the Zariski
closed subset defined by I = (T — 1).

LEMMA 11.2.5. Assume that K is of characteristic p, and that Z = Spa(S,ST) = X =
Spa(R, R") is a closed embedding. Then the map RT — ST is almost surjective. (In partic-
ular, R — S is surjective.)

PROOF. One can reduce to the case that Z is defined by a single equation f = 0, for
some f € R. One may assume that f € RT. Consider the K°*/w-algebra

A =R (w, f, f1P, f17 ).

We claim that A is a perfectoid K°*/w-algebra. To show that it is flat over K°*/w, it is
enough to prove that

R (f, f17, f17 )
is flat over K°%, i.e. has no w-torsion. Thus, assume some element g € R° satisfies wg =
P b for some m > 0, h € R°. Then we have

wl/p”g — (wg)l/p"glfl/p” — fl/p’"*”hl/p"glfl/p” e (f, fl/p7 fl/p2’ )
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Thus, g is almost zero in R°/(f, f/?, f/?*,...), as desired. That Frobenius induces an
isomorphism A/w!/? & A is clear.

Thus, A lifts uniquely to a perfectoid K°*-algebra T° for some perfectoid K-algebra T
The map R°* — T°* is surjective by construction. Also, f maps to 0 in T". Clearly, the map
R /w — S°*/w factors over A; thus, R — S factors over 7. Let 7" C T be the integral
closure of the image of R*; then Spa(T,T") — Spa(R, R") factors over Z (as f maps to 0
in T, giving a map (S,S™) — (T,T") by the universal property. The two maps between S
and T are inverse; thus, S = T. Almost surjectivity of R — S* is equivalent to surjectivity
of R°® — S§°* =T°* which we have just verified. O

DEFINITION 11.2.6. A map Z = Spa(S,S™) — X = Spa(R, R") is strongly Zariski closed
if the map RT — ST is almost surjective.

Of course, something strongly Zariski closed is also Zariski closed (defined by the ideal
I =ker(R — 9)).

LEMMA 11.2.7. A map Z = Spa(S,ST) — X = Spa(R, R") is strongly Zariski closed if
and only if the map of tilts Z° — X” is strongly Zariski closed.

PROOF. The map R* — ST is almost surjective if and only if RT/w — ST /w is almost

surjective. Under tilting, this is the same as the condition that R**/w® — S /@’ is almost
surjective, which is equivalent to R°* — S°* being almost surjective. U

By Lemma [[1.2.5] Zariski closed implies strongly Zariski closed in characteristic p. Thus,
a Zariski closed map in characteristic 0 is strongly Zariski closed if and only if the tilt is
still Zariski closed. For completeness, let us mention the following result that appears in the
work of Kedlaya-Liu, [44]; we will not need this result in our work.

LEMMA 11.2.8 ([44, Proposition 3.6.9 (c)]). Let R — S be a surjective map of perfectoid
K-algebras. Then R° — S° is almost surjective.

In other words, for any rings of integral elements Rt C R, ST C S for which R™ maps
into ST, the map Rt — ST is almost surjective. Finally, let us observe some statements
about pulling back closed immersions.

LEMMA 11.2.9. Let
Z' = Spa(5',5"") —= X’ = Spa(R', R'")

l l

Z =Spa(S,ST) —— X = Spa(R, R")
be a pullback diagram of affinoid perfectoid spaces (recalling that fibre products always exist,
cf. [53l, Proposition 6.18]).
(i) If Z — X is Zariski closed, defined by an ideal I C R, then so is Z' — X', defined by the
ideal IR' C R,
(i) If Z — X s strongly Zariski closed, then so is Z' — X'. Moreover, if we define IT =
ker(RT™ — ST), I't = ker(R'* — S'"), then the map

I |@" Qg+ jon R J&o" — I't "

s almost surjective for all n > 0.
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PROOF. Part (i) is clear from the universal property. For part (ii), observe that (by the
proof of [53, Proposition 6.18]) the map

ST/ @t ) R Joo — S Jw

is an almost isomorphism. Thus, if RT /w — ST /w is almost surjective, then so is R'" /w —
S"* /w, showing that if Z — X is strongly Zariski closed, then so is 2’ — X’. For the result
about ideals, one reduces to n = 1. Now, tensoring the almost exact sequence

0—>I")o—-R"/w—ST/w—0

with Rt /@ over R /w gives the desired almost surjectivity. O

11.3. A Hebbarkeitssatz for perfectoid spaces

I1.3.1. The general result. Let K be a perfectoid field of characteristic p, with ring
of integers O C K, and maximal ideal mx C Ok. Fix some nonzero element ¢t € mg; then
myg =, t'/?"Ok. Let (R, RT) be a perfectoid affinoid K-algebra, with associated affinoid
perfectoid space X = Spa(R, R"). Fixanideal I C R, with [T = INRT. Let Z=V([) C X
be the associated Zariski closed subset of X.

Recall the following lemma, which holds true for any adic space over a nonarchimedean
field.

LEMMA I1.3.1. The stalk of O%/t at a point x € X with completed residue field k(z) and
valuation subring k(z)t C k(x), is given by k(x)*/t.

In particular, if O,y C k(x) denotes the powerbounded elements (so that k(z)" C Oy
is an almost equality), then the stalk of (O%/t)® is given by O/t

PRrROOF. There is a map O},x — k(x)* with a dense image. To prove the lemma, one
has to see that if I denotes the kernel of this map, then I/t = 0. If f € I, then f € OL(U)
for some neighborhood U of x, with f(x) = 0. Then |f| < |t| defines a smaller neighborhood
V of z, on which f becomes divisible by ¢ as an element of O% (V). O

PrROPOSITION 11.3.2. There is a natural isomorphism of almost Ok -modules
Hompg: (ITVP™ RY/t)* = HO(X\ 2,04 /t)° .

For any point x € X \ Z, this isomorphism commutes with evaluation H°(X \ Z,0%/t)* —
Ofy/t at x, where k(x) is the completed residue field of X at z:

Homp: (1777 RY /1) — Homok(x)(l,:(%pw, Oka) /1) = O/t -

REMARK I1.3.3. Recall that the global sections of (O3 /t)® are (R*/t)® (cf. [53, Theorem
6.3 (iii), (iv)]). Also, note that if z € X'\ Z, then the image I,j(x) C Opy) of I is not the
zero ideal, so that [ :(%p ~ is almost equal to Oyyy. Finally, the requirement of the lemma
pins down the map uniquely, as for any sheaf F of almost Ox-modules on a space Y, the

map H(F) — [[,ey Fy is injective.
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PROOF. Assume first that [ is generated by an element f € R; we may assume that
f € R*. In that case, ITY/P” is almost equal to fY/P* R* = f1/?"RT. Indeed, one has to
see that the cokernel of the inclusion f/?” Rt — IT1/P™ is killed by mg. Take any element
g € ITYP%: then g € IT/?™ for some m, so g = f/?"h for some h € R. There is some n
such that t"h € R*. For all £ > 0, we have

2571/17’“9 — tﬂ/p’“gl/p’“gl—l/pk _ fl/pm““ (tnh)l/pkgl—l/p’“ c fl/p’"““RJr 7

giving the result.
Thus, we have to see that

Homp+ (fYP" RY, RT /t)* = HO(X \ V(f), 0% /t)* .

Consider the rational subsets U, = {z € Spa(R, R") | |f(z)] > [t|"} C X; then X \ V(f) =
\U,,Un,. Moreover, by [53, Lemma 6.4 (i)] (and its proof), one has

HO(Uy,, O3 /1) =2 RY Jt[ul/P™]/ (Ym s ul/P" 127 —gn/o™ye

Let
Sp = R Jt{ullP™]/(Ym - ul/?" f" /o™y

and let S& C S, be the R*-submodule generated by u’ for i < 1/p*. One gets maps
S8R L im(RT = S,)
as fUPtyi = pUpt i gl — p/ptigni for a1l § < 1/pk. Also, we know that
HY(X\V(f), O3/t)" = lim H° Uy, Oy /t)* = lim S}, ,

and direct inspection shows that for fixed n and k, the map S,, — 5, factors over S,(Lk) for
n' large enough. It follows that

lim S, = lim 5"
for any k, and then also
lim S, = lim S% .
i v
Via the maps f1/7" : sk im(R*/t — S,,), one gets a map of inverse systems (in n and k)
S®) 5 im(RY/t — S,) |

where on the right, the transition maps are given by multiplication by fl/pk_l/pk/. The

kernel and cokernel of this map are killed by f'/ P and thus by t" Pt = 1 Pl . Taking
the inverse limit over both n and & (the order does not matter, so we may first take it over
k, and then over n), one sees that the two inverse limits are almost the same.

On the other hand, there is a map of inverse systems (in n and k),

RY/t - im(R*/t — S,) .

Again, transition maps are multiplication by fl/pkfl/pk,. Clearly, the maps are surjective.
Assume a € ker(R"/t — S,,). Then, for any sufficiently large m, one can write

a = (u}l/pmfl/pm _ tn/pm) Z az‘u;
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in R*/t[uy/”]. Comparing coefficients, we find that

a=—t""ay, fY""a= —tQ"/”mal/pm e, [P = —t(ZH)”/pmag/pm

for all £ > 0. In particular, f?"a € t"/P" R* /t for all £,m > 0 (a priori only for m large
enough, but this is enough). Assume that n = p" is a power of p (which is true for a cofinal
set of n); then, setting £ = 1, m = n/, we find that f'/"a =0 € R*/t.
As the transition maps are given by f/7"=1/7" and we may take the inverse limit over
k and n also as the inverse limit over the cofinal set of (k,n) with n = p*™!, one finds that
the kernel of the map of inverse systems
R*/t — im(R"/t — S,,)
is Mittag-Lefller zero. It follows that the inverse limits are the same. Finally, we have a map
Homp+ (f'7" R, R* /t) — lim R* /1
k

given by evaluating a homomorphism on the elements f/ P e fYP* R, Let M be the direct
limit of R* along multiplication by fY/?*~1/¢": then
1'£1R+/t = Hompg+ (M, R /t) ;
k

it is enough to see that the surjective map M — f/P* R+t (sending 1 in the A-th term R*
to f1/7") is injective. For this, if a € ker(f¥?" : Rt — R*), then by perfectness of R*, also
al/? P =0, s0 afYP" = 0; it follows that a gets mapped to 0 in the direct limit M.

This handles the case that [ is generated by a single element. The general case follows:
Filtering I by its finitely generated submodules, we reduce to the case that I is finitely
generated. Thus, assume that I = I; + I, where [; is principal, and I, is generated by fewer
elements. Clearly,

XA\V(I) = (X \ V(1) U(X\ V(D)) ,
and
(XA\V () N (X\ V(L)) = (X \V(1]2)) .

By using the sheaf property, one computes H°(X \ V(I), 0% /t)® in terms of the others. Note
that by induction, we may assume that the result is known for Iy, I and I1/15. Also,

0= (LI = Y7 @ 1Y o (L + L)Y =0

is almost exact. Injectivity at the first step is clear. If (f, g) lies in the kernel of the second
map, then f =g € R*, and f = f/Pge=V/P ¢ (I,1,)*'/? showing exactness in the middle.
If h € (I + I,)™"/7™, then we may write h = f + ¢ for certain f € I;/*", g € I,/”" . After
multiplying by a power t* of ¢, t* f,t*¢ € R*. But then also

kP — (tkh)l/thl—l/pm - (tkf)l/pmhl—l/pm + (tkg)l/pmhl—l/pm c ]1+1/p°° + I2+1/poo '
This gives almost exactness of
0= (L) = I @ IV — (1 + L) =0,
and applying Homp+(—, R /t)* will then give the result. O

For applications, the following lemma is useful.
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LEMMA I1.3.4. Let R be a perfectoid K-algebra, I C R an ideal, and R’ a perfectoid
K -algebra, with a map R — R’'; let I' = IR'. Then

IV @pe R — [HYP%
18 an almost isomorphism.

Proor. Writing I as the filtered direct limit of its finitely generated submodules, one
reduces to the case that [ is finitely generated. Arguing by induction on the minimal number
of generators of I as at the end of the proof of the previous proposition, one reduces further
to the case that I is principal, generated by some element 0 # f € RT. In that case, IT1/?~
is almost the same as f'/?* R*, which is the same as hg R*, where the transition maps are

given by fY/ pE-1/ pkﬂ, cf. the description of M in the previous proof. The same applies for

I'+1/P% “and the latter description obviously commutes with base-change. 0

I1.3.2. A special case. There will be a certain situation where we want to apply the
Hebbarkeitssatz (and where it takes its usual form saying that anything extends uniquely
from X'\ Z to X). Let Ay be normal, integral and of finite type over F,, and let 0 # f € A,.
Let K = F,((tY/77)), let S = A(I)/pw@[ppK be the associated perfectoid K-algebra, and
let ST = S° = A(l)/poo@)pp(’);(. Then (S,S") is a perfectoid affinoid K-algebra, and let
Y = Spa(S, ST).

Inside Y, consider the open subset X = {y € YV | |f(y)] > |t|}, and let (R, R") =
(Oy(X),05(X)). Note that

RY/t = (Aé/p‘” D, OK/t)[ul/poo]/(Vm L /P pLP zfl/pm)a .

Finally, fix an ideal 0 # Iy C Ay, let I = IhR, and let Z = V(I) C X be the associated
closed subset of X.

In the application, Spec Ag will be an open subset of the minimal compactification of the
Siegel moduli space, the element f will be the Hasse invariant, and the ideal Iy will be the
defining ideal of the boundary.

In this situation, Riemann’s Hebbarkeitssatz holds true, at least under a hypothesis
on resolution of singularities. In the application, this exists by the theory of the toroidal
compactification.

COROLLARY I1.3.5. Assume that Spec Ay admits a resolution of singularities, i.e. a
proper birational map T — Spec Ay such that T is smooth over F,. Then the map

H(x, OL/t) — H' (X \ Z,0% /1)
1s an isomorphism of almost O -modules.

PROOF. Arguing as at the end of the proof of Proposition [[I.3.2] we may assume that I
is generated by one element 0 # g € Ag. We have to show that the map

R*%/t — Homp: (¢"/?" R*, Rt /t)°
is an isomorphism. Note that we may rewrite

RY/t = (A" @, Fy[t77]/0)[wP7] (Vs a7 fH07 = 7)o AT [P f(uf )
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thus, we may replace R*/t by A = A(l)/ P> [u'/P”])/(uf), with the almost structure given by
(u!/P™ f1/P7). Also,
Homp- (¢"/*" R, R™/t)* = Homp+ 4 (g7~ RT/t, RT /1)
>~ Hom(g"/P" A, A)* = Hom ,1/p% (gl/pooA(l)/poo, A)* .
0

In the last step, we use that the kernel of the surjective map ¢'/?~ A(l)/poo ® 1m0 A — g7 A
0

is almost zero. Given the formula
A= @ amale @ (4
0<i<1,4€Z[1/p| i>1,i€Z[1/p]
this reduces to showing that the kernel of
0o 1/p™>® 0o 1/p>® 1/p™>® 1/p>®
gl/p Ao/p /fgl/p AO/P N AO/P /fAO/p
is almost zero with respect to the ideal generated by all f1/?" m > 0. But if a € ¢'/?~ A(l)/poo
is of the form a = fb for some b € A" | then

fl/pma — fl/pmal—l/pmal/pm — fl/pmfl—l/pmbl—l/pmal/pm — fal/pmbl—l/pm c fgl/p""Aé/P‘x’

)

whence the claim.
It remains to see that the map

A — HomAé/poo <gl/p°°A(1)/poo7 A)

is almost an isomorphism. Again, using the explicit formula for A, and using the basis given
by wu', this reduces to the following lemma. O

LEMMA I1.3.6. Let Ay be normal, integral and of finite type over F,, such that Spec A
admits a resolution of singularities. Let 0 # f,g € Ag. Then the two maps

AP s Hom 1o (V77 AP AYPTY L AP/ F — Hom e (6177 AP AT )
(0] (0]

are almost isomorphisms with respect to the ideal generated by all fY/?", m > 0.

REMARK I1.3.7. In fact, the first map is an isomorphism, and the second map injective,
without assuming resolution of singularities for Spec Ag. Resolution of singularities is only
needed to show that the second map is almost surjective. It may be possible to remove the
assumption of resolution of singularities by using de Jong’s alterations.

PRroOOF. First, as Ay, and thus A[l)/poo is a domain, the map
Atl)/l'OC . HOH1A1/p<x> <gl/p°°A(1)/P°°’ A(l)/poo)
0
is injective, and the right-hand side injects into A(l)/ P [g7'] € L, where L is the quotient
field of A(l)/poo. If + € L lies in the image of the right-hand side, then ¢'/?"x € A(l)/poo for

all n. As Ap is normal and noetherian, one can check whether = € Aé/ P by looking at
rank-1-valuations. If x would not lie in Aé/ P* then there would be some rank-1-valuation
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taking absolute value > 1 on z; then for n sufficiently large, also ¢*/?"z has absolute value
> 1, which contradicts ¢"/?"z € A(l)/p . Thus,

A(l)/p‘” o HomA(l)/poo (gl/pmAé/poo7A[1)/poo> .
In particular, it follows that

AP/ Hom o (9777 45 AT )

Now assume first that Ay is smooth. Then A(l)/ Pis a flat Ag-module; it follows that A(l)/ -
is a flat Ag-module. First, observe that for any Ag-module M and 0 # x € M, there is
some n such that 0 # ¢'/?"x € A(l)/ " 4, M. Indeed, assume not; then replacing M by the
submodule generated by z (and using flatness of A(l)/ P oo), we may assume that M = Ay/J
for some ideal J C Ay, and that g'/?" : M = Ag/J — A(l)/poo ®ay M = A(l)/poo/JA(l]/poo is the
zero map for all n > 0. This implies that g € JpnA(l]/poo N Ay = JP (by flatness of A(l)/poo
over Ap) for all n > 0, so that ¢ = 0 by the Krull intersection theorem, as A is a domain,
which is a contradiction.

In particular, we find that

(g P A = (f.9)A"

n

Indeed, an element x of the left-hand side lies in A(l)/ P for m large enough; we may assume
m = 0 by applying a power of Frobenius. Then x reduces to an element of M = Ay/(f, g)
such that for all n > 0,

0=g""w € A" @a, M = A/ )(£.9) .
Therefore, 0 =z € Ay/(f,9), i.e. x € (f,9)A0 C (f, g)A(l)/poo.

Now recall that
Hom, /o (977 A", 4" / )

can be computed as the inverse limit of Aé/ P /f, where the transition maps (from the k-th
to the A’-th term) are given by multiplication by ¢*/?*~1/2"  TLet M = R! l'glAé/poo, with
the similar transition maps. Then there is an exact sequence

0= A" 5 AY"T = Hom e (67 AYP, AP ) - M Lo
0
Thus, it remains to see that kernel of f : M — M is killed by fY/?™ for all m > 0. Recall
that
M = coker(H A(l)/poo — HA(I)/pOO) ,
n>0 n>0

where the map is given by (o, 1, ...) — (Yo, y1, . ..) with yp = 25 — g7 V", 1 Thus,
take some sequence (Yo, Y1, - - .), and assume that there is a sequence (zy, z},...) with fy, =
al — g We claim that o) € (f, 9)AYP” . By the above, it is enough to prove
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that o) € (f, ¢" /" )AY"" for all k > 0. But

- — _ 2
- - k= — ke _ k oo
= flyo+ 9" VPy + o g ) gtV e e (f, gV AT

giving the claim. Similarly, x} € (f, gl/f”k)A(l)/poo for all £ > 0. Fix some kg > 0. We may

add '/ z to a}, for all k for some z € AY””: thus, we may assume that S AV Tt
follows that

g7 € A

for all k& > ko (and z), € J"A[l)/poo for k < ko). We claim that there is an integer C' > 0
(depending only on Ay, f and g) such that this implies

wj, € fIOm AT

Indeed, this is equivalent to a divisibility of Cartier divisors f'~¢/ pko |z} As Ap is normal,
this can be translated into a divisibility of Weil divisors. Let xq,...,x, € Spec Ay be the
generic points of V(f), and vy, ..., v, the associated rank-1-valuations on Aé/ P OO, normalized
by v(f) = 1. Then, the condition f1=C/7"|z/ is equivalent to v;(x}) > 1 — C/pko for
i=1,...,7. As g # 0, there is some C' < oo such that v;(g) < C fori=1,...,r. As
P € A

)

we know that
(/P =1/p")C +vi(a}) 2 1,
thus
vilz)) > 1= C/p

as desired.

Thus, taking ko large enough, we can ensure that all o} are divisible by f!~'/7"  which
shows that f1?"(yo,v1,...) = 0 € M, whence the claim. This finishes the proof in the case
that Ag is smooth.

In general, take a resolution of singularities m : T — Spec Ay (which we assumed to
exist). It induces a map 7'/7” : T/ — Spec A(l)/poo. The result in the smooth case implies
that

Home,, . (9""" Ogipue, Opujp [ f) <= Opuj< [

is an almost isomorphism of sheaves over T'/P~. Note that by Zariski’s main theorem,
T+Or = Ogpec 4,- Moreover, R'7,Or is a coherent Ospec 4,-module, so there is some n such
that f™ kills all f-power torsion in R'm,O7. Passing to the perfection, this implies that
on Rim/? OOOTl/poo, the kernel of multiplication by f is also killed by f/?" for all n > 0.
Therefore, the map

OSpeC A(l)/POO /f — ﬂ—i/poo (OTl/POO /f)
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is injective, with cokernel almost zero. Also, g'/?" Opijpee = 7/P7* (g /7" O as g

Spec A(l)/pOo )’
is a regular element in Ay and Or. Thus, adjunction shows that

1 oo
HomO Al/poo (g /P OSpeC A(l)/l’oo7 OSpeC Aé/l’oo /f)

Spec 0
1/p=° 1/p™
1/po° (g /p OSpeC Aé/POO ) W*/p OTl/Poo /f)

pecAO

— Wi/poo HomoTl/poo (gl/poo Ori/o, Opijp= [ f)
1 (o)

— TP Oy | f Ogpec AV /f

is a series of almost isomorphisms, finally finishing the proof by taking global sections. [

— Homp
S

I1.3.3. Lifting to (pro-)finite covers. As the final topic in this section, we will show
how to lift a Hebbarkeitssatz to (pro-)finite covers. In the application, we will first prove a
Hebbarkeitssatz at level I'g(p™) using the result from the previous subsection. After that, we
need to lift this result to full I'(p>°)-level. This is the purpose of the results of this subsection.

The following general definition will be useful.

DEFINITION 11.3.8. Let K be a perfectoid field (of any characteristic), and let 0 4t € K
with |p| < |t| < 1. A triple (X, Z,U) consisting of an affinoid perfectoid space X over K, a
closed subset Z C X and a quasicompact open subset U C X \ Z is good if

H(X, 0L /t)* = HY(X\ 2,04 /t)" — H°U, O /t)* .

One checks easily that this notion is independent of the choice of ¢, and is compatible
with tilting. Moreover, if (X, Z,U) is good, then for any ¢ € O, possibly zero, one has

H(X,0L/t)* = H (X \ Z2,04/t)" — H°U, O /t)* .

In particular, the case t = 0 says that bounded functions from X\ Z extend uniquely to X'.

In the application, X will be an open subset of the minimal compactification, Z will
be the boundary, and U the locus of good reduction. Knowing that such a triple is good
will allow us to verify statements away from the boundary, or even on the locus of good
reduction.

Now we go back to our setup, so in particular K is of characteristic p. Let Ry be a reduced
Tate K-algebra topologically of finite type, Xy = Spa(Ry, Rj) the associated affinoid adic
space of finite type over K. Let R be the completed perfection of Ry, which is a p-finite
perfectoid K-algebra, and X = Spa(R, R") with R™ = R° the associated p-finite affinoid
perfectoid space over K.

Moreover, let Iy C Ry be someideal, I = ()R C R, Zy =V (Iy) C Xp,and Z =V (I) C X.
Finally, fix a quasicompact open subset Uy C Xy \ 2, with preimage Y C X'\ Z.

In the following lemma, we show that the triple (X, Z,U) is good under suitable condi-
tions on Ry, Iy and U,.

LEMMA I1.3.9. Let Ay be normal, of finite type over F,, admitting a resolution of singu-
larities, let
Ry = (Ao@r, K){u)/(uf — 1)
for some f € Ay which is not a zero-divisor, and let Iy = JRy for some ideal J C Ay with
V(J) C Spec Ay of codimension > 2. Moreover, let Uy = {x € Xy | |g(z)| = 1 for some g €
J}. If K =TF,((tY/77)), the triple (X, Z,U) is good.
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PrOOF. We may assume that Ay is integral. Corollary implies that
HO(X, O} /1) = H(X \ Z,04/t)"

Moreover, using notation from the proof of Corollary[[1.3.5, HO(X, 0% /t)® = AP [u!/?™ ]/ (uf)*,
and for any g € J, one has

HOWUy, O /1) = A" [ ][ ?™]/(uf)"
by localization, where U, = {z € X | |g(x)| = 1}. Thus, using the basis given by the u’, the
result follows from
H°(Spec Ay, Ospec 4,) = H?(Spec Ag \ V(J), Ospec 4, )
and
H°(Spec Ay, Ospec 4,/ f) = H°(Spec Ao \ V(J), Ospec 4,/ f)

where the latter holds true because the depth of Ogpec 4,/ f at any point of V(J) is at least
2—1=1. 0

In the next lemma, we go back to the abstract setup before Lemma [[T.3.9]

LEMMA 11.3.10. Assume that (X, Z,U) is good. Assume moreover that Ry is normal,
and that V (Iy) C Spec Ry is of codimension > 2. Let Ry, be a finite normal Ry-algebra which
is étale outside V (Iy), and such that no irreducible component of Spec R maps into V (Ip).
Let I, = IyR, and U, C X[ the preimage of Uy. Let R, I', X', Z', U" be the associated
perfectoid objects.

(i) There is a perfect trace pairing
trRE,/Ro : R6 XR, R6 — Ry .
(ii) The trace pairing from (i) induces a trace pairing
tI’R/o/Ro - R° X Ro R° = R°
which is almost perfect.
(iii) For all open subsets V C X with preimage V' C X', the trace pairing induces an isomor-

phism
H(V', 04, /t)" = Hompge 1 (R°/t, H'(V, 0% /1))" .
(iv) The triple (X', 2", U") is good.
(v) If X' — X is surjective, then the map
H(X,0%/t) = HY (X', O, /t) 0 H'(U, 0% /t)
18 an almost isomorphism.
PROOF. (i) There is an isomorphism of locally free Ogpec ro\v (1,)-modules
f*OspecRg\v(Ig) — Homospec RO\V(IO)(f*OSpeC RNV (I})s OSpec RO\V(IO))
induced by the trace pairing on Spec Ry \ V (1), as the map
f : Spec Ry \ V(I}) = Spec Ry \ V(1)

is finite étale. Now take global sections to conclude, using that R, and R, are normal, and
V(1y) C Spec Ry, V(I})) C Spec R), are of codimension > 2.
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(ii) By part (i) and Banach’s open mapping theorem, the cokernel of the injective map
Ry — HomRS(RE)O, Rp)

is killed by tV for some N. Passing to the completed perfection implies that
R° — Homgo (R/O, RO)

is almost exact, as desired.
(iii) If V = X, this follows from part (ii) by reduction modulo ¢. In general, V is the preimage
of some V, C A}, which we may assume to be affinoid. One can then use the result for 1, in
place of Xy, noting that
HomRO/t(R/O/t, HO(V, O:{v/t))a = HomHo(V’O;—(/t) (HO(V, O}/t) ®R°/t Rlo/t, HO(V, O}/t))a
= HomHO(v,o;/t) (H°(V, O3 /t), H'(V, 03 /1))
by the formula for fibre products in the category of perfectoid spaces, cf. [53] Proposition
6.18].
(iv) This follows directly from part (iii), and the assumption that (X, Z,U) is good.
(v) By surjectivity of X' — X, HY(X,0%/t)* — H°(X', OL/t)*. Assume h is an almost
element of H°(X', OF,/t)* N HO(U, O3 /t)*. Then, via the trace pairing, h gives rise to a
map
(R°/t)" — (R°/t)"
We claim that this factors over the (almost surjective) map
(e jtye/(respe + (B°/1)* = (R /)"

As (R°/t)* — H(U,O%/t)?, it suffices to check this after restriction to U; there it follows
from the assumption h € HO(U,O%/t). This translates into the statement that h is an
almost element of H°(X, 0% /t)%, as desired.

U

Finally, assume that one has a filtered inductive system R((f), 1 € I, as in Lemma ,
giving rise to X Z0 1/ We assume that all transition maps X@ — X\ are surjective.
Let X be the inverse limit of the X@ in the category of perfectoid spaces over K, with
preimage ZCcXof Z, andU C X of U.

LEMMA I1.3.11. In this situation, the triple (X, Z,U) is good.

PROOF. As X and U are qcgs, one may pass to the filtered direct limit to conclude from
the previous lemma, part (iv), that

HY(X, 0L /t)* — HOU,0%/t)

Moreover,
HO(XW, 0F /1) — H(X, 0% /1)

for all i € I, as X surjects onto X, The same injectivity holds on open subsets. Also,

HO(x! Orw /) HO(/KOI?/t)aﬂHO( U O /1)
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by passing to the filtered direct limit in the previous lemma, part (v). Let R = HO(X, O %)
Rt = R° and I = [,R C R. Then the general form of the Hebbarkeitssatz says that

H(X\ Z, OL/t)" = Hom g, (1177 RY /1) = Homps (TP RY /),
using also Lemma The latter injects into
Homp+ (I/P", HOU, 07 /1))" = H'U\ Z,0%/t)" = H'(U, O% /)" .

The latter is a filtered direct limit. If an almost element & of HO(X \ Z, O3 /t)* is mapped
to an almost element of

H'UY, 0%, /t)" c H'WU, 0:/t",
then the map
([+1/p°°)a N (RJr/t)a
corresponding to h will take values in (Rt /t)* N HO(U®, Ot /1) = (ROT /1), thus gives
rise to an almost element of

Homp: (1777, RO* /t)e = HO(x @\ 20, 0L/t

But (X (i)N, Z@ 1Y) is good, so the Hebbarkeitssatz holds there, and h extends to X®, and
thus to X. 0
In particular, one can use this to generalize Lemma slightly:

COROLLARY 11.3.12. The conclusion of Lemma holds under the weaker assumption
that K is the completion of an algebraic extension of F,((t'/?™)).

PROOF. For a finite extension, this follows from Lemma [[I.3.10, Then the general case
follows from Lemma [T.3.11] O



CHAPTER III

The perfectoid Siegel space

IT1.1. Introduction

Fix an integer g > 1, and a prime p. Let (V1) be the split symplectic space of dimension
2g over Q. In other words, V = Q2 with symplectic pairing

g

Y((ar, ... ag, by by), (o al ) = (aib] — ajb;) .

=1

Inside V, we fix the self-dual lattice A = Z2?9. Let GSp,,/Z be the group of symplectic
similitudes of A, and fix a compact open subgroup K? C Gszg(A?) contained in {y €
Gszg(Zp) | ¥=1 mod N} for some integer N > 3 prime to p.

Let X, k» over Z,) denote the moduli space of principally polarized g-dimensional abelian
varieties with level- KP-structure. As g and K? remain fixed throughout, we will write X =
Xy kr. The moduli space X can be interpreted as the Shimura variety for the group of
symplectic similitudes GSp,, = GSp(V, 1), acting on the Siegel upper half space. Let FI
over Q be the associated flag variety, i.e. the space of totally isotropic subspaces W C V' (of
dimension g). Over F1, one has a tautological ample line bundle wg; = (A? W)*.

Moreover, we have the minimal (Baily-Borel-Satake) compactification X* = X7 ;, over
Zp), as constructed by Faltings-Chai, [30]. It carries a natural ample line bundle w, given
(on X, kr) as the determinant of the sheaf of invariant differentials on the universal abelian
scheme; in fact, if g > 2,

X; oo = Proj @D H (X ser, w™) .
k>0

Moreover, for any compact open subgroup K, C GSp,,(Q,), we have Xg, = X, g, k» over
@, which is the moduli space of principally polarized g-dimensional abelian varieties with
level- KP-structure and level-K-structure, with a similar compactification Xj = X7 g x».
We will be particularly interested in the following level structures.

DEFINITION IILI.1.1. In all cases, the blocks are of size g X g.

* %

™) = (1 € GSpy(Z) 1= (5 1) mod ™, dety =1 mod 7}

1 m
(11) moar.
10 "
<01) mod p™} .

27

Ti(p™) = {y € GSpy,(Zy) | ¥

[(p™) = {7 € GSpyy(Z,) | v
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We note that our definition of I'y(p™) is slightly nonstandard in that we put the extra
condition dety =1 mod p™.

Let X} denote the adic space over Spa(Q,, Z,) associated with X, for any K, C
GSp,,(Qp). Similarly, let ¢ be the adic space over Spa(Q,,Z,) associated with FI, with
ample line bundle wg. Let ngd be the completion of Q,(j~). Note that leo(pm) lives

naturally over Q(¢,m) by looking at the symplectic similitude factor. The following theorem
summarizes the main result; for a more precise version, we refer to Theorem [[I1.3.18]

THEOREM III.1.2. Fix any K? C GSpQQ(Al}) contained in the level-N-congruence sub-
group for some N > 3 prime to p.

(i) There is a unique (up to unique isomorphism) perfectoid space
le(p‘x’) - X;,F(p‘x’)vK”

over ngd with an action of GSpQg(@p)ﬂ such that
A (o) ~ I%IX;}? )

equivariant for the GSpy,(Qy)-action. Here, we use ~ in the sense of [56} Definition 2.4.1].
(ii) There is a GSpy,(Qy)-equivariant Hodge-Tate period map

THT - Xl:k(poo) — Gl

under which the pullback of w from X = to XI’f(poo) gets identified with the pullback of w.z
along myr. Moreover, Tyt commutes with Hecke operators away from p (when changing K?),
for the trivial action of these Hecke operators on F.

(iii) There is a basis of open affinoid subsets U C F for which the preimage V = mgp(U) is
affinoid perfectoid, and the following statements are true. The subset V is the preimage of
an affinoid subset V,, C AL ) for m sufficiently large, and the map

lim HO(Vyy, Oxz ) = H(V, Oxz )

has dense image.

These results, including the Hodge-Tate period map, are entirely new even for the mod-
ular curve, i.e. g = 1. Let us explain in this case what 7wyt looks like. One may stratify
each

X[*( _ X}k(ordu‘)(ls(s

into the ordinary locus X7 (which we define for this discussion as the closure of the
tubular neighborhood of the ordinary locus in the special fibre) and the supersingular locus
X3, Thus, by definition, &7? C X} is an open subset, which can be identified with a
finite disjoint union of Lubin-Tate spaces. Passing to the inverse limit, we get a similar
decomposition

* *ord ss

1Of course, the action does not preserve the structure morphism to Spa(@f}’d, Zgyd).
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On the flag variety .#¢ = P! for GSp, = GL,, one has a decomposition
P! = PY(Q,) |_|Qz ’
where Q? = P!\ P(Q,) is Drinfeld’s upper half-plane. These decompositions correspond,
ie.
Xl*(%rd = Wﬁﬂlﬁ(Pl (Qp)) , Xg» = Wﬁ%‘(Qz) :
Moreover, on the ordinary locus, the Hodge-Tate period map
mr - At — PYQ,)

measures the position of the canonical subgroup. On the supersingular locus, one has the
following description of 7y, using the isomorphism My o & Mp, o between Lubin-Tate
and Drinfeld tower, cf. [29], [32], [56]:

~ 2
Ty X = | [Mimee 2| [Mproo = Q.

Contrary to the classical Gross-Hopkins period map My — P! which depends on a trivial-
ization of the Dieudonné module of the supersingular elliptic curve, the Hodge-Tate period
map is canonical. It commutes with the Hecke operators away from p (as it depends only on
the p-divisible group, and not the abelian variety), and extends continuously to the whole
modular curve.

Let us give a short summary of the proof. Note that a result very similar in spirit was
proved in joint work with Jared Weinstein, [56], for Rapoport-Zink spaces. Unfortunately,
for a number of reasons, it is not possible to use that result to obtain a result for Shimura
varieties (although the process in the opposite direction does work). The key problem is
that Rapoport-Zink spaces do not cover the whole Shimura variety. For example, in the
case of the modular curve, the points of the adic space specializing to a generic point of the
special fibre will not be covered by any Rapoport-Zink space. Also, it is entirely impossible
to analyze the minimal compactification using Rapoport-Zink spaces.

For this reason, we settle for a different and direct approach. The key idea is that on
the ordinary locus, the theory of the canonical subgroup gives a canonical way to extract
p-power roots in the T'g(p™)-tower. The toy example is that of the I'g(p)-level structure
for the modular curve, cf. [27]. Above the ordinary locus, one has two components, one
mapping down isomorphically, and the other mapping down via the Frobenius map. It is
the component that maps down via Frobenius that we work with. Going to deeper I'y(p™)-
level, the maps continue to be Frobenius maps, and in the inverse limit, one gets a perfect
space. Passing to the tubular neighborhood in characteristic 0, one has the similar picture,
and one will get a perfectoid space in the inverse limit. It is then not difficult to go from
LCo(p™)- to I'(p™)-level, using the almost purity theorem; only the boundary of the minimal
compactification causes some trouble, that can however be overcome.

Note that we work with the anticanonical tower, and not the canonical tower: The I'y(p)-
level subgroup is disjoint from the canonical subgroup. It is well-known that any finite level
of the canonical tower is overconvergent, cf. e.g. [46], [43], [2], [3], [24], [31], [35], [52],
[62]; however, not the whole canonical tower is overconvergent. By contrast, the whole
anticanonical tower is overconvergent. This lets one deduce that on a strict neighborhood
of the anticanonical tower, one can get a perfectoid space at I'g(p™)-level, and then also at
['(p*>)-level.
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Observe that the locus of points in Xli‘(poo) which have a perfectoid neighborhood is stable
under the GSp,,(Qj,)-action. Thus, to conclude, it suffices to see that any abelian variety
is isogenous to an abelian variety in a given strict neighborhood of the ordinary locus.
Although there may be a more direct way to prove this, we deduce it from the Hodge-Tate
period map. Recall that the Hodge-Tate filtration of an abelian variety A over a complete
and algebraically closed extension C of Q, is a short exact sequence

0 — (LieA)(1) = T)A®z, C — (Lie A")* = 0,

where T,A is the p-adic Tate module of A. Moreover, (LieA)(1) C T,A ®z, C is a Q,-
rational subspace if and only if (the abelian part of the reduction of) A is ordinary; this
follows from the classification of p-divisible groups over O¢, [66], Theorem B], but can also
easily be proved directly. One deduces that if the Hodge-Tate filtration is close to a Q,-
rational point, then A lies in a small neighborhood of the ordinary locus (and conversely),
cf. Lemmallll.3.8, |[[I1.3.15 As under the action of GSp,,(Q,), any filtration can be mapped
to one that is close to any given Q,-rational point (making use of U,-like operators), one
gets the desired result.

In fact, observe that by [56 Theorem B], the C-valued points of .Z¢ are in bijection with
principally polarized p-divisible groups G over O¢, with a trivialization of their Tate module.
Thus, 7yt is, at least on C-valued points of the locus of good reduction, the map sending
an abelian variety over O¢ to its associated p-divisible group. We warn the reader that this
picture is only clean on geometric points; the analogue of [56, Theorem B] fails over general
nonarchimedean fields, or other base rings.

Most subtleties in the argument arise in relation to the minimal compactification. For
example, we can prove existence of Tyt a priori only away from the boundary. To extend to
the minimal compactification, we use a version of Riemann’s Hebbarkeitssatz, saying that
any bounded function has removable singularities. This result was proved in Section [[I.3] in
the various forms that we will need. In Section [[II.2] we prove the main result on a strict
neighborhood of the anticanonical tower. As we need some control on the integral structure
of the various objects, we found it useful to have a theory of the canonical subgroup that
works integrally. As such a theory does not seem to be available in the literature, we give a
new proof of existence of the canonical subgroup. The key result is the following. Note that
our result is effective, and close to optimal (and works uniformly even for p = 2).

LEMMA 1I1.1.3. Let R be a p-adically complete flat Z;yd—algebm, and let A/R be an

abelian variety. Assume that the p;n__ll
1

some € < 5. Then there is a unique closed subgroup C C A[p™] such that C' = ker F™
mod p!~¢.

-th power of the Hasse invariant of A divides p° for

Our proof runs roughly as follows. Look at G = A[p™]/ker F™ over R/p. By the
assumption on the Hasse invariant, the Lie complex of G is killed by p®. The results of
[lusie’s thesis, cf. [42, Section 3|, imply that there is finite flat group scheme G over R
such that G and G agree over R/p'~¢. Similarly, the map A[p™] — G over R/p'~¢ lifts
to a map A[p™] — G over R that agrees with the original map modulo R/p'~2¢. Letting
C = ker(A[p™] — G) proves existence (up to a constant); uniqueness is proved similarly. All
expected properties of the canonical subgroup are easily proved as well. In fact, it is not
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necessary to have an abelian variety for this result; a (truncated) p-divisible group would be
as good.

As regards subtleties related to the minimal compactification, let us mention that we
also need a version of (a strong form of) Hartog’s extension principle, cf. Lemma ,
and a version of Tate’s normalized traces, cf. Lemma In general, our approach is
to avoid any direct analysis of the boundary. This is mainly due to lazyness on our side,
as we did not wish to speak about the toroidal compactification, which is needed for most
explicit arguments about the boundaryﬂ Instead, for all of our arguments it is enough to
know that all geometric fibres (over SpecZ,) of the minimal compactification are normal,
with boundary of codimension g (which is > 2 at least if g > 2; the case g = 1 is easy to
handle directly). However, the price to pay is that one has to prove a rather involved series
of lemmas in commutative algebra.

Finally, in Sectionwe construct the Hodge-Tate period map (first topologically, then
as a map of adic spaces), and extend the results to the whole Siegel moduli space, finishing

the proof of Theorem [[T1.1.2]

II1.2. A strict neighborhood of the anticanonical tower

I11.2.1. The canonical subgroup. We need the canonical subgroup. Let us record
the following simple proof of existence, which appears to be new. It depends on the following
deformation-theoretic result, proved in Illusie’s thesis, [41l, Théoréme VII.4.2.5].

THEOREM II1.2.1. Let A be a commutative ring, and G, H be flat and finitely presented
commutative group schemes over A, with a group morphism uw : H — G. Let By, By — A
be two square-zero thickenings with a morphism By — By over A. Let J; C B; be the
augmentation ideal. Let Gy be a lift of G to By, and G the induced lift to Bsy. Let K be a

cone of the map ly — U of Lie complezes.

(i) For i = 1,2, there is an obstruction class

L
0; € Ext'(H, K ® J;)

which vanishes precisely when there exists a lifting (Hi~7 w;) of (H,u) to a flat commutative
group scheme H; over B;, with a morphism u; : H; — G; lifting v : H — G.

L L
(ii) The obstruction oy € Ext'(H, K ® J;) is the image of o, € Ext'(H, K ® J;) under the
map J, — Js.

PROOF. Part (i) is exactly [41] Théoreme VII.4.2.5 (i)] (except for a different convention
on the shift in K), where the A from loc. cit. is taken to be Z and the base ring T' = Z.
Part (ii) follows from [41, Remarque VII.4.2.6 (i)]. O

Recall that Zgyd contains elements of p-adic valuation W for any integers a,n > 0.

In the following, p° € Zgyd denotes any element of valuation e for any ¢; we always assume
implicitly that e is of the form m for some a,n > 0. In all the following results, Z;yd
could be replaced by any sufficiently ramified extension of Z,,.

In a recent preprint, Pilloni and Stroh, [51], give such an explicit description of the boundary.
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COROLLARY II1.2.2. Let R be a p-adically complete flat Zgyd—algebm. Let G be a finite
locally free commutative group scheme over R, and let C1 C G ®g R/p be a finite locally free
subgroup. Assume that for H = (G ®@g R/p)/Ch, multiplication by p¢ on the Lie complex fy
1s homotopic to 0, where 0 < € < % Then there is a finite locally free subgroup C' C G over
R such that C @g R/p'~¢ = C1 g/, R/p' €.

PROOF. In Theorem [II1.2.1, we take A = R/p, B; = R/p*~¢, and

By ={(z.y) € R/p"* x R/p|e =y € R/p'~} .
One has the map By — B; sending z to (x,z). Both augmentation ideals J; C B; are
isomorphic to R/p'~¢, and the transition map is given by multiplication by p¢. Moreover,
one has the group scheme G ®p R/p*~¢ over By, and the morphism C} — G @ R/p over A,
giving all necessary data. From Theorem and the assumption that p© is homotopic to
0 on fy = K, it follows that 0, = 0. In other words, one gets a lift from A to B,. But lifting
from A to By is equivalent to lifting from R/p'~¢ to R/p?~2¢. Thus, everything can be lifted
to R/p*~%, preserving the objects over R/p'™¢. As 2 — 2¢ > 1 by assumption, continuing
will produce the desired subgroup C' C G. O

REMARK II1.2.3. The reader happy with larger (but still explicit) constants, but trying
to avoid the subtle deformation theory for group schemes in [41], may replace the preceding
argument by an argument using the more elementary deformation theory for rings in [40]. In
fact, one can first lift the finite locally free scheme H to R by a similar argument, preserving
its reduction to R/p'~¢. Next, one can deform the multiplication morphism H x H —
H, preserving its reduction to R/p'™2¢, as well as the inverse morphism H — H. The
multiplication will continue to be commutative and associative, and the inverse will continue
to be an inverse, if € is small enough. This gives a lift of H to a finite locally free commutative
group scheme over R, agreeing with the original one modulo p*~2¢. Next, one can lift the
morphism of finite locally free schemes G ®pg R/p — H to a morphism over R, agreeing with
the original one modulo p'~3¢. Again, this will be a group morphism if € is small enough.
Finally, one takes the kernel of the lifted map.

LEMMA I11.2.4. Let R be a p-adically complete flat Z;yd—algebm. Let X/R be a scheme
such that Q_lX/R is killed by p®, for some € > 0. Let s,t € X(R) be two sections such that

5=1t¢e X(R/p%) for some § >¢. Then s =t.

PROOF. By standard deformation theory, the different lifts of 5 to R/p? are a principal
homogeneous space for

HOHI(Q%/R ®ox R/p§7 R/pé) )
where the tensor product is taken along the map Ox — R/p’ coming from 3. Similarly, the
different lifts of 5 to R/p?~¢ are a principal homogeneous space for
HOHI(Q&/R Qox R/péﬁ R/p6_€) )

and these identifications are compatible with the evident projection R/p’ — R/p°~¢. As
M = Qﬁ(/R ®o, R/p° is killed by p¢, any map M — R/p° has image in p°~“R/p’, and thus
has trivial image in Hom(QﬁqR Roy R/p°, R/p°~€). Tt follows that any two lifts of 5 to R/p*

induce the same lift to R/p*~¢, so that s,t € X(R) become equal in X (R/p*~¢). Continuing
gives the result. 0
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Let us recall the Hasse invariant. Let S be a scheme of characteristic p, and let A — S
be an abelian scheme of dimension g. Let A® be the pullback of A along the Frobenius of
S. The Verschiebung isogeny V : A® — A induces a map V* : WA/S = Wam) /g = wfi’s, ie.
a section Ha(A/S) € w%@fl), called the Hasse invariant. We recall the following well-known
lemma.

LEMMA II1.2.5. The section Ha(A/S) € wf%fl) is invertible if and only if A is ordinary,
i.e. for all geometric points T of S, A[p|(Z) has p? elements.

PROOF. The Hasse invariant is invertible if and only if the Verschiebung V : A®) — A
is an isomorphism on tangent spaces. This is equivalent to Verschiebung being finite étale,
which in turn is equivalent to the condition that the kernel ker V' of V has p? distinct

geometric points above any geometric point Z of S (as the degree of V' is equal to p?). But
VF =p:A— A, and F is purely inseparable, so A[p|(z) = (ker V)(Z). O

COROLLARY II1.2.6. Let R be a p-adically complete flat Zgyd—algebm, and let A — Spec R

be an abelian scheme, with reduction Ay — Spec R/p. Assume that Ha(A,/ Spec(R/p))pPi:l1
divides p¢ for some € < % Then there is a unique closed subgroup C,, C A[p™] (flat over R)
such that C,, = ker ™ C A[p™] modulo p*=¢. For any p-adically complete flat Z;yd—algebm
R with a map R — R', one has

Cn(R)={se Ap™|(R')|s=0 mod p(l—ﬁ)/pm} .

PROOF. Let Hy = ker(V™ : Agp " Ay), which is a finite locally free group scheme over
R/p. Then one has a short exact sequence

0— ker F'" — Aip™] - H; — 0.

Moreover, the definition of H; and the fact that the Lie complex transforms short exact
sequences into distinguished triangles compute the Lie complex of Hi,

ly, = (Lie AP = Lie Ay) |
Using the definition of the Hasse invariant, the determinant of this map is easily computed

to be

pm—1 m_1
Ha(Ay/(Spec R/p) 7T € il

by writing it as a composite of m Verschiebung maps, contributing Ha(A;/(Spec R/p))?",
i=0,...,m—1. As multiplication by the determinant is null-homotopic (using the adjugate
matrix), our assumptions imply that multiplication by p¢ is homotopic to zero on ¢ m,- Thus,
existence of C,, follows from Corollary [[IL.2.2] with G = A[p™].

For uniqueness, it is enough to prove that the final formula holds for any C,, C A[p™]
with C,,, = ker F'™™ modulo p'~¢. We may assume R’ = R. Certainly, if s € C,,(R), then
s1_c € Cpp(R/p'™°) lies in the kernel of F™, as C,,, = ker '™ modulo p'~¢. As the action of F
is given by the action on R/p'~¢, this translates into the condition s = 0 € C,,,(R/p~9/P").
Conversely, assume s € A[p™](R) reduces to 0 modulo p*=9/P" Following the argument
in reverse, we see that s;_. € Cp,(R/p'™¢) C Alp™|(R/p' ™). Let H = A[p™]/C,,. We see
that the image t € H(R) of s is 0 modulo p'~¢. Also, H and H; have the same reduction to
R/p'~¢; in particular, Q}{/R is killed by p°. By Lemma , we find that ¢t = 0 € H(R),
showing that s € C,,(R), as desired. O
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DEFINITION II1.2.7. Let R be a p-adically complete flat Z;yd—algebm. We say that an

abelian scheme A — Spec R has a weak canonical subgroup of level m if Ha(A;/ Spec(]:i/p))ppi:11
divides p© for some € < % In that case, we call C,,, C Alp™| the weak canonical subgroup of
level m, where C,, is the unique closed subgroup such that C,, = ker F™ mod p'~¢.

If moreover Ha(A;/ Spec(R/p))P" divides p, then we say that C,, is a canonical sub-
gmup.ﬂ

The definition of a (strong) canonical subgroup is made to ensure that the following basic
properties are true.

ProproOsITION II1.2.8. Let R be a p-adically complete flat Zgyd—algebm, and let A, B —
Spec R be abelian schemes.
(i) If A has a canonical subgroup C,, C A[p™] of level m, then it has a canonical subgroup
Cw C A[p™] of any level m' < m, and Cyy C Cp,.
(ii) Let f : A — B be a morphism of abelian schemes. Assume that both A and B have
canonical subgroups C,,, C A[p™|, D,, C B[p™] of level m. Then C,, maps into D,,.
(iii) Assume that A has a canonical subgroup Cy,, C A[p™] of level my. Then B = A/C,y,,
has a canonical subgroup D,,, C B[p™2| of level ms if and only if A has a canonical subgroup
Cy, C A[p™] of level m = my + my. In that case, there is a short exact sequence

0—Cn = Cp — Dy, — 0,

commuting with 0 = C,,, - A — B — 0.

(iv) Assume that A has a canonical subgroup C,, C A[p™] of level m, and let T be a geometric
point of Spec R[p~']. Then C,,(z) = (Z/p™Z)9, where g is the dimension of the abelian
variety over T.

PRrOOF. (i) This follows directly from the displayed formula in Corollary |I11.2.6]
(ii) This follows directly from the displayed formula in Corollary [I11.2.6]
(iii) Observe that

Ha(B;_./ Spec(R/p* ™)) = Ha(A;_./ Spec(R/p*~))P"" .

This implies that B has a canonical subgroup of level my if and only if A has a canonical
subgroup of level m. In order to verify the short exact sequence, it suffices to check that
C,, maps into D,,,. After base change to the global sections of C),, it suffices to show that
Cy(R) maps into D,,,(R). Take a section s € C,,(R). Look at the short exact sequence
0 — D,,, — B[p™] - H — 0. We need to check that s maps to 0 in H(R). By Lemma
[11.2.4] it is enough to check that s maps to 0 in H(R/p*~). But modulo p'~¢, we have the
short exact sequence
0 — ker F}"" — ker F' = ker F* =0 .

(iv) First, we reduce to the case that R = Ok is the ring of integers in an algebraically closed
complete nonarchimedean field K of mixed characteristic.

The subset of Spec R[p~!] where the statement is true is open and closed. Assume that
there is a point x € Spec R[p~!] with a geometric point T above x where the statement is not
true, and fix a maximal ideal 2’ € Spec R specializing x; in particular, 2’ lies in Spec R/p.

3For emphasis, we sometimes call it a strong canonical subgroup.
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Take a valuation v on R with support x, and such that the local ring R, is contained in the
valuation subring of v. Applying the specialization mapping from [38, Proposition 2.6], we
get a continuous valuation v’ on R, such that its support y € Spec R is still of characteristic
0, and is a specialization of z. It follows that the desired statement is also false at y. This
gives a map R — Ok to the ring of integers O of a complete nonarchimedean field K of
mixed characteristic. We may assume that K is algebraically complete, and replace R by
Ok.

Assume that C,,(K) % (Z/p™Z)¢. As C,(K) C Ap™|(K) = (Z/p™Z)* and C,,(K)
has p™¢ elements, it follows from a consideration of elementary divisors that (C,, N A[p])(K)
has more than pY elements; in particular, there is an element s € (C,, N A[p])(K) such that
s & C1(K). By projection, this gives a nonzero section t of H = Alp]/C,. Take € < 3 as
in Definition As C,, is finite, s extends to a section s € C,,(Ok), giving a section
s1_c € Cpu(Of /p'~°); similarly, we have t € H(Ok). But modulo p'~¢, C,, = ker F'™, so it
follows that

F™(s1-¢) = 0 € Cp (O [p7°) .

The action of F' is given by the action on O /p'~¢, so we see that
sa-g/pm = 0 € O (O /pl=I") .

By projection, this gives tq_¢/m =0 € H(OK/p(l_e)/pm). Now we use Lemma [[11.2.4] with
d=(1—¢)/p™ and ¢ = ¢/p™ (which works for the group H). Note that

€ =¢/p<d=(1—¢€)/p™.

It follows that t = 0 € H(Ok), which contradicts s &€ C1(Ok), as 0 - C; — Alp] = H — 0
1s exact.

O

Moreover, one has compatibility with duality and products, but we will not need this.

I11.2.2. Canonical Frobenius lifts. In this section, we will apply repeatedly Hartog’s
extension principle. Let us first recall what we will refer to as ‘classical algebraic Hartog’
below.

ProprosITION I11.2.9. Let R be normal and noetherian, and let Z C Spec R be a subset
everywhere of codimension > 2. Then

R = H°SpecR\ Z, OspecR) -

PROOF. By Serre’s criterion, the depth of Ogpec s is at least 2 for all x € Z. This
implies vanishing of local cohomology groups in degrees < 1 by SGA2 III Exemple 3.4. This,
in turn, implies the desired extension by SGA2 I Proposition 2.13. 0

In particular, this applies to an open subset Spec R of the minimal compactification of
the Siegel moduli space, and its boundary Z, if g > 2. However, we will need to work with an
admissible blow-up of the minimal compactification, corresponding to a strict neighborhood
of the ordinary locus. Thus, we will also need a slightly nonstandard version of Hartog’s
extension principle, given by the following lemma, where in the application f will be a lift
of the Hasse invariant.
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LEMMA II1.2.10. Let R be a topologically finitely generated flat p-adically complete Z,,-
algebra such that R = R/p is normal. Let f € R be an element such that f € R is not a
zero divisor. Take some 0 < € < 1, and consider the algebra

S = (R&z,Z;")(u) [ (fu — p°) .

Then S is a flat p-adically complete Z]‘";yd-algebm, and u is not a zero divisor. Fix a closed

subset Y C SpecR of codimension > 2; let Z C SpfS be the preimage of Y, and let
U C Spt S be the complement of Z. Then

HO<U, Ospfs) = HO(SpfS, Ospfs) =5.

REMARK I[II.2.11. It may be helpful to illustrate how this relates to the classical theorem
of Hartog over C. In that case, inside the 2-dimensional open complex unit disc D =
{(z1, 22) | |21] < 1, 22| < 1}, consider the open subset

U={(z1,22) €D |1—€e<|z]| <lor |z <e}.

Then Hartog’s theorem states that all holomorphic functions on U extend uniquely to D.
This is easily seen to be equivalent to the following statement: Let D’ C D be the locus
|z9| > €/2. Then holomorphic functions extend uniquely from U N D’ to D'.

In the lemma, take R = Z,(T1,Ts), f = T and € = 1, say. Moreover, take Y = {1} =
T, = 0} C Spec R. Then the generic fibre of Spf S is the rigid-analytic space of pairs (¢1,t,)
with [t;| < 1, and |p| < |ta] < 1. The generic fibre of U is given by

U77 = {(tl,tg) c (SpfS)n | |t1| =1or ’t2| = ].} .

The lemma asserts that holomorphic functions extend uniquely from U, to (SpfS), (and
the natural integral subalgebras are preserved). The relation to Hartog’s principle becomes
most clear when one sets z; = t; and 2o = %. The analogue of D' C D is given by (SpfS),,
and the analogue of U N D' is given by U,. (In rigid-analytic geometry, one replaces strict
inequalities by nonstrict inequalities. Moreover, the inequalities 1 — € < |z;| < 1 become
contracted to |z;| = 1; similarly, €/2 < |z5| < € becomes contracted to |z = p.)
PROOF. The first assertions are standard. First, we check that
HO(Spf S, Ospfg) — HO(U, Ospfs)
is injective. Since H°(Spf S, Osprs) is p-adically separated, it suffices to prove the same for
Spec Se, where S. = S/p° (and analogous notation is used below). Let W C Spec Se be the
preimage of V' = V/(f) C Spec R; then W =V Xgpecr, A%Cycl e is affine. There is a section
P

Spec Re — Spec S, given by setting u = 0. One has, since S is the scheme-theoretical union
of the loci {u =0} and {f = 0},

HO(U7 OSpecS}) = {(fh f2) ‘fl € HO(U N Spec R67 OSpecRe>7
foe HH(UNW,Ow), fi = fo € H(UNV,0v) @&, Z3 /p} .
One has a similar description for H°(Spec Se, Ospecs. ). As H°(UNSpec R., Ospecr,) = Re by

the classical algebraic version of Hartog’s extension principle (plus ®]FPZ;YC1 /p°), it is enough
to prove that

HO(VV, Ow) — HO(U N W, Ow)
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is injective. As both W and U come from V and U NV via a product with A%Cycl - it is
enough to prove that
H(V,0y) — H(UNV,Oy)

is injective. For any point x € Y, the depth of Oy at x is > 1 (as R is normal, by Serre’s
criterion, R has depth > 2 at z, thus E/T has depth > 1). As Y contains the complement
of UNV in V, this gives the desired statement.

Now take any section f € H°(U, Ogpts). Let S, be the u-adic completion of S. Clearly,
S injects into S,.. Moreover, as u divides p¢, the (p,u)-adic ring S, is actually u-adic, and
f induces a section f, € H (U N Spf S.., Ogprs,). The special fibre of Spf S, is given by
Spec R.. Thus, U N Spf S, =Un Spec R, C Spec R, is of codimension > 2, and the classical
algebraic version of Hartog’s extension principle ensures that

fu € H(Spt Sy, Ogyp5.) = S .

It remains to see that fu € S. It suffices to check modulo p¢ (by a successive approximation
argument). Thus, f induces a section f, € H°(U N W, Oy ), and we have to check that it
extends to H°(W, Oy/). But

H(UNW,0w) = @HUNV,0v) @5, ZF /p ),

>0
and we have to check that all coefficients of u' lie in H°(V, Oy ) ®g, Zgyd /p°. This can be
checked after u-adic completion, finishing the proof. O

Now let us go back to Shimura varieties. Recall that X = X, g» over Z,) is the Siegel
moduli space. We let X be the formal scheme over Zgyd which is the p-adic completion of
X ®z,, Zgyd. Occasionally, we will use that X is already defined over Z,; we let Xz, denote
the p-adic completion of X, so that X = Xz, xXgprz, Spf Zgyd. The same applies for the
minimal compactification. In general, formal schemes will be denoted by fractal letters.

We let X be the generic fibre of X as an adic space over @gyd. Moreover, for any K, of
the form To(p™), ['1(p™) or T'(p™), we let X?(i be the adic space associated with the scheme
Xk, ®Q(,m) ngd, using the tautological element (,m € ngd and (pm € Oy, , given by the
symplectic similitude factor. Let Xk, C X ?g be the preimage of X C X2 This is the
locus of good reduction. Again, similar notation applies for the minimal compactification.
In general, adic spaces will be denoted by calligraphic letters.

We warn the reader that our notation conflicts slightly with the notation from the intro-
duction. Indeed, X K, oW denotes an adic space over Q]‘;yd. It is the base-change of the space
Xy, Kp € {To(p™),L1(p™),L'(p™)}, considered in the introduction along Qp(Cym) < Q.
As in the inverse limit over m, the difference goes away, we will forget about this difference.ﬂ

Recall that the Hasse invariant defines a section Ha € H%(Xp,,w®®~V). The sheaf w
extends to the minimal compactification X*. If g > 2, then classical Hartog implies that
Ha extends to Ha € l—]o(Xkap7 w®P=1)) " as the boundary of the minimal compactification is of
codimension g. For g = 1, the Hasse invariant extends by direct inspection.

4A better solution would be to associate the spaces over QZC,-VCI with K N Sp,y, (Qp) instead.
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DEeFINITION II1.2.12. Let 0 < € < 1 such that there exists an element p¢ € Zgyd of
p-adic valuation €. Let X*(e) — X* over Spf Z;yd be the functor sending any p-adically
complete flat Zgyd—algebm S to the set of pairs (f,u), where f : SpfS — X* is a map, and
u € HO(Spf S, f*w®1=P)) is a section such that

uHa(f) =p° € S/p,

where f = f ®z, Fy, up to the following equivalence. Two pairs (f,u), (f',u') are equivalent
if f = f" and there exists some h € S with v’ = u(1 + p'=¢h).
__ The following lemma explains the choice of the equivalence relation: After choosing a lift
Ha of Ha locally, one parametrizes u with uHa = p® € S. The point of our definition is to
make clear that X*(e) is independent of the choice of the local lift.

LeEmMA I11.2.13. The functor X*(€) is representable by a formal scheme which is flat
over Z;yd. Locally over an affine Spf(R@ZPZ;yd) C X* (coming via scalar extension from
Spt R C X3, ), choose a lift Ha € w®P=Y) of Ha € w®®=Y /p. Then

X*(€) Xz Spf(R&z,ZY) = Spf((R&z, 2 (u) /(uHa — p°)) .

In particular, X*(¢) — X* is an admissible blow-up in the sense of Raynaud.

ProoOF. By Lemmallll.2.10] the right-hand side is flat, so it suffices to prove the equality.
Clearly, the right-hand side represents the functor of pairs (f, @) with @ € H°(Spf S, f*w®0P))
such that aHa = p° € S. Any such pair gives a pair (f,u). We need to show that conversely,
for any pair (f,u), there is a unique pair (f, %) equivalent to it, with aHa = p©.

Note that uHa = p¢+ ph for some h € H°(S, Og). Thus, uHa = p¢(1+p'~<h), and setting
@ =u(l+ p'~¢h)~! gives an equivalent (f,u) with aHa = p°.

If @' = a(1 + p'~¢h’) is equivalent to @, and also satisfies @'Ha = p°, then

p- = i'Ha = aHa + pl_eh’ﬁﬁé =p°+ph' .
As we restricted the functor to flat Z;yd—algebras, it follows that A’ = 0, as desired. 0J

By pullback, we get formal schemes X(e) and 2A(¢), where A — X denotes the universal
abelian scheme. Note that on generic fibres, X'(¢) C X is the open subset where |Ha| > |p|;
similarly for X*(e) C X* and A(e) € Af]

For any formal scheme 9) over Z&¥ and a € ZZ, let 9 /a denote 2) Rpever Ly < /a.

LEMMA I11.2.14. Let 0 < e < 1. There is a natural commutative diagram

F
@(p—1e)/p)/ T /p)

(1) A(p~'e)/p (A(p~te) /p)® — A(e)/p
ll E @(p—1e)/p)/ T /p) 1l ) ~ l
X(p~'e)/p (X(p~'e)/p)*? X(e)/p
N ll F(f*(pfle)/p)/m;;yd/p) § 1l = *l
X*(p~'e)/p (X*(p~'€)/p)* X*(e)/p

5Again, it is understood that this condition is independent of the choice of a local lift of Ha.
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Here, F' denotes the relative Frobenius map.

PROOF. The diagram lives over a corresponding diagram for 2(/p — X/p < X*/p. Then
relative to that base diagram, one adds a section u of w®!~?) such that uHa = p? '€ on the
left-hand side, and a section u' of w®(1~P) such that w/Ha = p¢ on the right-hand side.ﬁ As
Ha gets raised to the p-th power under division by the kernel of Frobenius, one can map v’
to u®) considered as a section of (wW®(1~P))®) over (X*(p~'e)/p)® (which pulls back to u? on
the left-hand side); this gives the desired canonical maps. 0

In this section, we prove the following result.

THEOREM I11.2.15. Let 0 < e < 1.

(i) There is a unique diagram

(2) A(pte) — 20— ()
l Frm10) j
X(p~'e) x(e)
|
X*(p'e) X*(e)

that gets identified with modulo p'~¢.
(ii) For any m > 0, the abelian variety A(p~™e) — X(p~™€) admits a canonical subgroup
Cy, CA(p~™e)[p™] of level m. This induces a morphism on the generic fibre

X(pimﬁ) — Xro(p'm)

given by the pair (A(p~™€)/Cy, A(p~™€)[p"]/C). This morphism extends uniquely to a
morphism X*(p~"e) — le:o(pm)' These morphisms are open immersions. Moreover, for
m > 1, the diagram

X (p™mle) —= Ay

(pm+1)

18 commutative and cartesian.

(iii) There is a weak canonical subgroup C' C AU(e)[p] of level p. Also write C' C A(e)[p| for
its generic fibre, and let X (€) = X (€) be the pullback of Xryp) — X. Then the diagram

)(€)

i

X(p_le) - XFO(

6To check this, choose a local lift Ha of Ha. Then one parametrizes @ with iiHa = p¢ on the right-hand
side, over any ring. As we are working modulo p, the choice of Ha does not matter.
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is commutative, and identifies X (p~'e) with the open and closed subset Xr,(p)(€)a C Xry(p)(€)
parametrizing those D C A(e)[p] with D N C = {0}.

REMARK III.2.16. The letter ‘a’ stands for anticanonical, indicating that D is a comple-
ment of the (weak) canonical subgroup C.

PROOF. First, we handle the assertions in the good reduction case. Thus, we are con-
sidering X(€). There is a strong canonical subgroup C' C 2(p~'¢)[p] of level 1, by Definition
mz On X(p~'e), the p-th power of the Hasse invariant divides p, with e < 1. Note that
on X(e), one still has a weak canonical subgroup of level 1. In particular, we get a second
abelian variety 2(p~'e)/C over X(p~'e). By uniqueness of C', C' is totally isotropic; in par-
ticular, A(p~te)/C is naturally principally polarized. Also, it carries a level- KP-structure.
Thus, it comes via pullback X(p~'¢) — X. This morphism lifts uniquely to

Fxpio : X(p7'e) = X(e)

by a calculation of Hasse invariants. By construction, one has a map Fm(pqe) cA(p~Le) —
2A(e) above this map of formal schemes. Moreover, by definition of C, these maps reduce to
the relative Frobenius maps modulo p'~¢. This constructs the maps in part (i). Uniqueness
is immediate from uniqueness of the canonical subgroup.

Let us observe that it follows that ﬁ’x(pqe) and Fm(pfle) are finite and locally free of degree
g(g+1)/2. For part (ii), the existence of the canonical subgroup C,, C A(p~™€)[p™] follows
from Definition [[II.2.7] and Corollary [[II.2.6] That it induces a morphism

X(p~™e) = Xpypm)

follows from Proposition [II1.2.8| (iv) (using that C,, is totally isotropic, by uniqueness).
Commutativity of the diagram (in parts (ii) and (iii)) follows from Proposition [[11.2.8] (iii).
Next, observe that the composite

X(p ™) — Xropm) = X,

where the latter map sends a pair (A, D) to A/D (with its canonical principal polarization,
and level-N-structure), is just the forgetful map X(p~™¢) — X. Indeed, the maps send
A(p~™€) to (A(p~™€)/Chn, A(p~™€)[p™]/Cin), and then to

(Alp™"e)/Cn) /(AP ") P"]/Cm) = Alp~™"€) [ Alp~"e)[p™] = A(p~™€) .
Therefore the composite map
X(pime) — XFO(PM) — X,

is an open embedding; moreover, the second map is étale. It follows that the first map is
an open embedding, as desired. Now it follows that the diagram in part (ii) is cartesian on
the good reduction locus: Both vertical maps are finite étale of degree p99+1/2 (using that
m > 1). The same argument works in part (iii) as soon as we have checked that X (p~'e)
maps into Ap, ) (€)q.

Thus, take some Spf R C X(p~'€) over which one has an abelian scheme Ap — Spec R.
By assumption, the Hasse invariant divides pP ‘¢, This gives a (strong) canonical subgroup
Co C Agl[p] of level 1, and A, = Ag/C) has a weak canonical subgroup C' C A[p]. We have
to see that

C'N (Aglpl/Co) = {0} -
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Take a section s € Ag[p](S), for some p-adically complete p-torsion free R-algebra S. If s
maps into C, then s modulo p'~¢ lies in the kernel of Frobenius on A%[p], thus s modulo
p1=9/Pis 0 in A[p]. This means that s modulo p=9/ lies in Cy. Let H = Ag[p]/Co. Then
s gives a section ¢t € H(S), with t = 0 modulo p!~9/?. Moreover, as the Hasse invariant
of Ag kills Q, /8 and the Hasse invariant of Ap divides p®/?, one can use Lemma [[11.2.4
with § = (1 — €)/p and € = €¢/p to conclude that t = 0 € H(R). This finally shows that
C N (Aglp]/Co) = {0}, as desired.

Now we can extend to the minimal compactification. The case g = 1 is easy and left
to the reader. (It may be reduced to the case ¢ > 1 by embedding the modular curve into
the Siegel 3-fold via E — FE X E, but one can also argue directly.) If ¢ > 2, we use our
version of Hartog’s extension principle. Indeed, Lemma |[I1.2.10 applied with R the sections
of an affine subset of X* and f = Ha (which is not a zero divisor as the ordinary locus is
dense) implies that the maps Fx(pag) extend uniquely to F (p-1¢)- One gets the commutative
diagram in (i), and it reduces to (using that restriction of functions from Spf S to U in
Lemma is injective even on the special fibre).

Essentially the same argument proves that the maps to A7, (™) extend: For this, use that

if in the situation of Lemma , one has a finite normal ) — (Spf S )f;d and a section
Uj;d — Y which is an open embedding, then it extends uniquely to an open embedding
(Spf S)2d — Y. Indeed, extension is automatic by Lemma (as Y is affinoid), and it
has to be an open embedding as the section (Spf .S )gd — ) is finite and generically an open
embedding, thus an open and closed embedding as ) is normal. The diagram in part (ii) is
commutative and cartesian, by using Hartog’s principle once more. 0

For any K, let Xk, (¢) C Xk, be the preimage of X'(¢) C X. Similarly, define X7 (e).

For m > 1, we define &Xp,m)(€)a C Xrypmy as the image of X(p~™¢), and similarly for
X*. Observe that Xpypmy(€)a C Xrypm)(€) is open and closed, and is the locus where the
universal totally isotropic subgroup D C A(e)[p™] satisfies D[p] N C' = {0}, for C' C A(e)[p]
the weak canonical subgroup, cf. Theorem (i), (iii).

In fact, also on the minimal compactification, Xy ,m)(€)a C AP (,m)(€) is open and closed:
Open by Theorem , and closed because Xy (,my(€)a = X*(p™"€) — X" (e) is finite.

Thus, we get a tower
A Xl:ko(pm+1)<€)a — leo(pm)(e)a — ... — Xf\ko(p)(ﬁ)a s
which is the pullback of the tower

oo Ky meny = AL == A

o(P™)

along the open embedding leo(p)(e)a C leo(p)' Moreover, we have integral models for the
first tower, such that the transition maps identify with the relative Frobenius maps modulo
p'~¢. Also, we have the abelian schemes Ap,pm)(€)s — Xrypm)(€)a by pullback, and the
similar situation there.

Let us state one last result in this subsection.

LEMMA II1.2.17. Fiz some 0 < € < L. Then for m sufficiently large, leo(pm)(e)a is

2
affinoud.
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PROOF. There is some integer m such that H*(X* w®"®=1) = 0 for all i > 0. In that
case, one can find a global lift Ha' of Ha?". The condition |Ha| > |p|P™ "¢ is equivalent to

|ITap | > |p|¢. As Ha is a section of an ample line bundle, this condition defines an affinoid
space X*(p~"€) = Ay (,my(€)a- O

I11.2.3. Tilting. Fix an element ¢ € (Z%)" such that [t| = [#] = [p|; one can do
this in such a way that ¢ admits a p — 1-th root. In that case, one gets an identification
(Z&h)> = Ty [[tY/®=DP7]]. Let X’ be the formal scheme over I, [[t"/#~1P]] given by the t-adic
completion of Xy xr @z, Fp[[t"/P~VP7]]. We denote by X" over F,((¢'/?~1P)) the generic
fibre of X’. The same applies for X™* and ', with generic fibres X’* and A’.

In characteristic p, one can pass to perfections.

DEFINITION I11.2.18. (i) Let Q) be a flat t-adic formal scheme over F,[[tY/®—1VP™]]. Let
® : ) — ) denote the relative Frobenius map. The inverse limit

l'&n 2) — @perf
P

is representable by a perfect flat t-adic formal scheme over F,[[t/®~VP™]]. Locally,
(Spf R)Pef = Spf(RP) |
erf . . . .
where RP" is the t-adic completion of hg(b R.

(ii) Let Y be an adic space over F,((tY/®P=YP™)). There is a unique perfectoid space Yt over
F,((tY/®=YP™)) such that

yperf ~ @13} 7
P

where we use ~ in the sense of [56, Definition 2.4.1]. Locally,
Spa(R, )7 = Spa( B, R
where RP*'F s the t-adic completion of lim R*Y, and RP®t = RPertt[¢—1].

One checks directly that the two operations are compatible, i.e. (YPe)ad = (ad)pert,
We get perfectoid spaces APt x*Perf and APt over [, ((¢1/(P=DP™)).

COROLLARY I11.2.19. Let 0 < € < % There are unique perfectoid spaces Xpo(poo)(e)a,
XLy (o) (€)a and Arg(pee)(€)a over Q! such that

XFo(p"o)(G)a ~ 1.gl‘)(l“o(pm)(e)a )

and similarly for X3 wcy(€)a and Argpe)(€)a. Moreover, the till Xli‘o(poo)(e)fl identifies natu-

rally with the open subset X"*P*(e) C X"*P*T where |Ha| > [t|. Similarly, Ary@pe)(€)’, gets
identified with the open subset APf(e) C AP where |[Ha| > |t|°.

PrROOF. We give only the proof in the case of X'; the other statements are entirely
analogous. Note that Xp pmy(€)qs = X' (p~"€) has the integral model X(p~™¢). On the tower
of the X(p~™¢), the transition maps agree with the relative Frobenius map modulo p'~¢.
Define

Xro(pe)(€)a = @%@77%) ;
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where the inverse limit is taken in the category of formal schemes over Z;yd. Over an
affine subset Spf R,,, C X(p ™€) with preimages Spf R,, C X(p ™€) for m > mg, we get
a corresponding open affine subset Spf R, C Xp,(p=)(€)q, Where Ry is the p-adic comple-
tion of hg R,,. In partlcular R, is flat over Zgyd. Moreover, using that the transition
maps R,,/p™¢ — R,.41/p' ¢ agree with the relative Frobenius map, we find that (absolute)
Frobenius induces an isomorphism

oo/pl /p _

ling 2 w1 /pP 2 i R, [p' T = Reo/p'”

Thus, by [53] Definition 5.1 (ii)], R% is a perfectoid Zgyd“—algebra; in particular, Ry [p~'] is
a perfectoid Q¥“-algebra (cf. [53, Lemma 5.6]). Thus, the generic fibre of Xp,(p=)(€)q is a
perfectoid space Xp () (€)q Over Qcyd, with

XFO °°)() LXFO () s

cf. [56, Definition 2.4.1, Proposition 2.4.2]; for uniqueness, cf. [56, Proposition 2.4.5].

Now we analyze the tilt. We may define a characteristic p-analogue X"*(¢) of X*(¢), which
relatively over X" parametrizes sections u € w®1~P) such that uHa = t¢.

Obviously, there are transition maps X™*(p~'e) — X'*(€) given by the relative Frobenius
map. Moreover, the inverse limit l&nm X" (p~™e€) is representable by a perfect flat formal
scheme over F,[[t/P~VP™]] which is naturally the same as X*(¢)Pf. TIts generic fibre is
thus a perfectoid space over F,((tY/®=1P™)) that is identified with the open subset of X"*Perf
where [Ha| > [¢|°.

On the other hand, by Theorem (i), one has a canonical identification

:{/*(pme)/tlfe — %* (p7m€)/p17€ 7

compatible with transition maps. Thus, for an open affine Spf R,,,, C X*(p~™¢) with preim-
ages Spf R,,, one gets similar open affine subsets SpfS,, C X*(p~™¢), with S,,/t'™¢ =
R,,/p'¢. Let Ry be the p-adic completion of ligm R, as above, and S, the t-adic com-

pletion of hﬂm Sm. Then Spf Roy C Xry(p)(€)q and Spf Se C X*(€)P! give corresponding
open subsets, and

Peaf ™ =l o = g S = S5/

From [53, Theorem 5.2], it follows that R, [p~'] and S, [t™!] are tilts, as desired. O
COROLLARY [I1.2.20. The space leo(poo)(e)a 15 affinoid perfectoid, and the boundary

ZFo(pW)(E)a - leo(poo)<€>a
15 strongly Zariski closed.

PRroor. It suffices to check the same assertions for the tilts in characteristic p (cf. Lemma
[[.2.7). In characteristic p, the open subset X"*(¢) C X’* given by [Ha| > |¢|° is affinoid, and
the boundary Z'(e) C X"*(¢) is Zariski closed. Passing to the perfection, one gets affinoid
perfectoid spaces, and a Zariski closed embedding, which is strongly Zariski closed by Lemma
U125l 0
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111.2.4. Tate’s normalized traces. We need Tate’s normalized traces to relate the
situation at I'g(p>)-level to the situation at some finite I'g(p")-level. More precisely, we will
use them to extend Hartog’s extension principle to I'g(p>°)-level, and finite covers thereof.

LEMMA II1.2.21. Let R be a p-adically complete flat Z,-algebra. Let Yy,...,Y, € R and
take Py, ..., P, € R(Xy,...,X,) such that Py, ..., P, are topologically nilpotent. Let

S=R(X,... . X)X =Y, —P,....XP—Y, — P,) .

(i) The ring S is a finite free R-module, with basis given by X -+ X,
p—1.

(i) Let I; C R be the ideal generated by the coefficients of P;, and let [ = (p, I1,...,1,) C R.
Then trg/r(S) C I™.

where 0 < iq,...,1, <

PROOF. (i) Note that I is finitely generated. By assumption IV is contained in pR
for N large, so R is [-adically complete. Modulo I, the assertion is clear; moreover, the
presentation gives a regular embedding of Spec S/I into affine n-space over Spec R/I. Thus,
the Koszul complex C; for R/I[Xq,...,X,] and the functions f; = X —Y; — P, is acyclic
in nonzero degrees, and its cohomology in degree 0 is S/I, which is finite free over R/I. In
particular, C is a perfect complex of R/I-modules. Looking at the Koszul complex Cy for
R/I*[Xy,...,X,] and the functions f;, one has

Ck ®H]:3/Ik R/I=Ch

which is a perfect complex of R/I-modules. It follows that Cj, is a perfect complex of R/I*-
modules (cf. e.g. [1, Tag 07LU]). Moreover, C} is acyclic in nonzero degrees, which implies
that C is also acyclic in nonzero degrees, e.g. by writing it as a successive extension of

C ®Hé/1k [j/]j+1 .

Thus, Cy is quasi-isomorphic to a finite projective R/I*-module in degree 0, which is finite
free modulo I with the desired basis; thus, C}, itself is quasi-isomorphic to a finite free R/I*-
module with the desired basis. As S/I* is the cohomology of C}, in degree 0, we get the
result modulo ¥, and then in the inverse limit over k for S itself.

(i) We make some preliminary reductions. First, we may assume that each Y; = W/ is a p-th
power; this amounts to a faithfully flat base change. Replacing X; by X; — W, + 1, we may
assume in fact that Y; = 1. In that case, all X, are invertible.

Next, it is enough to show trg/r(X1) € I". Indeed, it is enough to prove the statement
for the basis Xi'--- X/». If all iy = 0, the result is clear. Otherwise, set X| = X/* ... Xin,
and choose an invertible n x n-matrix over [, with first row ¢, ...,%,: This gives elements
X4, ..., X] such that Xi,..., X, may be expressed in terms of X7, ..., X and Xlip, o XEP
(here, we use that all X; are invertible). This means that X1, ..., X/ generate S/I over R/I,
thus they generate S over R. Moreover, the equations are of the similar form, as one sees
after reduction modulo I.

Replacing all X; by X; — 1, one may then assume that all ¥; = 0 instead. One sees
easily that one still has to prove trg/z(X;) € I". We may also assume that all P have only
monomials of degree < p — 1 in all X;’s. Finally, we can reduce to the case

R =Zp|[ais,...i.ll
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where 1 <i<nand 0<14,...,i, <p—1, and

P = Z iy, ..., inXlil - 'Xf@" .
ilv---vin
(In that case, the P; are not topologically nilpotent for the p-adic topology, but the conclusion
of part (i) is still satisfied, and it is enough to prove the analogue of (ii) in this case, as all
other cases arise via base change.)
Now,
N WL+, +...+1,)cI" :
nggnflv{jlva]k}c{2vvn}
Assume x € R is in the left-hand side, but not in the right-hand side. Thus, there exists a
monomial
RIORON

.,iﬁll) ce. az(m)’zgm),’l%m)

whose coefficient in z is not divisible by p"~™ in R (m > 0). Enumerate the j’s between 2
and n that do not occur as an i) as ji,...,Jg. Thusk>n—m—1,and k >n—mif 1 is
among the i)’s. Now, using that = € pFI; + I + ...+ 1, we see that 1 has to be among
the i()’s, and that the desired coefficient is divisible by p*. As k > n—m, we get the desired
contradiction.

We claim that for all k > 0 and {j1, ..., jx} C{2,...,n}, trg/r(X1) € p* L+ +.. . +1j,.
For this, we may assume that {j1,...,7x} = {n — k+ 1,...,n} (by symmetry), and then
divide by the ideal I, ji1 + ... 4+ I,; thus, we may assume P, 11 = ... = P, = 0. In
that case, all X, _ji1,...,X, are nilpotent; let S = S/(X,,_g41,...,X,). One finds that
trg/r(X1) = pFtrg/r(X1), so we may assume that & = 0. In that case, we have to prove
trs/r(X1) € I;. We can compute the trace by using the basis X X 0 <y, i <
p—1. If 71 < p—1, then multiplication by X; maps this to a different basis element, so that
it does not contribute to the trace. If iy = p — 1, then

Xl-(Xfl---X,i”) :P1X§2---Xf;‘ 7
which contributes an element of I; to the trace.
O

COROLLARY II1.2.22. Let R be a p-adically complete Z,-algebra topologically of finite

type, formally smooth of dimension n, and let f € R such that f € R = R/p is not a zero
divisor. For 0 < e < 1, define

Re = (R&z, 2y ) {(ue) [ (fue — p°) -

Let ¢ : Rc = Ry, be a map of Z;yd—algebms such that ¢ mod p*~—¢

1 given by the map

(R @r, Z3 /p' ) ud [ (fuc — ) = (R @x, Z /0" ues) / (friepp — p77)
which is the Frobenius on R, and sends u. to uf/p. We assume that € < %
(i) The map ¢[5] : Re[5] = Rejpls] is finite and flat.

1 1 1
p p D
(i) The trace map
0r,,1/md  Rely] = Rel]

maps Ry, into p~@ntDeR
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PRrROOF. All assertions are local on Spf R. Thus, we may assume that there is an étale
map Spf R — SpfZ,(Y1,...,Y,). In particular, regarding R as an R-module via Frobenius,
it is free with basis given by Y*--- Y 0 <iy,...,4, <p— 1.

(i) Consider the Z$¥“-algebra

oo = (R®z,ZY) (ve) / (ffve — p°) -
There is a map 7 : R, p R/, by mapping v, to u? Ip After inverting p, 7 becomes an

isomorphism, the inverse being given by mapping wu., to p~ VP =1y - As R Jp 1S P-

torsion free by Lemma [[I1.2.10} it follows that 7 is injective. As p(p_i)e/pui/p = fP~iy, for

i=1,...,p—1, the cokernel of 7 is killed by p®~V¢P; in particular, by p*.
We claim that ¢ : R, — R,/, factors over a map ¢ : R, — Ré/p. As € < 1 —¢, this can be
checked after reduction modulo p'~¢. By assumption, ¢ mod p'~¢ factors as a composite
(R @, Z¥ [p' ) uc] / (fue — p°) = (R @, Z; /p' ™) [vd /(fPve = p°)
= (R @r, 2 /0" uesp) [ (Fresp — p77)
where the first map is the Frobenius on R and sends u. to v., and the second map is 7
mod p'~¢. This gives the desired factorization.

Moreover, the kernel of 7 mod p'~¢ is killed by p¢, as the kernel comes from a Tor;-term
with coefficients in the cokernel of 7. It follows that ¢» mod p'~2¢ agrees with the map

(R @, Z¥ /p' ) ud/ (fue — p°) = (R ®g, Z /p' ) [ve] /(fPve — p°)

which is the Frobenius on R and sends u, to v.. This is finite free with basis Y{*---Yn,
0<iy,...,i, <p—1. It follows that the same is true for ¢, as desired.

(ii) It suffices to show that
tl"R;/p/Re : Ré/p — R,

has image contained in p"~2"“R,. But we can write
é/p =R(Xy,.... X))/ (X —-Y1—P,....XP-Y,—P,),
where Py, ..., P, € p'>R(X,...,X,). Applying Lemma [[I1.2.21] gives the result.
COROLLARY [11.2.23. Fiz 0 <e < %, and consider the formal scheme
Xrope)(€)a = Lm X(p~™"¢)
over Zgyd. Fixz some m > 0. For m’ > m, the maps
1/p(m’7m)g(g+1)/2tr . O%(p—m/e) [pfl] N O%(p—me) [pfl]
are compatible for varying m', and give a map

B I Oy oy [7] = Oxpmop ™ |
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The image ofligm, Oy (p-m'¢) 18 contained in p~Om Ox(p-me) for some constant C,,, with C,,, —
0 as m — oco. Thus, tr,, extends by continuity to a map

_1]

H7‘r‘L : O%FO@OO)(E)E [p — O}:(p_mﬁ) [p_l] )

called Tate’s normalized trace. Moreover, for any x € (’)xrg(poo>(e)a[p_1]

)

r = lim tr,(z) .
m—o0

PrRoOOF. We only need to prove existence of C,,, with C},, — 0 as m — oco. Observe that
by Theorem [[I1.2.15| (i), the transition maps

Fx(p—m—le) : %(pfmfle) — X(p™™e)

are of the type considered in Corollary [[11.2.22[for ¢ = p~™¢, with n = g(g+1)/2. It follows
that

1/p9(9+1)/2tr : Oxp-m—1e) [p_l] — Oxp-me) [p_l]

maps Ox,-m-1¢) into p(@* g+ D)e/p™ Ox(p-me)- As the sum of (¢*+g+ Le/p™ over all m’ > m
exists, one gets the existence of C,,; moreover, C,, — 0 as m — oc. O

I11.2.5. Conclusion. Recall that we have proved that a strict neighborhood of the
anticanonical locus becomes perfectoid at I'g(p™)-level. Our goal in this section is to extend
this result to full I'(p>°)-level. This is done in two steps: From I'o(p>°)-level to I'; (p™)-level,
and from T';(p™)-level to I'(p™)-level. The second part is easy, and follows from almost
purity, as there is no ramification at the boundary.

More critical is the transition from (p>)-level to T';(p™)-level. The issue is that it is
very hard to understand what happens at the boundary. Our strategy is to first guess what
the tilt of the space is, and then prove that our guess is correct. Away from the boundary,
it is clear which finite étale cover to take. In characteristic p, one can build a candidate
by taking the perfection of the normalization. One can take the untilt of this space, and
we want to compare this with the spaces in characteristic 0. Away from the boundary, this
can be done. To extend to the whole space, we need two ingredients: The Hebbarkeitssatz
for the candidate space in characteristic p, and Hartog’s extension principle for the space in
characteristic 0.

Assume that g > 2 until further notice. We start by proving the version of Hartog’s
extension principle that we will need. This follows from a combination of the earlier version
of Hartog (which is a statement at finite level) with Tate’s normalized traces.

LEMMA 1I1.2.24. Let Yy, — X7 ,my(€)a be finite, étale away from the boundary, and
assume that Yy, is normal, and that no irreducible component of V' maps into the bound-
ary. In particular, Vm — Xp,pm)(€)q is finite €tale, where Y,, C Y, is the preimage of
Xy (€)a C AL (ymy(€)a- Form/ > m, let Yy, — Xr*o(pm,)(e)a be the normalization of the
pullback, with YV, C Vi, Let Voo be the pullback of YVp to Xrypo)(€)a, which exists as
Vi = Xpypm)(€)a is finite étale.

Observe that as Xr"o(pm,)(e)a is affinoid for m’ sufficiently large (cf. Lemma , all

Vi, =Spa(Sy, St)) (with ST, = S2,) are affinoid for m’ sufficiently large.



48 III. THE PERFECTOID SIEGEL SPACE
(i) For all m’ sufficiently large,
+ _ g0 +
Sm/ - H (ym/, Oym/) .

(ii) The map
liy S, — H'(Voo, 03..)
18 injective with dense image. Moreover, there are canonical continuous retractions
Ho(yoo, Oyoo) — Sy .
(iii) Assume that Soe = H*(Voo, Oy,.) is a perfectoid QY'-algebra; define

YV =Spa(Ss, SL) ,
where ST = 52 . Then Y% is an affinoid perfectoid space over ngd, Vi~ I'an, Y, and
ST is the p-adic completion of ligm, St

PROOF. (i) We may assume m = m/, so that Lemma [[11.2.17| applies. Let

S =S, R=H"(2 4 (€)a; Oz ) (0) -

Then S is a finite R-module, and R and S are normal and noetherian. Let Z C Spec R denote
the boundary, which is of codimension > 2, with preimage Z' C Spec S, again of codimension
> 2 (by the assumption on irreducible components). Thus, S = H°(Spec S\ Z’, Ospecs),
and R = H°(Spec R\ Z, Ogpecr). Away from Z, the map is finite étale, so that one has a
trace map trg/g : S — R (a priori only on the structure sheaf away from the boundary, but
then by taking global sections on S). Moreover, the trace pairing

S Xr S— R: 51 X S — trs/R(S182)

induces an isomorphism S — Homg(S, R): If s; € S is in the kernel, it still lies in the kernel
of the pairing away from the boundary. There, it is perfect (as the map is finite étale), thus
s1 vanishes away from the boundary, thus is 0. Similarly, given an element of Hompg(S, R),
it comes from a unique element of S away from the boundary, thus from an element of 5, as
S = HYSpec S\ Z', Ospecs)-

Arguing as in the proof of Lemma (iii) (i.e., repeating the argument after pullback
to affinoid open subsets of X} n)(€)a), we see that for all open subsets U C A} (,my(€)a with
preimage V C ), the trace pairing gives an isomorphism

HO(V, Oy:n) = HomR(S, Ho(u’ O‘leo(pm)(e)a)) .
Thus, the desired statement follows from
0 0 *
H (XFO(pm)(E)aa OXFO(pm)(e)a) =H (Xro(pm)<e)a’OXFO(pm)(f)a) ,

which is a consequence of Lemma
(ii) Use Tate’s normalized traces (Corollary [I11.2.23]) (and part (i)) to produce the retractions

(proving injectivity). Moreover, Tate’s normalized traces for varying m’ converge to the
element one started with, giving the density.

(iii) This is immediate from (ii).
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First, we deal with the case of adjoining a I'; (p™)-level structure. Assume first that g > 2;
the case g = 1 can be handled directly, cf. below. Note that on the tower X (,m)(€)q, we have
the tautological abelian variety A%O (pm)(e)a (which are related to each other by pullback), as

well as the abelian varieties Ap,gm)(€)a = A(p~"€) over Ap m)(€)a = X (p~™€). They are
related by an isogeny

Aro(pm)(ﬁ)a — A?O(pm)(E)a ,

whose kernel is the canonical subgroup C, C Ap,my(€)q[p™] of level m. One gets an induced
subgroup

D, = Aro(pm)(G)a[pm]/Cm - Atro(pm)(e)a .
Let D, be the pullback of D, to Xy ,m(€)q for m" > m. One has D, ,my =
D, [p™]. Also, the D,, give the T'y(p™)-level structure.
Let Doy denote the pullback of D, to Xpgpeey(€)a; as Dy, — Xpgpmy(€)q is finite
étale, Dy, (p~) is a perfectoid space.

LEmMmA I11.2.25. The map
Ary(p) (€)a[P™] = Dinro(pe)
s an isomorphism of perfectoid spaces.

PROOF. Let (R, R") be a perfectoid affinoid @;yd—algebra. Then
Aror<) (€)alp™| (R, BT) = lm Apy ) (€)a[p™] (B, RT) .

The transition map
Aro(pm’+m)(€)a[l9m] - Aro(pm’)(e)a[Pm]
kills the canonical subgroup C,,, so that it factors as
AFO(pm'+m)(€)a[pm] — AI‘O(pm/+m)(€)a[pm]/Cm = Dml_‘o(pm,+m) — Aro(pm/)(ﬁ)a[pm] .
This shows that the projective limit is the same as the projective limit

DmFO(pOO)(R7 R+) = 1‘gll)rrzl—‘o(pm/)(}%v R+) .

O

Let D!, — X'(e) C X’ denote the quotient A’(¢)[p™]/C!,, where C!, denotes the canonical
subgroup on the ordinary locus in characteristic p. Note that all abelian varieties over
F,((tY/P=YP*)) parametrized by X’(¢) are ordinary, as the Hasse invariant divides ¢, and
thus is invertible[]

LEMMA II1.2.26. The tilt of Dy,rypee) identifies canonically with the perfection of D;,,.
PROOF. As the kernel of Frobenius (i.e., C/,) gets killed under perfection, we have
(D;n)perf — A,(E) [pm]perf ]

By Corollary [I11.2.19, the right-hand side is the tilt of Ap,)(€)o[p™], so applying the
previous lemma finishes the proof. [l

"Of course, the abelian varieties need not have good ordinary reduction.
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Let X°od* C X* ®z,, Fp be the locus where the Hasse invariant is invertible; thus, X ordx
is affine over F,,. Let X ord © X ®z,,, Fp be the preimage, which is the ordinary locus, and

let D4 — X°d he the quotient of the p™-torsion of the universal abelian variety by the

canonical subgroup. Now, let Xl‘iic(ipm) — X° parametrize isomorphisms Do 2 (Z/p"Z)9.
Then Xl‘iif(lpm) — X° is a finite map of schemes over F,. Recall that we are assuming g > 2;

thus, we find that setting
XF?%;””) = SpeC HO (Xgi?pm), Oxord ) ,

T1(p™)

the map Xﬁic(l;m) — X" is a finite map of affine schemes over F,, such that Xﬁi‘%pm) is the
preimage of X, Also, Xﬁi‘%;m) is normal.

Let AT m)(€) be the open locus of the adic space associated with XF;‘%;M)®IFP((t1/(p—1)p°°))
where [Ha| > |¢|. Then

le:;(p”L)<€> — X/*(C)

is finite, and étale away from the boundary. In particular, the base-change X7 m(€) —
X'(€) C X" (e) is finite étale, parametrizing isomorphisms D/, = (Z/p™Z)7.

Let Z™(e) C A" (€) denote the boundary, with pullback Zp% . (€) C X m) (€).

LEMMA I11.2.27. The triple (X" (e)Pet, Z™(e)Pet X' (e)P™) is good, cf. Definition|IL.3.8
i.e.
HO(X/*(e)perf’ OO/t)a ~ HO(X/*(e)perf \ Z/* (e)perf, OO/t)a SN HD(X/(G)perf, OO/t)a )
PROOF. Recall that X™*(¢) is the generic fibre of the formal scheme
X"(e) —» X"

parametrizing v with uHa = t¢. It is enough to prove that for any open affine formal
subscheme 4 C X, the corresponding triple one gets by pullback is good. This follows from
Lemma [[1.3.9 (with ¢ replaced by t¢), cf. also Corollary [[1.3.12} Observe that X* Rz, Fp

admits a resolution of singularities, given by the toroidal compactification, cf. [30]. U

COROLLARY II1.2.28. The triple (Xr/‘j(pm)@)P‘E‘rf,Zf‘*l(pm)@)perf, Xlil(pm)(e)perf> is good.

PRrOOF. This follows from the previous lemma and Lemma [[I.3.10] 0
Now fix m > 1, and consider V;;, = A} (,m)(€)a — A (m)(€)a. We use notation as in

Lemma [I1.2.24]
LeEMMA T11.2.29. The tilt of Vo, identifies with X, ,my(€)**".

PROOF. As YV, — Ap,pm)(€)q is finite étale, Voo — Ap(pe)(€)q is finite étale, and
parametrizes isomorphisms Dp,rypey = (Z/p™Z)¢. Using Lemma [[I1.2.26] one sees that
the tilt will parametrize isomorphisms (D! )Pt = (Z/p™Z)9. This moduli problem is given
by Xfl(pm)(€>perf N X/(dperf' O

Note that V5, \ 0 = &7 (,m)(€)a \ O is finite étale, where 0 denotes the boundary of any
of the spaces involved. By pullback (and abuse of notation — Y% is not defined yet), we get
a perfectoid space V3, \ 0 = &7 () (€)a \ 0.
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LeMMA T11.2.30. The tilt of Y5, \ 0 identifies with X% ) ()P \ 0.
PROOF. Let Xf’i(pm)(e)perf = Spa(T,T"), and let (U,U™) be the untilt of (7,77F). By
the previous lemma, we get a map

Ut = H (Vs 05 ) = ST,

and by Lemma [[11.2.24] the right-hand side is the p-adic completion of hﬂm St From the
latter statement, it follows that there is a map of adic spaces in the sense of [56, Definition
2.1.5] Y \ 0 — Spa(Sx,SE). Combining, we get a map V! \ 0 — Spa(U,U"). After
restricting to the complement of the boundary, both spaces are perfectoid, and finite étale

over Xl’fo(pw)(e)a \ 0. Thus, using the previous lemma and Lemma [[I1.2.27] the result follows
from the next lemma.

LEmMA 111.2.31. Let K be a perfectoid field, X, Y1, Vo be perfectoid spaces over K,
Vi, Vo = X two finite étale maps, and f : Y1 — Vo a map over X. LetUU C X be an open
subset such that H(X,Oy) — H°(U,Oy). Assume that fly is an isomorphism. Then f is
an 1somorphism.

PROOF. The locus of X above which f is an isomorphism is open and closed: As the maps
are finite étale, this reduces to the classical algebraic case. Thus, if f is not an isomorphism,
there is a nontrivial idempotent e € H°(X, Ox) which is equal to 1 on the locus where f
is an isomorphism. In particular, e, = 1. But as H(X,0x) — H°(U,Oy), ¢ = 1, as
desired. O

LEMMA II1.2.32. The ring Sec = H°(Voo, Oy..) is perfectoid, and the tilt of Vi =
Spa(See, SL) identifies with X% . (€)P.

PROOF. Recall that in the proof of Lemma [I11.2.30} we constructed a map UT — ST ;
we need to show that it is an isomorphism. From S¥ = H°(Vs, O3, ), we know that

Se/p = H' Ve, 03, /) -
Using Corollary [[T1.2.28]
(U* /)" = HO (XL (o ()P, OF /1) = HO( X,y ()P, OF 1) = H (Yoo, OF /)"

so UT/p — ST /p is almost injective, and the map Ut — ST is injective. To prove surjec-
tivity, observe that there is a map

(SL/p)* = HY(VL\ 9,07 /p)* 2= HY(XL, (m) (€)™ \ 9,07 /)"
= HO(XI/{(pm)(E>perf7 O+/t>a = <U+/p>a

by Lemma and Corollary [[I1.2.28, This gives almost surjectivity, thus S, = U, and
then also ST =53 =U°=U". O

Summarizing the discussion, we have proved the following.

PRrROPOSITION I11.2.33. For anym > 1, there exists a unique perfectoid space kal(pm)mro(poo)(e)a
over Q;yd such that

AL, pmyro (o) ()a ~ WAL o on oy (€ -
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Moreover, Xy (m)nr ) (€)a and all X7 (™) To(p m’)<€>a for m' sufficiently large are affinoid,
and
QHO( m)ACo(p™ )(E)av 0) = HO(lel(pm)ﬂl—‘o(p"o)(e)a7 0)

has dense image.
Let Zp, (pmynrgpe)(€)a C lel(pm)ﬂro(poo)(e)a denote the boundary, and Xr,ym)nrgpe)(€)a
the preimage of Xryp)(€)a C Xy, () (€)a- Then the triple

(AT, o)) (€)as 211 m)nro =) (€)as Xy (rmynrop=) (€)a)
15 good. O
In fact, the proposition is also true for g = 1. In that case, A} n)(€)a = AL (m )( €)q 18
finite étale, and the boundary is contained in the ordinary locus. Note that Lemma
holds true if the codimension of the boundary is 1 when the boundary V' (J) does not meet

V(f). Also, Lemma|l1.3.10| holds true if the codimension of the boundary is 1 when the map
is finite étale. Certainly, one can pull back the finite étale map Xy (,my(€)a = A7 (m)(€)a tO
get A7 (pm)mro(poo)( €)a — AP (poey (€)a, and arrives at all desired properties.

Passing to the inverse limit over m and using Lemma [[I.3.11] we get the following propo-
sition.

ProrosITION II1.2.34. There is a unique perfectoid space X[ o Oo)( €)a over ngd such

that
XL, (pee L X, o
Moreover, X (e )( €)a and all X7 (o )( €)a for m sufficiently large are affinoid, and

1'ﬂf‘fo(ﬁ‘/n(]om)( €)a; O) = HO (X} Iy (po® )(e)a,(’))

has dense image.
Let Zp, (py(€)a C Xl’fl(pw)(e)a denote the boundary, and Xr, (p<)(€)q the preimage of
Xro(p)(€)a C A7 () (€)a- Then the triple

(X7, (o) (€)as 211 (p) (€)as ATy (p<) (€)a)
15 good. O

The case of I'(p™)-level structures is now easy, using [53, Theorem 7.9 (iii)], and the
following lemma.

LEMmMA I11.2.35. For any m > 1, the map
le(pm)<€>a — kal(pm)(ﬁ)a
is finite étale.
PrROOF. We leave the case g = 1 to the reader. Thus, assume g > 2. First, we check

the assertion in the case € = 0, i.e., on the ordinary locus. In that case, we claim that it
decomposes as

Xpm(0a= [ A (0)a = Ay (0)a
'y (p™)/T(p™)
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By Hartog’s principle (cf. Lemma [I11.2.24)), it suffices to check that

XF(pm)(O)a |_| XF1(pm)<O)a - XF1(pm)(O)a .

L1 (p™)/T(p™)

I

The left-hand side parametrizes abelian varieties A with good ordinary reduction, with a
symplectic isomorphism o : A[p™] = (Z/p™Z)* such that D; = (o mod p)~'(FY & 09) C
Alp] satisfies D1 NCy = {0}, where C; C A[p] is the canonical subgroup of level 1. Similarly,
Xp, pmy(0) parametrizes abelian varieties A with good ordinary reduction, together with a
totally isotropic subgroup D,, C A[p™] and an isomorphism «q : D,,, = (Z/p™Z)¢, such that
Dy = D,,[p] satisfies D; N C, = {0}.

Note that A has good ordinary reduction, and thus a canonical subgroup C,, C A[p"].
Moreover, C,, ® D,, = A[p"™], as follows from C} @ D; = A[p]. The map of functors is given
by a + (D, ), where D,,, = o '((Z/p™Z)? & 09), and og = a|p,,. But a also gives rise
to a totally isotropic subspace ¥ = a(C,,) C (Z/p™Z)*, with

& ((Z/p2) ©07) = (Z/p"L)* .

One checks that I';(p™)/I'(p™) acts simply transitively on the set of such ¥, and that the
datum of (D,,, o, X) is equivalent to . This finishes the proof in case ¢ = 0.

In general, there is a description of the boundary strata, and the induced map, of
Xff(pm) — AL (™) in terms of lower-dimensional Siegel moduli spaces. In particular, above

any locally closed stratum meeting X7 (pm)(O)a, the map is finite étale, as it is so generically.
As any locally closed stratum that meets X}t . (€), will also meet A7 () (0)q, we get the
conclusion. 0

Using Lemma |[[.3.10| and Lemma [I1.3.11] once more, we get the following theorem.

THEOREM 111.2.36. There is a unique perfectoid space Xli‘(pw)(e)a over ngd such that
Xr*(poo)(@a ~ @ka@m)(ﬁ)a .
Moreover, Xfcc\(€)a and all Xy, m)(€)a for m sufficiently large are affinoid, and

ling (X (€)a, O) = HY (A o) (€)a; O)

has dense image.
Let Zp(ye)(€)a C Aoy (€)a denote the boundary, and Xr ) (€)a the preimage of Xryp)(€)a C
X7 () (€)a- Then the triple

(A ey (€)as Zr(p=) (€)ar Xr(p=) (€)a)
18 good. 0

Summarizing our efforts so far, we have proved that a strict (and explicit) neighborhood of
the ordinary locus in the minimal compactification becomes affinoid perfectoid in the inverse
limit, and that Riemann’s Hebbarkeitssatz holds true with respect to the boundary. We will
now extend these results to the whole Shimura variety by using the GSp,,(Q,)-action.
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II1.3. The Hodge-Tate period map

The next task is to extend the result of the previous section to all of Xf“(poo), and to
construct the Hodge-Tate period map

THT - Xff(poo) — F .

In fact, the two tasks will go hand in hand. As we are always working over Q;yd, we can
ignore all Tate twists in the following.

IT1.3.1. On topological spaces. We need a version of [55, Proposition 4.15] for the
case of bad reduction.

PRrRoOPOSITION IIL.3.1. Let C be an algebraically closed and complete extension of Q, with
ring of integers O¢. Let A/C be an abelian variety with connected Néron model G/O¢. Let

G be the p-adic completion of G (as a formal scheme over Spf O¢ ); then there is an extension
05T —-G—=B—=0 ,
where T is a split torus over O¢, and B is an abelian variety over Og. Thus, G[p"o] defines
a p-divisible group over O¢, which has a Hodge-Tate filtration
0 — Lie G @0, C(1) = T,G @7, C — (Lie G[p™]")* ®o, C — 0 .
Also, A has its Hodge-Tate filtration
0 — LieA(1) = T,A®z, C — (LieA")" = 0.
The diagram
Lie G ®o. C(1) — T,G &z, C
| |

Lie A(1) T,A ®g, C

commutes.
PRrOOF. The proof is identical to the proof of [55 Proposition 4.15]. O
In the situation of the proposition, we need a comparison of Hasse invariants.

LEMMA II1.3.2. In the situation of Proposition|[IIT.3.1, assume that A comes from a point
r € X(C) = Xy r(C). By properness of X 1y, it extends to a point x € X 1,(Oc).
(i) The pullback r'wx: ., s canonically isomorphic to w.
(ii) Let & € X 1 (Oc/p) be the reduction modulo p of x. Then there is an equality
Ha(f) _ Ha(B R0, OC/p) ® (w%an)p—l c wg(P—l)/p ~ wg(p—l)/p ® ws?(p—l)/p )

can

Here, £w$ € wr denotes the canonical differential, given by dlog(Zy) A ... A dlog(Z,,) on
the split torus T = Spec Oc[Z{, . . ., Zﬂfl]ﬂ

8The sign ambiguity goes away when taking the p — 1-th power if p # 2; if p = 2, then it goes away
modulo p.
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PRrOOF. Let f : Yg,Kp — X7 g» be a (smooth projective) toroidal compactification, as
constructed in [30]. Over X, g», one has a family of semiabelian varieties G"™ — X, g».
In particular, one has the invertible sheaf wguniv over X k», and by construction of Xy,
weuiv = f*wx: . Pulling back to z gives part (i).

For part (ii), observe that one can define an element Ha' € H(X , s ®z,,) Fp, wgflﬁ;n)
as follows. The Verschiebung map V : (G"™V)®) — GV in characteristic p induces a

mMap Weuniv — Wgunivye) = wg‘fmv, i.e. asection Ha' € HY (X, k» ®z,,, Fp, wggﬁv )), as desired.

Clearly, Ha = Ha' on X rr ®z,, F; it follows that Ha' is the pullback of Ha to Xy K ®z, Fp.
Pulling back to x reduces part (ii) to a direct verification. U

Look at the spectral topological spaces

| ey | = B [ | 5 [ 2oy = W [Zrgm) | [ Xpgee) | = Lim | Xpgm)] -

There is a continuous action of GSp,,(Q,) on these spaces.

REMARK II1.3.3. For any complete nonarchimedean field extension K of Q;yd with an
open and bounded valuation subring K+ C K, we define

ka(poo)(Ka K') = I'LHXF(pm)(K> K",

and similarly for the other spaces. For any (K, K™), one gets a map
Xfwk(poo)<K, KJr) — ‘Xl:k(poo)l .
One checks easily that one has a bijection

|X1:k(poo)| = hg Xf\k(poo)(K, K+)
(K,K)

Note that the direct limit on the right-hand side is not filtered; however, any point comes
from a unique minimal (K, K).
LEMMA II1.3.4. There is a GSpy,(Q,)-equivariant continuous map
|mrr AT\ [Zrge) | = [ FL]

sending a point x € (le(poo)\Zp(poo))(K, K™), corresponding to a principally polarized abelian
variety AJ/K and a symplectic isomorphism o : T,A = Zgg, to the Hodge-Tate filtration
LieA C K.

PROOF. One can check from Proposition that the Hodge-Tate filtration, a priori
defined over C' = K , is already K-rational, as this is true by definition for the Hodge-Tate
filtration of p-divisible groups, cf. [32, Ch. 2, App. C|. Thus, one gets a map

X\ [ Zrgeo] = i (Kie) \ Zrge)) (K. K5) = Ly FUKKH) = |71
(K,Kt) (K,Kt)

The GSp,,(Q,)-equivariance is clear.
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For continuity, we argue as follows. Consider the smooth adic space S = X*\ Z, with
the universal abelian variety g : Ag — S. Then g is a proper smooth morphism of smooth
adic spaces. Applying [54, Theorem 1.3], we see that the map

(R'9.Z/p" L) @z/pz OF [p" — R'g. O /p"
is an almost isomorphism for all n > 1; by the 5-lemma, this reduces to the case n = 1.
Going to the pro-étale site, passing to the inverse limit over n and inverting p, we find an
isomorphism of sheaves on Spyoet,
ng*@p ®@p @S = ng*@As .
In particular, we get a map
(R'9.044) ®0y Os — R'g.04, = R'q.Q, ®3, Os .

Note that R'¢.O4, is a finite locally free Og-module given by Lie Ag (using the principal
polarization on Ag to identify Ag with its dual). Locally, there is a pro-finite étale cover
U — U C S such that U is affinoid perfectoid. Let

ﬁoo = U Xg (Xff(poo) \ Zl“(poo)) ;

as Xr*(poc) \ Zrp=) — S is pro-finite étale, U, exists, and is affinoid perfectoid over ngd.
Evaluating the map

(ng*OAS) ®OS @5 — ng*@As = ng*Qp ®@P @S
on Uy, € Sprost, We get a map
(Lie As) @0y Op,, = OF

using the tautological trivialization of R* g*zp over Us. At all geometric points of Us, this
identifies with the Hodge-Tate filtration as defined in the statement of the lemma, using [55,
Proposition 4.10]. In particular, (Lie As) ®o4 Op_ C (’)[275; is totally isotropic, and defines a
map of adic spaces 3
Usw — FU .
By checking on points, we see that the continuous map |Us| — |.Z| factors over
U] X151 (1A ooy | \ |2y )
and agrees with the map of sets defined previously. As the map
Use| = 1U] X1 ([ 00) | \ [ 215 [)

is the realization on topological spaces of a pro-étale and surjective map in Spyoet, and pro-
étale maps in Sper are open, a subset V' C |U| X|g| (| X700 \ [Zr(pe<)|) is open if and only
if its preimage in |Us| is open. The result follows. O

DEeFINITION II1.3.5. (i) A subset U C ]le(poo)| is affinoid perfectoid if it is the preimage
of some affinoid Uy, = Spa(Rm, Ry},) C | X | for all sufficiently large m, and (Reo, RY)
1s an affinoid perfectoid ngd—algebm, where RI is the p-adic completion of 11_1’I>”1m R}, and
Roo = RL[p™].
(ii) A subset U C |Xp*(poo)| is perfectoid if it can be covered by affinoid perfectoid subsets.
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By Theorem [[I1.2.36] X7, (€)q is affinoid perfectoid. Also, the condition of being affi-
noid perfectoid is stable under the action of GSp,,(Q,). Moreover, any perfectoid subset
of |XF*(poo)| has a natural structure as a perfectoid space over ngd, by gluing the spaces
Spa([o, RY,) on affinoid perfectoid subsets. Our goal is to show that | A7 )| is perfectoid.

For € < 1, recall that X*(¢) C X* denotes the locus where |Ha| > |p|° (observing that
this is independent of the lift of Ha). Let |}« (€)| C |} ,~)| denote the preimage. Similar
notation applies for Z and X C X™*.

Note that for ¢ = 0, one gets the tubular neighborhood of the ordinary locus in the
special fibre.

LeMMA 1I1.3.6. The preimage of F(Q,) C |.Z| under |mur| is given by the closure of
| ey (O) \ [ 21y (0]

Note that [}, (0)] \ [Zr=)(0)] is a retro-compact open subset of the locally spectral
space ]le(poo) I\|Zr@p=)| (i.e., the intersection with any quasi-compact open is quasi-compact).
In this case, the closure is exactly the set of specializations.

PROOF. Let C be an algebraically closed complete extension of QQ,, with an open and
bounded valuation subring C* C C, and take a (C', C")-valued point z of Af )\ Zr(pe). It
admits the unique rank-1-generalization & given as the corresponding (C, O¢)-valued point,
and x lies in the closure of X7« (0) \ Zr(=)(0) if and only if @ lies in X7« (0) \ Zre=)(0)
itself. Also, by continuity,  maps into .#¢(Q,) if and only if £ maps into .#¢(Q,). Thus, we
may assume that x = 7 is a rank-1-point, with values in (C, O¢).

The point x corresponds to a principally polarized abelian variety A/C with trivialization
of its Tate module. Let G/O¢ be the Néron model, and use notation as in Proposition
111.3.1, By Lemma |[I1.3.2, the point x lies in A} o) (0) \ Zr(pe<)(0), i.e. the Hasse invariant
is invertible, if and only if B is ordinary. By Proposition , x maps into #¢(Q,) if and
only if

Lieé RKoq Cc Tpé ®Zp C
is a Q,-rational subspace. This, in turn, is equivalent to
Lie B Roe C c TpB ®Zp C

being a Q,-rational subspace. Also, B is ordinary if and only if B[p>] = (Q,/Z,)? X ji7=. One
checks directly that in this case, the Hodge-Tate filtration is Q,-rational (and measures the
position of the canonical subgroup). Conversely, all Q,-rational totally isotropic subspaces
W C C? are in one GSpy, (Zy)-orbit. By the classification result for p-divisible groups
over Oc, [56], Theorem B], it follows that if the Hodge-Tate filtration is Q,-rational, then
B[p>®] = (Q,/Z,)? X . This finishes the proof. O

REMARK II1.3.7. Here is a more direct argument for the final step, not refering to [56],
which was suggested by the referee. It is enough to prove the following assertion. Let C' be
a complete algebraically closed extension of QQ,, and let G' over O¢ be a p-divisible group.
Then the kernel of

ag : T,G — LieG*
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is given by T,,(G™), where G™ C G denotes the maximal multiplicative subgroup. Indeed,
if the Hodge-Tate filtration is Q,-rational, this kernel is g-dimensional, so the multiplicative
part is of dimension g, which is equivalent to the abelian variety B being ordinary.

To prove this, one may split off the multiplicative part, so as to assume that G™* = 0. In
this case, G* is a formal group. Then, for an element z € 7,G corresponding to a morphism
of p-divisible group Q,/Z, — G, one takes the dual map z* : G* — pyo. Then ag(z) is
defined as the induced map on Lie algebras. As G* is formal, it follows that if the induced
map on Lie algebras is 0, then x* = 0, so that x = 0, proving the desired injectivity.

The following lemma compares the condition that an abelian variety is close to being
ordinary, with the condition that the associated Hodge-Tate periods are close to Q,-rational
(cf. also Lemma [[IL.3.15). This is one of the technical key results of this paper, and is
ultimately the reason that it was enough to understand some strict neighborhood of the
anticanonical tower.

LEMMA II1.3.8. Fiz some 0 < € < 1. There is an open subset U C .Fl containing FL(Q,)
such that

[T | T (U) C [ o) (€)] \ [ 2o (€)] -

ProoFr. We argue by induction on g. For g = 0, there is nothing to show. We have to
show that we can find some U such that for any algebraically closed and complete extension
C of Q, with a principally polarized g-dimensional abelian variety A/C and a symplectic
isomorphism o : T, A = 729 for which |mur|(A) € U, one has [Ha| > [p|“.

If A has bad reduction, then using Proposition and Lemma [[I1.3.2] the result
reduces by induction to the case already handled. Thus, assume that one has an abelian
variety A/Oc. In particular, we have a point « € |Xp(p~)|. The map

[mar| [ Xrpe)| — | F
is continuous. One has
() |mur M (U) = [mur| 7 (FUQy)) = [ Xy (0)] C [ Aoy ()] -
UDF4(Qp)

The complement |Xp | \ [ Xy (€)] is quasicompact for the constructible topology. Thus,
there is some U D .#(Q,) with

| T (U) C | Xpgeey ()]
as desired. O

Before we continue, let us recall some facts about the geometry of #¢. There is the
Pliicker embedding .#¢ — P(¥)-!. For any subset J C {1,...,2g} of cardinality g, let s,
denote the corresponding homogeneous coordinate on projective space, and let .#¢; C F
denote the open affinoid subset where |s;| < |s;| for all J'. The action of GSp,,(Z,) per-
mutes the ., transitively. As an example that will be important later, Fyy11..24(Q,) C
FL(Q,) = Fl(Z,) parametrizes those totally isotropic direct summands M C Zf)g with

(M/p) N (FY @ 09) = {0}; equivalently, M & (Z9 & 09) — Z29.

LEMMA II1.3.9. For any open subset U C FL containing a Q,-rational point, GSp,,(Qy)-
U=%H.
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PROOF. We may assume that U = GSp,,(Q,) - U. By assumption, F#(Q,) C U. It

.....

.....

that v (Flp,. . ) C U, ile. Flpy,. g Cy "(U)=U, as desired. O

---------

LeEMMA I11.3.10. Take any 0 < € < 1. There are finitely many 71, ..., € GSpy,(Qp)
such that

k
|le(p°°)‘ \ |ZI‘(p°°)’ = U%’ ) (’XF(pw)(E)’ \ |ZF(p°°)(€)|) .
i=1
PROOF. Take U as in Lemmal[[I1.3.8] By Lemmal|[lIl.3.9|and quasicompacity of .Z¢, there

are finitely many ~i,...,7 € GSp,,(Q,) such that F = Ule ~; - U. Taking the preimage
of this equality under || gives the lemma. O

LeEMMA TI1.3.11. With 0 < e <1 and 71, ..., € GSpy,(Qp) as in Lemma |[11.3.10, one

has
k

‘le(poo)’ = U%’ ) ’Xr*(poo)(e)’ .
i=1

PRrROOF. Let V C |X1i‘(poo)\ denote the right-hand side. Thus, V is a quasicompact open
subset containing [ X7 «)[ \ [Zr@=)|. By quasicompacity, V' is the preimage of some V;, C
Xf‘(pm), containing Xli‘(pm) \ Zrm). To prove V,,, = le(pm), it suffices to see that they have the
same classical points. Thus, assume x ¢ V,, is a classical point of Xli‘(pm). Then z = (), U
is the intersection of all open neighborhoods U C Xff(pm). As V,, is quasicompact for the
constructible topology, it follows that U C Xrpm) \ V,, for some open neighborhood U of
x. In particular, U C Zpgm). This is impossible, as U is open (so that e.g. dimU >
dim Zp(pm)) . O

II1.3.2. On adic spaces.

COROLLARY I11.3.12. There exists a perfectoid space Xli‘(poo) over ngd such that
Aoy ~ UM Xpm)
It is covered by finitely many GSp,,(Q,)-translates of Xli‘(poo)(e)a, for any 0 < e < %

PROOF. Choose any 0 < € < % and use Lemma [[II.3.11| and Theorem [[11.2.36] Note that
O

Let Zr(pee) C X
space.

(=) denote the boundary, which has an induced structure as a perfectoid

COROLLARY IIL.3.13. There is a unique map of adic spaces over Q,
THT - Xfwk(poo) \ ZF(pOO) — ﬂf

which realizes |mut| on topological spaces.
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PROOF. Uniqueness is clear. For existence, we argue as in the proof of Lemma [[11.3.4
using affinoid perfectoid subsets of X \Zp in place of U. U

LEMMA II1.3.14. The preimage of J’E{QH 77777 29} (Qp) is given by the closure of le(poo)(O)a\
ZT(?“)(O)a'

PROOF. By Lemma , the preimage is contained in the closure of A} .)(0) \
Zp(p=)(0). Also, it is enough to argue with rank-1-points, and we have to see that a rank-1-
point x of A ) (0)\ Zr(=)(0) is mapped into Fl g1, 243(Qp) if and only if z € A7) (0)a.
On Ary~)(0), we can argue as follows. The point  corresponds to an abelian variety A/Og
with ordinary reduction, with a symplectic isomorphism a : T,A = Zf)g. The abelian variety
A thus has its canonical subgroup C' C T,A, as well as D = a‘l(Zg @ 09) C T,A. We have
r € Xppe)(0), if and only if C/p @ D/p = Alp], or equivalently C' & D = T A, or also
a(C) @ (Z8 ® 09) = 729, Also, the Hodge-Tate filtration is given by o(C) ®z, K C K.
isotropic direct summands M C Z29 which satisfy M @ (Z9 & 09) 5 729

To extend to A,y (0) \ Zrpe (O), use that by Theorem , the triple

<Xr< w>(0>a= Zpp)(0)a, Xrp<)(0)a)

.....

U C F of x with U N Jé{gﬂ ,,,,, 29} = fZ) Then Jﬁ(Qp) = U(Q,) LJ(F#(Q,) \U(Q,)) is a
decomposition into open and closed subsets. Taking the preimage under wyt of U gives
an open and closed subset of A7 )(0)a \ Zr(p=)(0)s. Because the displayed triple is good,
any open and closed subset of X7 )(0)a \ Zr(p<)(0)q extends to an open and closed subset
of Xr*(poo)(O)a; let V' be the open and closed subset corresponding to U. Then intersecting
V' with the displayed triple gives another good triple. Assume that V' is nonempty. As V'
gives rise to a good triple, it follows that V' N Xp(ye(0), is nonempty. But elements of this
intersection map under myy into U(Q,) N Flygia,..24(Q,) = 0, contradiction.
Thus, A7) (0)a \ Zrp=)(0) maps into Flygy1,. 29 (Qp). Assume that some point

77777

T € (Xr(peey (0) \ Ay (0)a) \ Zr(pee) (0)
maps into Flgi1..203(Q,). Applying an element v € GSpy,(Z,), one can arrange that

77777

VT € Aoy (0)a. The subset

ey (0)a \ YA (o) (0)a C Aipeey (0)a
is open and closed, and thus gives rise to a good triple. By the argument above, if the

.....

A (p=) (0 )\XF (O)a with 7THT(’Y v') € Fligp,...,
about the good reduction locus. O

LeMMA 1I1.3.15. For any open subset U C F containing FL(Q,), there is some € > 0
such that

A ooy (€) \ Zr(pe) (€) C mar(U) -
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PROOF. The proof is identical to the proof of Lemma [[T1.3.8] reversing the quantification
of e and U. Note that one can a priori assume that U is GSpgg(Zp)—invariant, as such open
subsets are cofinal; this facilitates the induction argument. 0

LEMMA II1.3.16. There exists some 0 < € < % such that

X () (€)a \ Zrp=)(€)a C Tir(Fligs,.. 20y -

ProOOF. Fix some U C % containing .#¢(Q),) such that UN.F¥ 441, 24y C U is open and
closed; let U’ C U be the open and closed complement. By Lemma [[I1.3.15, we may assume
that A7 ey (€)a \ Zr(p~)(€)a maps into U. The open and closed preimage of U’ gives rise to
an open and closed subset V. C & < (€), by the goodness part of Theorem . By
Lemma the intersection of V, over all € > 0 is empty. As all V, are spectral spaces,
thus quasicompact for the constructible topology, it follows that V, = () for some ¢ > 0.

Thus, gt maps Xr"(poo)(e)a \ Zrpe)(€)a into U N Flygia,. 29y C Fligi,. 2g, as desired. [0
COROLLARY II1.3.17. There is a unique map of adic spaces
THT : le(poo) — F
extending Tyt on le(poo) \ Zr(pee)-

PROOF. One checks easily that for any open subset U C AL oy there is at most one
extension of myy from U \ (Zppe~) NU) to U. Indeed, we may assume that U is affinoid
perfectoid. Given two functions f,g on U with f = g on U \ (Z2r@~) N U), the subset
|f —g| > |p|™ is an open subset of U contained in the boundary; thus, it is empty. Therefore,
|f —g| < |p|" for all n, i.e. |f —g| =0. As U is affinoid perfectoid, this implies f = g.

To prove existence, we can now work locally. Clearly, the locus of existence of myr is
GSpy, (Qy)-equivariant. By Corollary it suffices to prove that myt extends from

1f(p°°)(€)a \ ZF(P°°)<€>a
to Xli‘(poo)(e)a for some € > 0. Using Lemma [II1.3.16, we may assume that the image of
le(poo)(e)a \ Zr(p=)(€)q is contained in the open affinoid subset Fl(y 1 29 C FL. Every
function on Fligi1  2g pulls back to a bounded function on A w)(€)a \ Zrpe)(€)a, and

thus extends uniquely to Xfi‘(poo)(e)a by the goodness part of Theorem |[I1.2.36, This proves
extension of 7wy, as desired. ]

II1.3.3. Conclusion. Finally, we can assemble everything and prove the main theorem.

THEOREM I11.3.18. For any tame level KP C GSp,,(A%) contained in {7 € Gszg(Zp) \
v =1 mod N} for some N > 3 prime to p, there ezists a perfectoid space /'\?Ii‘(poo)’Kp over
@gyd such that

(oo, rer ~ W Xpm) g -
Moreover, there is a GSpy,(Q,)-equivariant Hodge-Tate period map (of adic spaces over Q)
THT Xf’:(poo)7Kp — F .

Let Zr ooy, kr C X 00y o denote the boundary. One has the following results.

(=)
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(i) For any subset J C {1,...,2g} of cardinality g, the preimage V; = Spa(Rje, R} ) C
AP (o) Ko of Fl; C F is affinoid perfectoid. Moreover, V; is the preimage of some affinoid
Vim = Spa(Rjm, R},,) C Xy for all sufficiently large m, and R}, is the p-adic
completion of liny Rj,.-

(ii) The subspace Zppe) ke NV C V; is strongly Zariski closed.

(iii) For any (KP?) C KP?, the diagram

* THT aZ
() (kv Tt
\ THT
A o), kv

commutes.
(iv) For any v € GSpy,(A}) such that v~ KPvy is contained in {y € GSpQQ(Zp) |y =1
mod N} for some N > 3 prime to p, the diagram

*
XF(p"O),K P
THT

X*

D(p>®)y~ ' KPy

commutes.

(v) Let Wz C Oiﬂg denote the universal totally isotropic subspace. Over Xf ) e \ Zr ), kv,
one has the locally free module Lie Axv given by the Lie algebra of the tautological abelian
variety. There is a natural GSpy,(Qy)-equivariant isomorphism

: ~Y *
Lie Agr = (WHTWﬂ)|le(poo),Kp\ZF(poo>pr .

It satisfies the obvious analogue of (iii) and (iv).

(vi) Let wze = (N Wa)* be the natural ample line bundle on FL. Over X ooy xo» OnE has the

natural line bundle wi» (via pullback from any finite level). There is a natural GSp,,(Q,)-
equivariant isomorphism

Wir = TRWa
extending the isomorphism one gets from (v) by taking the dual of the top exterior power.
Moreover, it satisfies the obvious analogue of (i11) and (iv).

ProOOF. We have established existence of /'\,’ff(poo)7 s and Ty
(i) First, observe that one has the following versions of Lemma [l11.3.6| and Lemma [[11.3.14]
LEMMA II1.3.19. The preimage of FU(Q,) C Fl under mur is given by the closure of
AL ey (0).
(r>)

LEMMA 1I1.3.20. The preimage of Fligia,. 24y(Qp) C F under myr is given by the
closure of A} 0c)(0)a-
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For the first, note that for any open U C ¢ containing F(Q,), myp(U) C X;: ) 1S @

quasicompact open containing X7« (€) \ Zr(y=)(€) for some e > 0 by Lemma|l11.3.15; thus,

Tar(U) contains XF (=) (€). In particular, a1 (F0(Q,)) contains the closure of X () (0).

The converse is clear by continuity. The second lemma follows from the first and the proof

of Lemma [I1.3.14
Let # € Z(Q,) correspond to 09 & Q4 C Q2. Then by the second lemma, 7y (x) C

*

F(poo)(e)a for any ¢ > 0. Thus, there is some open neighborhood U C % of x with
myr(U) C XY (p=)(€)a- On the other hand, we may choose € > 0 such that

XF(p“)<€>a C Wﬁ}r(ﬂozf{gﬂ,...gg}) .

Let v € GSpy,(Q,) be the diagonal element (p,...,p,1,...,1). Then " (Flgi1,..29y) C U
for n sufficiently large. Moreover, ¥"(Flgi1,.291) C Flgt1,. 29} 15 a rational subset. It
follows that mp (V" (Fligi,..293)) C XY (p=) (€)a 1s a rational subset.

The analogue of the conditions in (i) is satisfied for A}« (€)a by Theorem .
By [55], Proposition 2.22 (ii)], the properties are stable under passage to rational subsets,
giving the result for v"(Fl 41, 241). However, the desired property is also stable under the
GSp,, (Qp)-action, giving it for Flyyy . o4 itself, and then for all F;.

(ii) This follows from the constructions in the proof of (i), Corollary [[II.2.20] and Lemma
ML2.9

(iii) Clear by construction.

(iv) It suffices to check on geometric points outside the boundary, cf. proof of uniqueness in
Corollary [[II.3.17 Thus, the result follows from Proposition [T[.3.1} comparing the Hodge-
Tate filtration of the abelian variety with the Hodge-Tate filtration of the p-divisible group
(which depends only on the abelian variety up to prime-to-p-isogeny).

(v) The isomorphism comes directly from the construction of the Hodge-Tate period map,
cf. Lemma [[11.3.4] The commutativity in (iii) is clear, while the commutativity in (iv) can
again be checked on geometric points, where it follows from Proposition [I1I.3.1]

(vi) The only nontrivial point is to show that the isomorphism extends to X} (oo all commu-
tativity statements will then follow by continuity from the commutativity in (v). Both wg»

and 7wz have natural OF-structures wy;, resp. mhpwshy; i.e. sheaves of OF. -modules

2 (poo
which are locally free of rank 1, and give rise to wg» resp. mrwar after inve(rpth)lg p. For
w5y, this follows from the existence of the natural integral model of the flag variety over
Z,. For wy;,, one gets it via pullback from the integral model X* of X*. We claim that the
isomorphism wg» = W Over XF*(pOO) \ Zr(p=) 1s bounded with respect to these integral
structures, i.e. there is some constant C' (depending only on ¢g) such that

c, + x —-C, +
D Wgp CTyrWa CP Wiy

as sheaves over A7 . \ Zr(pe). This follows from Proposition [II1.3.1] and [32], Théoreme

IT1.1.1]: These results show that in fact, one map is defined integrally, and has an integral
inverse up to p? =1 except that the latter theorem was only proved there for p # 2.

Here is an alternative argument to get the desired boundedness. Argue by induction on
g. The locus of good reduction is quasicompact, so necessarily the isomorphism is bounded
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there. By Proposition [[II.3.1] the Hodge-Tate period map near the boundary can be de-
scribed in terms of the Hodge-Tate period map for smaller genus; thus, the isomorphism is
bounded there by induction.
Let j : X0 \ Zrpey — Af (o) denote the inclusion. Then we have inclusions
WgKp — j*j*pr = j*j*ﬂ'ﬁTu}gp‘g < WET(JJ:% .

We claim that wg» and 7fpwsre agree as subsheaves of j.7*wgr. First, we check that wgr C
mrw.ae. By Corollary [II1.3.12) this can be checked after pullback to Xp*(poo)(e)a, for any
given e. If € is small enough, then by Lemma , Thrw 5 1s trivial over Xli‘(poo)(e)a, as
wh, is trivial over Fligia,. 29y As Xr*(poo)(e)a is affinoid and wgy» is locally free (of rank 1),
wgpr restricted to Xff(poo)(e)a is generated by its global sections. Thus, to check the inclusion
wigr C ThrWae OVEr Xli‘(poo)(e)a, it is enough to check that there is an inclusion

wWier (X ooy (€)a) C (Trrwze) (Ao (€)a) -
+

But any section of the left-hand side is bounded with respect to the integral structure wj,,
thus by the above also bounded with respect to the integral structure mjrwh,. As mrwh,
is isomorphic to O over X *(pw)(e)a, the desired inclusion follows from the goodness part of

Theorem [11.2.36] which shows that
(WETW}e>(XF(pw)(€)a \ Zr(pe)(€)a) = (WﬁTw}Z)(X;(pw)(e)a) -
In particular, we get a map of line bundles
Qa Wip — TW.oe
defined on all of X7 ). We claim that it is an isomorphism. Let U = Spa(R, RT) C X (o)

be any affinoid subset over which wy, and WETWP}e become trivial; thus wj, (U) = RT - f1,
wrr(U) =2 R+ f1, Thrwh(U) =2 R - fo and 7fipwm(U) = R - fy for certain generators
f1, fo- Under the map «, a(f;) = hfy for a function h € R. The boundedness of the
isomorphism away from the boundary says that [p| < |h(z)| for all z € U \ 0, where 0
denotes the boundary. The open subset |h| < |p|“*! is an open subset of U which does
not meet the boundary; thus, it is empty. It follows that h is bounded away from 0, and
therefore invertible. This shows that « is an isomorphism over U, as desired.

O



CHAPTER 1V

p-adic automorphic forms

Let G be a reductive group over Q. Although there is a tremendous amount of activity
surrounding ‘p-adic automorphic forms’, a general definition is missing. There are essentially
two approaches to defining such spaces. The first works only under special hypothesis on G,
namely that there is a Shimura variety associated with GG. More precisely, we will consider
the following setup (slightly different from the usual setup). For convenience, assume that
G has simply connected derived group Gger, and that there is a G(R)-conjugacy class D of
homomorphisms u : U(1) — G& for which adu(—1) is a Cartan involution, and y = uc :
G, — G2 is minuscule. In particular, G has a compact inner form, and G(R) is connected:
As Gyer is simply connected, Gger(R) is connected, and (G/Gger)(R) is a compact, thus
connected, torus. In this situation, D = G(R)/K, carries the structure of a hermitian
symmetric domain, where the stabilizer K, of any chosen u is a maximal compact subgroup.
Moreover, for any (sufficiently small) compact open subgroup K C G(Ay), the quotient

X = GQN\[D x G(Af)/K]

is a complex manifold, which by the theorem of Baily-Borel, [9], has a unique structure as an
algebraic variety over C. By a theorem of Faltings, [28], it is canonically defined over Q, and
one might yet further descend to a canonical model over a number field (depending on K in
this generality, however). For the purpose of this paper, it is however not necessary to worry
about fields of definition. Fix a prime p, an isomorphism C = Q,, as well as a complete
algebraically closed extension C' of @Q,; then, via base-change, we may get corresponding
algebraic varieties over C.
In fact, we will be interested in the minimal (Satake-Baily-Borel) compactifications

Xk = GQ\D* x G(Af)/K]

where D* D D is the Satake compactification. These carry a natural structure as projective
normal algebraic varieties over C. By base-change, we get algebraic varieties over C', and
we let X be the associated adic space over Spa(C, O¢). Moreover, one can define a natural
ample line bundle wx on X, and sections of

H(Xj, wi")

are certainly complex automorphic forms, for any k& > 0. Denote by wg also the associated
line bundle on X ; then

HO (X, with)
forms a space of p-adic automorphic forms, in the sense that it is a vector space over the

p-adic field C, and that it bears a direct relationship to complex automorphic forms (so that
e.g. Hecke eigenvalues match up). More general spaces of p-adic automorphic forms can be

65
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defined by looking at (overconvergent) sections of w* (or other automorphic vector bundles)
on affinoid subsets of X', such as the ordinary locus.

For general groups G (not having a compact inner form), no such definition of p-adic
automorphic forms is possible. In fact, only the holomorphic (instead of merely real-analytic)
automorphic forms will occur even for those G which give rise to a Shimura variety; for
general G, there are no ‘holomorphic’ automorphic forms. It was suggested by Calegari
and Emerton, [17], to consider the ‘completed cohomology groups’ as a working model for
the space of p-adic automorphic forms. Let us recall the definition, for any compact open
subgroup K7 C G(A}) (referred to as a tame level):

Hio,(Z/p"Z) = lim H'( Xk, k0, Z/p"Z) ,
KP
as well as

Hio(Zy) = lim Hie, (Z/p"Z) = lim lim H' (X, k00, Z/D"Z) -
n n Kp
Here, X denotes the locally symmetric space associated with G and K C G(Ay) (which
exists for any reductive group G, and agrees with the Xy defined previously if G satisfies

the above hypothesis). For any (sufficiently small) K, C G(Q,), one has a map
Hi(XKpK”va) - ﬁ%{?(zp)[p_l] :

By a theorem of Franke, [33], all Hecke eigenvalues appearing in
Hi(XKpr, C) = Hi(XKpr,Qp) Rq, C

come from automorphic forms on G (possibly non-holomorphic!). Thus, by the global
Langlands conjectures, one expects to have p-adic Galois representations associated with
these Hecke eigenvalues. However, the space Hi,(Z,)[p~'] is in general much bigger than
@Kp H (X K,KP, Q,), because torsion in the cohomology for the individual X K, k» may build

up in the inverse limit to torsion-free Z,-modules. Then Calegari and Emerton conjecture
that although the completed cohomology group has no apparent relation to classical auto-
morphic forms, there should still be p-adic Galois representation associated with them. In
fact, this should hold already on the integral level for H.,(Z,), and thus equivalently for all
Hi,(Z/p"Z). In the following, we will usually work at torsion level with Hi.,(Z/p"Z), as
some technical issues go away.

We remark that this second approach works uniformly for all reductive groups G, and
that the corresponding space of p-adic automorphic forms is (in general) strictly larger than
what one can get from classical automorphic forms by p-adic interpolation, i.e. there are
genuinely new p-adic phenomena. We will prove however that if G has an associated Shimura
variety (of Hodge type), then one can get all Hecke eigenvalues in the completed cohomology

groups H,(Z,) via p-adic interpolation from Hecke eigenvalues appearing in (the cuspidal
subspace of) HO(X;;pr,w}‘?’;Kp) for some K, C G(Q,) and k > 0.

IV.1. Perfectoid Shimura varieties of Hodge type

In this section, we assume that the pair (G, D) is of Hodge type, i.e. admits a closed
embedding (G, D) < (Spy,, Dsp,,) into the split symplectic group Sp,,, with Dy, = given
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by the Siegel upper-half spaceﬂ We fix such an embedding; all constructions to follow will
depend (at least a priori) on this choice.

To lighten notation, write (G, D') = (Spygy, Dsp,,). We continue to denote by Xg and
X, K C G(Ay), the locally symmetric varieties associated with G, and we denote by Y,
Y, K' C G'(Ay), the locally symmetric varieties associated with G" = Sp,,. There are
natural finite maps

Xk =Yg, X = Y5

for any compact open subgroup K’ C G'(Ay) with K = K’ N G(Ay). By [26, Proposition
1.15], for any K C G(Ay), there is some K’ C G'(Ay) with K = K’ N G(Ay) such that the
map Xg — Yk is a closed embedding. Unfortunately, it is not known to the author whether
the analogous result holds true for the minimal compactification. We define Xj, — X% as
the universal finite map over which Xj — Y}, factors for all K’ with K = K'NG(Ay). As
everything is of finite type, X3 is the scheme-theoretic image of X}, in Y, for any sufficiently
small K" with K = K’ N G(Ay). Note that one still has an action of G(Ay) on the tower of
the X3.

Let X% be the adic space over C' associated with X7:. We continue to denote by .%¢
the adic space over C' which is the flag variety of totally isotropic subspaces of C%9 (i.e., the
flag variety associated with (G’, D’ )ED Let wyg be the ample line bundle on X% given via
pullback from the ample line bundle wg: on Y}, (given by the dual of the determinant of the
Lie algebra of the universal abelian variety on Yx); also recall that we have wg. We get the

following version of Theorem [[11.3.18]

THEOREM IV.1.1. For any tame level KP C G(AI}) contained in the level-N -subgroup
{7 € G’(Zp) | ¥ =1 mod N} of G' for some N > 3 prime to p, there exists a perfectoid
space Xy, over C' such that

Xign ~ @XIZKP :
KP
Moreover, there is a G(Q,)-equivariant Hodge-Tate period map
THT : Xf{p — F .

Let Zg» C Xz, denote the boundary. One has the following results.

(i) For any subset J C {1,...,2g} of cardinality g, the preimage V; = Spa(Rje, R} ) C
Xiw of Fly C F is affinoid perfectoid. Moreover, V; is the preimage of some affinoid
Vik, = Spa(RJva,RIKp) C Xy, ko for all sufficiently small K,, and R, is the p-adic
completion of iy, Rjr .

(ii) The subset Zx» NV C Vy is strongly Zariski closed.

1Sometimes, symplectic groups for general symplectic Q-vector spaces are allowed in the definition;
however, by Zarhin’s trick, the corresponding notions are equivalent.

2There is also a flag variety .#lg C .Z for (G, D), and one may conjecture that the Hodge-Tate period
map defined below factors over #g. We do not address this question here.
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(iii) For any (KP?) C KP?, the diagram
X~ Lo FU

(KP)
N

*
Xicw

commautes.

(iv) For any v € G(A%) such that v~ KP~ is contained in the level-N -subgroup of G' for some
N > 3 prime to p, the diagram

*
Xio

*
va‘lK”v

commutes.
(v) Over Xy, one has the natural line bundle wi» (via pullback from any finite level). There
is a natural G(Q,)-equivariant isomorphism

Wirr = W -

Moreover, it satisfies the obvious analogue of (iii) and (iv).

PROOF. First, observe that Theorem implies the theorem in case G' = Sp,, by
tensoring with C' over szd, and passing to a connected component.

Next, we prove existence of Xz,. Take any J C {1,...,2¢} of cardinality g, and let
Z(J) C Z be the inverse image of .#{; under myr, for any space Z mapping via 7yt to
FU. Then Vi (J) = Spa(Skw, S}, ) is affinoid perfectoid by Theorem , for any
KP C G (A?) contained in the level- N-subgroup for some N > 3 prime to p. It follows that

y}k(p(J) = l&l y;(p/(J) = Spa(SKpa‘S[tp)

KPCKP'CG(A})

is affinoid perfectoid, with Sj, being the p-adic completion of hg o St Next,
Vo X33, Xiyicr)(T) © Vico ()

is defined by some ideal I C Sk, for any sufficiently small K K? C G'(Ay) with K,K? =
K, K”" N G(Ay). From Lemma [[1.2.2} it follows that

(Vier Xy» Xzi(pm)(l]) = Spa(RKP,K,’,KP’vR;r{p,K;,KP')

K,KP!
is affinoid perfectoid again, and that the map Skr — Rpr ky ke has dense image. Then,
finally,
X (J) = 1&“ (Vicr Xy

K, KP!
KI',,KPCKP’

Xfi(pKP)(J> = Spa(Rr, R?(P)
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is affinoid perfectoid, and R}, is the p-adic completion of @K{o, [ RJIQP, K Ko This

verifies existence of X, over 71 (%;), and by varying J, we get the result.

Going through the argument, and using part (i) for G’ it is easy to deduce part (i) for
G. The boundary of Xj,(J) is the pullback of the boundary of View(J), for K7 C G'(AY)
sufficiently small with K7 = K? N G(A%}). Thus, part (ii) follows from Lemma [I1.2.9, All

other properties are deduced directly via pullback from G'.

IV.2. Completed cohomology vs. p-adic automorphic forms

We continue to assume that (G, D) is of Hodge type, and fix the embedding (G, D) —
(G', D') = (Spag, Dsp,,)- Recall the compactly supported completed cohomology groups

H 10 (2/9"Z) = lig HY X, 10, Z/p"2)
KP

As usual, we assume that K? is contained in the level- N-subgroup of G (AI;) for some N > 3
prime to p.
Let Zy: C Og:  be the ideal sheaf of the boundary, ) Xz, = =Ly, N O

P

THEOREM IV.2.1. There is natural isomorphism of almost-Oc-modules
H 10 (Z/0"2) @zjpnz OB 9" = H' (X, T2 /0"

where the cohomology group on the right-hand side is computed on the topological space X, .
Moreover, for KY C K%, the diagrams

1R

cKp(Z/p L) ®z/pnz O /D" Hi (XKp,ﬁa /p")

| |

CKP(Z/Z’) L) @z pnz O /D" H' (XKWI;EQ /p")

1R

IR

H Kf(Z/p”Z) Qz/prz og/p" H' (XKP’I;(Z /p")

‘tr Ltr
H' Kg(Z/an) Qz/pnz O%/Pn H* ( e /p )

Ki"’ X

1R

commute, where the definition of the trace maps is recalled below.

We note that the right-hand side is the cohomology of the sheaf of p-adic cusp forms
modulo p" of infinite level.

PROOF. Let ji : Xz \ Zx < Xj be the open embedding, where Zx denotes the bound-
ary of Xj. By the various comparison results between complex and algebraic, resp. algebraic
and adic, singular and étale cohomology, we have

H!(Xk,kr, Z/p"L) = Hi (X5 o, i, k0 Z]p" L)

P
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Now we use [55, Theorem 3.13] to write

He(Xie kv Jic, k6m /D" L) @gppnz OL 0" = He(Xig, v, Jic, kO

Kpr\ZKpr

/p") -
Passing to the inverse limit over K, and using [53], Corollary 7.18], one gets

I:—VIé’Kp(Z/an) ®zyprz Ob/p" = H (Xigy, hﬂijK“Oj(% /p") -
Kp

pr\ZKpr

But

a TL
gl

n o __ “+a
/p _ij!OXf(p\ZKp/p )

KpK;D\ZKpKP

hngpr!O;
Ky
and there is a short exact sequence
. +a n +a n +a /. n
0 %]Kploxﬁp\zm/p — Oé\ff{p/p — O03/p" =0,

where Op is (the pushforward of) the structure sheaf of the boundary. By [53], Propositions
6.14, 7.13], analytic and étale cohomology of O*®/p™ and OF*/p™ agree: On affinoid subsets,
both vanish in positive degrees (also noting that the intersection of an open affinoid subset
with the boundary is an open affinoid subset of the boundary by Lemma . Thus,

i (L[D"T) @z O /1" = H' (X im0 ")

Moreover, as the boundary is strongly Zariski closed by Theorem [IV.1.1] (ii), one also an
exact sequence of sheaves on the topological space X%,,

0752 /p" = O [p" = Oz /p" =0,
KP KP
so that
- “+a n __ —+a n
ij!OX}i{P\ZKP /p B IX;?p /p ’

and we arrive at the desired isomorphism fJ

The commutativity of the first diagram is immediate from functoriality. Also, the defini-
tion of the first trace map is standard (and its various definitions in the complex, algebraic,
and p-adic worlds are compatible). Let jr» : Xip \ Zxr — X3, be the open embedding. To
define the second trace map, it is enough to define a trace map

. +a n +a n
trr ko ﬂ-Kf/Kg*OXIi(p\ZKp /p" — OX,i{p\ZKP /p"
1 1 2 2

where Tyr/kp Xf(f \ Zxr — Xf(g, \ Zxp denotes the finite étale projection. Locally, this
projection has the form Spa(B, BT) — Spa(A4, A"), where A is a perfectoid C-algebra,
At C A° is open and integrally closed, B is a finite étale A-algebra, and BT C B is
the integral closure of AT. From the almost purity theorem, [53, Theorem 7.9 (iii)], it
follows that B**/p™ is a finite étale AT®/p™-algebra. In particular, there is a trace map
Bte/pm — AT /p™ (cf. [53], Definition 4.14]), as desired.

3This argument, which appears also in [55], shows that one should think of OF /p™ and related sheaves
as being like an ’algebraic topology local system’, and not as being like a coherent sheaf.
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In order to prove that the second diagram commutes, it is enough to prove that the
diagram

a [pn tr a [/pn
WKf/Kg*Oc/P O¢/p
WKf/Kg*O+a n tr O+ n

* D * b
X\ Zxp X\ 2

of étale sheaves on X7, \ Zky commutes (as the diagram in the statement of the theorem
2

comes about by applying H (Xy», ] kr1—) to this diagram). As this can be checked étale
2

locally, one can reduce to the case where the morphism 7gr,kr is a disjoint union of copies
of the base, where it is trivial. O

As a first application, we get a vanishing result for (compactly supported) completed
cohomology. Recall that the (usual or compactly supported) cohomology groups of Xy are
nonzero in the range [0, 2d], where d = dim¢ Xx. The following corollary shows that upon
taking the direct limit over all levels K, at p, complete cancellation occurs in degrees i > d.

COROLLARY IV.2.2. The cohomology group ITIQKP (Z/p"Z) (and thus I;TQKP (Z,)) vanishes
fore > d.

PROOF. We may reduce to the case n =1 by long exact sequences. It is enough to prove
that H z,(F,) ®r, Oc/p is almost zero for i > d: Indeed, for a nontrivial F,-vector space
V, V ®g, Oc/p is flat over O¢/p and nonzero. Thus, if it is killed by the maximal ideal of
Oc, then it is 0.

By the previous theorem, it suffices to prove that more generally, for any sheaf F' of
abelian groups on Xy,, H (X5, F') = 0 for i > d.

Recall that S = Xy, is a spectral space; we call the minimal 7 such that H"(S, F) =0
for all abelian sheaves F' on S the cohomological dimension of S. Thus, we claim that the
cohomological dimension of X7, is at most d. Observe that if S = lim S} is a cofiltered inverse
limit of spectral spaces S; of cohomological dimension < d along spectral transition maps,
then S has cohomological dimension < d. Indeed, any F' can be written as a filtered direct
limit of constructible sheaves, constructible sheaves come via pullback from some S;, and
one computes cohomology on S as a direct limit of cohomology groups over \S; for increasing
J-

As | X%, | = I.&HKP | Xi i, it is enough to prove that Xy x, has cohomological dimension
< d. For this, we could either cite |25 Proposition 2.5.8|, or write X f(p o as the inverse limit

of the topological spaces underlying all possible formal models (each of which is of dimension
< d), and use Grothendieck’s bound for noetherian spectral spaces. 0

The following corollary implies a good part of [17, Conjecture 1.5] in the case considered
here. We use freely notation from [17]. The tame level K? is fixed, and all modules are
taken with Z,-coefficients.

COROLLARY 1V.2.3. Fori > d, ITIzBM =0, and IT_deM 1s p-torsion free. For i < d, the
codimension (as a module over the Iwasawa algebra) of H; is > d — i.
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If the Xk are compact, this implies all of [17, Conjecture 1.5], except for non-strict
instead of strict inequalities on the codimensions. (Note that here, Iy = d, ¢o = 0. Also
observe [17, Theorem 1.4].)

ProOF. The first two assertions follow from the previous corollary and [17, Theorem
1.1 (iii)]. Assume that the last statement was not satisfied; among all codimensions of H;
which violate this inequality, choose the maximal one, ¢c. Among all i < d for which this
codimension is achieved, choose the minimal one. Thus, the codimension of H; is ¢ < d — i,
but the codimension of Hj for k < i is greater than c¢. The results of [63] imply that if X
is of codimension ¢, then E7(X) = 0 for j < ¢, E°(X) is of codimension (exactly) ¢, and
FI(X) is of codimension > j for j > c.

Now look at the Poincaré duality spectral sequence [17, Section 1.3]:

For j + k < d, the limit term ﬁ2Bd1\£j_k vanishes. We look at the diagonal j +k =i+ c < d.

In that case, there is a contribution of codimension ¢, E°(H;). For k < i, any term E’(H,)
is of codimension at least the codimension of H k, i.e. of codimension > ¢+ 1. For j < ¢, but
Jj+k < d, all terms E’(Hy) are zero. If not, the codimension of Hy is < j < c and j+k < d,
which contradicts our choice of c. _

It follows that all groups that might potentially cancel the contribution of E¢(H;) are of
codimension > ¢; as by [63], the notion of codimension is well-behaved under short exact

sequences, it follows that a subquotient of E¢(H;) of codimension ¢ survives the spectral
sequence. It would contribute to HZM j—k With j + k =i+ ¢ < d, contradiction. O

IV.3. Hecke algebras

We keep the assumption that (G, D) is of Hodge type, with a fixed embedding (G, D) —
(G', D') = (Spay, Dsp,, ). Moreover, fix some compact open subgroup K7 C G(A) contained
in the level-N-subgroup of G’ (A’}) for some N > 3 prime to p.

Let

T = Txr = Z,[G(A%)/ /K7

be the abstract Hecke algebra of KP-biinvariant compactly supported functions on G (A’}),
where the Haar measure gives K? measure 1. In this section, we prove the following result,
which says roughly that all Hecke eigenvalues appearing in [:Té w»(Z,) come via p-adic inter-
polation from Hecke eigenvalues in H°(X KK w?}’: r ©T), where Z is the ideal sheaf of the
boundary, and k is sufficiently divisible.

THEOREM IV.3.1. Fiz some integer m > 1. Let Ty = Te,, denote T equipped with the
weakest topology for which all the maps

T — EHdC(HO(X;(pr;W%;n[?p ®I)>
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are continuous, for varying k > 1 and K, C G(Q,), where the right-hand side is a finite-
dimensional C-vector space endowed with the p-adic topologyﬁ Then the map

Ta =T — Endgpz(H: 10 (Z/p"Z))
15 continuous, where the right-hand side is endowed with the weakest topology which makes
EndZ/p"Z(ﬁé,Kp (Z/p"Z)) x ﬁZ,KP (Z/p"Z) — ﬁZ,KP (Z/p"Z)
continuous, where fléKp (Z/p™Z) has the discrete topology.

Before giving the proof, we recall the definition of the action of T on H°(X K KP> w%f xr ®

7). As usual, this boils down to defining trace maps. For this, take two sufficiently small
levels K1 C Ky C G(Ay), and look at the map

TK /Ky - X;;-l — X;;Q .
This is locally of the form Spa(B, B*) — Spa(A, A"), where A is normal, AT C A° is open
and integrally closed (and thus normal itself), B is a finite normal and generically étale A-

algebra, and BT C B is the integral closure of A™. In particular, B* is also a finite normal
and generically étale AT-algebra. Recall the following lemma.

LEMMA IV.3.2. Let R be normal, and let S be a finite and generically étale R-algebra;
i.e., for some non-zero divisor f € R, S[f™'] is a finite étale R[f~1]|-algebra. Then the trace
map

trsip-1ymg-y S = RIF
maps S into R. Moreover, for any integrally closed ideal I C R with integral closure J C S,
tr(J) C 1.

PROOF. For an element x € R[f™!], the condition x € R can be checked at valuations
of R. Thus, one can assume that R = K™ is the ring of integers of a field K equipped with
some valuation v : K — I'U{oco}. We may assume that K is algebraically closed. Also, one
may replace S, a finite and generically étale K -algebra, by its normalization in S Qg+ K.
In that case, S is a finite product of copies of K, and the claim is clear.

The condition x € I can also be checked using valuations, so the same argument works
in that case. O

In particular, we get trace maps
tr: ﬂ-Kl/KQ*OX}*(l — OXI*(Q s
b ey e Loy — Ly
tr: WKl/KQ*(’)};(l — (’)Jr;{Q :

. + +
tr: 7TK1/K2*IXI*(1 — IXI*Q s

where Zy: C Oy; is the ideal sheaf of the boundary, and IT = ZNO*. In particular, by
tensoring the trace map for Z with a tensor power of the line bundle wg,, we get a trace
map

. Rk _ * Rk _ Rk Rk
tr: 7TK1/K2*<WK1 ®IX}*<1) = 7TK1/K2*(7TK1/K2WK2 ®IXI*(1) = Wk, ®7TK1/K2*IXI*(1 — Wi, ®IX1*<2 ,

4Here, cl stands for classical. Also note that T, may not be separated; one might replace it by its
separated quotient without altering anything that follows.
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giving the desired trace map by taking global sections.
We will need the following comparison of trace maps. It says in particular that as far as
cusp forms of infinite level are concerned, there is no difference between X} and X7.

LEMMA 1V.3.3. Fiz a subset J C {1,...,2g} of cardinality g, and let
X (J) C Xpp

be the preimage of Fl; C F under the Hodge- Tate period map myt : Xiep — FL. Recall that

by Theorem |[V.1.1] (i), X3, (J) = Spa(Rg», RY,) is affinoid perfectoid, and the preimage
of Spa(Ri, kv, Ry sr) = Xt geo(J) C X o for Ky small enough, with Ry, the p-adic

completion of lim R}pm.

Let Spa(RKpr,R}pr) = X g (J) C X o e the preimage of Xy r,(J). Moreover,
let I;QPK,, C R};pm, be the ideal of functions vanishing along the boundary, and let f?ngp C
R}QPK,,, I, C R}, be defined similarly. Then, for alln > 0,

I /p" = hglltpl{z?/pn = hgljl—gpl{p/pn :
Kp Kp

For K7 C K% and any K,, the diagram of almost Oc-modules

(tr mod pm)*

T+a n T+a n
T/ Ty /P
a n tr a n
f}g/p f};/p

commutes, where the trace map on the lower line is as defined in the proof of Theorem[IV.2.1.
PrOOF. From Theorem [IV.1.1] (i), we know that
Ry /p" =i Ry s /D" -
Kp

In particular, the map lim X, Ij(p xr/DP" — I, /p™ is injective. To prove that it is surjective, it
is enough to prove that it is almost surjective: Indeed, if f € I}, /p™ is such that p°f = 9K,
for some gk, € I;gp x» and 0 < e < %, then (by considering valuations, using surjectivity of
Xieo(J) = Xig 1er (), 9x, = P [x,, for some fx, € I 1, and fg, = f mod p"~¢. Choosing
alift f € I, of f and repeating the argument with f' = (f — fk,)/p" "¢ gives the claim.
Recall from the construction there exists a pullback diagram of affinoid perfectoid spaces

Zgr(J) Xier(J)

| |

ZFO(pOO) (E)a — y{‘k‘o(poo) (E)a

where Jf, ,)(€)a denotes the inverse limit of the anticanonical I'o(p>)-tower in the Siegel

moduli space as in Corollary [I11.2.19 with boundary Zp,(e~)(€)q. By Corollary [I11.2.20] and
Lemma [[1.2.9] (i), we are reduced to showing that the ideal in the global sections of OF



IV.3. HECKE ALGEBRAS 75

defining Zp o) (€)a C Vi ooy (€)a is almost generated by functions in O coming from finite
level and vanishing along the boundary. This follows from Tate’s normalized traces, cf.
Corollary (observing that by Lemma [[V.3.2] Tate’s normalized traces of a function
vanishing along the boundary will still vanish along the boundary).

Next, we claim that there is a unique map

Ij(p xr — Iy
commuting with evaluation at points outside the boundary (where there is no difference

between Xz and X};). If it exists, it follows by consideration of valuations that it is injective,
with I;ngp/p” < I}, /p™; thus, the composite map

g T3 e /0" — BT e /D" — Ty /D"
is an isomorphism, and the second map injective; i.e., both maps are isomorphisms. To prove
existence of I}p x» — Iit,, note that for any n, there are maps

f[—l;pr/pn — HO(Xli{pr(J)aijKP!O-’_/pn) — HO(X?{P(J)ajKP!O—F/pn) = HO(X]%P(‘]%I-F/pn) .

Here, jx : X7z \ Zx — X% denotes the open embedding. Using Theorem (i), we
see that for any n, the map I}, /p™ — H°(X5,(J),Z%/p") is almost an isomorphism; in the
inverse limit over n, it becomes an isomorphism. Thus, in the inverse limit over n, we get
the desired map I;gp o — L.

Finally, we need to check commutativity of the diagram of trace maps. It is enough to
prove commutativity in the inverse limit over n, and then after inverting p. The commu-
tativity can be checked after restricting the functions to the complement of the boundary;
there, both trace maps are given by trace maps for finite étale algebras, giving the result. [J

PROOF. (of Theorem|[[V.3.1]) By Theorem [IV.2.1] there is a T-equivariant isomorphism
H; 1o (Z/p" L) @2z Of /9" = H' (X T /") .
Also, the map
HOHIZ/pnz(M, N) — HOHIOC/pn (M ®Z/pnz mc/p”, N ®Z/pnz mo/pn)

is injective for any Z/p"Z-modules M, N. One may split up N using short exact sequences
to reduce to the case pN = 0. In that case, one reduces further to n = 1. But for [F,-vector
spaces, the result is clear.

In particular, it is enough to prove that

Ta =T — Endos o (H (X520, 7% /p™))

is continuous, where for an O%/p"-module M, we endow M, with the discrete topology, and
Endoe, /pn (M) with the weakest topology making

End(g%/pn(M> X M[ — Mg

continous. We remark that M +— M, is an exact functor commuting with all colimits. In
particular, if M is a colimit of T-modules M; on which T, = T acts continuously, then
T = T acts continuously on M. Moreover, if M = N® for an actual T ® O¢/p™-module N,
on which T = T acts continuously, then it also acts continuously on M, as M) = mc ®p N.
Also, if T, = T acts continuously on M, it acts continuously on any subquotient.
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Now we use the Hodge-Tate period map
THT - Xfi(p — Fl — ]P)(Qgg)il s
using the Pliicker embedding. Let N = (Qgg). The ample line bundle wg on Z¢ is the

pullback of O(1) on PN~ Fix the standard sections sy,...,sy € H°(P¥~1 O(1)). For
i=1,...,N,let U; C PY~! be the open affinoid subset where |s;| < |s;| forall j =1,..., N.
For J C {1,...,N}, let U; = (o, Ui- Observe that U;; C U; is given by the condition
|Z—Z\ = 1, where Z—Z € H(U;, OF).

Let V; = mpr(Ui) C XZ&,; by Theorem (i), this is affinoid perfectoid, V; =
Spa(R;, R;). Similarly, one has the V; = Spa(R;,R}) C Xj, for @ # J C {1,...,N}.
By Theorem (ii) (and the observation that this property is stable under passage to
affinoid subsets, cf. Lemma , one can compute

H' (X, T /p")
by the Cech complex of almost O¢/p™-modules with terms
H'(Vy, IV /p")* ={f € RF/p" | f =0o0n Zg»}* .

As myr is equivariant for the Hecke operators away from p (Theorem [IV.1.1] (iii), (iv)), all
V; are stable under the action of the Hecke operators away from p. Thus, T acts on each
term of the Cech complex individually. We conclude that it is enough to prove that

Ta =T — Endos, jpn (H*(V;, 7 /p™)")
is continuous, for all () # J C {1,..., N}.

For all K, C G(Q,) sufficiently small, all V; come via pullback from open affinoid subsets
Vik, C X, gv- By Theorem [IV.1.1] (i) (tensored with a line bundle), the map

LHEHO(VivaprKP) — HO(Viy WKP)
Kp

has dense image. Therefore, making K, smaller, one can assume that there are sections
ng) € H'(Vik,, Wi, k»)
satisfying the conditions of Lemma [[I.1.T} and such that
s

o 0

S
<

onV; for j = 1,...,N. One gets a formal model .'f%p wr Of Xf{p x» With an open cover by
0, Kp In fact, we can also take the preimages )N/mp C Xi gp of Vig, CX f(p x»; bulling back
(%)
J :
model Xy gp of X . It comes equipped with an ample line bundle w‘[?; Kxp, as well as the
ideal sheaf J C Oy« . constructed via Lemma H from the ideal sheaf Z C Oy .

KpKP KpKP

the sections s’ will put us into the situation of Lemma [[1.1.1] thus constructing a formal

5This formal model is extremely strange, and not at all related to one of the standard integral models of
Shimura varieties. For example, the Newton stratification is not induced from a stratification of the special
fibre of Xip x»- More specifically, there is a finite set of points in the special fibre such that all ordinary
points of the generic fibre specialize to one of those points; yet, there are also many non-ordinary points in
the tubular neighborhood of these points.
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One checks directly that all of these objects are independent of the choice of the sg-i)

approximating s; on V;. In particular, G(A%) still acts on the tower of the Xj. j, with the

invertible sheaf w}?ﬁ xp- Also, the sections

55 € HO(%}pKPaWiII(l;KP/pn)
are independent of any choice. They commute with the action of G (A?), and will serve as a
substitute for the Hasse invariant.

By Lemma [IV.3.3, we have for i € {1,..., N} (corresponding to a subset of {1,...,2¢g}
of cardinality g) a T-equivariant equality

HO(VZ',IHL/pn) — @Ho(sﬁﬂ(w j/pn>a ]
KP

In fact, the same holds true for any subset () £ J C {1,..., N}: Fix some i € J, look at the

previous equality, and invert the sections §;/8; € H°(U;k,, ©)/p" (which commute with the
T-action) for all j € J. We see that it is enough to prove that for any J C {1,..., N} and
sufficiently small K, the map
Ta =T — Endo,/pn (H(Byx,, 3/p"))

1s continuous.

For i € J, we have the sections 5; € HO(X} gr, Wit o /P"); let 55 =[], 5 As Bk, C
X, kv 1s the locus where §; is invertible for all ¢ € J, it is also the locus where §; is invertible.
It follows that

H(Ux,,3/p") = lim H*(X5, o (Wit ) @ 3 /p) |
X8y
where all maps are T-equivariant, because §; commutes with the action of T. It remains to
prove that for k sufficiently divisible, the action of Ty = T on

HO( ;(pra (wiKniKP)(@k ®J/p")

is continuous. By Lemma [I1.1.1}, wﬁz i 1s ample. Thus, for &k sufficiently divisible,

H (.’f}}pr, (wiKn:,Kp)®k ®3J/p")=0;
it follows that for those k, we have

H (X geos (Wi o)™ @ T/p") = HY (X, 0o, (W i)™ @ T) /0"
Thus, we are reduced to showing that the action of Ty = T on
HY( *KPKP> (WiI?:,KP)(gk ® J)
is continuous. But this group is p-torsion free, so it is enough to know that the action of
Tcl =T on
s in k o ~\[o— * k
H (X5, k05 (Wi i) @ D) [p™] = HY (X5 gons Wit oo © T)

is continuous, which holds true by assumption. 0






CHAPTER V

Galois representations

V.1. Recollections

We recall some results from the literature in the specific case that we will need. We
specialize our group G further. Fix a field F' which is either totally real or CM. In the
totally real case, let G = Resp/gSpy,. If F'is CM, let F'* C F be the maximal totally
real subfield, let U/F™* (a form of GLsy,) be the quasisplit unitary group with respect to the
extension F'/F*, and take G = Resp+,gU. In both cases, we take the standard conjugacy
class D of u : U(1) — G2; observe that in all cases, (G, D) is of Hodge type. Also, G admits
Resp/g GL,, as a maximal Levi. Write F© = F if F is totally real, Go = Sp,,/F™ if F is
totally real and Go = U/F* if F'is CM; then, in all cases, G = Resp+ /g Go. Also, G is a
twisted endoscopic group of H = Resg/q Hy, where Hy = GL,/F, with h = 2n + 1 if F is
totally real, and h = 2n if F' is CM. Fix the standard embedding 1 : *Gy — Resp/p+ Hy
of L-groups (over F'T).

We need the existence of the associated endoscopic transfer, due to Arthur, [4] (resp.
Mok, [48], in the unitary case). These results are still conditional on the stabilization of the
twisted trace formula. However, in the unitary case, there are unconditional results of Shin,
[58].

In fact, the representations we shall be interested in have a specific type at infinity.

PROPOSITION V.1.1. Consider G = Sp,,,/R, resp. G = U(n,n)/R, with mazimal compact
subgroup K C G(R). Fiz the standard Borel B C G, with torus T, and identify X*(T¢c) = Z",
resp. X*(T¢) = Z*", in the usual way (up to the relevant Weyl groups). Let x : K — C* be
the character given by

Xx:K=U(n)— C*: gy det(go) , resp.
X: K =2U(m)xUn) — C*:(g1,92) — det(gy) det(go)

For k > n, resp. k > n, there is a unique discrete series representation m, of G with minimal
K -type x®%, and it has infinitesimal character

(k—1,k—2,....,k—n) € X*(Tc)r = R" , resp.

R
(k=2 k=3 k—n+in—Lt—k . . 2—kl_k)eX (To)r=R".

1
)
ProOOF. Fix the standard maximal compact torus 7. C K, and identify X*(7¢) =
X*(Tec).- Let d,. denote the half-sum of the noncompact roots, and J. the half-sum of
the compact roots. Let Ay € X*(7.c) denote the restriction of x®* to 7.. Then

20pe=(mn+1Ln+1,....n+1),26,=(n—1,n—-3,...,3—n,1—n),
A= (kk,....k) e X*(Tec) 2 Z" ,resp.
79
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20pe = (nyny...,n,—n,...,—n,—n), 200 =(n—1,....,.3—n,1—=n,n—-1,n-3,...,1—n),
Ap = (k,k,. .k, —k, ...~k —k) € X*(Toc) = 77" .
Let A € X*(7.c)®zR denote a Harish-Chandra parameter of a discrete series representation.
Then the associated minimal K-type has highest weight
AN=X+0dpc— 0. .
Thus, the minimal K-type A determines A uniquely as
A=(k—1k—=2,....k—n) € X*(Tc)r = R" , resp.

A=(k—L k=23 k—n+in—1—k. . 3—kl_k)eX(To)r=R".

If £ > n, resp. k > n, this parameter is dominant, and does not lie on any wall. Thus, in
that case there is a discrete series representation with that parameter. 0

THEOREM V.1.2 ([4], [48]). Let 7 be a cuspidal automorphic representation of Gy, and
fix an integer k > n, resp. k > n. We assume that for v|oo, m, = m is the discrete series

representation from Proposition[V.1.1]
There exist cuspidal automorphic representations 11y, ... 11, of GL,,/F,...,GL,, /F,

integers Uy, ... Ly > 1, with nily + ... + nyply = h, such that
(Iy)* = 10y, ..., (I1))° =< 11, ,

where ¢ : F' — F' denotes complex conjugation if F' is CM, and c =id : F — F if F' is totally
real, and such that the following condition is satified. For all finite places v of F' lying over
a place v* of F* for which m,+ is unramified, all I1;, are unramified, and

NotsPr o = @ (SDH“,

=1

|2y o | |C2 @ op

| . |(fz‘—i)/2) )

v

Here, 11; is written as the restricted tensor product of 11;, over all places v of F,
O 4 WFU++ — LG07U+
is the unramified L-parameter of m,+, and

Nyt - LG07U+ — L ReSFv/F++ GLp,,

is the v*-component of n. Thus, Ny+.(¢x ) is a map

Wt
F4

v

L
— Rest/Fj+ GLp,

or equivalently a map Wg, — *GLy.,, i.e. an h-dimensional representation of Wg,. On the
right-hand side,

Y1, - WFU — LGLhﬂ,
denotes the unramified L-parameter of 11;,.
Moreover, for v|oo, the representation Ily,| - |"=4)/2 is reqular L-algebmz'c

Here, we use the definition of L-algebraic automorphic representations from [16]. Regularity means
that the infinitesimal character is regular.



V.1. RECOLLECTIONS 81

REMARK V.1.3. As regards the last statement, one checks more precisely from Propo-
sition and the compatibility of the global and local endoscopic transfer that for fixed
v|oo, the infinitesimal characters of the representations Il | - |¥=4=1/2 for i = 1,...,m
j=1,...,4;, (considered as (multi-)sets of real numbers) combine to

(k—1,k—=2,....k—n,0n—k,n—1—Fk,....1—k)
if F'is totally real, resp.
(k—%,k‘—%,...,k‘—n—i—%,n—l—kz,...,%—k,

2

if F'is CM.

We combine this theorem with the existence of Galois representation ([23], [45], [37],
[57], [21]; the precise statement we need is stated as [10, Theorems 1.1, 1.2])} Recall that
we fixed ¢ : C= Q.

THEOREM V.1.4. Let II be a cuspidal automorphic representation of Resp/q GL, such

that (IIV)¢ = I and 1| - |*/2 is reqular L-algebraic for some integer k. Then there exists a
continuous semisimple representation

on : Gal(F/F) — GL,(Q,)
such that (o)) = anxp, where X, is the p-adic cyclotomic chamcterﬂ with the following

property. For all finite places v of F' for which 11, is unramified, oy is unramified at v, and

e, = onlwg, | - "

up to semisimplification (i.e., Frobenius-semisimplification).

REMARK V.1.5. In the language of [16], this is the Galois representations attached to the
L-algebraic cuspidal automorphic representation II| - [*/2. To apply the cited result (which
is in terms of C-algebraic representations), observe that II' = II| - |**1=")/2 ig regular C-

algebraic, and satisfies (II'V)¢ = II' ® y, where y = | - [""17% is a character that comes via
pullback from Q.

This discussion leads to the following corollary. Fix a sufficiently small level K C
G(Af) = Go(Ap+ f) of the form K = Kg+ K" for a finite set S* of finite places of F* con-
taining all places dividing p, and all places over which F' ramifies. Here Kg+ C Go(Ap+ g+)
and K5 C GO(A%’ f) are compact open, and K°" is a product of hyperspecial compact
open subgroups K, C Go(F,") at all finite places v ¢ ST. Let

T=Tygs+ = Q) T,
vgSt
be the abstract Hecke algebra, where v runs through finite places outside S*, and
T, = Zy[Go(F,")/ /Ko
is the spherical Hecke algebra. Before going on, let us recall the description of these Hecke

algebras, and define some elements in these algebras.

2Curiously, the Galois representations we need are the ones that are hardest to construct: They are
regular, but non-Shin-regular, and not of finite slope at p.

3Note that Xp lis the Galois representation attached to the absolute value | - | : QX\A{D — Ryq, as we
normalize local class-field theory by matching up geometric Frobenius elements with uniformizers.
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LEMMA V.1.6. Fix a place v &€ ST. Let q, be the cardinality of the residue field of F*
at v. Let ql/2 € Zp denote the image of the positive square root in C under the chosen

1somorphism C = @p.
(i) Assume F' is totally real. Then the Satake transform gives a canonical isomorphism

T, [ 1/2] 7, [ UQHXiHa o ,X;LH]S"[X(Z/QZ)TL

’U

The unramified endoscopic transfer from Go(E,") to GLa,y1(F.") is dual to the map
7 [ 1/2Hyﬂ:1 szii- ]52n+1 N/ [ 1/2] [Xftl, o ’X:tl]Snx(ZﬂZ)"
sending the set {Y1,..., Yo, 11} to {XiF ..., X 1}, Let
T, € Z[Y{H, . Yoy [P
be the i-th elementary symmetric polynomial in the Y;’s fori=1,...,2n+1, and let T}, €
Tv[qi/Q] be its image in T, [q},ﬂ]. Then T;, € T,.
(ii) Assume F' is CM, and v splits in F'; fix a lift © of v. Then Go(F.) = Ho(F;) = GLoy,(F5),
and
Tola,/%] = Zy[g,?) (X7, ., X5, 1%
The unramified endoscopic transfer is the identity map. Let T;; € T,[q 1/2] be the i-th ele-
mentary symmetric polynomial in X4,...,Xs, fori=1,...,2n. Then ql/ZTm; € ']I‘U

(iii) Assume F is CM, and v inert (in particular, unramified ) in F'. Then the Satake transform
gives a canonical isomorphism

T (g% 2 T KR, .., XS
The unramified endoscopic transfer from Go(F.") to GLa,(F,) is dual to the map

7 [ 1/2][Yi1 Y;*rczl]SQn 7 [ 1/2][X1i1, o ,XTJLEI]Snx(ZﬂZ)"
sending the set {Yi,...,Ys,} to {X;, ..., X}, Again, we let T;, € T, [ ] denote the
image of the i-th elementary symmetric polynomial in the Y;’s for i« = 1,...,2n. Then

CFi,v € Tv-

PROOF. Everything is standard. Note that all occuring groups are unramified over F.f,
thus one can extend them to reductive group schemes over the ring of integers. As v does
not divide p, one can then define a unique Haar measure with values in Z, on the unipotent
radical of the Borel which gi\;es the integral points measure 1. The normalized Satake
pla”’]

transform is defined over Z The final rationality statements are easily verified. O

Now T acts on the C-vector spaces of cusp forms
HO(X;OW%]C ®I) Rc C= HO(‘/YI*O("-)}%]C ®I) )

where w is the automorphic line bundle coming via pullback from the standard automorphic
ample line bundle on the Siegel moduli space, and Z denotes the ideal sheaf of the boundary
(on either space).

Let S be the finite set of finite places v of F' which map to a place v € St of F'*, and
let Gp s be the Galois group of the maximal extension of I’ which is unramified outside S.

4These elements depend on the choice of ¥; the other choice replaces all X; by X;l.
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COROLLARY V.1.7. Fix k > n, resp. k > n (if F is totally real, resp. CM). Let 6 =0 if
F s totally real, and 6 =1 if F' is CM. Let Tk, be the image of T in

Endo(HY (X, w¥F @ T) @c O) .

Then Tk . is flat over Z,, and Ty x[p~"] is finite étale over Q,. For any x € (Spec TK,k)(@p),
there is a continuous semisimple representation

Oy - GF,S — GLh(@p)
such that (o)) = 0,5, and such that for any finite place v € S of F, the characteristic
polynomiaﬂ of the geometric Frobenius Frob, € Gggs is given by

det(1 — X Frob, |o,) =1 — (qg/ZTM)(m)X + (q25/2T27U)(m)X2 — .+ (—1)h(q5}5/2Th’v)(x)Xh ,

v

where q, s the cardinality of the residue field of F' at v.
Proor. Flatness of Tk is clear. The image of T ®z, C in
Endc(H°( X5, 0 @ T))

is a product of copies of C, because the Petersson inner product defines a positive-definite
hermitian form on H°(X},w?" ® T) for which the adjoint of a Hecke operator is another
Hecke operator. This implies by descent that Tx x[p~'] is finite étale over Q,.

Now, given x, there exists a cuspidal automorphic representation 7 of Go/F™ such that
for all finite places v € ST, 7, is unramified, with Satake parameter the map

TU®ZP(C_>C

induced by x (and the fixed isomorphism C = @p), and such that for v|oo, m, is a discrete
series representation with given lowest weight as described in Proposition [V.1.1] i.e. 7w, =
7. Thus, by Theorem [V.I1.2] we get cuspidal automorphic representations IIy, ..., II,, of
GL,,/F,...,GL,, /F, and integers {1, ..., {,,, with the properties stated there. By Theorem
[V.I.4] there exist Galois representations o; attached to the regular L-algebraic cuspidal
automorphic representations II,| - |O+1=4)/2 We set
m
Og = @ (Ji D UiX;1 D... Uixi?(l_gi)) )
i=1
where x,, is the p-adic cyclotomic character. The desired statement is a direct consequence.
0

Recall Chenevier’s notion of a determinant, [20], which we use as a strengthening of the
notion of pseudorepresentations as introduced by Taylor, [59]. Roughly, the difference is that
a pseudorepresentation is ‘something that looks like the trace of a representation’, whereas a
determinant is ‘something that looks like the characteristic polynomials of a representation’.

DEFINITION V.1.8. Let A be a (topological) ring, and G a (topological) group. A d-
dimensional determinant is an A-polynomial law D : A[G] — A which is multiplicative
and homogeneous of degree d. For any g € G, we call D(1 — Xg) € A[X] the characteristic

5We adopt a nonstandard convention on characteristic polynomials.
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polynomial of g. Moreover, D is said to be continuous if the map G — A[X], g = D(1-Xyg),
is continuous

REMARK V.1.9. We continue to use our nonstandard definition of the characteristic
polynomial. Also, slightly more generally, for any A-algebra B, we call a multiplicative
A-polynomial law A[G] — B homogeneous of degree d a determinant of dimension d (with
values in B). In fact, this is equivalent to a multiplicative B-polynomial law B[G] — B
homogeneous of degree d, i.e. a determinant over B.

Recall that an A-polynomial law between two A-modules M and N is simply a natural
transformation M ® 4 B — N ®4 B on the category of A-algebras B. Multiplicativity means
that D commutes with the multiplication morphisms, and homogeneity of degree d means
that D(bz) = bv*D(x) for all b € B, x € B[G]. Equivalently, by multiplicativity of D,
D(b) = b? for all b € B. Note that if p: G — GL4(A) is a (continuous) representation, then
D = detop : A|G] — M4(A) — A defines a (continuous) d-dimensional determinant. The
two notions of characteristic polynomials obviously agree. Also recall that (by Amitsur’s
formula) the collection of characteristic polynomials determines the determinant, cf. [20]
Lemma 1.12 (ii)].

Now we go back to Galois representations. Keep the notation from Corollary [V.1.7]

COROLLARY V.1.10. There is a unique continuous h-dimensional determinant D of Gp s
with values in Tk y, such that

D(1— X Frob,) = 1 — ¢"*Ty , X + ¢*/*Ty, X* — ...+ (=1)"¢"T, , X" .
for all finite places v & S of F.
ProOF. This follows from [20, Example 2.32]. O

COROLLARY V.1.11. Let T be as defined in Theorem[IV.3.1 Then, for any continuous
quotient Ty — A with A discrete, there is a unique continuous h-dimensional determinant
D of Ggs with values in A, such that

D(1 — X Frob,) = 1 — T, X + ¢* Ty, X? — ... 4 (=1)"¢"PT, X" .
for all finite places v & S of F.

Proor. If I, I, C T are two ideals such that there exist determinants with values in T/I;
and T/I5, then there exists a determinant with values in T/(I; N I3), by [20, Example 2.32].
As I = ker(T, — A) is open, it contains a finite intersection of ideals Ik, = ker(Tq — Tk ),
by the definition of the topology on T.. The result follows. ([l

V.2. The cohomology of the boundary

Our primary interest in the specific groups G is that they contain M = Resp/qg GL, as a
maximal Levi. This implies that the cohomology of the locally symmetric spaces associated
with M contributes to the cohomology of Xx. In this section, we recall the relevant results.
Fix a parabolic P C G with Levi M.

6¢f. [20] 2.30].
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DEFINITION V.2.1. For a compact open subgroup Ky C M(Ay), let
Xty = MQN\[(M(R)/RsoK o) x M(Af)/ K]

denote the locally symmetric space associated with M. Here, Ko, C M(R) is a mazimal
compact subgroup, and Rsog C M(R) are the scalar matrices with positive entries. Similarly,
for a compact open subgroup Kp C P(Ay), let

Xicp» = PQ\[(P(R)/RooKoc) x P(Ag)/Kp] .

LEMMA V.2.2. For a compact open subgroup Kp C P(A}), the image KN C M(A;) of
Kp in M(Ay) is compact and open. There is a natural projection

Xx, = Xy
which is a bundle with fibres (SY), where k is the dimension of the unipotent radical of P.

We are using the specific nature of U here: One sees by inspection that U is commutative,
which makes the map an actual torus bundle.

PROOF. The projection P(Af) — M(Ay) is open, so that K} is open, and certainly
compact. Let U = ker(P — M) be the unipotent radical of P, KY = Kp NU. Then the
fibre of

(P(R)/RooKuc) X P(Ag)/Kp — (M(R)/RooKoc) x M(Ap)/KY
is given by U(R) x U(A;)/KY. One deduces that the fibres of
Xicp = PQQN(P(R)/Roo Koo)X P(Af) [ Kp] = X = M(Q\[(M(R)/R0Koo) x M (Ay) /K]

are given by

UQ@N\(UR) x U(Ay)/Kp) = (U@ NEp)\U(R) .
The subgroup U(Q) N KY C U(R) is a lattice, thus the quotient is isomorphic to (S!)F,
where £ = dimU. O

Let XES be the Borel-Serre compactification of X, cf. [13]. Recall that we assume
that K is sufficiently small. Then XES is a compactification of Xy as a real manifold with
corners, and the inclusion Xz < XBS is a homotopy-equivalence. Thus, there is a long
exact sequence

o= H(X g, Z)p"Z) — H (X, Z/p"Z) — H( X\ Xg, Z/p™Z) — ... .
Moreover, if one looks at the compact open subgroup K” = K N P(A;) C P(A;), one has
an open embedding

XEPr = X2\ Xi .
In particular, there are natural maps
H{(XPp Z/p™7) — H (X \ X, Z)p"7) — H'(XEp, Z/p™7) .

Recall that we have fixed a finite set of places ST of F'* containing all places above p and
all places above which F//F* is ramified, and that K = K¢+ K", where K%' C GO(Afﬂi?f)
is a product of hyperspecial maximal compact subgroups. Then similarly K = K, K57,
where K5 ¢ PO(A%J); here, Py C Gy is the parabolic subgroup with P = Resp+ g Fo.
Its Levi My with M = Resp+,q My is given by My = Resp/p+ GL,. Let KM C M(Ay)
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be the image of K; then KM = KM KMS" where KMS" ¢ My(A%, ) is a product of
hyperspecial maximal compact subgroups.

In the following, we assume that the image K™ of K* in M(A) agrees with K”NM (Ay).
Given any sufficiently small compact open subgroup K}! of M(A}), one can easily build a
compact open subgroup K C G(Ay) with this property and realizing K™ = K}/, e.g. by
multiplying K27 with small compact open subgroups of U(A;) and the opposite unipotent
radical.

Consider the (unramified) Hecke algebras

TKS+ = Zp[GO( P+ f)//KSW
Txrst =Z [PO( F+ f)//KPS+]
Tyenst = Zp[Mo(AF 1)/ /K57

Then restriction of functions defines a map T,.s+ — T,ps+, and integration along unipo-
tent fibres defines a map T, ps+ — Tyars+. The composite is the (unnormalized) Satake
transform

TK5+ — TKM75+ .

Recall also that we assumed that K is sufficiently small. In particular, all congruence
subgroups are torsion-free, and the quotients defining the Borel-Serre compactification are
by discontinuous free group actions. It follows that T,.s+ acts on HY(XE> \ Xy, Z/p™Z),
giving a map of Z,-algebras

T s+ — Endgpmz(H (X2 \ Xk, Z/p"7Z)) .

Also, T ps+ acts on both H{(XYp, Z/p™Z) and H (X}, Z/p™Z). By letting it act on one
of them, one gets a map of Z,-modules

Tyers+ — Homgpmz(HA(X p, Z/p"Z), H (X3, Z/P"Z)) ;

the map does not depend on whether one lets T p s+ acts on H’ or H'. Similarly, one has
a map of Z,-modules

Tieast — HomZ/me(H( KM,Z/me) HZ(XKM,Z/me)) )
In this last case, define the interior cohomology
H{(X M, Z)p™7) = im(HY(X ¥, Z)p™Z) — H (X3, Z)p™ 7)) .
Then one has a map of Z,-algebras
T yors+ — Endgpmz (H{ (X, Z/p™ 7))

The kernel of T s+ — Homz/me(H( XM Z/p™Z), H(X M\, Z/p™Z)) agrees with the
kernel of T a5+ — Endgpmz(H! (X Y\, Z/p™7Z)); in particular, it is an ideal.
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Finally, observe that there is a commutative diagram

HY(X3E\ Xk, Z/p™Z)

/ \

Hi(XP,,Z/p"7) H(XE,,Z/p"Z)

| |

Hl(X%mZ/me) H ( KM Z|p" L)
of Z,-modules. The only non-tautological map is the map
H'(X}ir, Z/p" L) — H'(Xiu, Z/p"Z) .
This map is pullback along the embedding X, o — K []zp (cf. definition of both spaces),
using that K™ = KPNM(Ay); this forms a section of the projection X7, — X7, implying

commutativity of the diagram.
In particular, one gets natural maps of Z,-modules

Endgpmz (H (X2 \ Xk, Z/p"Z)) — Homgymz(HA(X for, Z/p"Z), H (X }ip, Z/p"Z))
— Homg ymz (HA(X par, Z/p"Z), H (X pr, Z/p"Z)) .

The following lemma is an easy verification from the definitions.

LEMMA V.2.3. The diagram of Z,-modules
Tyes+ Endzpmz(H(XES\ Xk, Z/p"Z))

| |

T\ ps+ —>Homz/me(H( KP,Z/me) HI(XKP,Z/me))

| |

TKM s+ —> Homz/me(H ( KMa Z/me) HZ(XKMa Z/me))

commutes. 0

COROLLARY V.2.4. Let T+ be the image of T s+ in Endgymz(H (XES\ Xg, Z/p™Z)),

and let TKM,S+ be the image of Tya s+ in EndZ/me(Hf(X}(/[M,Z/me)). Then there is a
commutative diagram

TK5+ TKS+

o

TKM,S+ - TKM,S+

of Z,-algebras.

PrOOF. We need to check that the kernel of T, s+ — TKS+ maps trivially into TKM,SJr
via T pars+. This follows from the previous lemma, recalling that the kernels of T, s+ —
Homy, jymz(H(X My, Z/p"Z), H(X ¥\, Z/p™Z)) and T yerr,s+ — Endgjpmz (HH (X o, Z/p™ 7))
agree. 0]
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In order to deduce the correct corollaries, we make the maps on Hecke algebras explicit
again. For a place v ¢ St of F'*| let

Ty = Zp[Mo(F})/ /K]
where KM5T =T] KM, KM c My(F}.) a hyperspecial maximal compact subgroup.

LEMMA V.2.5. Fiz a place v &S of F lying above a place vt & ST of F*. Let q,+ be
the cardinality of the residue field of F* at vt, and let q, be the cardinality of the residue
field of F' at v. Let qlf,qim € Z, denote the image of the positive square root in C under
the chosen isomorphism C = Qp.

(i) Assume F' is totally real (so that v = v™t). Then the unnormalized Satake transform is the
map

Tola/®) & Zy[a,*)[X5, - X5 EPD" = Toewle,?) = Z,[a)? (X X0
sending the set {XF", ... XF1} to {(¢C" V2 X)) E, (8" X,)EY. Recall the elements

T, € T, from Lemma V.1.6. Let T% € Tgm [q},ﬂ] be the i-th elementary symmetric polyno-
mial in X1,...,X,. Then qi(nﬂ)/zﬂ% € Tgum and

1—T1, X + T, X% — = T, X
(1= X) (1 — g{"™PTM X 4 @2 IRTM X — 4 (1) g RTM X
™ ™ 1
__—(n+1)/2 " n—1w —2(n+1)/2 n=2,0 2 _1\n,—n(n+1)/2_~ yn
x(1—gq, —% X + g, —%X 4 (=1D)"g, T%X)'

(i) Assume F is CM, and v* splits in F, with v the complex conjugate place of F; then
(vt = Gy. The unnormalized Satake transform is the map

T, [/ = Z, ¢ XE, .. XE ) — T M[ V2 =7, ¢V X, .. X3 VAL L YA Sexsn

sending {Xy,...,Xo,} to {qq’}/QX X Y g Ry W} Recall the elements
z/QT“, e T,+ f'mm Lemma |V.1.6, Let TM € TKM[ 172 | be the i-th elementary symmetric
polynomial in X1, ..., X,. Then ¢ nH)/zTM e Ty e Moreover, TzM € TKM [qv ] is the i-th

elementary symmetric polynomial in Y1, ... 7Yn_l, and
1 - qv/2T1 UX + QUT2 vX - —Qy T2n vXQn
|_><1 - q£n+1)/2T1]\{)X + qv(n+1)/2T2]\{)X2 -+ (_1)nq17}1(n+1)/2Té\/{)Xn)
ey Tt otnenye Tnto —n(n— 1

x(1— qv( 1)/2T—M:X —|—qv2( WQT—M:XQ —...+(=1)"q, ( 1)/2WX ) -
(iil) Assume F' is CM, and v inert (in particular, unramified) in F; then g, = ¢, and
qil;/Q = Qu+ € Zy. The unnormalized Satake transform is the map

Tos[q,17] = Zp[q, P X o X )5 CPE" 5 T [0,17] 2 Z[q, X, X0

sending {Xi', ..., X'} to {(qE/ZXl)il, Ce (qﬁan)il}. Recall the elements T;, € T,
from Lemma |V.1.6, Let TM € Ty [qlﬁ be the i-th elementary symmetric polynomial in
(R i )
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X1,..., X, Then T} ETK%; and

1- qv/2T1 vX + QvT2 vX - —q, T2n vXQn
'_>(1 . q£n+1)/2T%X 4 qv(n-l-l)/QT%XQ -+ (—1)nqg(n+1)/2T%,Xn)
T, T, 1
X(l —q —(n— 1)/2T—A}X + q—2(n 1)/2T—]\/2[X2 -+ (_l)nqv—n(n—l)/ZT_MXn) )
ProOF. This is an easy computation, left to the reader. 0

To organize this information, the following definitions are useful. Using that M =

Resp/qg GLy, one has
TKJ\I,S"" — ®T1]}\4 y
vegS
with
TG = gl X
where ¢, is the cardinality of the residue field at v. One has the i-th elementary sym-

metric polynomial T}' € ']I‘M[ ¢'%] in the X1,..., X,, with gty /QTM TM. Define the
polynomials

PU(X) —1— qz(,nﬂ)/zT%X + qg(n+1)/2T%X2 -+ (_1>nqg(n+1)/2TT%]Xn 7
v 2 Dot g 2D Tlsw oo n —nn41)/2 L wn

n,v

in TM[X]. Note that PY(X ) is the polynomial with constant coefficient 1 whose zeroes are
the inverses of the zeroes of P,(X). Moreover, if F' is totally real, define

Py(X) = (1= X)P,(X)P/(X) € T,'[X] = Ty [X] ;

if F'is CM, define
Pv(X) = PU(X)PUVC(QUX) € Tin‘i [X] )

where v° is the complex conjugate place, and v™ the place of F'* below v.
COROLLARY V.2.6. Let d be the complex dimension of Xx. There exists an ideal
] C TKM,S+ — lm(TKM S+ — EndZ/me(H| (XK]\/[, Z/me)))

with 124D = 0, such that there exists a continuous h-dimensional determinant D of Grs
with values in A =T v s+ /1, satisfying

D(1 — X Frob,) = P,(X)
for all finite places v & S.

Here and in the following, we do not strive to give the best bound on the nilpotence
degree.
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ProoF. By Corollary [V.2.4]and the computations of Lemma[V.2.5] it is enough to prove
the similar result for

Tys+ =im(T o+ — Endypmz(H (X \ Xie, Z/p™7Z))) .
Using the long exact sequence
oo~ H(Xg,Z)p"Z) — H (X \ Xk, Z/p"Z) — HY (XK, Z/p"Z)
it is enough to prove that in the Hecke algebras
T s+ (H (X, Z/p"Z)) = im(T s+ — Endgymz(H (Xk, Z/p"Z)) ,
T s+ (H{( Xk, Z/p"Z)) = im(T s+ — Endg)ymz(H.( Xk, Z/p"2Z)) ,

there are ideals Jy, J, whose d+ 1-th powers are 0, such that there are determinants modulo
Ji, Jo. Indeed, one will then get a determinant modulo J;N.J,, and elements of (J;NJy)4 ! C
JH A J¢ will induce endomorphisms of HY(XES \ Xg,Z/p™Z) that act trivially on the
associated graded of a two-step filtration; thus, (J;N.J;)2@+) will give trivial endomorphisms
of H(XES\ Xk, Z/p™7Z).

By Poincaré duality, one reduces further to the case of T s+ (H:(X g, Z/p™Z)). We may
assume that there is a rational prime ¢ # p, £ > 3, such that all places of F* above /¢ are
in ST (by adjoining them to S*, without changing K); the desired result follows by varying
(. Thus, we may fix a normal compact open subgroup K,K%, C Kg+ for which K¢, is
contained in the level-l-subgroup of G’(Ay). Note that then also K§, C Kg+ is a closed
normal subgroup. One has the Hochschild-Serre spectral sequence

Héont(KS+/K§‘+7 HZ,K2+KS+ (Z/me)) = Hé""] (XKy Z/pmz) )
equivariant for the T, s+-action)| Let T,s+ , be the topological ring T, s+ defined as in
Theorem , for m large enough. Then, by Theorem T s+ 4 acts continuously
on the Fs-term of this spectral sequence. In particular, it acts continuously on the E.-
term, so that there is a filtration of H'(Xy,Z/p™Z) by at most d + 1 terms (cf. Corollary
[V.2.2), such that the associated action on the graded quotients is continuous. Let J C
Tys+ (HA(Xk,Z/p™Z)) be the ideal of elements acting trivially on the associated graded
quotients. Then J%!' = 0, and we are reduced to showing that there is a determinant
modulo J.

But now A = T+ (H:(Xk,Z/p™Z))/J is a discrete quotient of T s+ 4, S0 one gets the
desired determinant from Corollary ’ O

Let us rephrase this corollary in more intrinsic terms, changing notation slightly.

COROLLARY V.2.7. Let F be a totally real or CM field, with totally real subfield F+ C F.
Fiz an integer n > 1. If F is totally real, define h = 2n+ 1 and d = [F : Q|(n* + n)/2;
if Fis CM, define h = 2n and d = [F* : Q|n®. Let S be a finite set of finite places of
F invariant under complexr conjugation, containing all places above p, and all places which
are ramified above F*. Let K C GL,(Ary) be a sufficiently smalﬁ compact open subgroup

"For the equivariance, reduce to a finite cover with group Kg+/ KI’)K g+, passing to a colimit afterwards.
For a finite cover, equivariance follows from compatibility of trace maps with base change.
8This can always be ensured by making it smaller at one place v € S not dividing p.
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of the form K = KgK?®, where Kg C GL,(Args) is compact open and torsion-free, and
K% = vas GL,(Op,) C GLn(A%f). Let

Trs = Q) To = R Z,[GL.(F,)//CL,(Or)

vgS vES

be the abstract Hecke algebra, and

TRs(K, z,m) = im(']TRS — Endz/me(H.’(XK,Z/me))) .
Here,

Xk = GL,(F)\[(GL,(F ®g R)/Rs0K) x GL,(Apf)/K]
denotes the locally symmetric space associated with GL,/F, where Ko, C GL,(F ®g R)
is a mazimal compact subgroup. Then there is an ideal I C Tpg(K,i,m) with T2+ —
0, for which there is a continuous h-dimensional determinant D of Gpg with values in
Trs(K,i,m)/I, satisfying

D(1 — X Frob,) = P,(X)

for all places v & SH

ProoF. This is Corollary [V.2.6] noting that any K as in the statement can be realized
as a K™ in the notation of Corollary [V.2.6] O

V.3. Divide and conquer

Let the situation be as in Corollary [V.2.7 Thus, F is a number field, which is totally
real or CM, p is a prime number, n > 1 some integer, and S if a finite set of finite places of
F' invariant under complex conjugation, containing all places dividing p and all places which
are ramified over F'*. Moreover, fix a sufficiently small K = KgK® C GL,(Af ) such that
K = vazs GL,(Op,) C GLn(Af—,’f). Let

prs(K, 1, m) = im(TF,S — Endz/me(Hf(XK, Z/me))) .
In this section, we prove the following theorem.

THEOREM V.3.1. There exists an ideal J C Trg(K,i,m), J*+Y =0, such that there is
a continuous n-dimensional determinant D of G g with values in Trg(K,i,m)/J satisfying

D(1 — X Frob,) = P,(X)
for all places v & S.

PROOF. Note that Ay = Trs(K,4,m) is a finite ring. Let A = Ay®z W (F,). It suffices
to prove that there is a determinant (with the stated properties) with values in A/J for some
ideal J C A with J*4+D =, )

By Corollary , there exists a determinant D; with values in A/, 1'12 @+ = 0,
satisfying

Di(1 — X Frob,) = P,(X)

9For the definition of P,(X), cf. the paragraph before Corollary
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for all v ¢ S. We will use this result for many cyclotomic twists, roughly following an idea
used in [36]. Let x : Grg — W(F,)* be any continuous character of odd order prime to p.
Define

Pux(X) = P,(X/x(Frob,)) € A[X] .
Let P) (X) = P)(x(Frob,)X) be the polynomial with constant coefficient 1 whose zeroes
are the inverses of the zeroes of P, (X). Define

Py (X) = (1 = X) Py (X) P (X)

in case F' is totally real, and

Py (X) = Py (X) Py (q,X)

in case F' is CM. We claim that there is a determinant Dx with values in A/I,, [i(dﬂ) =0,
satisfying ) )
D, (1 — X Frob,) = P, (X)
for all v & S. B
Indeed, the character x : Gpg — W(F,)* corresponds by class-field theory to a con-

tinuous character ¢ : F*\Ay — W(F,)*. As it is odd, it is trivial at all archimedean
primes, i.e. factors through a character ¢ : F*\Af ; — W (F,)*. Also, it is unramified away
from S, and its order is prime to p. Thus, one can find a normal compact open subgroup
K' = KtK% ¢ K = KgK?® of index [K : K'| prime to p, such that 1 is trivial on det(K").

Because [K : K'] is prime to p, the map
H{(Xg, Z/p"Z) — H{(Xx, Z/p" L)
is split injective. The 1-isotypic component
H*(Xgor, W (F,))[¥]

is 1-dimensional (as mo(Xx) = F*\AF ;/det K'). The cup-product gives a map

H}(Xk, Z/p" L) ®z, H*(Xier, W(F,))[0] = H{(Xper, W (Fp) /™),
which is injective, as cup-product with H®( Xy, W(F,))[¢)~!] maps this back to

H{(Xx, W(F,)/p™) C H{(Xir, W(F,)/p™) .

Applying Corollary to the Hecke algebra corresponding to

H} (X, Z)p" L) ©z, H* (X0, W(Fp))[¥] € Hy (X, W(F,) /p™)
will produce the desired determinant D, with values in (Tpg(K,i,m) ®z, W(F,))/I, for

some ideal I, with Ii(dﬂ) =0.

Our first aim is to prove that there is an ideal Iy C Ay with [é @) — 0 such that there

is a continuous function Gpg — Ao/IH[X]: g — P, with Pgop, = P, for all v € S. This will
be done in several steps. Let A be the reduced quotient of A, which is a finite product of
copies of F,. Let P,(X) € A[X] be the image of P,(X).

LEMMA V.3.2. There is a finite extension Lo/F, Galois over F* (thus over F), such
that for all places v € S which split in Ly, P,(X) = Pye(X) = (1 - X)", and ¢, =1 mod p
in case F s CM.
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PROOF. Look at the continuous determinant

Dl : Fp[GF,S] — Fp

It factors over Gal(Ly/F') for some finite Galois extension Ly/F (unramified outside S),
which we may assume to be Galois over F'*. It follows that for all v ¢ S which split in Lj,
(1 — X)? = D, (1 — X Frob,) = (1 — X)P,(X)P. (X)
if F is totally real. In particular, P,(X) divides (1 — X)*"*!, has constant coefficient 1 and
is of degree n, thus P,(X) = (1 — X)™; we may take Ly = Lj,.

If Fis CM, then for all v ¢ S which split in Ly,

(1— X)? = Di(1 — X Frob,) = Py(X)Pe(quX) .

Again, one sees that P,(X) = (1 — X)". If one takes Ly = L)((,), where (, is a primitive
p-th root of unity, then for all v which split in Lo, one has ¢, =1 mod p, so that one gets
also Pye(X)=(1—-X)™ O

Next, we define Iy C Ay with Ié(dﬂ) = 0. For any odd rational prime ¢ # p, let F'¥/F
be the cyclotomic Z-extension. Let S, = S U {v|¢} (and similarly for any set of rational
primes). For any character x : Z, — W(F,)*, we have an ideal I, C A, with ]i(dﬂ) =0,
such that there is a continuous determinant D, of Gpg, with values in A/I,. The ideal
I, = I, + I, C A satisfies YY) = 0. The intersection Io, = I, N Ay C Ay is an ideal of the
I(é)l(éd—i—l

7 ) = 0 such that for infinitely many
(d+1)

finite ring Ag. Thus, there is some Iy, C Ay with

X, o = Io,. Finally, there is some Iy C A with I,
many /.

Now fix any two sufficiently large distinct rational primes ¢, ¢’ # p with Iy, = Iy = Iy
such that [Lo : F] is not divisible by ¢ and ¢'. Let L°* be the maximal pro-p-extension of
Ly - F¥% which is unramified outside Sy. Thus, there is a quotient Grg, — Gal(L>¢/F).

= 0 such that Iy = Iy, for infinitely

LEMMA V.3.3. For any character x : Gal(F</F) = Z, — W (F,)*, the determinant
D, of Gggs, factors over Gal(L>*/F).

PROOF. Over A, the determinant Dx corresponds to a continuous semisimple represen-
tation

fx : GF,SZ — GLh(A) ,
by [20, Theorem 2.12]. For all g € ker(Grgs, — Gal(Lgy - F¥/F)), it satisfies
det(1 — Xg[,) = (1 — X)"

by Lemma [V.3.2] It follows that these elements g are mapped to elements of p-power order,
so that T, factors over Gal(L>¢/F'). Now apply [20, Lemma 3.8]. O

LEMMA V.3.4. There is a unique continuous function
g P, Gal(L>t/F) \ Gal(L>*/F¥) — Ag/Io[X]
such that Prob, = P, for allv € S,.
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PROOF. Fix any g € Gal(L>¢/F) \ Gal(L>¢/F%¢) and fix a character
x : Gal(F%¥9/F) = 7, — W(F,)*

such that Io, = Ip and x(g)¥ # 1for j = 1,...,n. As g & Gal(L>/F<), only finitely
many Y violate the second condition; as infinitely many y satisfy the first, some suitable y
exists. There is an open neighborhood U C Gal(L**¢/F) \ Gal(L>¢/F<¢) of g such that y
and the determinants

D, : A[Gal(L>*/F)] — A/I, , D, : A[Gal(L>/F)] — A/I,

are constant on U. In particular, the polynomials

P,(X) mod I, P, (X) mod I,

are constant on U. It is enough to see that P,(X) mod I is constant on U. We do only
the totally real case; the CM case is similar. Recall that if Frob, € U, then

Py(X) = (1= X)P(X)P)(X) , Poy(X) = (1= X)P,(X/x(9)P) (x(9)X) -
Both are constant on U modulo fx = I, + I,,. This implies that
Py(X)P/(X) , Po(X/x(9)P) (x(9)X)
are constant on U modulo jx- Let us forget that Q, = P is determined by P,. Write

P(X)=14a(v)X +...4+a,(0) X", Qu(X)=14+b(v)X +...+b,(v)X".

By induction on j, we prove that a;(v) and b;(v) are constant on U modulo I,. Calculating
the coefficient of X7 in P,(X)Q,(X) and P,(X/x(9))Q.(x(g)X) gives only contributions
which are constant on U modulo I, except possibly the sum a;(v)+b;(v) in the first product,
and x(g)7a;(v) 4+ x(9)7b;(v) in the second product. Thus, a;(v) + b;(v) and x(g9) ¥ a;(v) +
b;(v) are constant on U modulo I,. Taking the difference, we find that (1 — x(g)~%)a,(v) is
constant on U modulo I, which implies that a;(v) is constant on U modulo I, as 1—x(g)~%
is a unit by assumption on x. Thus, b;(v) = (a;(v) + b;(v)) — a;j(v) is also constant on U

modulo 7.
As both a;(v),b;(v) € Ay, we find that they are constant modulo Ay N I, = Iy, = Iy, as
desired. 0

COROLLARY V.3.5. There exists a unique continuous function
g — Pg . Gpvg — Ao/Io[X]
such that Prob, = P, for allv ¢ S.

PROOF. Let M/F be the extension for which Grs,, = Gal(M/F). Applying Lemma
for £ and ¢ individually, we see that there are continuous functions

g Py:Grs,, \ Gal(M/F¥) — Ay/I[X]

and
g = Py:Grs,, \ Gal(M/F¥Y) — Ay /Io[X] .
By uniqueness, they glue to a continuous function
g Py: Grs,, \ Gal(M/Fe . Py — Ay /Io[X] .



V.3. DIVIDE AND CONQUER 95

But the map
Gr.syy \ Gal(M/F . ) 5 Gal(L*/F)

is surjective, as F< is linearly disjoint from L>¢ (because one extension is pro-¢', whereas
the other is pro-prime-to-¢'). To check whether the continuous function

g~ P, Gal(L™t/F) \ Gal(L>* | F<¥) — Ay/Io[X]
extends continuously to some g € Gal(L>¢/F%°) one can lift g to some
g€ Grgs,, \ Gal(M/F¥e . peyeley

and use that the continuous function g — P, exists near g. This shows that there is a
continuous function

GF’SZ — Gal(Loof/F) — Ao/[()[X]
interpolating Pgyop, for v € Sp. Similarly, there is a continuous function
Grs, — Ao/lo[X]

interpolating Pgyob, for v € Sp. By uniqueness, they give the same function on G, ,,, which
will thus factor over Gr g, and interpolate Py, for all v & S. 0

Thus, there exists a finite Galois extension F /F unramified outside S with Galois group
G and a function

gHPgG%Ao/IQ[X]

such that Ppopn, = P, for all v € S. By adjoining a primitive p-power root of 1 to F, we may
assume that there is also a map g — ¢, € A/l interpolating Frob, — ¢,. Also, in the CM

case, we may assume that F /F* is Galois, so that there is map g — ¢° on conjugacy classes
in G, given by the outer action of Gal(F/F*) = {1,¢}. Choose some (new) rational prime
¢ # p, £ > 3, such that ¢ does not divide [F : F]; in particular, F' is linearly disjoint from
FCyClZ.

LEMMA V.3.6. There is an ideal I C A[T*'] containing Iy - A[T*'] with 14D = 0
and an h-dimensional determinant (i.e., a multiplicative A-polynomial law, homogeneous of
degree h)

Dy : A[G][VEY] — A[T*HY)/I
such that for all g € G, k € Z,
Di(1 ~ XV¥9) = (L~ X)P,(X/T") P} (T*X)
if F'is totally real, resp.
Di(1 = XV¥g) = Py(X/T*) Pe(T*q, X)
if F'is CM.

PRrROOF. Embed A[G][V*!] — A[G x Z,] by mapping V to (1,1) € G X Z;, where 1 € G
is the identity, and 1 € Z, is the tautological topological generator. One knows that for any

character x : Z, — W(F,)*, one has a determinant

A[G)VE] — A[G x Z,) = A[Gal(F - F¥%/F)] — A/I, ,
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which, if D; exists, agrees with the composite of D; with A[T*'] — A/I, sending T to x(1).
However, the map
AT - J A4

X:Zog—W (Fp) >
Io,x=1Io

is injective. Let I C A[T*!] be the preimage of fo; then [*@+Y) = (0 and I, - A[T*!] C I.
One knows that the determinant
DAGIVH - [ AL

X:Zoe—W (Fp)*
Io,x=1Io

exists, and that for all g € G, k € Z,
D'(1-XVFg) e (AT DX [  A/LIX].
X:Ze~—>W(Fp)X

Io =10

Thus, by [20, Corollary 1.14], D’ factors through a determinant D : A[G][V*'] — A[T*)/I,
as desired. U

LEMMA V.3.7. There exists an ideal J C A, Iy - A C J, with J*Y = 0 and an h-
dimensional determinant

D A[G|[VH] — (A/)[T*]
such that for all g € G, k € Z,
D(1— XV*g) = (1 — X)P,(X/T*)P)(T*X)
if F'is totally real, resp.
D(l - Xvkg) = Pg(X/Tk)PgVC(TkQQX>
if F'as CM.

PROOF. Take I C A[T*!] as in the last lemma, giving D;. Let a € Z be any integer,
and look at the map A[G][V*!] — A[G][V*!] mapping V to V. One gets an h-dimensional
determinant )

Do A[GI[VH] = A[G|[VF'] — A[T)/1 .
Let I, = {f(T) € A[T*] | f(T%) € I}, an ideal of A[T*!]. Then the map T + T induces an
injection A[T*']/I, < A[T*']/I, and by checking on characteristic polynomials and using
[20], Corollary 1.14], one sees that Dy, factors through a determinant
Dy, : A[G][VE] — A[T*Y/1, ,

which satisfies the relations imposed on D. Let I’ = (MNacz La- Then one has an injection

AT/ — [T AT/, -

By taking the product, one has a determinant with values in [], A[T*!]/I,; by checking on
characteristic polynomials and using [20], Corollary 1.14] once more, one gets a determinant
with values in A[T*/I'. Let J C A be the ideal generated by all coefficients of elements of
I'. Certainly, one gets a determinant with values in (A/J)[T*!] by composition. Thus, to
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finish the proof, it suffices to see that J*(¢*1) = 0. Thus, take any elements fi, ..., Jaa+1) €
I' C A[T*'] and write

F(T) = e 17

JET
with only finitely many c¢;; nonzero. Choose integers a; >> as >> ... >> ay@41). One
knows that f;(T%) € I, and I*(4*1) = 0; thus

4(d+1) 4(d+1)

0= I sy =TT Qe

=1 j
If one has chosen the a; sufficiently generic, every power of T" will occur only once when
factoring this out. This implies that any product ¢y, « - Ca(a+1),jy4 L) 1s zero, showing that

JHHD = 0, as desired. a
Finally, we are reduced to the following lemma on determinants, with R = A/.J. O
LEMMA V.3.8. Let G be a group, and R some ring. For any m € Z, let a map

g P"(X):G— RIX]

be given, taking values in polynomials of degree m,, with constant coefficient 1. We assume
that n,, = 0 for all but finitely many m. Let n = ) N, and assume that there is an
n-dimensional determinant

MEZ

D : R[G][V*] — R[T*
such that for all g € G, k € Z,

D(1—V*Xg) =[] PI™(T""X) € RIT*|[X] .
meZ

Then for all m € Z, there exists an n,,-dimensional determinant D™ : R[G] — R such that
for all g € G,
D™ (1 - Xg) = P™(X) .

REMARK V.3.9. Intuitively, the lemma says the following, up to replacing ‘representation’
by ‘determinant’. Assume you want to construct representations m,,, m € Z, of GG, with
prescribed characteristic polynomials. Assume that you know that for any character y of 7Z,

the representation
D

meZ
of G x Z exists; note that R[G][V*!] = R|G x Z]. Then all the representations T, exist.

PRrROOF. We need the following lemma.

LEMMA V.3.10. Let S be a (commutative) ring, and Q € S[T*'[[X]] be any polynomial
such that Q =1 mod X. Then there is at most one way to write

Q=] on
meZ

with Q,, € S[[XT™]], Q. =1 mod X, almost all equal to 1. Moreover, if Q € S[T*|[X],
then all Q,, € S[XT™].
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PROOF. Given any two such presentations @ = [[Q. = [[@.,, one may take the
quotient, and thus reduce to the case () = 1. Let k£ be minimal such that not all @,, are = 1
mod X*. Then Q,, =1+ (XT™)*a,, mod X**! for some a,, € S, almost all 0. But then

1=Q=]]@n=1+X*> T"a, mod X"

mEZ MEZ

No cancellation can occur, so a,, = 0 for all m € Z, contradiction.

For the final statement, one may replace X by X710 for some my, so that we may assume
that @, = 1 for m < 0. In that case, all Q,, € S[[X,T]], so the same is true for @), and we
may reduce modulo 7. Then one finds that @ = @y mod T, so in particular, Qo € S[X].
Let Q' = [1,,20 @m- We claim that Q" € S[T*'][X]; then an inductive argument will finish
the proof.

Note that Q" € S[[X, XT7], so in particular Q" € S[T][[X]], with Q'Qo € S[T, X]. Writing

Q' => Q.I)X*,
a>0
with Q' (T) € S[T], we see that for a sufficiently large, @, Qo = 0. As Qo € S[T] has constant
coefficient 1, this implies that @), = 0, so indeed Q" € S[T, X]. d

LEMMA V.3.11. For any R-algebra S, there are unique multiplicative maps
DY 1+ US[G[U)] — 1+ US[[U]]
such that for all f(U) € 14+ US[G][[U]],
D(f(xV)) = [ D™ (#(XT™) € S[T][[X]] -
mEZ

It satisfies
D1 — Utzg) = P (U"z)

foralla> 1,z €S and g € G. Moreover, D(()m) maps 1+ US[G][U] into 1 + US[U].
PROOF. Lemma|V.3.10/implies uniqueness of each value D((Jml( f(U)) individually. More-

over, uniqueness implies multiplicativity, by multiplicativity of D. For existence, note that
the left-hand side D(f(XV)) is multiplicative in f. It follows that if the desired decomposi-
tion exists for two elements f, f’, then also for their product. Moreover, the set of elements
for which such a decomposition exists is U-adically closed. As any element f € 1+US|[G][[U]]
can (non-uniquely) be written as an infinite product
f=110-v%z,9))

j=1
for certain a; > 1, a; — 00, x; € S and g; € G, one reduces to the case that

f=1=-Ug
with a > 1, z € S and g € G. In that case,

D1 = (XV)'zg) = [ [ P ((XT™) )

meZ
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by the defining equation of D. This gives the desired decomposition in this case, and proves

the formula for D{™ (1 — Uxg).
The final statement follows from the second half of Lemma [V.3.10. 0

Now, for any R-algebra S, we can define
D"(z) = Dy (1+ Uz = 1)y € S
for any x € S[G]. This defines a polynomial map D™ : R[G] — R. It satisfies
D™(1 —zg) = DI (1 = Uzg)ly= = P (Uz)|y=1 = P ()
for x € S, g € G. We claim that D is multiplicative, i.e.
DU((1 —z)(1 —y)) = D"(1 —2)D"™ (1 —y)
for all z,y € S[G]. The desired equation reads
DY (1 = Uz +y) + Uzy)|y=1 = D" (1 = Uz)|y=1 D§™ (1 — Uy)|v=1 -
Write & = - 4 g9, Y = >, Ygg for some finite subset A C G. We may reduce to the

universal case S = R[X,, Yy|sea, or also to S = R[[X,,Y,|];ea. Thus it is enough to do it

for all S = R[[Xy, Y,|lsea/(X,, Y,)". In other words, we may assume that the ideal I C S
generated by all z,, y, is nilpotent. In that case, z,y € S[G] are nilpotent.

In particular, 1 — Uz € S[G][U] is invertible, with inverse 1 + Uz + U?z* + ..., where
only finitely many terms occur, as « € S[G] is nilpotent. Similarly, 1 — Uy € S[G][U] is
invertible. Using multiplicity of D((]m)7 the desired equation reads

D{™ (1=U@+y)+Usy) 1+ Uz + U2+ .. )1+ Uy + U +...) Ju=1 =1.
Letting f = (1= U(z+vy) +Uxy)(1+ Uz + U2*+.. ) (1+ Uy +U**+...) € 1+ US[G|[U],
one reduces multiplicativity of D™ to the following lemma.

LEMMA V.3.12. Let I C S be a nilpotent ideal, and f € 1+ US[G|[U] such that f =1
mod I and f|ly=1 = 1. Then

D (Nl =1
Proor. We claim that any such f can be written as a product of terms
(1= U""2g)/(1 = U’zg)

fora > 1, z € I and g € G. Note that, as before, the inverse of 1 — U%zg € S|G|[U] exists,
as z is nilpotent. Assume first that 1> = 0. As f —1 € U - I[G][U] and f|y=; = 1, we have
f—1eU{U —1)-I[G][U], so we may write

f=1=2_ 2 (U =U"za9
a>1 geG
with z,, € I. Using I? = 0, this rewrites as
f= H (1 =U"209)/(1 = U%2449)
a>1,9eG
as desired. In general, this shows that after dividing f by terms of the form
(1—U""29)/(1—U’zg) ,
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one gets an element f’ with the same properties, and f/ =1 mod I?. The nilpotence degree
of I? is smaller than the nilpotence degree of I, so one gets the result by induction.
Using multiplicativity of D((]m)7 it is now enough to prove that

D™ (1= U 29) /(1 = U2g)) [y=y = 1
foralla>1, z€ I and g € G. But by Lemma [V.3.1]]
D™ (1-U2g) oy = P (U 2) |y = P (2) = P (U)|yoy = D™ (1-U2g) |1

g

finishing the proof of the lemma. U

It remains to verify that D™ is homogeneous of degree n,,. For this, observe the following
general lemma on determinants, which shows that homogeneity of some degree is automatic.

LEMMA V.3.13. Let R[G] — R be a multiplicative R-polynomial law. Then for some
integer N there is a decomposition R = Rg X --- X Ry X Ry of R into direct factors such
that for 0 < d < N the induced multiplicative Rq-polynomial law Ry|G] — Ry is homogeneous
of degree d, i.e. is a determinant of dimension d, and such that Rw|[G] — R is constant 0.

PROOF. By restriction, we get a multiplicative R-polynomial law R — R. It suffices
to see that after a decomposition into direct factors, this is of the form z — z? for some
integer d > 0, or constant 0. Applying the polynomial law to 7" € R[T] gives an element
f(T') € R[T), which by multiplicativity satisfies f(UT) = f(U)f(T"). Let

f(T) = agT?® + ag T + ...+ anTV |

where ag # 0. Looking at the coefficient of U4T? in f(UT) = f(U)f(T) shows that a2 = aq,
so after a decomposition into a direct product, we may assume that either ag = 1 or ay = 0.
In the second case, we can continue this argument with a higher coefficient of f to arrive
eventually in the case ag =1 (or f(7') = 0, in which case the polynomial law is constant 0).
Thus, assume that ag = 1. Looking at the coefficient of U4T* in f(UT) = f(U)f(T), we
see that 0 = agy; for all i > 1, thus f(T) = T%, and the polynomial law is indeed given by
x — x4, 0

Note that the degree of each P{™ (X) is at most n,,, but the product [Lnez P™(X) has

degree exactly n = ) . n, (as it is the characteristic polynomial of g in D); thus, each
Pg(m) (X) has degree exactly n,,, and it follows that D™ is homogeneous of degree n,,. [

V.4. Conclusion

Finally, we can state our main result. Let F' be a totally real or CM field with totally
real subfield F* C F, n > 1 some integer, p some rational prime, and S a finite set of finite
places of F', stable under complex conjugation, containing all places above p, and all places
which are ramified over F'*. Let Gpg be the Galois group of the maximal extension of F
which is unramified outside S.

Let

K C [[ GLA(OF,) C GLu(Agy)
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be a compact open subgroup of the form K = KgK?®, where Kg C [[ .5 GLn(OF,) is
any compact open subgroup, and K = vas GL,(Op,) C GLn(Af;’f). We get the locally
symmetric space

X = GLy(F)\[(GL(F 8 R)/RooKo) x CLu(Ary)/K] .

where K., C GL,,(F ®¢ R) is a maximal compact subgroup. If K is not sufficiently small,
we regard this as a ‘stacky’ object, so that (by definition) Xx» — X is a finite covering
map of degree [K : K'|, for any open subgroup K’ C K.

Moreover, fix an algebraic representation § of Resp, /z GL,, with coefficients in a finite

free Z,-module M. This defines a local system M x of Z,-modules on Xy, for any K as
above.
Let

TF,S = ®Tv y T, = Zp[GLn(Fv)//GLn(OFv)]
vES

be the abstract Hecke algebra. By the Satake isomorphism, we have a canonical isomorphism
Tola,”] & Zpla,*J[XT, - X

where g, is the cardinality of the residue field of F' at v. We let T}, € T, [qi/ 2] be the i-th

symmetric polynomial in Xi,..., X,,; then qf}(nﬂ)/ ZTM € T,. Define the polynomial

Py(X)=1— g™V X + @002, X2 4 (=), X e T, [X] .
Recall that there is a canonical action of Trg on
H' (X, Me k) -

THEOREM V.4.1. There exists an integer N = N([F : Q],n) depending only on [F : Q]
and n, such that for any compact open subgroup K = KsK* C GL,(Af ;) as above, algebraic
representation &, and any integers i,m > 0, the following is true. Let

Trs(K, & i,m) =im(Trs — Endg jm(H' (Xx, Mgk /p™))) -

Then there is an ideal I C Trs(K, &, i,m) with IV =0 such that there is an n-dimensional
continuous determinant D of G g with values in Tps(K, &, i,m)/1, satisfying

D(1 — X Frob,) = P,(X)
forallv & S.

PROOF. Fix a sufficiently small normal compact open subgroup K’ C K such that
Me g /p™ is trivial; the second condition can be ensured by requiring that the image of
K’ in [],, GLy(F}) is contained in {g € [],, GLx(OF,) | g =1 mod p™}. One has the
Hochschild-Serre spectral sequence

H(K/K', H (X, Mg g [p™)) = H™ (X, Meic [p™)

This reduces us to the case that K is sufficiently small, and that & is trivial. In that case,
Mg i /p™ is a direct sum of copies of Z/p™Z.
Thus, we have to consider

prs(K, z7m) = im(TF,S — EndZ/me(Hi(XK, Z/me))) .



102 V. GALOIS REPRESENTATIONS

Using the Borel-Serre compactification X5, we have the long exact sequence of Tr g-modules
o= H (X, Z)p"Z) — H (X, Z)p"Z) — H(XE\ Xge, Z/p" L) — ... .

It is an easy exercise to express H (XES \ Xy, Z/p™Z) in terms of the locally symmetric
spaces for GL,//F, with n’ < n (cf. [19] Section 3] for more discussion of this point). Thus,
by induction, the determinants exist for

im(Tps — Endg/pmz(H (X2 \ Xk, Z/p"Z))) ,
and in particular for
Trs(K,i,m,0) =im(Trs — Endgpmz(im(H (Xx, Z/p"Z) — H (X} \ Xk, Z/p"Z)))) ,

modulo some nilpotent ideal Iy C Trg(K,i,m,0) of nilpotence degree bounded by [F' : Q]
and n. On the other hand, by Theorem [V.3.1] there is a nilpotent ideal

I C Trs(K,i,m,!) = im(Trs — Endgpmz(im(HL( Xk, Z/p"Z) — H (XK, Z/p"7Z))))
of nilpotence degree bounded by [F' : Q] and n, such that the determinants exist with values
in Tpg(K,i,m,!)/];. But the kernel of the map
Trs(K,i,m) — Trs(K,i,m,!) x Tps(K,i,m,0)
is a nilpotent ideal with square 0. Thus, the kernel I of
Trs(K,i,m) — Trs(K,i,m,)/], x Trps(K,i,m,0)/Is

is a nilpotent ideal with nilpotence degree bounded by [F': Q] and n, and by [20, Corollary
1.14], one finds that the determinant D with values in Trg(K,4,m)/I exists. This finishes
the proof. O

Let us state some corollaries, where the determinants give rise to actual representations.
We start with the following result on classical automorphic representations, that has recently
been proved by Harris-Lan-Taylor-Thorne, [36]. Recall that we have fixed an isomorphism

C=Q,.

COROLLARY V.4.2. Let m be a cuspidal automorphic representation of GL,(Afr) such
that T 1s regular L-algebraic, and such that m, is unramified at all finite places v & S.
Then there exists a unique continuous semisimple representation

Orn: GF,S — GLn<Qp)

such that for all finite places v € S, the Satake parameters of m, agree with the eigenvalues

of o(Frob,).

PROOF. Note that 7/ = 7|-|"*1/2 is regular C-algebraic, i.e. cohomological (cf. [22 The-
orem 3.13, Lemma 3.14]). Thus, there exists some algebraic representation & of Resp/g GLj,

with coefficients in C = @p (which can be extended to an algebraic representation of
Reso,./z GL, with coefficients in Z,, still denoted &) such that ' occurs in

Hi(XK, Me k) ®z, C
for some sufficiently small level K = K¢K*® and integer i. Here,

K = CLo(F)\[(CLo(F 9 R)/RooK2,) x CLy(Ars)/K] |
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where K3 C K is the connected component of the identity. Thus, X = Xy if Fis
CM, and is a (Z/2Z)FU_cover if F is totally real. Twisting by a character A% — Z/27Z
with prescribed components at the archimedean places, one can arrange that 7’ occurs in
H'(Xk, Mg i) ®z, C, which we shall assume from now on.

Let

Trs(K, ¢ i) = im(Tps — Endg (H'(Xk, Mek))) -
The kernel of Tps — Trs(K, &, 1) is contained in the kernel of
Trs = || Trs(K, & i,m)
m>1

so by Theorem (and |20, Example 2.32]), there exists an n-dimensional continuous de-
terminant D of Gpg with values in Tpg(K, €, 7)/] for some nilpotent ideal / H Composing
with the map Tpg(K,&,1) — @p corresponding to 7', we get an n-dimensional continu-
ous determinant D, of Gpg with values in @p, giving the desired continuous semisimple
representation o, by [20, Theorem 2.12] (continuity follows e.g. from [59, Theorem 1]). O

On the other hand, we can apply Theorem to characteristic p cohomology.

COROLLARY V.4.3. Let ¢ : Tpg — Fp be a system of Hecke eigenvalues such that the
Y-eigenspace

H'(Xg, Mex @z, Fp)[] #0 .
Then there exists a unique continuous semisimple representation
oy : Gps — GL,(F,)
such that for all finite places v & S,
det(1—X Frob, |oy) = 1=9(q" ™2 T1 ) X +4(¢2 2Ty ) X2~ L (= 1) (¢ V2T, )X
PRrROOF. This is immediate from Theorem and [20, Theorem 2.12]. O

COROLLARY V.4.4. Let ¢ : Trpg — F, be as in Corollary and assume that oy is
irreducible. Let m C Tpg be the mazimal tdeal which is the kernel of 1, and let

Trs(K,§, i) = im(Tps — Endg (H'(Xk, Mek))) -
Take N = N([F : Q|,n) as in Theorem|V.4.1. Then there exists an ideal I C Tpg(K, €, 1)

with IN = 0 and a unique continuous representation
om: Gps = GL,(Tps(K, &, 1)m/I)
such that for all finite places v & S,
det(1 — X Frob, |oy) = 1 — ¢"V2Ty X + Z0D2T, X2 — 4 (—1)"qr /2T, X

Here, Tps(K,&,1)m denotes the localization of Trg(K, &, 1) at m.

OFor this conclusion, it was necessary to know that the nilpotence degree is bounded independently of
m; one gets also that IV = 0.
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REMARK V.4.5. One obtains (with the same proof) a slightly stronger result, replacing
TF,S(K7 57 Z) by

Trs(K. 1) = im(Trs — @ Endg, jm (H'(Xi, Mexc /™))

or
Trs(K, &) =im(Tps = @) Endg m (H' ( Xk, Mexc/p™))) -

Such results were conjectured by Calegari and Geragthy, [18, Conjecture BJ. In fact, this

proves the existence of the Galois representations of [18] Conjecture B] (modulo a nilpotent

ideal of bounded nilpotence degree), but does not establish all their expected properties.

PROOF. There is an ideal I C Trg(K, & i) with IV = 0 such that there is an n-
dimensional continuous determinant with values in Tpg(K,&,7)n/I, reducing to (the de-

terminant associated with) o, modulo m. As by assumption, o, is irreducible, the result
follows from [20, Theorem 2.22 (i)]. O

REMARK V.4.6. As mentioned previously, these results are based on the work of Arthur,
[4] (resp. Mok, [48]), which are still conditional on the stabilization of the twisted trace
formula. Let us end by noting that our results are unconditional under slightly stronger
hypothesis. Namely, from the result of Shin, [58] (cf. also the result in the book of Morel,
[49, Corollary 8.5.3]), all results stated in this section are unconditional under the following
assumptions:

(i) The field F is CM, and contains an imaginary-quadratic field.

(ii) The set S comes via pullback from a finite set S of finite places of Q, which contains p
and all places at which F/Q is ramified.

In particular, if F' is imaginary-quadratic, then the results are unconditional as stated.
Note that Shin’s result is stated in terms of unitary similitude groups. However, Theorem
(and all results in Chapter [IV|deduced from it) stays true verbatim for usual Shimura
varieties of Hodge type (with the same proof), so that one can apply it to the Shimura
varieties associated with unitary similitude groups. Then the argument of Chapter [V] goes
through as before.

Using a patching argument (cf. proof of [37, Theorem VII.1.9]), Corollary follows
for general totally real or CM fields, but still under the assumption that S comes via pullback
from a finite set Sg of finite places of Q@ which contains all places at which F'/Q is ramified.
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