1.
2.

2.1.
2.2
2.3.

3

3.1
3.2.
3.3.
3.4.
3.5.

4

4.1.
4.2.
4.3.
4.4.

5

5.1
5.2.
5.3.
5.4.
9.5.
95.6.

6

6.1.
6.2.
6.3.

ON THE GENERIC PART OF THE COHOMOLOGY OF
COMPACT UNITARY SHIMURA VARIETIES

ANA CARAIANI AND PETER SCHOLZE

ABSTRACT. The goal of this paper is to show that the cohomology of compact
unitary Shimura varieties is concentrated in the middle degree and torsion-free,
after localizing at a maximal ideal of the Hecke algebra satisfying a suitable
genericity assumption. Along the way, we establish various foundational results
on the geometry of the Hodge-Tate period map. In particular, we compare the
fibres of the Hodge-Tate period map with Igusa varieties.
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1. INTRODUCTION

Let G/Q be a reductive group. The real group G(R) acts on its associated
symmetric domain X = G(R)/K, where K, C G(R) is a maximal compact
subgroup. For any congruence subgroup I' C G(Q), one can form the locally
symmetric space

Xr=T\X.

We assume that Xt is compact, and that I' is torsion-free. Then Matsushima’s
formula, [Mat67], expresses the cohomology groups H!(Xr,C) with complex co-
efficients in terms of automorphic forms 7 on G, and the (g, K )-cohomology of
their archimedean component 7...! A computation of (g, K. )-cohomology then
shows that the part of cohomology to which tempered representations contribute
is concentrated in the middle range qo < i < qo + lo, cf. [BW80, Theorem II1.5.1];
here lg =tk G — 1k K, and qg = %(dimX —lp).

In particular, if l[p = 0, then tempered representations occur only in the middle
degree qo. This happens when the Xr are complex algebraic varieties, e.g. when G
gives rise to a Shimura variety.

The motivating question of this paper is to establish a similar result for the
cohomology groups H'(Xt,F;) with torsion coefficients. In this context, it is diffi-
cult to formulate the analogue of the temperedness condition, which is an analytic
one. We learnt the following formulation from M. Emerton. Recall that for any
system m of Hecke eigenvalues appearing in H*(Xt,F), one expects to have a mod
¢ Galois representation py, (with values in the Langlands dual group). One may
then put the condition that py, is irreducible, and ask whether this implies that
go <1 < qo+ lp. In particular, a result of this type for G = GL,, (where iy > 0) is
important for automorphy lifting theorems in the non-self dual case as in work of
Calegari-Geraghty, [CG, Conjecture B].

In the present paper, we deal with this question in the case where Xt is a
Shimura variety (so that lop = 0). More precisely, we will consider the case where G
is an anisotropic unitary similitude group of dimension n, for some CM field F' with
totally real subfield F* C F. We assume that F' contains an imaginary quadratic
field. Assume moreover that G is associated with a division algebra over F, i.e., it
is one of Kottwitz’s simple Shimura varieties, [Kot92a].? Our main theorem is the
following.

Theorem 1.1. Let m be a system of Hecke eigenvalues appearing in H'(Xr,Fy).
Then there is an associated Galois representation

pm : Gal(F/F) — GL,(Fy) .

Assume that there is a rational prime p such that F is completely decomposed
above p, and
pm is unramified and decomposed generic

at all places of F' above p. Then i = qo is the middle degree.

Remark 1.2. The first part of the theorem can be deduced from [Sch15b], but we
give a different proof in this paper. We will make use of the Hodge-Tate period

n the non-compact case, this is still true, and a theorem of Franke, [Fra98].

2We also allow the complementary case where G is quasisplit at all finite places, under a small
extra assumption (cf. Section 5.1), so that our main result also covers cases where nontrivial
endoscopy occurs.
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map again, but this time in a p-adic context with p # ¢ (whereas [Sch15b] worked
in the situation p = ¢). We note that this should make it possible to understand
the behaviour of p,, at places above £.

Remark 1.3. Tt is a formal consequence that the Z;-cohomology localized at m is
concentrated in degree qg, and torsion-free, if the conclusion of the theorem holds
true.

Remark 1.4. The condition that p,, is decomposed generic is defined below. It
follows from a suitable “big image” assumption. However, note that if p, is a
generic sum of characters, there will still be a prime p as in the theorem, so that
our result also applies to many reducible representations.

Remark 1.5. We prove the result under a slightly weaker assumption depending on
the precise signature of G. In particular, if the signature of G is (0,n) at all except
for one infinite place, e.g. in the Harris-Taylor case, we only need the existence of
one finite prime v of F' at which py is unramified and decomposed generic.

Remark 1.6. In the Harris-Taylor case (i.e., G is of signature (1,n — 1) at one
infinite place, and (0,n) at the other places), there has been previous work on this
question, notably by Shin, [Shil5], restricting attention to the cohomology that
is supercuspidal modulo ¢ at some finite prime p, by Emerton and Gee, [EG15],
making suitable assumptions on py, at f-adic places, and by Boyer, [Boyl5], under
a condition very closely related to our condition.

Remark 1.7. Lan and Suh, [LS12], prove that if the level is hyperspecial at £ and
one takes cohomology with coefficients in the local system L¢ corresponding to a
suitably generic algebraic representation & of G, then the whole /-adic cohomology
groups H'(Xr, L¢) for i # go vanish. This behaviour cannot be expected in our
situation, as at least all even cohomology groups H?!(Xt,[F,) are nonzero, so it is
necessary to localize at some maximal ideal of the Hecke algebra.

Remark 1.7.1. An argument involving the Hochschild-Serre spectral sequence and
Poincaré duality shows that the theorem also holds when Fy is replaced by a non-
trivial (Hecke-equivariant) coefficient system.

Remark 1.8. Let F be a CM field and II be a conjugate self-dual regular alge-
braic cuspidal automorphic representation of GL,,(Ar). Then II will be obtained
by base change from an automorphic representation 7 on a unitary group, which
contributes to the cohomology of a compact unitary Shimura variety (see, for ex-
ample, [HT01, Shill, Car12]). In this situation, = contributes only to the middle
degree cohomology, and the proof relies on genericity rather than temperedness. In
fact, concentration in middle degree is proved simultaneously with the Ramanujan-
Petersson conjecture (at finite places) for IT as above, using the template of [HT01]
rather than appealing to [BW80]. These results rely on the fact that the local
components of cuspidal automorphic representations of GL,, are generic, and fol-
low by combining the classification of unitary generic representations of GL,, due
to Tadic (and the bounds of Jacquet-Shalika) with the Weil conjectures. While
temperedness is an analytic condition, genericity can be formulated modulo /.

Let us define the critical notion of being decomposed generic.

Definition 1.9. Let L be a p-adic field with residue field Fy, ¢ # p. An unramified
representation

p:Gal(L/L) — GL,(F,)
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is decomposed generic if the eigenvalues {\1,..., \n} of p(Frob), where Frob €
Gal(L/L) is an arithmetic Frobenius, satisfy \i/X\; & {1,q} for all i # j.

The main consequence of this definition is that any characteristic 0 lift of p is
a direct sum of characters (i.e., “decomposed”), and the associated representation
of GL, (L) under the local Langlands correspondence is a generic® principal series
representation, cf. Lemma 6.2.2.

The rough idea. Let us now explain the idea of our proof. In very rough
terms, the idea is to work at a fixed prime p # ¢, and look at the projection from
the Shimura variety S, which is a moduli space of abelian varieties (with extra
structures), to the corresponding moduli space M of p-divisible groups (with extra
structures),

7:8 > M4

One could then analyze the cohomology of the Shimura variety in terms of a Leray
spectral sequence. Note that the fibres of 7 should be a moduli space of abelian
varieties with a trivialization of their p-divisible group, which are essentially the
Igusa varieties of [Man05], cf. also [HTO01]. This means that one can compute the
fibres of Rm.Z; in terms of the cohomology of Igusa varieties. The alternating sum
of the Qg-cohomology groups has been analyzed in depth by Sug Woo Shin, [Shi09],
[Shil0].

An important property of the situation is that the Hecke operators away from p
act trivially on M, so the passage to the localization at m can already be done on
the sheaf Rm,JFy. This makes it possible to use geometry on M. More specifically,
in the actual setup considered below, (the localization at m of) R, JF, will turn
out to be perverse (up to shift), and thus is concentrated in one degree on the
largest stratum where it is nonzero. In that case, (the localization at m of) Rm.Z,
will be concentrated in one degree and flat. Thus, not much information is lost by
passing to the alternating sum of the Q,-cohomology groups. Specifically, we will
use this argument inductively to show that (Rm.Z¢)y, is trivial on all strata except
the 0-dimensional stratum, which will then give the desired bound.

Unfortunately, the moduli space M of p-divisible groups does not really exist,
or at the very least has horrible properties. This makes it hard to execute this
strategy in a naive way. In April 2011, [Sch11], one of us realized (in the Harris-
Taylor case) that there should be a Hodge-Tate period map, which would make a
good substitute for 7.> The idea here is that if C/Q, is a complete algebraically
closed nonarchimedean field with ring of integers O¢, then by [SW13, Theorem B],
p-divisible groups over O¢ are classified by pairs (7, W), where T is a finite free
Zp-module, and W C T ®z, C' is a subvectorspace, the Hodge-Tate filtration. In
particular, p-divisible groups with a trivialization of their Tate module are classified
by a Grassmannian, at least on (C,O¢)-valued points. Now, even if the moduli
space of p-divisible groups is not a nice object, one can replace it by this Grassman-
nian, which is manifestly a nice object. It turns out that with this modification,
the argument outlined above works.

The precise ideas. Let us now be more precise. We work adelically, so for any
compact open subgroup K C G(Ay), we have the Shimura variety Sy, which is a

3Recall that a generic representation is one which admits a Whittaker model - see, for example
Section 2.3 of [Kud94].

4This idea is also behind [Sch13b], and was also mentioned to one of us (P.S.) by R. Kottwitz.

5We learnt that L. Fargues had also been aware of the Hodge-Tate period map in some form.
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quasiprojective scheme over the reflex field E. For the moment, we allow an arbi-
trary Shimura variety. Recall that these are associated with Shimura data, which
consist of a reductive group G/Q and a G(R)-conjugacy class X of homomomor-
phisms h : Resc/rGy — Gr, subject to the usual axioms. Then

Sk(C) = GQ\X x G(Af)/K) .

Associated with any h, one has a minuscule cocharacter u = up : G,,, — Gc.
The reflex field £ C C is the field of definition of the conjugacy class of u. With any
cocharacter u, one can associate two opposite parabolics P, and Pf’fd, and there are
two corresponding flag varieties Flg , and Flsé‘fiu over F, parametrizing parabolic
subgroups in the given conjugacy class. The association i — up — befld defines the
(holomorphic) Borel embedding X < Fliﬁj(@). There is also an antiholomorphic
embedding X — Flg ,(C) defined using P, .

Fix any prime p, and p|p a place of the reflex field E. Denote by Sk the rigid-
analytic variety, or rather the adic space, corresponding to Sk ®g Ey, and similarly
for #lg .. Our first main result refines the theory behind the Hodge-Tate period
map from [Sch15b], which can be regarded as a p-adic version of the (antiholomor-
phic) Borel embedding.

Theorem 1.10. Assume that the Shimura datum is of Hodge type. Then for any
sufficiently small compact open subgroup KP C G(Afc), there is a perfectoid space
Sk» over E, such that

SKP ~ 1'&18[(?}(;) .
KP

Moreover, there is a Hodge-Tate period map
THT SKP — yfg’ﬂ s

which agrees with the Hodge-Tate period map constructed in [Sch15b] for the Siegel
case, and is functorial in the Shimura datum.

Moreover, we prove a result saying that all semisimple automorphic vector bun-
dles come via pullback along mg.

The idea here is to chase Hodge tensors through all constructions, which is
possible by using Deligne’s results that they are absolute Hodge, [Del82], (and also
satisfy a compatibility under the p-adic comparison isomorphism, [Bla94]), and the
results on relative p-adic Hodge theory of [Sch13c]. The details appear in Section 2.
As stated above, one should think of .#l¢ , as a (substitute for the) moduli space
of p-divisible groups with extra structure and trivialized Tate module.

Next, we want to identify the fibres of myp with Igusa varieties. First, we have
to define a natural stratification on %#¥g,,, which correspondends under mg7r to
the Newton stratification (pulled back from the special fibre through the special-
ization map). Recall that the Newton strata are parametrized by the finite subset
B(G, 1) € B(G) of Kottwitz’ set B(G) of isocrystals with G-structure.

Theorem 1.11. Let G be a reductive group over Q,, and i a conjugacy class of
minuscule cocharacters. There is a natural decomposition

Fa,= ||
beB(G,u—1)

SH
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into locally closed subsets ﬁfé’;w. The union

| | 72,

b=b’

is closed for all b € B(G,u~1); in particular, ﬂél’a’u s open when b is the basic
element of B(G,u™1).

Thus, the closure relations are exactly the opposite of the closure relations of
the Newton stratification on the Shimura variety;’ this change of closure relations
is related to a subtle behaviour of wgyr on certain higher-rank points of the adic
space.

To give an idea of what the stratification looks like, we recall the example of the
modular curve. In that case, the flag variety is just P!. The whole ordinary locus
of the modular curve is contracted to P1(Q,), and the Hodge-Tate period map just
measures the position of the canonical subgroup on this locus. The supersingular
locus is mapped onto Drinfeld’s upper half-plane Q% = P!\ P}(Q,) in a way best
understood using the isomorphism between the Lubin-Tate and Drinfeld towers.
Thus, in this case the relevant stratification of P! is simply the stratification into
P}(Q,) and Q2. We caution the reader that in general, the strata ﬁél&# are quite
amorphous, and it happens that some nonempty strata have no classical points.
The reason is that if b is basic, ﬁélé’ ., agrees with the admissible locus in the sense
of [RZ96], which does not admit a nice description, but whose classical points agree
with the explicit weakly admissible locus. If G is a non-split inner form of G L5 and
p corresponds to (1,1,0,0,0), one can verify that all classical points of F#¢g,, are
contained in the basic locus, while there are many other nonempty strata.

The proof of this theorem relies on certain recent advances in p-adic Hodge the-
ory. First, to define the stratification on points, we make use of the classification of
G-bundles on the Fargues-Fontaine curve; by a recent result of L. Fargues, [Farl5a],
they are classified up to isomorphism by B(G). Here, we construct a G-bundle on
the Fargues-Fontaine curve by starting with the trivial G-bundle and modifying it
at the infinite point of the Fargues-Fontaine curve. To construct the modification,
we have to relate the flag variety %#¢q ,, to a Schubert cell in a B;‘R—afﬁne Grass-
mannian as studied in [Weil4]; however, for our applications, the theory of [Weil4]
is not necessary.

Finally, to check the closure relations, we use recent results of Kedlaya and Liu,
[KL15], on the semicontinuity of the Newton polygon for families of ¢-modules over
the Robba ring.

Now we can relate the fibres of w7 to Igusa varieties. From now on, we assume
that the Shimura variety is of PEL type (of type A or C), and compact, with
good reduction at p. Pick any b € B(G,u~t). Corresponding to b, we can find
a p-divisible group X, over Fp equipped with certain extra endomorphism and
polarization structures. We consider the following kind of Igusa varieties.

Proposition 1.12. There is a perfect scheme Ig® over F, which parametrizes

~

abelian varieties A with extra structures, equipped with an isomorphism p : A[p™°] =

Xp.

6We note that we do not prove that the closure of a stratum is a union of strata, so the term
“closure relations” is meant in a loose sense.
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One can identify Ig® with the perfection of the tower FY, . = fim Ptant.m OF
Igusa varieties constructed by Mantovan, [Man05].

In particular, the étale cohomology of Igb agrees with the étale cohomology of
Igusa varieties.

Let us also mention the following proposition. Here, Y}’( C Ik ® }Fp’ b e
B(G, 1) denotes a Newton stratum of the natural integral model ., of the
Shimura variety Sk at hyperspecial level.

Proposition 1.13. Fiz a geometric base point & € #p-. There is a natural map
meét(ylb(vj) - Jb(QP) )

corresponding to a Jy(Qp)-torsor over S} which above any geometric point para-
metrizes quasi-isogenies between A[p™] and X, respecting the extra structures.

Remark 1.14. Here, ﬂ'lfmét is the pro-étale fundamental group introduced in [BS15a].
For normal schemes, it agrees with the usual profinite étale fundamental group of
SGA1. However, Newton strata are usually not normal, and in fact the homomor-
phism to J;(Q,) often has noncompact image. For example, if b is basic, then the
image is a discrete cocompact subgroup of J,(Q,), related to the p-adic uniformiza-
tion of the basic locus as in [RZ96]. Thus, the formalism of 7" is crucial for this
statement.

Restricted to the leaf 4, C .#% (the set of points where A[p™] = X;), the
map 71 (%, %) = Jp(Q,) takes values in a compact open subgroup of J,(Q,), and
then corresponds to the tower of finite étale covers £ — % considered by
Mantovan.

ant,m

There is a close relation between the fibres of wg1 over points in yﬁg’ u and the

perfect schemes Ig”; note however that the former are of characteristic 0 while the
latter are of characteristic p. Roughly, one is the canonical lift of the other, except
for issues of higher rank points. In any case, one gets the following cohomological
consequence.

Theorem 1.15. Let T be any geometric point of ﬁﬁ’é}u C HFlg,yu. For any l # p,
there is an isomorphism

(Rrpr 20" L)z = RT(Ig%, Z./0"Z)
compatible with the Hecke action of G(A?).

We recall that the alternating sum of the Q-cohomology of Igusa varieties has
been computed by Sug Woo Shin, [Shi09], [Shil0]. His results are presented in
Section 5 and combined with the (twisted) trace formula.

The final ingredient necessary for the argument as outlined above is that Rmgp.[Fy
is perverse. Obviously, Rryr.F,; should be constructible with respect to the strat-
ification

Fla,= || F, .
bEB(G,u—1)
However, as the strata are amorphous, it is technically difficult to define a notion
of perverse sheaf in this setup. We content ourselves here with proving just what
is necessary for us to conclude. Specifically, we will prove that the Kp-invariants of
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the nearby cycles of Rmyr.[F¢ are perverse, for any formal model of #¢¢ ,, and suf-
ficiently small compact open subgroup K, C G(Q,). Choosing these formal models
correctly will then make it possible to deduce that the cohomology is concentrated
in one degree on the largest stratum where it is nonzero.

Remark 1.16. Heuristically, the reason that Rmgr.Fy is perverse is that wyp is
simultaneously affine and partially proper (i.e., satisfies the valuative criterion of
properness). In classical algebraic geometry, this would mean that 7wy is finite,
and pushforward along finite morphisms preserves perversity. In general, partially
proper implies that Rmrgr. = Rmgr, so assuming that there is a Verdier duality
which exchanges these two functors, one has to prove only one of the two support
inequalities defining a perverse sheaf. This inequality is precisely Artin’s bound on
the cohomological dimension of affine morphisms.

Remark 1.17. The fact that the closure relations are reversed on the flag variety is
critical to our strategy. Namely, our assumption on py, ensures that the cohomology
should be “maximally ordinary”, and this makes it reasonable to hope that every-
thing comes from the p-ordinary locus. In our setup, the p-ordinary locus inside
the flag variety is the closed stratum, and 0-dimensional. In the naive moduli space
of p-divisible groups, the p-ordinary locus would be open and dense (cf. [Wed99)),
and the inductive argument outlined above would stop at the first step.

Remark 1.18. Recently, L. Fargues, [Farl6], has conjectured that to any local L-
parameter, there is a corresponding perverse sheaf on the stack Bung of G-bundles
on the Fargues-Fontaine curve, thus realizing the local Langlands correspondence as
a geometric Langlands correspondence on the Fargues-Fontaine curve. We conjec-
ture that the perverse sheaves Rrpgr«Qp on Flg,,, are related to these conjectural
perverse sheaves on Bung via pullback along the natural map s , — Bung, by
some form of local-global compatibility. In the Harris-Taylor case, one can be more
explicit, and this was the subject of [Sch11].

Acknowledgments. First, we wish to thank J.-F. Dat for many discussions
on the “geometrization” of the results of [Sch13b] using perverse sheaves on the
moduli space of p-divisible groups. The rough strategy of this argument was first
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to thank F. Calegari, L. Fargues, K. Kedlaya and S. W. Shin for many helpful
discussions, and C.-L. Chai for sending us a preliminary version of his work with
F. Oort on the “internal Hom p-divisible group”. Part of this work was completed
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number theory” at MSRI in Fall 2014; we thank the institute and the organizers for
the excellent working atmosphere. During that time, P. Scholze held a Chancellor’s
Professorship at UC Berkeley. Ana Caraiani was partially supported by the NSF
Postdoctoral Fellowship DMS-1204465 and NSF Grant DMS-1501064. This work
was done while P. Scholze was a Clay Research Fellow.

Notation and conventions. A nonarchimedean field K is a topological field
whose topology is induced by a continuous rank 1 valuation (which is necessarily
uniquely determined, up to equivalence). We denote by O C K the subring of
powerbounded elements, which is the set of element of absolute value < 1 under
the rank 1 valuation. If, in the context of adic spaces, K is equipped with a higher
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rank valuation, we denote by K+ C O the open and bounded valuation subring
of elements which are < 1 for this higher rank valuation.

We have tried our best to make our signs internally consistent, although the
reader may often feel the presence of unnecessarily many minus signs. As regards
slopes, we observe the following. We use covariant Dieudonné theory. Usually,
this sends Q,/Z, to (Z,,F = p) and pp~ to (Z,, F = 1); this is, however, not
compatible with passage to higher tensors. The underlying reason is that in the
duality between covariant and contravariant Dieudonné theory, there is an extra
Tate twist; for this reason, we divide the usual Frobenius by p, which gets rid of
this Tate twist. Thus, the covariant Dieudonné module for pi,e is (Z,, F = p~!) in
our setup, and one sees that the Frobenius operator does not preserve the lattice; in
general, the associated Dieudonné module will have slopes in [—1,0]. However, in
the passage from isocrystals to vector bundles on the Fargues-Fontaine curve, the
isocrystal (Qp, F' = p~1) is sent to the ample line bundle O(1), so the slope changes
sign once more, and in the end the usual slope of a p-divisible group agrees with the
slope of the associated vector bundle on the Fargues-Fontaine curve. We feel that
any confusion about signs on this part of the story is inherent to the mathematics
involved.

As regards cocharacters (and associated filtrations), we have adopted what we
think is the standard definition of the cocharacter p = pup corresponding to a
Shimura datum {h}; for example, in the case of the modular curve, u(t) = diag(t, 1)
as a map G,, — GLs. This has the advantage of being “positive”, but the disad-
vantage that virtually everywhere we have to consider p~! instead; e.g., with this
normalization, it is the set B(G, 1) which parametrizes the Newton strata. We
feel that on this side of the story, it might be a good idea to exchange u by =1,
but we have stuck with the standard choice.
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2. REFINING THE HODGE-TATE PERIOD MAP

In this section, we work with a general Shimura variety of Hodge type and we
prove that the Hodge-Tate period map from the corresponding perfectoid Shimura
variety factors through the expected flag variety.

2.1. Recollections on the Hodge-Tate period map. Let (G, X) be a Shimura
datum, where X is a G(R)-conjugacy class of homomorphisms

h: ResC/RGm — Gk.
Recall that (G, X) is a Shimura datum if it satisfies the following three conditions:

(1) Let g denote the Lie algebra of G(R). For any choice of h € X, its compo-
sition with the adjoint action of G(R) on g determines a Hodge structure
of type (—1,1),(0,0), (1,—1) on g;”

(2) h(i) is a Cartan involution of G*(R);

(3) G has no factor defined over Q whose real points form a compact group.

The second condition implies that the stabilizer of any h is compact modulo its
center.

A choice of cocharacter h determines, via base change to C and restriction to
the first G,,, factor, a Hodge cocharacter u : G,, — G¢. This allows us to define
two opposite parabolic subgroups:

Pth ={g €G] tli}m ad(u(t))g exists}, and
P,:={g €G] tlg% ad(u(t))g exists}.

The Hodge cocharacter p defines a filtration on the category Repg(G) of finite-
dimensional representations of G on C-vector spaces. Indeed, the action of G,,
on Repg(G) via p induces a grading on Repq(G) and we take Fil®(u) to be the
descending filtration on Rep(G) associated with this grading. Concretely, Fil? ()
is the direct sum of all subspaces of type (p’,¢’) with p’ > p. The parabolic
Pitd can equivalently be defined as the subgroup of G stabilizing Fil®*(u). The
opposite parabolic P, can be defined as the stabilizer of the opposite, ascending
filtration File(u), where Fil,(u) is the direct sum of all subspaces of type (p’,¢)
with p’ < p. Both conjugacy classes of parabolics are defined over the reflex field
FE of the Shimura datum, which is the minimal field of definition of the conjugacy
class {u}. Note that
M,, := Centg(u)

is the Levi component of both parabolics.

The two parabolics determine two flag varieties Flb&du and Flg , over E parametriz-
ing parabolics in the given conjugacy class. The choice of a base point & allows us
to identify Flscfv’du((C) ~ G(C)/P;*(C). There is an embedding

B X < FIF,(C),

called the Borel embedding, defined by h — Fil®(up). It is easy to see that the
Borel embedding is holomorphic. (There is also an embedding

X — FIG,#(C),

7Here, an action of C* on a C-vector space is said to be of type {(pi,q;)} if the vector space

decomposes as a direct sum of subspaces, on which the action is through the cocharacters z —
2z Piz—4i,
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which is antiholomorphic, defined in the natural way from the opposite filtration
Fil (1).)
Let K C G(Ay) be a compact open subgroup. Let

Sk(C) = GQNX x G(Ay)/K) .

When K is neat (so, when K is small enough), Sk (C) has the structure of an
algebraic variety over C (by a theorem of Baily-Borel) and has a model Sk over
the reflex field £ [Mil90].

FEzample 2.1.1. Let g > 1 and let
g
(Vo) = (Q%, 9 ((as), (b:)) = Y _(aibgri — agyibi))
i=1

be the split symplectic space of dimension 2¢ over Q. Let G := GSp(V,¢). The
hermitian symmetric domain X is the Siegel double space. Fix the self-dual lattice
A =72% in V. For every h € X, the Hodge structure induced by uj on V' has type
(=1,0),(0,—1) and V(=19 /A is an abelian variety over C of dimension g.

For K C G(Af) a neat compact open subgroup, the corresponding Shimura va-
riety S  is the moduli space of principally polarized g-dimensional abelian varieties
with level- K-structure. It has a model over the reflex field Q. It carries a universal
abelian variety A and a natural ample line bundle w given by the determinant of
the sheaf of invariant differentials on A. The flag variety Fls 5 parametrizes totally
isotropic subspaces W C V.

We say that a Shimura datum is of Hodge type if it admits a closed embedding
(G, X) = (G, X), for some choice of Siegel data (G, X). A consequence of this is
that the associated Shimura variety Sk (for some neat level K') carries a universal
abelian variety, which is the restriction of the universal abelian variety over S 7
One can regard Sk as a moduli space for abelian varieties equipped with certain
Hodge tensors, cf. below.

Let (G, X) be a Shimura datum of Hodge type and let (G,X) be a choice of
Siegel data, for which there exists an embedding (G, X) < (G, X). Fixing such an

embedding gives rise to closed embeddings Flgf) — Flgtg). By [Del71, Proposition

1.15], there exists some compact open subgroup K cC é(Af) with K = K N G(Ay)
such that there is a closed embedding of the corresponding Shimura varieties over
E,

Sk — S'f{ 0V0) FE.

Let p be a prime number. We will consider compact open subgroups of the forms
K = K? x K, C G(A%) x G(Qp), where K and K, are compact open. Fix a place
p of E above p. Let %#g, be the adic space associated with Flg , ®g E,. The
following is part of Theorem IV.1.1 of [Sch15b].%

Theorem 2.1.2. (1) For any sufficiently small tame level KP C G(A?), there
exists a perfectoid space Skv» over Ey, such that

SKP ~ @(SKPKP ®E Ep)ad.
KP

8The setup is slightly different, but the proof works verbatim.
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(2) There exists a G(Qp)-equivariant Hodge-Tate period map
THT : SK;D — ﬁééﬂ.

(3) The map gt is equivariant with respect to the natural Hecke action of
G(A%) on the inverse system of Sk» and the trivial action of G(A%}) on
Fl -

Recall that the Hodge-Tate period map [Sch15b, SW13] has the following de-

scription on points: for A/C an abelian variety of dimension g, the Tate module of
A admits the Hodge-Tate decomposition:

0 — (Lie A)(1) = TpA®z, C — (Lie A")Y — 0.

A point x € Sg k»(C,CT) corresponding to A/C together with a symplectic iso-
morphism T, A = Z29 (and extra structures) is mapped to the point myp(z) €
Flg ;(C,CT) corresponding to the Hodge-Tate filtration Lie(A) C C?9.

We note that one can think of the Hodge-Tate period map as a p-adic analogue
of the Borel embedding. The goal of this section is to prove the following theorem.

Theorem 2.1.3. (1) The Hodge-Tate period map for Si» factors through F#lg, ,
and the resulting map

7yt : SKp — ﬁégw

is independent of the choice of embedding of Shimura data.

(2) Fiz some p in the given conjugacy class, defined over a finite extension of
E. The tensor functor from Rep M, to G(Q,)-equivariant vector bundles
on Sir given as the composition

fp : Rep M,, = Rep P, — {G(Q,)—equivariant vector bundles on #¢ ,}

LLEN {G(Q,)—equivariant vector bundles on Sk»}
is isomorphic to the tensor functor

foo : Rep M), — Rep Pth — {automorphic vector bundles on Sk}
— {G(Q,)—equivariant vector bundles on Sk»} .

The isomorphism is independent of the choice of Siegel embedding, and
equivariant for the Hecke action of G(A?).

Remark 2.1.4. One may avoid choosing p by replacing Rep M,, with the category
of G-equivariant vector bundles on the space of cocharacters in the conjugacy class
of u. Note that after fixing any u, this space identifies with G/M,, and so G-
equivariant vector bundles are identified with representations of M,. We leave it
as an exercise to the reader to reformulate the theorem and its proof in this more
canonical language.

Let us first recall how the tensor functor f., is defined: any representation
& of M, determines a representation of Pjtd by making the unipotent radical act
trivially. Now, starting with a representation of Pﬁtd, we can define an automorphic
vector bundle on Sk as in Section IIT of [Mil90], provided that the level K is
sufficiently small: first, there is an equivalence of categories

= W(E)
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between Repg(P5td) and the category of Ge-equivariant vector bundles on FI3S,
(the functor in one direction is taking the stalk of the vector bundle above the pomt
corresponding to p). Then restriction along the image of the Borel embedding gives
a G(R)-equivariant vector bundle on X. Passing to the double quotient defining
the Shimura variety

Sk(C) =GQ)\ (X x G(A)/K)

over C defines the automorphic vector bundle

V(E) = G(Q) \ (W(E) x G(Af)/K).

The automorphic vector bundles V(&) are algebraic and, when the representation &
is defined over a finite extension E’ of E, V(&) is also defined over E'.

Remark 2.1.5. Proving that the automorphic vector bundles descend to the reflex
field makes use of an intermediate algebraic object between Sk and FlSGtiL, called
the standard principal bundle (see Section IV of [Mil90]), which is a G-torsor over
Sk . See the proof of Lemma 2.3.5 for more details.

In particular, f, is defined in an analogous way to f., except that it uses the
Hodge-Tate period map in place of the Borel embedding. The appearance of the
opposite parabolic P, in this picture forces one to look only at representations
inflated from the common Levi M,,.

2.2. The p-adic-de Rham comparison isomorphism. For an abelian variety
over C, its image under the Hodge-Tate period map is determined by the Hodge-
Tate filtration on Hj (A4, Q,) ®q, C. The Hodge-Tate period map as a map of adic
spaces Skv» — FUs, 7 is defined via a relative version of the Hodge-Tate filtration,
which is a filtration on the local system given by the p-adic étale cohomology of the
universal abelian variety over Sk, tensored with the completed structure sheaf of
the base. In fact, the Hodge-Tate filtration is defined more generally: see Section
3 of [Sch12b] for a construction of the Hodge-Tate filtration for a proper smooth
rigid-analytic variety over a geometric point.

As we will need to work with higher tensors in our analysis of Hodge type Shimura
varieties, our goal in this section is to give a construction of the relative Hodge-Tate
filtration in the case of a proper smooth morphism 7 : X — S of smooth adic spaces
over Spa(K, Ok), where K is a complete discretely valued field of characteristic 0
with perfect residue field k& of characteristic p. This will be done in a way that also
clarifies its relationship to the relative p-adic-de Rham comparison isomorphism.

The following sheaves on X6 are defined in [Schl3c]: the completed structure
sheaf @X, the tilted completed structure sheaf @Xb, the relative period sheaves
IB%(;{R « and Bggr, x as well as the structural de Rham sheaves OBXR x and OBgr, x.

We recall some of their definitions: the tilted integral structure sheaf (’A);"(b is the

(inverse) perfection of O /p (i.e., the inverse limit of OF /p with respect to the
Frobenius morphism).

Definition 2 2.1. (1) The relative period sheaf IB%dRX s the completion of
( y)[1/p] along the kernel of the natural map 6 : W( )1/p] = Ox.
(2) The relatwe period sheaf Bagr, x is IB%dR’X[é’ |, where & is any element that

generates the kernel of 6.
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Lemma 6.3 of [Sch13c] shows that & exists proétale locally on X, is not a zero
divisor and is unique up to a unit. Therefore, the sheaf Bqr, x is well-defined. When
X = Spa(C, O¢), we recover Fontaine’s period ring Bqr,c from this construction.
By construction, the relative period sheaf Byr, x is equipped with a natural filtration
FilinR7X = giBjR,X’ with gI‘O]BdRVX = @X~

We define the sheaf OIB%:;R’ v as the sheafification of the following presheaf. If
U = Spa(R, R") is affinoid perfectoid, with (R, R*) the completed direct limit of
(R;, R}), the presheaf sends U to the direct limit over i of the completion of

(B &waW (R)) [1/3]
along ker #, where
0: (R &w W (RM)[1/p] = R
is the natural map. We set OBgp x := OB§R7X[§*1] as before. The structural de

Rham sheaves O]BE;Q are equipped with filtrations and connections
VOB — OBY @0, Ok.

We have an identification (OIBE((&_{))V:O = ]B%SE).
We now recall the relative p-adic-de Rham comparison isomorphism for a proper
smooth morphism 7 : X — S of smooth adic spaces over K.

Theorem 2.2.2 ([Sch13c, Theorem 8.8]). Assume that Rim.[F, is locally free on
Sproet for all © > 0.9 Then, for all i > 0, Riw*Z,, is de Rham in the sense of
[Sch13c, Definition 7.5], with associated filtered module with integrable connection
given by Rimaqr«Ox (with its Hodge filtration, and Gauss-Manin connection). In
particular, there is an isomorphism

Riﬂ-*zp,X ®7, OB4r.s =~ R'Tar«Ox @0 OBar s
of sheaves on Spro¢t, compatible with filtrations and connections.

Moreover, we need to recall the two different B;R—local systems associated with
Rim.Z,. The first one, which is closely related to étale cohomology, is given by

M = Riﬂ'*Zp7X ®Zp.s BIR,S o~ ZW*BXR,X .
The other one, which is closely related to de Rham cohomology, is given by
My = (R'Tqr.Ox ®os OBf )V =" .

Note that the definition of My did not make use of the Hodge filtration. The relation
between these two lattices is given by the following proposition, which reformulates
the condition of being associated.

Proposition 2.2.3 ([Sch13c, Proposition 7.9]). There is a canonical isomorphism

M Dpt Bar,s = My ®pt Bar,s -

9This condition is verified if 7 is algebraizable, and has been announced in general by Gabber.
Another proof will appear in a forthcoming version of [Weil4]; the idea is to use (the new version
of) pro-étale descent to reduce to the case where S is w-strictly local, in which case one can redo
the finiteness argument over a geometric point. With Qp-coefficients, it has also been announced
by Kedlaya-Liu.
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Moreover, for any j € Z, one has an identification
(M N FilVMy)/(M N FilV ™' My) = (Fil ™7 Rimgr. Ox) @05 Os(j)
C gr'My = R'Tar.Ox ®0s Os(j) -
In particular, My C M.
In particular, we get an ascending filtration on
gr’M = Riﬂ*Zp,X B2, s Og
given by
Fil_j(R'mZpx ®; _ Os) = (MNFil’Mo)/(Fil'M N Fil/ M) .

Here, Fil_; = 0, and Fil; is everything. We call this filtration the relative Hodge-
Tate filtration.

Corollary 2.2.4. For all 3 > 0, there are canonical isomorphisms
gt (RimZyx @5 | Os) = (g R'mar.Ox) @05 Os(—j) -
Proof. This is immediate from Proposition 2.2.3 by passing to gradeds. (]
In particular, one sees that
Filo(R'm.Zy x @3 _ Os) = R'm.Ox ®os Os -
This map can be identified.

Proposition 2.2.5. The first filtration step Filg of the relative Hodge-Tate filtration
is given by the natural map

RiW*OX Rog @5 — Riﬂ'*@X = Riﬂ*zp X ®Z @S,
’ p,S
which is injective.

We note that in [Sch15b], only the first step of the Hodge-Tate filtration was
used (for ¢ = 1), and it was defined as the natural map

RiW*OX Rog @S — Riﬁ*@x.

Proof. We have to identify the image of My — grM. This can be done after
®p+ SOIB%(J{R’ g, as this operation preserves gr’. Now note that

M ®B:R,S OBXR,S = Riﬂ'dR*OX Rog OBXR,S s
and
M®g+ OBl s = R'marsOBJR x

by the relative Poincaré lemma. The map My — M is induced by the natural
inclusion Ox — OIBE:{R » Which commutes with the natural connections.
Passing to gr’ on the side of M replaces the relative de Rham complex of O]B%IR X

with just o x, as the differentials sit in positive degrees. We note that the composite
Ox — (’)IB%IR,X — Ox is the natural inclusion, as

Ox = gTOOBj{R’X = (Ox ®ww) W(@j(b))/(ker 0),
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using the map 0 : Ox Qw ) W(@;,,) — Ox, which is Ox-linear. It follows that
the map

Mo ®g+ OBl g — gr’M
agrees with the map
Ride*OX RKRog OB(—;R’S — sz*@X

which projects R fqr.Ox — R'f.Ox — R'f.Ox, and then extends OIEB(J{R,S—

linearly. Thus, its image is given by the image of R'f.Ox ®o, Os — Rif*(;)x.
By the identification of the graded pieces of the relative Hodge-Tate filtration, this
map has to be injective, giving the result. O

2.3. Hodge cycles and torsors. Let
(G, X) = (G, X)

be an embedding of Shimura data, as in the previous section, where G = GSp(V, ).
Let
Ve @ ve 0
r,s€N

By Proposition 3.1 of [Del82], the subgroup G of G is the pointwise stabilizer of a
finite collection of tensors (s,) C V®.

As above, the embedding of Shimura data determines an embedding of Shimura
varieties defined over E:

SK%SR ®q L.

Let A be the abelian scheme over Sk obtained by pulling back the universal abelian
scheme over the Siegel moduli space. Let 7w : A — Sk be the projection. The first
relative Betti homology of A, i.e. the dual of R'72"Q, defines a local system of
Q-vector spaces Vg on Sk (C). Since the Betti cohomology of an abelian variety
parametrized by X x G(Ay)/K gets identified with V', Vg can be identified with
the local system of Q-vector spaces over Sk (C) given by the G(Q)-representation
V and the G(Q)-torsor

X xG(Ap)/K = GQNX x G(Af)/K) = Sk(C) .

Corresponding to the G(Q)-invariant tensors (s, ), we get global sections (sq,5) C
Vg. Moreover, these are Hodge tensors for the Hodge structure on Betti homology,
since they are G-invariant, and in particular invariant under the action of any
heX.

Lemma 2.3.1. The G(Q)-torsor
X xG(Af)/K = GQNX x G(Af)/K) = Sk(C)
can be identified with the G(Q)-torsor sending any U C Sk (C) to
{8:V xU=Vglu | B(sa) = Sa,8} -

Proof. This follows from the fact that G C GL(V) is the closed subgroup which is
the stabilizer of the s,,. O
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Now assume that (G, X) < (G, X’) is a second symplectic embedding, where
G’ = GSp(V', ). Like for any representation of G, there is a G-invariant idempo-
tent e € V@ such that V' = eV®. Using e, any G-invariant tensor s/, € (V')® can
be transferred to a G-invariant tensor in V®. Moreover, one also has an identifica-
tion

Vi =eVy |

compatibly with their natural Hodge structures. We will generally assume that e
belongs to the family s,, by adjoining it if necessary.

Let Vgr := (R'Tqr«O.4)" be the first relative de Rham homology of A. This is a
vector bundle over Sk equipped with an integrable connection V. The base change
to C can be defined directly: We have to specify an analytic vector bundle ViR ¢ over
Sk (C), which corresponds to the algebraic vector bundle Vgg c. (Here, we make
use of the equivalence of categories between algebraic vector bundles equipped with
a flat connection with regular singular points and analytic vector bundles equipped
with a flat connection [Del70].) Then the relative de Rham comparison isomorphism
over C gives rise to an isomorphism

Vir,c = VB ®g Osk(0)

compatible with the connection.
In particular, the global sections (sq,p) C Vg give rise to horizontal global
sections (Sq,ar) C (ViR c)®, which are necessarily algebraic, i.e.

(8a,ar) C V?R,C .

The following lemma appears in work of Kisin [Kis10], based on Deligne’s result
that Hodge cycles on abelian varieties are absolute Hodge, [Del82].

Lemma 2.3.2. The tensors sq dr in V[‘?R’C are defined over E.

Proof. We sketch Kisin’s proof here. We work with each connected component of
Sk individually. Let x be the generic point of one such component, with function
field k (containing F) and choose a complex embedding of its algebraic closure
k — C. Let A, be the corresponding abelian variety over x. Let so B, be the
fiber of s, p over x. Let sq dr,z € Hle(AI)‘X’ ®y C be the image of s, B, under
the de Rham comparison isomorphism (this is also the fiber of s, qr over x.) Let
Sapa € HY(Asz, Qp)® be the image of s, g, under the comparison between Betti
and p-adic étale cohomology.

Note that by definition (sq dr,z, Sa,p,e) 18 @ Hodge cycle. By Deligne [Del82], it
is an absolute Hodge cycle. This means that s, qr 5 is defined over £ and it remains
to show that the action of Gal(k/x) on it is trivial. For this, it is enough to check
that the Gal(®/k)-action on s, , 4 is trivial, since a Hodge cycle is determined by
either its de Rham or étale component.

For this latter statement, consider the f(p—torsor over Siegel moduli space given
by ]'&nf% S Ry where f(z’, runs over open compact subgroups of f(p. Fixing a

K-point & of this tower above z, the Gal(i/k)-action on H}, (Ay z, Qp) is induced
by the map Gal(i/k) — K, describing the action on #. There is an analogous
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K,-torsor over Sk defined by 1&1}% Sk» K- This fits into a commutative, K-

equivariant diagram

SKP *)gf(p .

| |

Sk —— 5

Taking for  a lift to Sk», we see that the action of Gal(k/k) on H} (Azxz, Qp)
factors through a map

Gal(k/r) = K, C G(Qp).
Since the tensors sq,p . are G(Qp)-invariant, the Galois action on these tensors is
trivial as well. 0

Remark 2.3.3. If (G, X) < (G, X") is a second symplectic embedding with G’ =
GSp(V',4'), and e € V¥ is an idempotent with V' = eV ®, as above, then applying
Lemma 2.3.2 to the embedding G — GSp(V @ V', ¢ @ ¢’), one sees that the
isomorphism

/ ~ ®
Var,c = €drVgg ¢
is defined over E.

There is also a Qp-local system V, over Sk defined by restricting to Sk the first
relative p-adic étale homology of the family A. There are families of Hodge tensors
(Sa,p) C VE’ coming from the comparison between Betti and p-adic étale homology
(over C). By the argument in Lemma 2.3.2, the s, , are also defined over the reflex
field F.

Choose a cocharacter p in the conjugacy class X, which is defined over some
finite extension E'/E. We will base change everything to E’ from now on, but
drop E’ from our notation. Recall that Pztd can be identified with the parabolic
subgroup of G which stabilizes the descending filtration induced by p on a faithful
representation V of G. We can define a P;jtd—torsor Par over Sk as the torsor of
frames on the vector bundle Vyr which respect the Hodge filtration. More precisely,
for any U C Sk, we have:

Par(U) ={B: Varlv =V ®g Ov | B(Saar) = 5o ® 1, B(Fil*) = Fil},} ,

where Fil® on Vyg is the Hodge filtration and Fil; on V is the descending filtration
defined by p. The existence of one such isomorphism S follows from the fact that the
comparison between Betti and de Rham cohomology respects the Hodge filtrations
and matches the Hodge cycles s, with s, qr.

Lemma 2.3.4. The Pstd-torsor Par over Sk is independent of the choice of sym-
plectic embedding G — GSp(V, ).

Proof. Considering a second symplectic embedding G < GSp(V’,4’), there is a G-
invariant idempotent e € V® such that V/ = eV®. This determines a Hodge tensor
ep in Vg), and by Lemma 2.3.2 a tensor eqr in V(?R. This defines an isomorphism
of vector bundles V) =~ edRVSZ’R by Remark 2.3.3, which respects all the Hodge
tensors so qr and which respects the Hodge filtration on the two vector bundles
(because eqr is a Hodge tensor). This gives a map of Pjtd—torsors Par — Pir and
any such map is an isomorphism. [
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From the above P/jtd—torsor Par and from the projection P, — M,,, we get an
M,,-torsor Mgr over Sk via pushout:

MdR = Par Xpstd MM .

Since Pqyr is independent of the choice of symplectic embedding, so is Mggr. This
M,,-torsor corresponds to trivializing the graded pieces of the Hodge filtration on
Var individually. By the Tannakian formalism, Mggr is equivalent to a functor
from finite-dimensional representations of the Levi subgroup M, to vector bundles
on Sk.

Lemma 2.3.5. The M,-torsor Mar encodes the tensor functor
foo : Rep M), — {automorphic vector bundles on Sk}
in the statement of Theorem 2.1.3.

Proof. By construction, the tensor functor corresponding to Mygr factors through
the inflation map Rep M, — Rep P4

It remains to see that the functor corresponding to Pth maps a representation
of Pitd to the associated automorphic vector bundle on Sg. This is essentially
the definition of automorphic vector bundles, as given by [Mil90]. For this, note
that Pgr and the map Pstd — G define by pushout a G-torsor Gggr over Sk,
which parametrizes frames of Vgr respecting the Hodge tensors s, ar (but not
necessarily respecting the Hodge filtration). This is what Milne calls the standard
principal bundle. Since it was constructed from a 17-7;’t‘i—t01rsor7 Gqr is equipped with

a canonical map to the flag variety Flgi ~ G/P,. We have a diagram

Sk «—— Gar —— Flgi .

Proposition 3.5 of [Mil90] proves that automorphic vector bundles are obtained by
pullback from Flg ,, to Ggr followed by descent to Sx. We note that Theorems
4.1 and 4.3 of [Mil90] show that the diagram is algebraic and has a model over the
reflex field E. O

We now work with the local system V, determined by the relative p-adic étale
cohomology of A. This is a local system of (Q,-vector spaces over Si. After pulling

it back to the adic space Sk, we can think of it as a locally free Qp—module on

(SK)proét-
Regard P, as a group object in the pro-étale site of Sk by sending U to

P,(Os, (U)); we emphasize that we are using the completed structure sheaf in
this definition. We can now define a P,-quasitorsor &7, on the pro-étale site of Sk

from the Hodge-Tate filtration on V, ®g, (’jsK as follows. For U in (Sk)prost, set
Pp(U) = {8 : Vy2g Osilu = VooOsy|u | B(sap®1) = sa®1, B(Fils) = Fil (1)}

where Fil, on V, ® Og,. is the relative Hodge-Tate filtration and Fil, (1) is the
ascending filtration determined by p on V.

Lemma 2.3.6. The object &), over Sk is a P,-torsor.

Proof. Similarly to &7, one can define a G-quasitorsor ¥, over the pro-étale site of

Sk, by removing the condition on filtrations. The latter is the pushout of a G(Q,)-
torsor on the pro-étale site of Sk given by looking at isomorphisms between V, and
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V ®q, (@p respecting all tensors. This is a torsor, since, for example, it admits a
global section over the perfectoid Shimura variety Sk». In order to prove that &7,
is a torsor, we note that the type of the Hodge-Tate filtration on V), ®g, @SK is a
discrete invariant, so it is constant on each connected component of Sk . Therefore,
it suffices to check the statement above classical points.

Thus, let © € Sg (L, Or) be a point defined over a finite extension L of E, with
completed algebraic closure C. We may pick a point of Myr(C) above x, which
amounts to trivializing all Hodge cohomology groups (compatibly with the tensors).
Then the Hodge-Tate decomposition reads

Ve ®g, CEEPV;0C(—j)=VacC,
J

where V = @ r Vj is the weight decomposition according to the action of p, and we
are using any fixed choice of p-power roots of unity in C' in the second isomorphism.
Under this isomorphism, the Hodge-Tate filtration on the left-hand side is taken to
File (1), as desired.

The fact that s, , can be identified with s, under the Hodge-Tate isomorphism
is proved in [Bla94]. O

As before, this torsor is independent of the choice of symplectic embedding.

Lemma 2.3.7. The P,-torsor &, is independent of the choice of symplectic em-
bedding.

Proof. This uses the same idea as the proof of Lemma 2.3.4. Let (V,9) be a
symplectic embedding of G, which defines the P,-torsor &7,. For another symplectic
embedding G — GSp(V',4’), we define a P,-torsor &7, analogously. We can
relate the two symplectic embeddings given by (V,v) and (V',¢’) via a G-invariant
idempotent e € V¥, with p-adic realization e, € V. The tensor e, defines an
isomorphism of vector bundles

vV, ® Os,. ~ ep(VE ® Osy),

which matches the tensors s/, , € V/® with tensors in V.

Moreover, e, respects the Hodge-Tate filtration on the two vector bundles. In-
deed, e, is the image of eqr under the p-adic-de Rham comparison isomorphism.
At points of Sk corresponding to abelian varieties defined over number fields, this
follows from [Bla94]. Since both e, and eqr are horizontal sections, the result ex-
tends over all of Sk after checking it at such a point in every connected component
of Sg. The definition of the relative Hodge-Tate filtration in terms of the p-adic-de
Rham comparison isomorphisms then ensures that e, respects the Hodge-Tate fil-
tration, and the isomorphism induced by e, gives a map of P,-torsors &, — &,
which has to be an isomorphism. (Il

The P,-torsor &, defines a G-torsor ¢, by inflation along the map P, — G. For
any U c (SK)proéta

GU)={8:Vp g, @SK|U =V ®q @leU | B(Sap ®1) =sa ®1} .

The perfectoid Shimura variety Sk» can be regarded as a Kp-torsor in (Sk)proct-
From the moduli description of Skr, we see that ¢,(Sk») has a canonical section,
given by the trivialization of the p-adic Tate module of the universal abelian variety
A over Sk», which by definition respects the tensors (sq.p).
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The map P, - M, defines an M,-torsor .#, by pushout. This can be described
as a sheaf on (Sk)pro¢t as follows:

My(U) =1{B:g1,(V, ® Os,)lu = gra(1)(V ®q, Osi)lv | B(Sap ®1) =541} .

As in the complex case, the existence of &7, determines a map ¥, — Flq ,,
which is independent of the choice of symplectic embedding G — GSp(V,¢) by
Lemma 2.3.7. Here, we abuse notation by writing .#(¢ ,, for the sheaf on (Sk)proct
sending U to g ,(U). This and the given section of ¢,(Sk») define an element
of #lg,,(Skr), i.e. a map of adic spaces

THT SKp — ﬁég# .
By functoriality of this construction (for G' and for G := GSp(V, 1)), we have the

commutative diagram of adic spaces

SK:D —>S~f<p

|

97(;’# E— yf@ i

Therefore, the Hodge-Tate period map for Sk» factors through this canonical map
Sk» = Flq,,,. This proves the first part of Theorem 2.1.3.

The second part of Theorem 2.1.3 will follow from the next lemma and from the
comparison isomorphism between de Rham and p-adic étale cohomology.
Lemma 2.3.8. The M, -torsor #, encodes the tensor functor

fp i Rep M, = {G(Q,) — equivariant vector bundles on Si»}
in the statement of Theorem 2.1.3.
Proof. This is immediate from the definitions. U

We now compare the two M,,-torsors, Mgr and .#,. For this, we first consider
a P;td—torsor Par over Sk, which will be the sheaf on (Sk)prost defined by

Par(U) = {8 : Var®0s, Os,lu = V@Os, |u | B(Sa.ar®1) = s,®1, B(Fil*) = Fil* (1)},
where Fil® is the Hodge-de Rham filtration on Vgr. It is easy to see from the
definitions that P4r is the pullback of Pyr from Sk (ringed with Og,.) to (Sk)proct

(ringed with Og, ). We can define .#4r by pushout. This is also a sheaf on
(Sk)prost, parametrizing isomorphisms

gr*(Var @ Os,c) = gr*(1)(V ® Os,, )
which map the tensors sqo dr to so. Again, .#ygr is the pullback of Mgr from Sk
to (SK)proét~

Proposition 2.3.9. There is a canonical isomorphism Mar = M, of M,,-torsors
on (Sk)prost, independent of the choice of symplectic embedding.

Proof. The determinant representation GSp(V, 1) — G, gives rise geometrically to
the Tate motive, and is independent of the choice of symplectic embedding. Using
this, both torsors map to the torsor of trivializations Og, (1) = Os,.. Now, for any
J € Z, there is the isomorphism

gt/ (Var ®os,, Osi) = gr;(Vp ®g, Os,)(j)
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coming from the relative p-adic-de Rham comparison isomorphism, Corollary 2.2.4.
One gets a similar comparison for V(‘?R and V;?, and we know by [Bla94] that all
tensors so.dr Iesp. Sa,p are matched at points defined over number fields, and thus
globally.

Using these isomorphisms as well as the trivialization Og, (1) = O, , one writes
down the isomorphism .#gr = .#,. To check that it is independent of the choice
of symplectic embedding, one argues as before. O

As mentioned above, Proposition 2.3.9 implies the second part of Theorem 2.1.3,
once we use the Tannakian formalism in Lemmas 2.3.5 and 2.3.8 to reinterpret .Zgr
and .#, as tensor functors

Rep M, — {G(Qy) — equivariant vector bundles on Sk»}.
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3. THE NEWTON STRATIFICATION ON THE FLAG VARIETY

We start with some motivation. Assume that the Shimura varieties S are of
Hodge type and that K = KPK,, C G(Ay) is a compact open subgroup such that
K, is hyperspecial. This means that G extends to a reductive group over Z, and
that K, = G(Z,). Then (at least if p > 2) the Shimura variety Sk admits an
integral model ., by [Kis10]. Moreover, as in Section 1.4 of [Kis], we can define
a Newton stratification on the special fiber of .Zk, in terms of the Kottwitz set
B(G, u~1) (whose definition we recall below). Pulling this stratification back along
the continuous specialization map, we get a stratification on Sk, which in turn
can be pulled back to the perfectoid Shimura variety to get a Newton stratification
Skr = Lpenc,u1) 8% ,. There is a unique closed stratum, corresponding to the
basic locus and a unique open stratum, corresponding to the p-ordinary locus.

Our goal in this section is to define a stratification on the flag variety

Flo,= || F,
beB(G,p~1)

such that the following properties are satisfied:

(1) On points of rank one,
S?(P = Tr;[%"(ﬁég,,u) .

(2) All yf%’# are locally closed subspaces of the adic space Flq ,, in the
topological sense.
(3) The basic stratum is open, and the p-ordinary stratum is closed.

We will define this stratification independently of the one on the Shimura variety,
using relative versions of the Fargues-Fontaine curve [FF14] and a classification
result for vector bundles with G-structure over this curve, due to Fargues, [Farl5a].
We will reinterpret vector bundles over the curve as p-modules over the Robba
ring, & la Kedlaya-Liu [KL15], and use their results to conclude that the strata we
define are locally closed. In Section 4.3, we will see that this is compatible with the
stratification pulled back from the special fiber, in the sense described above, for
compact Shimura varieties of PEL type.

Throughout this section, our notation will be purely local, so fix a prime p and
a connected reductive group G over QQ,. Moreover, we fix a conjugacy class of
cocharacters y : G,, — G@p, defined over the reflex field £/Q,. Often, we will
assume that p is minuscule, meaning that in the induced action on the Lie algebra
of G, only the weights —1, 0 and 1 appear. However, for the moment, y is allowed
to be arbitrary.

3.1. Background on isocrystals with G-structure. We recall here the defini-
tion of the sets B(G) and B(G, p), originally due to Kottwitz [Kot85]. We start
with B(G). Let L := W(F,)[1/p]. Let o be the automorphism of L induced by the
pth power Frobenius on F,,. There is an action of G(L) on itself by o-conjugation,
defined by g +— hgo(h)~! for g,h € G(L). Then B(G) is defined to be the set of
o-conjugacy classes of elements b € G(L). (We note that instead of working with
]Fp here, we could work with any algebraically closed field of characteristic p, as
Kottwitz shows that the definition is independent of this choice.)

One can reinterpret this definition in terms of isocrystals with G-structure. Re-
call the following definition.
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Definition 3.1.1. An isocrystal over F, is a pair (V,¢) consisting of a finite-
dimensional L-vector space and a o-linear automorphism ¢ of V. The height of an
isocrystal (V, @) is the dimension of V over L.

An isocrystal with G-structure is an exact tensor functor

Repg, G — {Isocrystals/F, }.

For G = GL,,/Q,, the set B(G) is in bijection with the set of isomorphism classes
of isocrystals of height n over F,, via b+ (L™ bo). For general G, this extends to
a bijection between B(G) and isomorphism classes of isocrystals with G-structure.

The Dieudonné-Manin classification shows that B(GL,,) is in bijection with a
corresponding set of Newton polygons, via the slope decomposition of the isocrys-
tals. More precisely, any isocrystal (V, ¢) over IF‘p is isomorphic to a unique isocrystal

of the form
ve @ vim,
A=s/reQ

where A = s/r runs through rational numbers written in primitive form with r > 0,
the n) are nonnegative integers, almost all zero, and

1

V)\:(LT7 0) .

pS
The subspaces V>\GBM C V are uniquely determined, and referred to as the subspace
of slope \.

For a general reductive group G, an element b € B(G) is determined by a version
of the Newton polygon, and an additional finite datum encoded in the Kottwitz
invariant. In the following, fix a splitting of G@p and in particular a maximal torus
T C Gg,, and let X, (G) := X, (T) be the corresponding cocharacter lattice, which
comes with a dominant chamber.

Let us first recall the Newton map

v B(G) — (X*(G) ®Q)gom .

Here, I' := Gal(Q,/Q,) is the absolute Galois group of Q,, and (X.(G) ® Q)dom is
the set of dominant rational cocharacters. If we let I be the (pro-)algebraic torus
with character group Q, the latter set can be identified with the set of conjugacy
classes of Hom(Dg, ,Gg, ), on which I' acts naturally.

To construct the Newton map, Kottwitz assigns to any b € G(L) a slope ho-
momorphism v, € Hom(Dy,Gr). In the case of G = GL,, this gives the slope
decomposition of the corresponding isocrystal; in general, it is defined by the Tan-
nakian formalism. Changing b by a o-conjugate does not change the conjugacy
class of vy, and (thus) this conjugacy class is invariant under o.

However, the Newton map is not, in general, injective. In fact, v, is trivial if
and only if b is in the image of the natural injection H*(Q,, G) < B(G). Here, one
can identify the Galois cohomology group H'(Q,, G) with the isomorphism classes
of exact tensor functors

Repg, G — {Q,—vector spaces} .
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Such tensor functors embed fully faithfully into the category of isocrystals with G-
structure, via sending a Q,-vector space W to W ®q, L with the induced Frobenius
from L.

For this reason, Kottwitz also constructs a map

k1 B(G) = m(Gg,)r -

For G = GL,, this map is defined by b — x(b) = val,(detd) € Z. In general,
there is a unique natural transformation B( ) — m1( )r of set-valued functors on
the category of connected reductive groups over Q, with this property. (Kottwitz
defines his map in terms of the center of the Langlands dual group. See Section 1.13
of [RR96] for more on the definition using the algebraic fundamental group.) Again,
we abbreviate 71(G) = m1(Gg, ). Moreover, according to Theorem 1.15 of [RR96],
the natural transformation B( ) — m( )r fits into a commutative diagram

B(G) —— (X.(G) @ Q)" ,

| |

m(G)r —— m (G2 Q

where the lower horizontal arrow is given by averaging over all Galois conjugates.
Then Kottwitz proves that

(v,k) : B(G) = (X+(G) ® Q)gom * 1 (G)r
is injective.

The set (X.(G) ® Q)},,, admits a partial ordering. Under this ordering, we say
that v < v/ if v/ — v is a non-negative Q-linear combination of positive coroots. This
defines a partial ordering on B(G), where we say b < V' if v, < v and x(b) = k(b').

Now, recall that we have fixed a conjugacy class of cocharacters u : G,, — G@p.
The set of conjugacy classes of cocharacters of G@p is in bijection with the set
X.(@)dom- There is a natural map X.(G)aom — (X4 (G)@Q)L,,, given by averaging
over all Galois conjugates:

B 1
B= m Z v(w)
C P yecal(B/Q,)

for E’ large enough. Let p” be the image of p in 71 (G)r.

Definition 3.1.2. The subset B(G, ) C B(G) of p-admissible elements is the
subset of elements b for which vy, < fi and k(b) = .

In fact, we will really be interested in B(G, u~1), where u~! denotes a dominant
representative of the inverse of p.

3.2. The Fargues-Fontaine curve. The goal of this subsection is to define the
(adic) Fargues-Fontaine curve, and discuss some of its properties. For this, we start
with some background on the curve as in [FF14] and [Weil4], and then compare
with constructions of Kedlaya and Liu [KL15].

Let F be a co/rriﬂete algebraically closed nonarchimedean field of characteristic

p, eg. F = Fy((t)). Let Op C F be its ring of integers, i.e. the subring of
powerbounded elements. Fix w € F with 0 < |w| < 1; different choices will give
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rise to the same objects. First, we define the Fargues-Fontaine curve as an adic
space. Let

V(0,00) = Spa(W(Op), W(Or)) \ (plw] = 0) ,

where W(OF) is endowed with the (p, [])-adic topology. As in [Weil4], this space
admits a natural continuous map

a: y(Opo) — (0700) )

sending any point x € Y (g o) to

ey = @ o
log [p(Z)]

where Z is the maximal generalization of x, which corresponds to a continuous rank-

1-valuation on W(Op) taking nonzero values on [w] and p. For any interval I C

(0,00), we let Y5 C Vo,00) be the interior of a~(I). In the following proposition,

we use some terminology from [SW13].

Proposition 3.2.1. For any closed interval I = [s,r] C (0,00) with r,s € Q, the
space
Vi = Spa(Ry", RE")

is a sheafy affinoid adic space, where RE{?’T]’Jr is the p-adic completion of the integral

closure of

won [ 5

inside W (Or) ﬁ7 [w;/sq [1/p], and RE?T] = RE;’T]*[l/p]. More precisely, R&f’r]
is preperfectoid in the sense that RE?’T] ®QpK is a perfectoid K -algebra for any per-
fectoid field K/Q,.

In particular, Y(0,00) s an honest adic space.
Proof. The identification
Vi = Spa(RE, RETH)

follows from the definitions. By [KL15, Theorem 3.7.4], it is enough to show that
R[Iﬁ’r] is preperfectoid, for which cf. [KL15, Theorem 5.3.9]. One can also argue
as follows. Let K/Q, be any perfectoid field. We can consider the auxiliary space
Z = Spa(W(Or)[1/p], W(OFr)), where we endow W (Op) with the p-adic topology.
As on V0,0, P is topologically nilpotent, one gets a map V(g ) — Z, which is an
open embedding, and one can thus consider ); as a rational subset of Z. As the
base change of Z to K is perfectoid, or more precisely W (O F)®ZPK is a perfectoid
K-algebra, and the property of being a perfectoid K-algebra passes to rational
subsets, one finds that also RE{?’T] ®QPK is a perfectoid K-algebra. [

The space V(p,o) has an action of ¢, defined by taking the lift of the Frobenius
on Op. This p-action is properly discontinuous, as can be seen by observing that a
is equivariant with respect to the y-action if one lets ¢ act through multiplication
by p on (0,00). Therefore, the following definition is sensible.

Definition 3.2.2. The adic Fargues-Fontaine curve is given by Xp = y(o,w)/gﬂ.
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After defining the scheme version of the curve, we will discuss more precisely in
which sense this is a curve.

Often, we will be in the situation where we start with a complete algebraically
closed nonarchimedean field C' over Q,, and take F' = C”, the tilt of C. In that
case, there is a natural map 6 : W(Op) — O¢, which induces a natural (C, O¢)-
point of Y(g,o), and thus of X'r, which we denote by co € Xr(C,O¢). In fact, oo
is a closed point of X'r with residue field C. We will denote the inclusion

o : Spa(C,0¢) — Xp .

The completed local ring of X'r at co can be identified with the ring of periods
B;‘R’C, which is the ker §-adic completion of W(Op)[1/p], cf. also Definition 2.2.1.
Note that B;R,c is a complete discrete valuation ring, as expected for the completed
local ring of a curve.

There is a close relationship between vector bundles on X'z and isocrystals. Re-
call that L was defined as W (F,)[1/p]. A choice of an embedding F,, — O gives a
structure map Y(o,o0) — Spa(L,Or). If (V,pv) is an isocrystal, one can thus pull
it back to a vector bundle on Y g ) With a ¢-linear automorphism; by descent, this
gives a vector bundle on Xr. We denote the resulting functor by V — (V).

Theorem 3.2.3 ([FF14]). The above composition of functors induces a bijection

between isomorphism classes of isocrystals, and isomorphism classes of vector bun-
dles on Xp.

Remark 3.2.4. In fact, Fargues-Fontaine prove this result for the scheme version
of their curve, which we introduce below. However, by a GAGA result proved
in [KL15] and [Far15b], this is equivalent to the stated result for the adic curve.

It is important to note that this functor from isocrystals to vector bundles is
not an equivalence of categories; there are nonzero maps between vector bundles of
different slope, in general.

To define a scheme version of the curve, we define a natural line bundle Oy, (1)
on X, which we regard as ample.

Definition 3.2.5. For any d € Z, let Oy, (d) be the line bundle corresponding to
the isocrystal (L, p~%o).

Remark 3.2.6. This construction induces a map Z — Pic Xpr. It follows from
Theorem 3.2.3 that this is an isomorphism. Using this identification, one can define
the degree of any vector bundle on Xz by looking at the determinant line bundle.
This gives rise to a notion of slopes of vector bundles, and a Harder-Narasimhan
filtration. We warn the reader that if an isocrystal V is sent to the vector bundle
E(V), then the slopes of V and £(V) differ by a sign.

Now we define a scheme
XF = PI‘Oj (@dZQHO (XF, OXF (d))) .

There is a natural map of locally ringed topological spaces Xz — Xp. In particular,
there is a natural functor from vector bundles on Xr to vector bundles on Xf.
This functor is an equivalence of categories, cf. [KL15] and [Far15b]. The following
theorem summarizes some of the properties of Xp.

Theorem 3.2.7 ([FF14]). The scheme X is a regular, noetherian scheme of Krull
dimension 1 with field of constants Qp. All residue fields of Xr at closed points
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are algebraically closed complete extensions C' of Q, with C* = F. For any closed
point x € Xp, Xp \ {a} is the spectrum of a principal ideal domain.

Fargues, [Farl5a], has recently extended the classification of vector bundles to a
classification of G-bundles for any reductive group G over Q,. As it is technically
easiest for us to do so, we define G-bundles on X (or Xr) using the Tannakian
perspective.

Definition 3.2.8. A G-bundle on Xg (or Xr) is an exact tensor functor

Repg, G — Buny, = Buny, .

Using the functor from isocrystals over ]Fp to vector bundles on the Fargues-
Fontaine curve, we get a natural functor from isocrystals with G-structure to G-
bundles on Xp. We denote this functor by b — &p.

Theorem 3.2.9 ([Farlbal). The functor from isocrystals with G-structure to G-
bundles on X g induces a bijection on isomorphism classes.

In other words, any G-bundle on X is isomorphic to &, for a unique b € B(G).

Next, we discuss the relationship between vector bundles on the Fargues-Fontaine
curve and ¢-modules over the Robba ring. The Robba ring is the ring of functions
defined on a small unspecified annulus Y,

Definition 3.2.10. The Robba ring is the direct limit
7~2F = ligHO(y(O,T]’ Oy(l],r]) .

One can make this more explicit, cf. [KL15, Definition 4.2.2]. The space of global
sections R, = H%(Y,41, Oy) can be identified with the inverse limit of the Banach

algebras 7~€[I§’T] as s runs over (0, r], and thus acquires a structure of Fréchet algebra.
Let

W(Or) <p> = Z[Cn]p" | cn € @ " Op, ca@w™T = 0

(]! =

Then 7@}} can also be described as the Fréchet completion of

W (OF) <[w§’1/> m = { D lealp” | en € Fenw™” — 0}

n>—oo

along the norms max,,{|c,@"/%|} for s € (0,7]. When ' < r, there is a natural
inclusion map 7@} — 7@}/ coming from restriction of global sections. The p-action
on YV(0,00) sends Vs ;1 isomorphically to Vs pr) and V(g ) isomorphically to Vo pr-
Therefore, ¢ induces isomorphisms ﬁ%’r] = 7@5/ Pr/Pl and 7@} = 7@;/ P and thus
an automorphism of Rr.

We note that the Robba ring is the ring of functions defined on some small punc-
tured disc of unspecified radius around the point Spa(F, Or) of Spa(W (Op), W (OFr)).

Definition 3.2.11. A p-module over Rp is a finite projective Rp-module M
equipped with a p-linear automorphism.

Remark 3.2.12. As ZNQF is a Bézout domain, cf. [KL15, Lemma 4.2.6], any @-module
M is finite free as R p-module.
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Theorem 3.2.13 ([KL15, Theorem 6.3.12]). There is an equivalence of categories

{Vector bundles on Xz} ~ {gp—modules over 7~2F} .

The proof is based on the observation that any ¢-module over Ry is defined
over 7@} for r small enough. This can be turned into a p-module over V(g ], and
then be spread to a ¢-module over all of Y o) via pullback under Frobenius. By
descent, this gives a vector bundle over Xr.

3.3. The relative Fargues-Fontaine curve. In this subsection, we extend the
constructions to the relative setting. Here, our basic input will be a perfectoid
affinoid algebra (R, RT) of characteristic p.!° Let @ be a pseudouniformizer of R.
Define

Yio,00) (R, BT) = Spa(W(R"), W(R")) \ (p[w] = 0) .
Many constructions carry over to this relative situation. In particular, there is still
a continuous map

a: V(0,00 (R, RT) — (0,00)

defined in the same way. Again, we let Y;(R,R") C Y(0,00)(R, RT) denote the
interior of the preimage a~1(I), for any interval I C (0,00). Proposition 3.2.1
extends to the relative setting.

Proposition 3.3.1. For any closed interval I = [s,r] C (0,00) with r,s € Q, the
space
Vi(R,R*) = Spa(Rly" Ry

is a sheafy affinoid adic space, where R[I;’;{]f is the p-adic completion of the integral

closure of

W(RT) {[wlf/r] 7 [w;/ﬂ]

inside W(RT) [wf/r], [w;/s]} [1/p], and RE;’T] = R[I;'_igf[l/p].n More precisely,

R[I‘;’T] is preperfectoid in the sense that R[I‘;’r](fé@pf( is a perfectoid K-algebra for
any perfectoid field K/Q,.

In particular, Y o0\ (R, RT) = U; Yi(R,R") is an honest adic space.
Proof. The same arguments as for Proposition 3.2.1 apply. (I

Again, there is a totally discontinuous action ¢ of Frobenius.

Definition 3.3.2. The relative Fargues-Fontaine curve X (R, R") is the quotient
y(O,oo) (R7 R+)/()OZ

As before, there is a line bundle Ox (g g+)(d) for any d € Z, and one can form
the scheme

X(R) = Proj (Ba>oH’ (X(R,R"), Ox(g,r+)(d))) .12
This comes with a map of locally ringed topological spaces X(R, R™) — X (R), and
one has a relative GAGA result.

10We will not fix a perfectoid base field inside R, although one can always find one.
HOne can check that R[;’T] depends only on R, and not on RT.
12As notation suggests, this does not depend on Rt.



30 A. CARATANI AND P. SCHOLZE

Theorem 3.3.3 ([KL15, Theorem 8.7.7]). The pullback functor from vector bundles
on X (R) to vector bundles on X (R, RT) is an equivalence of categories.

Moreover, we can define 7%’1} as the inverse limit of the Banach algebras ﬁ;’r]
as s runs over (0,7] and the relative Robba ring Ry as the direct limit of the
Fréchet algebras 7~2TR over r > 0. Again, a ¢-module over Ry is a finite projective
R g-module M equipped with a -linear automorphism.

Theorem 3.3.4 ([KL15, Theorems 6.3.12, 8.7.7]). There is an equivalence of cat-
egories
{Vector bundles on X(R,R")} ~ {w—modules over 7~€R} .

3.4. The mixed characteristic affine Grassmannian. Our goal in this section
is to construct an isomorphism between the flag variety ¢, and the Schubert cell
corresponding to p in the B:R—Grassmannian for G, assuming that p is minuscule.
This is an analogue of a classical statement about the usual affine Grassmannian.

Throughout this section, G is a connected reductive group over Q,. First, we
define the version of the affine Grassmannian that we will consider. Let (R, R")
a perfectoid affinoid algebra over Q,, in the sense of [KL15, Definition 3.6.1].13
One has the surjective map 6 : W(R”) — R™T, whose kernel is generated by a
non-zerodivisor §& € W(RT). Then IB%(J{Ry g is defined as the ¢-adic completion of
W(R)[1/p], and Byr g = IBBIR’R[f_l}. We note that, as notation suggests, these
rings are independent of the choice of RT.

Definition 3.4.1. Let Grg(irR be the functor associating to any perfectoid affi-
noid Qp-algebra (R,R*) the set of G-torsors over Spec IB%:;RR trivialized over
Spec Bar,r, up to isomorphism.

We refer to [Weild] for a more thorough discussion of this object, in the case
G =GL,.

If (R,R") = (K,K™") where K is a perfectoid field, then IBSIR’K is a complete
discrete valuation ring, abstractly isomorphic to K[[¢]]. In that case, one sees that

+
Grng(K) Kt = G(BdRK)/G(BgR,K) :

In particular, assume that K = C is algebraically closed, and fix an embedding
Qp — C. Then, using the Cartan decomposition

G(Bar,c) = |_| G(B(TR,c)N(g)_lG(BIR,C)

HEX (G)dom

(where the induced embedding Q, = Bl  is used to define (¢) for a cocharacter
1 Gm — Gg, ), we can associate an element of 1i(z) € X4(G)dom to any point of

T € (?rerS;‘i+I*'(C'7 O¢). This is the decomposition into Schubert cells.!*

Now, we fix a conjugacy class p of cocharacters G,, — Gg,, defined over E.
In the following, we assume that R is an F-algebra. Any choice of representative
p: G — Gg, in this conjugacy class determines an ascending filtration File(u)
on Rep@pG, where Fil,,, (1) is the direct sum of all subspaces where u acts through

131f R contains a perfectoid field, this agrees with the definition of [Sch12al, and this case

would suffice for our discussion here.

14We have inserted a slightly nonstandard sign in p(€)~1.
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weights m’ > —m.'® Let Fg ,,/E be the rigid-analytic flag variety parametrizing
all such filtrations. The choice of y identifies #q , = G/P,, where P, C G is the
stabilizer of Filg ().

+ +

Definition 3.4.2. Let Grg‘fi C Grng ®q, E be the subfunctor sending a perfectoid
affinoid E-algebra (R, RT) to the set of those G-torsors over Spec IB%:IR R trivialized
over Spec Bar, g whose relative position p(x) is given by w, for all x € Spa(R, RT).

Proposition 3.4.3. There is a natural Bialynicki-Birula map

TG, GerH — Jg(;u s
where we regard Fla,, as a functor on perfectoid affinoid E-algebras.

Proof. By the Tannakian formalism, it is enough to prove this result in the case
G = GL,,. In that case, wrlte w=(ki,...,k,) as a tuple of n integers, k1 > ko >
. > k,. The functor GrG parametrizes BdR p-lattices A C Bjy p, ie. finite

projective submodules such that A[1/¢] = B r- Any such lattice gives rise to a
filtration on R™ by setting

Fil,, R" = (Big z)" NE™A)/((EBigr p)" NE™A) .
Using the fact that a finitely generated R-module M for which dimg(,) M®@rC(x) is
the same for all = Spa(C(z), O¢(s)) — Spa(R, RT) is finite projective, cf. [KL15,
Proposition 2.8.4], one verifies that R™/Fil,, R" is a finite projective R-module for
any m.
Note that Fila R™ is an increasing filtration, where the rank of Fil,, R™ is given

by the largest ¢ such that k; > —m. The same type of filtrations is parametrized
by Zlg,,, as desired. O

Lemma 3.4.4. Assume that p is minuscule, and that (R, RT) = (K, KT), where
K/E is a perfectoid field. Then

TG ! GerR(K K" — Pl (K, KT)
is a bijection.
Proof. Recall that IB%dR x is a complete discrete valuation ring with residue field K.

By the Cohen structure theorem, we may choose an isomorphism IB%IR x = K[[€]].
This identifies

GerR(K KT) =G(K((¢))/GEK[[E]) ,

and the Bialynicki-Birula morphism becomes the Bialynicki-Birula morphism for
the usual affine Grassmannian for G/Q,. This is known to be an isomorphism,
cf. e.g. [NPO1, Lemme 6.2]. O

Theorem 3.4.5. Assume that u is minuscule. Then the Bialynicki-Birula mor-
phism

TG+ GI“G — yf@ b
is an isomorphism.

150ne reason the minus sign appears here is for consistenty with the global definitions, where
type (p, q) refers to characters z +— z7 Pz~ 4.
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Proof. In the proof, we will use the Tannakian formalism. This interprets GrgIR as
the associations mapping any V € Rep G to a lattice Ay C V ® Bggr, compatibly
with tensor products and short exact sequences.

First, let us check injectivity of mg,,. Thus, take two (R, R™)-valued points

n
T,y € Grgfg (R, R") which are sent to the same point of F¢,,. We have to show
that the corresponding lattices Ay ., Ay, agree for all V€ Rep G. But at any
point z € Spa(R, RT) with completed residue field K (z), Lemma 3.4.4 implies that

+ — +
Ava ®]E%IR’R IEBdR,K(z) =Avy ®1B3'RYR BdR,K(z) :

One concludes that Ay, = Ay, by applying the following lemma to all elements
of AV@, and Av7y.

Lemma 3.4.6. Let A be a finite projective B(J{R p-module, and a € A®p+  Bgr,r
gl dR,R

any element. Assume that for all z € Spa(R, R™) with completed residue field K(z),
ac Aoy B K(2)" Then a € A.
dR,R ’

Proof. We may choose m > 0 minimal such that a € £~™A, and assume m > 0
for contradiction. Then a induces a nonzero element a of the finite projective R-
module £~™A /™LA, By assumption, the specialization of @ to K(z) vanishes
for all z € Spa(R, RT). But an element of R vanishing at all points of Spa(R, R™)
is trivial, as R is reduced. ([

Now, to prove surjectivity, we first observe that Grrgd+R is in fact a sheaf for
the pro-étale topology used in [Sch13c].' More precisely, we allow covers Y =
Spa(S,S*) — X = Spa(R, RT) which can be written as a composite Y — Yy — X,
where Y — Y[ is an inverse limit of finite étale surjective maps, and Yy — X is
étale. This pro-étale topology of perfectoid spaces is defined in [KL15, §9.2]. The
descent result we need is [KL15, Theorem 9.2.15]. Indeed, using the Tannakian
formalism, it is enough to prove that one can glue finite projective IB%IR’ r-modules
in the pro-étale topology. As IB%IR’ g is &-adically complete with £ a non-zerodivisor
and IB%CTR’ r/§ = R, a standard argument reduces us to gluing finite projective R-
modules, which is precisely [KL15, Theorem 9.2.15].

Thus, we see that it is enough to construct, for any representation V' of G, a IB%(;“R—
local system My C V ® Bgr on the pro-étale site of ¢ ,,, compatibly with tensor
products and short exact sequences, which maps to the correct filtration under the
Bialynicki-Birula morphism. Indeed, by pullback, this will induce a similar IEBXR—
local system on the pro-étale site of Spa(R, R") for any (R, R™)-valued point of

Flc, ., which by the descent result above gives an (R, RT)-point of Grg‘j{l}.

Now note that any representation V of G gives rise to a filtered module with inte-
grable connection (V ® O, ,,id® V,Fil_,), where Fil, is the universal ascending
filtration parametrized by F#¥¢,, (so that Fil_, is a descending filtration). Because
1 is minuscule, this filtered module with integrable connection satisfies Griffiths
transversality (with the same proof as in the complex case, cf. [Del79, Proposi-
tion 1.1.14]). Now [Sch13c, Proposition 7.9] constructs a corresponding B;-local
system My C V ® Bqr on the pro-étale site of %l ,, and this construction is
compatible with tensor products and short exact sequences. One verifies that the
induced filtration is correct, finishing the proof. O

161t is also a sheaf for stronger topologies as used in [Weil4], but we do not need this here.
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3.5. Vector bundles over X and the Newton stratification. The goal of
this subsection is to define the Newton stratification on #¢ ,,, where G/Q, is a
reductive group, and u is a conjugacy class of minuscule cocharacters, defined over
the reflex field E. The idea is that, given a (C, O¢)-point of Flg , = Grgi‘j7 one
can modify the trivial G-bundle over X along co to obtain a new G-bundle over
Xcv, and therefore (by Fargues’ theorem) an element of B(G).

Fix any perfectoid affinoid (R, R*) over Q,. We recall how to construct a vector
bundle over X (R’, R*") from a BJ p-lattice in Bljy . First note that, by GAGA
for the curve, it is enough to define a vector bundle on a scheme version X (R) of
X(R’, R°"). Let Z be the image of the canonical closed immersion

i : Spec R — X(R’) .

Then Spec IBBIR’R is the completion of X(Rb) along Z. Moreover, Spec Bgr, r can
be identified with the fiber product of Spec BIR’ g and the complement of Z over
X(R).

Theorem 3.5.1 ([KL15, Theorem 8.9.6]). There is an equivalence between the
category of vector bundles over X (R?) (or over X(R’, R*")) and the category of
triples (My, Mo, 1), where M, is a vector bundle on X (R*)\Z, My is a vector bundle
over Spec IB%XR’R, and ¢ is an isomorphism between M |spec Bag n ond Ms|spec Bar.r -
This equivalence is compatible with tensor products and short exact sequences.

In particular, one gets a functor from IB%IR g-lattices in Bip p by gluing it to the
trivial rank n vector bundle on X (R®)\ Z.

Corollary 3.5.2. For any perfectoid affinoid Q,-algebra (R, R™), there is a natural
map

+
E: Grng(R7 R*) — {G—bundles over X(R’, R"T)} .

Proof. If G = GL,, this follows from the discussion above. In general, it follows
from the Tannakian formalism. ([l

In particular, consider the case where (R, RT) = (C,O¢), with C/Q, complete
and algebraically closed, and O¢ C C' its ring of integers; moreover, fix an embed-
ding Q, <+ C. Using Fargues’ classification of G-bundles, Theorem 3.2.9, one gets
a composite map

b(-) : Gr2i(C,00) = B(G) : @ b(E(x))

classifying the isomorphism class of the associated G-bundle £(z). We will need to
know the following compatibility between p and b.

Proposition 3.5.3. Let G be any reductive group over Qp, and j any conjugacy

+
class of cocharacters (not necessarily minuscule). For any x € Grgf‘i(o, Oc¢) with
b=b(E(z)), one has b € B(G,u™1).

Proof. Unraveling the definition of B(G, u~!), we have to prove two separate state-
ments. The first statement is v, < p~! as elements of (X.(G) ® Q)},,,. This
reduces to the case of G = GL,, by [RR96, Lemma 2.2]. In that case, the statement
is the following.
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Lemma 3.5.4. Let £ be a vector bundle of rank n over Xc», together with a
trivialization outside the point oo. Its relative position from the trivial bundle on
X is measured by a cocharacter u(€) of GL,,. Let vg € (X.(GLp)®Q)dom be the
Newton polygon of €, with slopes {\; | € =P, Ox_, (Xi)}. One has the inequality

Ve j ,u(g) )
i.e. “The Newton polygon of £ lies above its Hodge polygon”.}”

Proof. We adapt the original argument in [Kat79]. By considering exterior powers
of vector bundles, it suffices to check that

(1) the Newton and Hodge slopes match for the top exterior power of £, and
(2) the first slope of the Newton polygon of £ always lies above the first slope
of the Hodge polygon of £.

The fact that the Hodge and Newton slopes match in the case of line bundles
on Xrp ¢ is a direct verification: The modification £ is given by the lattice £ o,
]B%;fmc = ¢ 9Byg, ¢ for a unique d € Z, and in fact u(€) = d € X.(GL1) = Z in our
normalization. The resulting line bundle is given by Ox» (d), which is of slope d, as
desired.

For the second part, up to twisting, we may assume that the first slope of the
Hodge polygon is 0, in particular all Hodge slopes are nonnegative. This implies
that

(E(—;R,C)n ce Qox_, BIR,C .

This, in turn, implies that the trivialization of £ away from oo extends to an
injection (’)}}Cb — &£. We have to show that all slopes of £ are nonnegative, so

assume for contradiction that there is a quotient & — Ox_, (A) with A < 0. This
induces a nonzero map O;L(Cb — Ox,, (A\). On the other hand, there are no nonzero
maps Ox_, — Ox_, (A) by [FF14]. O

The other part of the condition b € B(G, u~1) concerns the Kottwitz map, and
is given by the following lemma.

v
Lemma 3.5.5. The composition Grgfi(c, Oc) — B(G) % m1(Q)r is constant,

and equal to —p.

Proof. We note that the map in question is functorial in (G, ). We first reduce to
the case where G has simply connected derived group by making a central extension
G — G (cf. [Kot85, 5.6]); picking any lift & of u, the resulting map

BT BT,
Gré‘j; (C,0¢) — GrGj’MR (C,0¢0)

is surjective, as follows from the Cartan decomposition, so it is enough to prove the
result for (G, fi).

Now if G has simply connected derived group G49¢*, then T = G /G4 is a torus
for which 71 (G)r — 71 (T')r is an isomorphism; thus, we are reduced to the case of
a torus.

17We remind the reader that the correspondence between isocrystals and vector bundles on
X reverses slopes, so that this statement translates into b(£)~! € B(GLn,u(€)), which is
equivalent to b(E) € B(GLn, u(E)~1).
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If G = T is a torus, we may find a surjection T — T, where T is a product of
induced tori Resg /g, Gm. Arguing as before, we are reduced to the case of T', and

then to the case ' = Resk,q,Gm. In that case, m1(T)r = Z (cf. [Kot85, Lemma
2.2]), which is torsion-free, so it is enough to identify the image in m (G,,) = Z
under the norm map Normg g, : T — G,,. Finally, we are reduced to the case
G = Gy, which is part of Lemma 3.5.4. a

O

Now fix a minuscule p as above, defined over E. The inverse of the isomorphism
ma,, in Theorem 3.4.5 gives rise to a composition

.
€ : Pl u(R,RY) — Gro™ (R, R*) — {G—bundles over X (R, R"")} .
Definition 3.5.6. The map
\Ftg.| — B(G)

sends any (C,C™T)-valued point © € Flg ,(C,CT), where C is a complete alge-
braically closed extension of E and CT C C is an open and bounded valuation
subring, to the isomorphism class of the associated G-bundle E(x), which by Theo-
rem 3.2.9 is given by an element of B(G).

For any b € B(G), we let ﬂf%# C Flg,, be the subset of all points with image
b.

One easily checks that this map is well-defined as a map on |Flg |, ie. is
independent of the choice of complete algebraically closed extension of the residue
field at any point. We remark that by definition a higher rank point has the same
image as its maximal, rank 1, generalization, and therefore the map factors over the
maximal hausdorff quotient of |#¢¢ ,,|, which can be identified with the topological
space FLoh underlying the corresponding Berkovich space.

Proposition 3.5.7. (1) The map b(-) : |Flg,,| = B(G) is lower semicontin-
uous.
(2) The image of the map b(-) : |Fla | — B(G) is contained in the set of
pu~t-admissible elements B(G, ).

Remark 3.5.8. In [Rapl5, Proposition A.9], based on the discussion here, it is
proved that in fact the image of |#l¢ | — B(G,u™1) is all of B(G,p™1).

Proof. The second part follows from Proposition 3.5.3 above. For the first part,
by the definition of the partial ordering on B(G), and the fact that the Kottwitz
map is constant by the second part, it remains to prove semicontinuity of the
Newton map. We may pick an affinoid perfectoid space Spa(R, R") with a map
to Flqg,, which is a topological quotient map, by using a pro-étale cover. It is
then enough to show that the composite map [Spa(R, R")| — | % .| — B(G) is
lower semicontinuous. But semicontinuity of the Newton map can be checked on
representations of G (cf. [RR96, Lemma 2.2]), so pick a representation of G. We
get a corresponding vector bundle over X' (R’, R°T). Now, the result follows from
Theorem 7.4.5 of [KL15], using Corollary 3.3.4. O
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Corollary 3.5.9. The strata ﬁél&;’u are locally closed in Flq ;. More precisely,
the stratum corresponding to the basic element is open in Flq,,,, and the strata
b . _ b
Fg, = | | 7,
b=b!
are closed.

Proof. This follows immediately from Proposition 3.5.7. ]
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4. THE GEOMETRY OF NEWTON STRATA AND IGUSA VARIETIES

In this section, we will return to the global setup, but will in addition assume
that the Shimura datum (G, X) is of PEL type, and has good reduction at p. This
means that they will admit smooth integral models which are moduli spaces of
abelian varieties equipped with polarizations, endomorphisms and level structure.
Our goal is to understand the fibers of the Hodge-Tate period map

THT SK:D — f/\fGM

defined in Theorem 2.1.3 in terms of the Igusa varieties introduced by Manto-
van, [Man05].

We start with some preliminaries on p-divisible groups, which recall material
from [SW13] as well as a construction of Chai and Oort. We then express the
Newton strata in Si» in terms of Rapoport-Zink spaces and Igusa varieties, in the
spirit of [Man05].

4.1. Preliminaries on p-divisible groups. We recall the notions of Tate module
and universal cover of a p-divisible group as used in [SW13], together with some of
their properties. Let Nilp be the category of Z,-algebras on which p is nilpotent.
If R is a p-adically complete Zy-algebra, let Nilp$ be the opposite category to
the category of R-algebras on which p is nilpotent. A p-divisible group G can be
thought of as an fpqc sheaf on Nilp%' sending an R-algebra S to li_r)n(] [p"](S).

Definition 4.1.1. (1) The fpgc sheaf T,,(G)(S) = @Tbg[p”](S) on Nilpy is
called the (integral) Tate module of G.

(2) The fpqc sheaf G(S) = Liinp‘gﬁg G(S) on Nilp® is called the universal cover
of G.

We note that T,(G) is a sheaf of Z,-modules, while G = T},(G)[1/p] is a sheaf of
Qp-vector spaces. We can canonically identify

T,G = #om(Q,/Z,,G),G = Hom(Q,/Z,,G)[1/p].

Proposition 4.1.2. (1) If G is connected, then it is representable by an affine
formal scheme with finitely generated ideal of definition. If Lie G is free of
dimension r then

G ~ Spf R[[z1,...,z.]].

(2) If p: Gi — Go is an isogeny, then the induced morphism p : Gi — G is an
isomorphism.

(3) If R is perfect of characteristic p, G is connected and Lie G is free of di-
mension r then

G ~ Spf R[[xi/pm, TP

(4) If R is perfect of characteristic p, G is connected and Lie G is free of di-
mension 1 then

T,G ~ Spec R[[xi/pw,...,xi/poo]]/(xl,...,xr).

Proof. The first part is proved in [Mes72]. The remaining results are proved
in [SW13]: the second and third parts in Proposition 3.1.3 and the fourth part
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follows from the first part, the third part and the short exact sequence of sheaves
on Nilp%’ given by i

0—-T,6+G—G—=0.
(This short exact sequence is a restatement of Proposition 3.3.1 of [SW13] in the
case when G is connected: the Tate module is the closed subfunctor of G given by
pullback along the natural map G — G - projection onto the last coordinate - from
the zero section in G.) O

The universal vector extension E'G of G is a crystal on the nilpotent crystalline
site of R defined in [Mes72]. Its Lie algebra Lie EG can be made into a crystal on
the crystalline site of R by [BBM82], which we will denote by M(G).

If G is a p-divisible group over F,, the Dieudonné module D(G) is obtained by
evaluating the crystal M(G) on the PD thickening W (F,) — F,. Then D(G)[1/p] is
an isocrystal over L, as defined in Section 4. Here, the Frobenius ¢g on D(G)[1/p]
satisfies

D(9) € ¢o(D(@)) € p~'D(G) ,
and ppg is the Frobenius usually considered.!® We will call a p-divisible group G
over IF‘p isoclinic if the corresponding isocrystal has only one slope. If this slope is
given by —\, we say that G is isoclinic of slope A, so that p,e is isoclinic of slope
1.

Given a p-divisible group G over F,, we can use the isocrystal D(G)[1/p] to con-
struct a vector bundle £(G) over the Fargues-Fontaine curve X, for any complete
algebraically closed nonarchimedean field F' D F),.

Ezample 4.1.3. If G = Q,/Z,, then D(G) = L with ¢g = 0, and £(G) = Ox,.. If
G = ppe, then D(G) = L with pg = p~to, and £(G) = Ox,(1).

On the other hand, one can use the schematic version of the Fargues-Fontaine
curve to build a vector bundle corresponding to a p-divisible group over O¢/p,
where C' is any complete algebraically closed extension of QQ, with ring of integers
Oc¢/p. Define A, to be the p-adic completion of the PD envelope of the surjection
W(0%) — Oc¢/p and Bl = Auis[l/p]. If G is a p-divisible group over the
semiperfect ring O¢/p, then its Dieudonné module is a finite projective A is-module
M(G) obtained by evaluating M(G) on the PD thickening A5 — Oc¢/p. Then
M (G)[1/p] is a BE, .-module equipped with a Frobenius-semilinear map ¢g. Recall,

cf. [FF14], that the schematic Fargues-Fontaine curve can also be defined as
_d
ch = Proj <@d20 (Bctis)ipip ) .

We associate to G the vector bundle E(G) on X» corresponding to the graded
module

Sazo (M(G)[1/p)7™".
Theorem 4.1.4. (1) For any p-divisible group G over Oc/p, there exists a
p-divisible group H over Fy, and a quasi-isogeny
p:H X, Oc/p—G
181f one uses the usual Frobenius on contravariant Dieudonné theory, then our convention

corresponds to defining covariant Dieudonné theory as the literal dual of contravariant Dieudonné
theory, i.e. without a Tate twist.
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(2) The functor G — E(G) from p-divisible groups over O¢/p up to isogeny
to vector bundles on Xcv is fully faithful, with essential image the vector
bundles whose slopes are all between 0 and 1.

(3) Let G be a p-divisible group over F,. Then GAGA for the curve identifies
E(G) with E(G).

Proof. The first two parts are Theorem 5.1.4 of [SW13]. The last part is clear. [

We now specialize to p-divisible groups over a perfect field k. (Since every
p-divisible group over O¢/p is quasi-isogenous to one defined over ]Fp, if we are
interested in understanding quasi-self-isogenies, it is enough to restrict to this case.)
Let G, G’ be two isoclinic p-divisible groups over k. Our goal is to define an “internal
Hom” p-divisible group Hg g over k satisfying the following two properties:

(1) The Tate module T),(Hg,g/) can be identified with the sheaf JZom(G,G’").
(2) The Dieudonné module D(Hg g/)[1/p] is equal to

Hom(D(G)[1/p], D(G")[1/p])=°,
where the latter denotes the internal homomorphism in Dieudonné modules,
and we are taking the slope < 0-part.

In a talk of C.-L. Chai at the Faltings conference 2014, we learnt that a p-divisible
group satisfying these properties has been defined by Chai and Oort. We explain
their construction below.

We define Hg g as an inductive system of finite group schemes. For each n > 1
consider the commutative group schemes of finite type over k defined as

Hy = Hom(G[p"], G’ [p"]).
For m > n, there are natural restriction maps
Tmn @ Hm — Hnp

which restrict a homomorphism G[p™] — G’'[p™] to G[p"] C G[p™]. The kernel
ker 7y, C Hupy is a closed subgroup scheme. As we are working over a field, one

can form the qoutient H%m) = M /ker ry, n, which is a subgroup scheme of #,,.
As m increases, they form a descending chain.

Lemma 4.1.5. The subgroup scheme H%m) stabilizes for m > 0; let H!, = Slm)
for m sufficiently large. Then H,, is a finite group scheme over k.
Proof. We may assume that k is algebraically closed. First, we claim that H%’”) is

a finite group scheme for m > 0. It is enough to see that Hﬁ[")(k) is finite. By
Dieudonné theory, one sees that Hom(G, G’) is a finite free Z,-module, independent
of the algebraically closed field k. In particular, the image H,, (k)oo C Hn (k) of

Hom(G,G') — H, (k)

is finite, and independent of k. Now the sequence of H,,, X 31, (Hn \ Hn(k)oo) forms
a cofiltered system of quasicompact schemes with affine transition maps and with
empty inverse limit. It follows that one of the schemes is already empty, showing
that the image of H,, (k) — H, (k) agrees with the finite set H,, (k)oo-

Now, the H;m) form a decreasing sequence of finite group schemes over k. As
such, they are eventually constant, e.g. by looking at their order. O
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We define ¢,, : H,, = Hpy1 to be the map given by pre-composition with the
multiplication by p map G[p"*!] — G[p"] followed by composition with the inclusion

gl[pn] SN g/[anrl].
Lemma 4.1.6. The maps i, : Hp — Hpy1 send H), into H;, . The colimit

H=Hgg =limH,

is a p-divisible group over k with H[p™] = H.,.

Proof. From the commutation between ¢, and 7, ,, one infers that ¢,, sends H,,
into M, ,,. First, we check that v, : H] — H,,,; is injective with image H,,  ;[p"].
Let S be any k-scheme. If f: G[p"]s — G'[p"]s induces the trivial map

Gl s 2 Glp")s = G'p"]s = G s
then f = 0 as the first map is surjective, and the last injective; this proves injectivity
of t,,. Now let f : G[p"Tt]s — G'[p"*1]s be a map killed by p", which for any m > n
lifts fppf locally to a map f, : G[p" s — G'[p™H]s. It follows that f factors
uniquely as

Glp"Ms = Glp")s -5 G'p"s = G'[p" s
for some g : G[p"] — G'[p"], as f has image in the p"-torsion, and kills p"G[p"T!] =
G[p]. Similarly, any lift f,, : G[p™H]s — G'[p"H]s of f is killed by p™, which
implies that f,, factors uniquely through a map g, : G[p™] — G’[p™], which neces-
sarily lifts g. This shows that ), = M, [p"].

Moreover, we need to see that p : H;, ., — H;,, has image H;,; by the above, it
follows that the image is contained in H;,; the resulting map H,,,; — H;, is in fact
the map 7,41,. By construction of the H/,, the map 7,41, is indeed surjective,
finishing the proof. O

Lemma 4.1.7. The Tate module T,Hg g/ can be identified with the sheaf 7 om(G,G’).

Proof. The Tate module T, Hg ¢ is the inverse limit of Hg g/ [p"] =~ H,, with respect
to the rp41., maps. This, by definition is the same as the inverse limit of the
projective system of #,’s with respect to the 7,4, maps, which is the sheaf

Hom(G,G). O
Lemma 4.1.8. The Dieudonné module D(Hg ¢/)[1/p] is equal to

Hom(D(G)[1/p], D(G")[1/p])=’,

where Hom(D(G)[1/p], D(G')[1/p]) is the internal homomorphism in Dieudonné
modules, and we are taking the slope < 0-part.

Remark 4.1.9. Note that the statement only depends on G and G’ up to quasi-
isogeny. Chai and Oort prove Lemma 4.1.8 by directly computing the relative
Frobenius on Hg g/ in terms of the relative Frobenius on conveniently chosen G and
G'. We give a different proof below. Also, Chai-Oort give an integral version of
Lemma 4.1.8.

Proof. Let Hp be a p-divisible group over k with rational Dieudonné module
Hom(D(G)[1/p], D(G")[1/p])=" .

First, we construct a natural map

Hp — Hgg = #om(G,G)[1/p] .
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In order to construct such a map, it is enough to construct a functorial map on
R-valued points, where R is f-semiperfect in the sense of [SW13, Definition 4.1.2],
as ﬂg’g/, like the universal cover of any p-divisible group, is represented by a formal
scheme which is locally of the form Spf S, where S is an inverse limit of f-semiperfect
rings.

Thus, let R be f-semiperfect, with associated B, (R). Then by [SW13, Theorem
A], we have

Hg,g'(R) = Homp(G,G')[1/p] = Homp+ (g _(D(G) ® B (R), D(G') @ BE(R))
= (Hom(D(G)[1/p], D(G")[1/p]) ® BL i (R))?=",
and
= (Hom(D(G)[1/p], D(G")[1/p])=° ® BL(R))*=
Now the obvious inclusion
Hom(D(G)[1/p], D(G")[1/p])=° € Hom(D(G)[1/p], D(G")[1/p])

induces the desired map Hp — ’}:lgg.
To check that this is an isomorphism, it suffices by the same argument to check
on R-valued points, where R is f-semiperfect. Thus, it remains to see that

(Hom(D(G)[1/p], D(G")[1/p)) @B, (R))?~" = (Hom(D(G)[1/p], D(G)[1/p]) =@ B (R))*~" .

For this, it suffices to see that for any Dieudonné module D with only positive
slopes,

Hp(R) = Homn(Qy/Zy, Hp)[1/p] = (D(Hp) @ By, (R))*~

(D® Bl (R)?='=0.

Cris
For this, using the Dieudonné-Manin classification, we have to see that there are
no elements x € Aeis(R) with p¢®(z) = x, where a,b > 0 are positive integers.
Note that ¢ preserves the p-adically complete ring Aeis(R); on the other hand, the
equation on z implies x = p™@¢™?(x) for any m > 1, so that z is infinitely divisible
by p, which implies = 0. (]

Corollary 4.1.10. Assume that G and G’ are isoclinic.

(1) If the slope of G is strictly greater than the slope of G', then Hg g/ vanishes.

(2) If the slopes of G and G' are equal, then Hg g is an étale p-divisible group.

(3) If the slope of G is strictly less than the slope of G', then Hg g is a connected
p-divisible group.

Corollary 4.1.11. If G and G’ are isoclinic and the slope of G is strictly less
than the slope of G' and Hg.g has dimension r, then the sheaf #om(G,G’) is
representable by the scheme

Spec k[[wi/poc,. P ().
Proof. This follows from Proposition 4.1.2 and Corollary 4.1.10. (]

4.2. Rapoport-Zink spaces of PEL type. In this section, we introduce the
Rapoport-Zink spaces of PEL type that we will consider, and recall some of the
results we will need. In close analogy to the EL case treated in [SW13], we de-
fine a local avatar of the Hodge-Tate period morphism, mapping the infinite-level
Rapoport-Zink space to #g .
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We first introduce PEL structures, as in [RZ96], with several simplifying as-
sumptions that will be verified in the global case that we want to consider. Fix a
finite-dimensional, semisimple algebra B over QQ,, endowed with an anti-involution
x, and a finite left B-module V' equipped with an alternating bilinear form

(-,-):V@@pv—)(@p

such that (bv,w) = (v,b*w) for all v,w € V, b € B. The data so far define an
algebraic group G over Q,, whose values over a (Q,-algebra R are

G(R) = {(g,¢) € GLpgr(V @ R) x R* | (gv, gw) = c(v,w)} .

We refer to ¢ : G — G, as the multiplier character of G. We make the gen-
eral assumption that G is connected, which amounts to excluding type D in the
classification.

Moreover, we assume that the data are unramified. More precisely, we assume
that B is a product of matrix algebras over unramified extensions of Q,, and admits
a *-stable maximal Z,-order Op C B, which we fix. Moreover, we assume that there
is an Op-stable lattice A C V', which is self-dual under (-,); again, we fix such a
lattice A. These data define a reductive group Gz, over Z, via

G(R) ={(9,A) € GLozor(A® R) X R | (gv, gw) = A(v,w)} .

Now also fix a conjugacy class of cocharacters u : G, — G@p such that in the
induced weight decomposition of V@p, only weights 0 and 1 appear,

VQPZ‘/O@Vlv

and Aou : G,, — G, is the identity morphism. This implies, in particular, that the
subspaces Vj and V; are totally isotropic. We let E/Q, be the field of definition of
. Finally, we fix an element b € G(L), satisfying the compatibility b € B(G, u1).
Set E:=E - L.

Note that the condition b € B(G, p~1) together with the condition on the weights
of p on V imply that the slopes of b on V are in [—1,0]. In particular, in our (non-
standard) normalization of the covariant Dieudonné module, there is a p-divisible
group X, over [F,, whose rational Dieudonné module is given by

(V &g, L,b(id@0)) ;

then X} is uniquely determined up to isogeny, and its universal cover §§b is uniquely
determined. By functoriality, X, is equipped with an action ¢ : B — End(gb) and
with a symmetric polarization (i.e. an anti-symmetric quasi-isogeny to its dual),
with induced Rosati involution being compatible with * on B.

Write D = (B, *,V, (-, -), b, ) for the rational data and D' = (Op, *, A, (-, -), b, 1t)
for the integral data.

Definition 4.2.1. The Rapoport-Zink space Mpine of PEL type associated to D™ is
the functor on Nilpc(’gpé sending an OEO -algebra R to the set of isomorphism classes
of pairs (G, p), where G is a p-divisible group over R equipped with an action of
Op and a principal polarization whose induced Rosati involution is compatible with
*x on Op, such that the Op-action satisfies the determinant condition (see 3.23
in [RZ96] for a precise formulation), and

p: Xy prR/p%QXRR/p
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is a quasi-isogeny compatible with the Op-action and the polarization, up to an
automorphism of iy~ r/p-

The following combines Theorem 3.25 and §3.82 of [RZ96]. In our unramified
situation, and excluding type D, we may allow p = 2.

Theorem 4.2.2. The functor Mpine is representable by a formal scheme which
locally admits a finitely generated ideal of definition. Moreover, Mpine is formally
smooth.

We let Mpine := (Sﬁpm)?’d be the adic generic fiber associated to the formal
scheme (representing) M pine. The adic generic fiber is taken in the sense of Section
2 of [SW13]: Proposition 2.2.1 of loc. cit. gives a fully faithful functor

M s 924

from formal schemes over Op which locally admit a finitely generated ideal of
definition to adic spaces over Spa(Qy,Op), and

Mt = M Xgpa0,4,0) Spa(E, O ).

Then Mpine agrees with the adic space corresponding to the usual rigid-analytic
generic fibre of Mpins.

For each n > 1, one can define a cover Mpint ,, of Mpine which parametrizes full
level n structures. More precisely, define the compact open subgroups

Ko:={9€G(Qp) [ gA = A}
and
K, ={geKo|lg=1 (modp™)}.
Let Mpint ,, be the functor on complete affinoid (E(Cpm), (’)E(Cpn))—algebras parametriz-
ing Op-linear maps
A/p" = G (R, RY),
which match the pairing (+,-) on A with the one induced by the polarization on
G[p"]. Here, note that the second pairing takes values in ppn, but using the fixed
primitive p"-th root of unity (yn € E((pn), we can identify p,n = Z/p™. Then by
Lemma 5.33 of [RZ96], the Mpin ,, are finite étale covers of Mpine.
We can also define an infinite-level version of these Rapoport-Zink spaces.

Definition 4.2.3. Let Mpint o be the functor on complete affinoid (E(Cpoc ), OE“(Cpoo))'
algebras sending (R, R™) to the set of triples (G, p, ), where (G, p) € Mpint(R, RT)
and

a:A— T,G3(R,R")
is a morphism of Op-modules such that the following conditions are satisfied.

e pairing (-,-) on A matches the pairing on induce e polariza-
1) Th Ting A matches th iring on T,,G induced by the polari
tion. More precisely, the diagram

aQa

A®z, A T,G2(R, RY) @z, T,G24(R, RT)

c,,{ l

L (Tpﬂpm)%d (R,RY)

(1:Cp7<p2 :)
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commutes, where the right vertical map is the pairing induced from the
polarization, and the lower map is defined using the fixed p-power roots of
unity in the base field E((pe).
(2) The induced maps
A = T,G34(C,CH),
are isomorphisms, for all geometric points Spa(C,C™) of Spa(R, RT).

Recall that we have the quasi-logarithm map defined in Section 3 of [SW13], which
induces a map of sheaves on complete affinoid (E', Op)-algebras (R, RT):

qlogy, : (X,)2(R, R") = D(X,)[1/p] ®1 R.

If (R,R") = (C,C") is a geometric point, then the image of T,G24(C,CT) @z, C
under glogy, can be identified with (Lie V)" ® C.

The arguments in Section 6 of [SW13] give the following theorem. (The case
of Rapoport-Zink spaces of EL type is Theorem 6.5.4 of [SW13]. We remark that
[SW13] follows the conventions on b and p in [RZ96], which differ from our conven-
tions here.)

Theorem 4.2.4. The functor Mpint o, is representable by an adic space over
Spa(E(gpw), OE(( oc)). The space Mpine o is preperfectoid, and
P

MDi“t,OO ~ 1&1’1 M'Di“t,n'
n

Moreover, there is the following alternate description of Mpin: o, which depends
only on the rational data D. The sheaf Mpint o is the sheafification of the functor
on complete affinoid (E(CPW,OE(CPOO))—algebms sending (R, RT) to the set of B-
linear maps

V = (X,)2(R,RY)

which match the pairing (-,-) on V with the polarization on (Xb);d (up to the fized
choice of p-power roots of unity, as above) and which in addition satisfy:

(1) The image of V ®q, R in D(Xy)[1/p] ®1 R is totally isotropic under the
pairing (-,-) induced by the identification D(Xy)[1/p] ~V ®q, L.

(2) The quotient W of D(Xp)[1/p] ®1 R by the image of V ®q, R is a finite
projective R-module, which locally on R 1is isomorphic to V1 @ R as a BQq,
R-module.

(3) For any point Spa(C,C™T) of Spa(R, RT), the sequence

0=V = (X)24C,CT) = WerC—0
s exact.

Proof. To see that Mpint o, is representable by a preperfectoid space, we will show
that it is a closed subfunctor of the Rapoport-Zink space at infinite level M, for
the p-divisible group X, which is defined in Section 6.3 of [SW13]. Recall that the
space M, only keeps track of deformations of X, without the Op-action or the
polarization. By abuse of notation, let us actually denote by M, the base change
of this space to Spa(E((pe), OE(cpm))'

We claim that the natural (forgetful) map Mpint o — My is a closed em-
bedding. We follow Theorem 3.25 of [RZ96]. Let G be the universal p-divisible
group over My,. The conditions that the Opg-action and the polarization lift to
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quasi-isogenies on G depend only on preserving the Hodge filtration on D(G)[1/p],
by Grothendieck-Messing theory, so these are closed conditions. They correspond
to restricting to a closed subset of the image of the Grothendieck-Messing period
morphism. On the other hand, the condition that a quasi-isogeny be a genuine
isogeny on the adic generic fiber is an open and closed condition. (This follows in
the same way as Proposition 3.3.3 of [SW13], which is the special case of a quasi-
isogeny from the p-divisible group Q,/Z,. In the general case, the key observation
is that {e} — Hom(G:1[p"],G2[p"])3? is an open and closed embedding when {e}
corresponds to the trivial isogeny and n € Z>;.) Finally, the condition that the
trivialization a of (Tpg)%d be Op-linear and respect the polarization is closed.

The first part of the theorem now follows from Theorem 6.3.4 of [SW13], which
shows that M, is preperfectoid and Proposition 2.3.7 of loc. cit., which shows
that a closed subspace of a preperfectoid space is preperfectoid.

For the second part, let Mp o be the functor defined by the rational data. There
is a natural map of functors Mpint o, — Mp oo For (R, RT) a complete affinoid

algebra over (E(Cpe), OE((,,OC))v let (G, p, ) € Mpint oo(R, RT). The quasi-isogeny
p gives an identification X, ~ G. The map from the rational Tate module of G to
its universal cover, precomposed with the trivialization « gives a map
V = (X,)2(R, RY).

By construction, this map will respect the polarization and the B-action. The
first condition is satisfied because the image of V ®q, R in D(X;)[1/p] ®1 R can
be identified with (Lie G¥)¥ ® R (see the proof of Proposition 7.1.1 of [SW13]).
The compatibility between the pairing (-,-) on V and the polarization on G imply
that (Lie GV)Y ® R is totally isotropic under (-, ). The second condition is satisfied
because W can be identified with Lie G®R. The third condition follows from [SW13,
Proposition 3.4.2 (v)].

We also recall the functor M/ defined in Section 6.3 of [SW13] (which again,
we base change to Spa(E((p), Ok, oo))): this parametrizes maps

V = (X,)34(R, RT)
which satisfy:
(1) the quotient W of D(X,)[1/p] ®r R by the image of V ®q, R is a finite

projective R-module, of the same rank as that of V.
(2) For any geometric point Spa(C,Ct) of Spa(R, RT), the sequence

0=V — (X,)24(C,CT) > WerC —0
is exact.

Lemma 6.3.6 of [SW13] shows that M, = M., and we have a commutative
diagram of adic spaces

M’Di“t,oo —_— MD,OO

I

Moo —=— M.
The bottom map is an isomorphism and the vertical maps are closed embeddings.

It remains to see that the top map is surjective. For this, note that there is a
p-divisible group G over Mp o, obtained by restriction from M. The integral



46 A. CARATANI AND P. SCHOLZE

Tate module (7,,G)3% is identified with the lattice A C V, which is stable under Op
and self-dual under (-, -). The p-divisible group G is equipped locally on Mp o, with
a quasi-isogeny on the special fiber to X;. The first two conditions on the image of
V ®q, R ensure that the B-action and the polarization on D(X;)[1/p]®r R preserve
the Hodge filtration of G, so that they define quasi-isogenies on G. The fact that
these quasi-isogenies are genuine isogenies follows from the fact that they preserve
the integral Tate module. O

From now on, we identify Mpint oo >~ Mp , so the moduli problem only depends
on the rational data D.

Recall that .#¢ , is the flag variety over Spa(E, Og) parametrizing filtrations on
Rep G of the same type as the ascending filtration corresponding to the cocharacter
. On the faithful representation V' of G, u induces the decomposition

Vg, =Vo® Wi,
and the ascending filtration is given by
Fil_lvu(V@p) := V1 and Filo,“(V@p) = Vg,

In the case we are considering, we can be more explicit: F¥g,, parametrizes
B-equivariant quotients W' of V ®q, R that are finite projective R-modules such
that

(1) the kernel of the map V ® R — W’ is totally isotropic under (-,-) and
(2) locally on R, W’ is isomorphic to Vo ® R as B ®q, R-modules.

Proposition 4.2.5. There is a local Hodge-Tate period map
THT : MDD oo = Fla .,
sending an (R, RT)-valued point of Mp  given by a map V — (sz)f,d(R, R%) to
the quotient of V ®q, R given as the image of the map
Vv ®Qp R — D(Xb)[l/p] ®r R.
The local Hodge-Tate period map is G(Qp)-equivariant.
Proof. This is proved in exactly the same way as Proposition 7.1.1 of [SW13]. O

Recall that, by Theorem 3.5.9, we have a stratification of F#g,, by locally closed
strata indexed by elements of B(G, =) and that we have fixed an element b €

B(G,pu™).
Proposition 4.2.6. The local Hodge-Tate period map factors through
7THT MDOO %JKG N7
Proof. Tt suffices to check this on Spa(C, O¢)-valued points. Thus, we have a p-
divisible group G/O¢ with extra structures, equipped with a quasi-isogeny G X o
Oc/p = X, XF, Oc/p. Moreover, there is a trivialization 7,G ®z, Q, = V com-
patible with all extra structures, and we have the Hodge-Tate filtration
0—LieGg®C(1) = TG ®z, C— (LieG")"®@C =0,

where Fil_; = Lie G ® C(1), and Fily = T, ®z, C

Let £ be the G-bundle on ch corresponding to the image of G under wyr

and the identification Flg , = GrG R. Let & be the vector bundle on X cor-
responding to £ and the faithful representatlon V'; note that p is still minuscule
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as cocharacter into GL(V). Then &y is constructed from the BIR’C—lattice = in
V ®q, Bar,c inducing the above filtration on V ®q, C' under the Bialynicki-Birula
map. Explicitly, if £ € IB(TR’C is a generator of the maximal ideal, then the lattice
E: CV ®q, Bar,c satisfies
4 ®Qp IBIR,C cCECV ®Qp 5711831-;1"_1{70
and
E/(V ®q, ]B%XR’C) =Lieg®C.

Then €y is the modification of the trivial vector bundle V' ®@g, Ox_, at the point
oo by the lattice =.

In the case of a one-step filtration, one can construct the vector bundle &y

directly: it is the unique vector bundle on X » which fits into the diagram of
coherent sheaves

0——0x_, ®q, V Ey loox(lLie GRC) —— 0

|

0—— (’)ch ®q, V—=0x;pc(1) ®q, V—icex(V ®q, C(=1)) —— 0.

But then the proof of Proposition 5.1.6 of [SW13] shows that &y is the vector
bundle attached to the p-divisible group G xo. Oc¢/p, which is quasi-isogenous to
Xp X]Fp Oc/p.

By unraveling the Tannakian formalism behind the construction of the G-bundle
£ and keeping in mind the fact that X together with the B-action and polarization
determine b, we see that £ ~ &, as G-bundles, as desired. O

Remark 4.2.7. The same proof, without keeping track of the polarization, also works
in the case of Rapoport-Zink spaces of EL type to show that the local Hodge-Tate
period map defined in Proposition 7.1.1 of [SW13] factors through yﬁg’ -

Remark 4.2.8. We have defined the Hodge-Tate filtration in Section 2 in terms of
the p-adic étale cohomology of a universal family of abelian varieties. If A/O¢ is
an abelian variety and G = A[p>], then Proposition 4.15 of [Sch12b] shows that
the Hodge-Tate filtration on 7,,G ®z, C is compatible with the filtration defined in
Section 2, so the local and global Hodge-Tate period maps are compatible.

Definition 4.2.9. Define the sheaf Aut(;(gb) on Nilp?/g@, ) by
Aute(X,)(R) = {a € AutB(XhR),B € Aut(fiy~ r) | @ respects the polarization up to S} .

Lemma 4.2.10. The sheaf Autg(gb) is representable by a formal scheme over
Spf W(F,), locally of the form Spf W (R) for a perfect ring R.

Proof. Forgetting all extra structures defines a closed embedding, so it is enough
to show representability of Aut(§~§) for any p-divisible group X over IF‘p. We may
assume that X is completely slope divisible, i.e. that it is isomorphic to a direct
sum of slope divisible isoclinic p-divisible groups X;, defined over a finite field, for
i = 1,...,r, with non-increasing slopes. Then Aut(X) is a closed subfunctor of
the product of two copies of s#om(X;,X;)[1/p] over 4,5 € {1,...,r} with i > j,
via sending an automorphism to the endomorphism, and its inverse. Each of the
factors can be identified with the universal cover of the p-divisible group Hx, x;.
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Therefore, each of the factors is representable by a formal scheme over Spf W (F,),
by Proposition 4.1.2.

For the final statement, it is enough to see that Aut(X,)(R) = Aute(X,)(R/p),
and that if R is of characteristic p, then Frobenius induces a bijection of Autg(X;)(R).
Both statements follow from the similar properties of universal covers of p-divisible

groups, for which see [SW13, Proposition 3.1.3]. O
In fact, one can give a more precise description of Autg(?{b). As usual, we denote
by
14 S X* (G)dom
the half-sum of the positive roots.

Proposition 4.2.11. Let J,(Qp) be the locally profinite set J,(Qp) made into a

formal scheme over W(IF,,), i.e. the sections over U C Jy(Qp) are continuous maps
U — W(F,). There is a natural map

Autg (Xp) = Jp(Q,)

all of whose fibres are isomorphic to
SpIW (Fy) [y ™)
where d = (2p, vp).

Remark 4.2.12. Let us illustrate this result in the case Xj = pipe X Qp/Z,, without

extra structures. Then there are no maps pipee — Q,/Zy, so Autg(gib) has lower
triangular form; more precisely,

~ X 0
Aut(Xb): < /%; QX ) .
~p

In this case, J,(Qp) = Q; x Q,, and the projection

Autg(Xp) — Jp(Qp)

is given by the diagonal elements. The fibres are given by the unipotent part
i = SpEW (F,) [ /7).

Proof. Tt is enough to prove the results for AutG(Xb) as a formal scheme over F,,, as
all structures lift uniquely to W(IF'p) by rigidity of perfect rings. We first consider
the case when X, has an unramified EL structure. By standard Morita arguments,
one can reduce to the case when the EL structure is given by (F, Op), with F/Q,
an unramified extension and G = Resg/q, GLy. If (B,Op) is an unramified PEL
datum and B =[], B; is its decomposition into simple factors, then X;, decomposes
as | [, Xp,; and Autg(Xp) = IL; Autg, (Xp,i). Similarly, when B ~ My(F) is simple,
the equivalence of categories between p-divisible groups with (B, Op)-EL structure
and p-divisible groups with (F, Op)-structure means that it suffices to compute
AutF(Xb). See [Ham15, Section 4.1] for more details on this reduction step.

If F = Qp, then G = GL,, and we are considering quasi-self-isogenies of p-
divisible groups, without any extra compatibilities. Since X, is completely slope
divisible, we can write it as X = @®]_;X;, where the X; are isoclinic p-divisible
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groups of strictly decreasing slopes A; € [0,1]. Using Corollary 4.1.10 (1), we see
that Aut(X,) takes the lower triangular form
Aut(X:)
~ H Aut(X
Aut(Xp) = X?’Xl (X2)

Hy, x, Hxoxe - Aut(X))
Moreover, Corollary 4.1.10 (2) implies that Aut(i{i) = M; as

To(@p) = Aut(X,)(Fp) = [T Aut(X)(Fy)

we see that projection to the diagonal defines a map
Aut(Xp) = Jp(Qp) -

The structure of the fibres now follows from Corollary 4.1.10 (3) and Proposi-
tion 4.1.2 (3). To check that d = (2p,14), we count dimensions. More precisely,
for i > j, ﬁxi,Xj is representable by Spf Fp[[x}/pm,...,x;i/?m]], where d; ; is the
dimension of Hx, x,. If the height of X; is m;, then Lemma 4.1.8 implies that the
slope of Hx, x; is A; — A; and its dimension is d; ; = m;m; (Aj — A;).

On the other hand, by making the root data of GL, explicit, cf. [Ham15, Ap-
pendix A], we can compute the contribution of the slopes A;, A; to (2p,1). The
positive roots of GL,, (corresponding to the Borel subgroup given by the upper
triangular matrices) are

Rt ={er —e|k,l e {1,...,n}, k<I}.

We also have

I/b:()\17"'7>\17"'7>\T7"'>)\7’)'
—— ——

mi M

The contribution coming from \;, A; to (2p, 1) is precisely m;m; (A\; — A;) = d; ;.
The case of a general unramified extension F/Q, follows in the same way, by
working in the category of p-divisible groups with Op-action instead. Let d = [F :
Qp). The theory developed in Section 4.1 can be extended to define an internal
homomorphism in the category of p-divisible groups with Op-action. If G is a p-
divisible group with Op-action, its rational Dieudonné module D(G) decomposes
as D(G) = ®-.0,w#,)P(G)-. Choose an embedding 70 : Op — W (F,) and let
Dr(G) :==D(G),. The analogue of Lemma 4.1.8 holds for Dy and homomorphisms
of p-divisible groups with Op-action, with the same proof (but replacing ¢ by
¢? and embedding F into Bl via 79).!? The structure of Autp(X,) can now
be deduced in the same way. The dimension computation is also analogous to
the one above. Let X, = @®]_;X;, with the slope of the F-isocrystal attached
to X; being equal to A; (here, 0 < \; < d, and \;/d is the slope of X; as a p-
divisible group) and X; having height m; as a p-divisible group with Og-action,

For p-divisible groups with Op-action, there is a more restricted notion of p-divisible Op-
module; the requirement is that the two actions of O on the Lie algebra agree. This condition
cannot be formulated for a p-divisible groups with Opg-action up to quasi-isogeny, and in fact for
p-divisible groups with Op-action up to quasi-isogeny, everything works very similarly to the case
of p-divisible O p-modules. For example, note that B(F, GL,) = B(Qp, Resr/q, GLy).
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i.e. height dm; as p-divisible group. The dimension of the p-divisible group with
Op-action corresponding to the Op-linear homomorphisms between X; and X; is
dij = mymj (Aj — A;). On the other hand, the positive roots of Resp/q, G Ly are

Rt ={e;r —e ik, le{l,....n}k<l,7: F— Q,}

and,
)\1 )\1 >\r )\r)
T )

mi My

I/b:(

The contribution from slopes A;, \; is again d; ; = mym; (A; — Ai).

We now consider the case when X, has an unramified PEL structure. Recall
that we are assuming that the PEL datum is of type (AC). By similar Morita-
theoretic arguments as above, cf. [Ham15, Corollary 4.5], we can write (B, Op, *) =
[1,(Bi, Op,, *) as a product of simple PEL data. On the level of quasi-self-isogenies
we get

1
Autg(gb) = <H Autgi (gb,z)> — HAutGi (Xfm’),

where (Hl Autg, (§b7i))1 is a closed subfunctor of the product, defined by the
condition that the similitude factors on each term are the same. The group G is
defined similarly, as the closed subgroup ([], G;)' < [], G;. The similitude factor
on Autg, (X,,) defines a map

AutGi (Xbl ) — g;

which will factor as

Autgi (th) — M — g; y
where the latter map is the natural similitude morphism on J,,. We see that the
result for all G; implies the result for G, so we can assume that G is simple.

We reduce to one of the following three cases.

(1) X, is a p-divisible group with (F, Op)-EL structure, where F'/Q,, is unram-
ified.
(2) X} is a p-divisible group with (F,Op,*)-PEL structure, where x is the
identity on F.
(3) Xy is a p-divisible group with (F, Op, x)-PEL structure, with Q, C F* C F
unramified extensions, * an automorphism of order 2 and F+ = F*=1,
The first case was already dealt with above. The second case corresponds to G =
GSp,,/OF with n even, while the third to G = GU,,/Op-+.

We explain the computation of Autg(Xp) in the case of G = GSp,/Op. As
before d = [F : Q,], and we write X, = ®!_,X;, with each X; isoclinic of slope
Ai € [0,d] as p-divisible group with Op-action, and the A; in strictly decreasing
order. The fact that X, is equipped with a symmetric polarization means that
d — \; is also a slope of X, occuring correspondiilg to the same height m; as Ai.
As before, the restriction of an automorphism of X, to the graded pieces X; of the
slope filtration defines the map

Autg(gb) — Jb(Qp) .
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The fibres of this map can be computed at the same time as the dimension, and
we concentrate on the dimension in the following. We can write

MooA A A
b LAy

ma Moy

Vb:(

with \j+X+1-; = d, m; = m,.41_;. Using the same choices as in [Ham15, Appendix
A] and recalling that ¢ : G — G, is the multiplier character, the positive roots of
G = GSp,,/OF are

Rt ={e;r—elk<le{l,....n/2},7: F — Qp}

Uerk+er—ck#le{l,....,n/2},7: F — Qp}
U{2e,x —clke{l,...,n/2},7: F — Q,}.
We compute the contributions coming from slopes A;, A; to both the dimension of
Aute(Xp) and to (2p, 1) and check that they are the same.

(1) IfEX; > A > g, then the contribution to the dimension of Autg(xb) is, just
like in the EL case, d; ; = m;m;(\; — A;) and it matches the contribution
from %, % to (2p, 1) by the same argument. Using the polarization, this
also takes care of all cases with % >N > A

(2) If A; > g > d — \;, with ¢ # j, then the contribution to the dimension
of Autg(Xp) is m;m;(X; + Aj —d). This is given by the dimension of the
internal Hom Op-module between XY and X; if j < 4, computed as in the
EL case, which by the compatibility with the polarization also pins down
the quasi-isogeny between va and X;. This matches the contribution from
%, 1-— % and %, 1-— % to (2p,vp), using the fact that {(c,vp) = 1.

(3) If A\; > £, the contribution to (2p,1;) from 2,1 — 2% is W(Z\l -
d). This is also the dimension of the part of s#ome, (XY,X;)[1/p] which
is compatible with the polarization. Indeed, the polarization induces an
involution on #ome,. (XY, X;)[1/p] and we can compute the dimension of
the part fixed under the polarization using Lemma 4.1.8: the slope is 2% -1

and the height of the fixed part as a p-divisible Op-module is %ﬂ)

The case G = GU,, is similar and left as an exercise. O

Remark 4.2.13. In view of the theory developed in Subsection 4.3 and Corol-
lary 4.3.9 in particular, the dimension of Autg(fib) should match the dimension
of central leaves inside the Newton stratum corresponding to b on the special fiber
of a corresponding Shimura variety. This indeed agrees with the dimension of cen-
tral leaves as computed by [Ham15, Corollary 7.8].

Note that there is an action of Aut(X,) on Mp,,,. We let Autg(g{b)f]d be its adic
generic fiber over Spa(L,Opr). Then the action of Autc(gb)%d on Mp,,, extends
to an action on Mp . The map ﬂl}{T P Mpoo — 35612;7“ is equivariant for this
action with respect to the trivial action on the target. We would like to say that
ot Mp oo — 355%,“ is an Autg(gb)f;d—torsor. However, we have only defined
the target as a locally closed subspace of #¢ ;. Also, the condition of being a
torsor includes the condition that the map is surjective locally in some specified
topology. It is probably necessary to use some of the fine topologies from [Weil4]
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here. Thus, we content ourselves with some more basic information. Recall that
Mp  is preperfectoid and lives over the perfectoid field E(Cpoo)/\; thus, one can

form a perfectoid space /(/l\p,oo as in [SW13, Proposition 2.3.6]. The product

M\D,oo XSpa(L,OL) AutG(Szb)Zd

exists in the category of adic spaces, and is still a perfectoid space, by the local
structure of the automorphism scheme. On the other hand, the space

MD,oo Xﬂéc‘u MD,oo C MD,oo XSpa(E,OE) M'D,oo

is preperfectoid (as this condition passes to closed subsets, cf. [SW13, Proposition
2.3.7]), so again we can pass to a perfectoid space

(Mp, X, Mpsc)"
Proposition 4.2.14. The action map
MD,OO XSpa(L7OL) AutG(Xb)'rayd - (M’Dpc Xg@c,u MD»OO)A
is an isomorphism of perfectoid spaces.

Proof. Let (R, R") be a perfectoid affinoid algebra over E.2° We have to construct
an inverse map

(Mp o X716, Mp,oo) (R, RY) = (Mp oo Xspa(r,0,) Aute(Xp)2) (R, RT) .

Given an element of the source, we have (after localization on Spa(R, RT)) two p-
divisible groups Gy, Go over RT,?! equipped with quasi-isogenies to X, over R* /p,
and trivializations of the Tate module on the generic fibre. In particular, we get
an isomorphism of the Z,-local systems given by the Tate modules of G; and G,
over R, in other words an isomorphism Gi r = Go r. We need to check that this
isomorphism extends to R, as one can then compose this isomorphism with the
given quasi-isogenies to X, over RT /p to get a self-quasi-isogeny of Xy, as desired.
In this regard, we observe the following lemma, which is a non-noetherian version
of a result of Berthelot, [Ber80].

Lemma 4.2.15. Let Rt be a Zy-algebra which is integrally closed in R = R™[1/p].
Let G, H be p-divisible groups over R*. Assume that the Newton polygon of G,
is independent of s € Spec(R™ /p), and that the same holds true for H. Let fr :
Gr — Hpg be a morphism of p-divisible groups over R. Then fr extends, necessarily
uniquely, to a morphism f : G — H of p-divisible groups over R if and only if for
all geometric rank 1 points Spa(C, O¢) of Spa(R, RT), the base change fc : Go —
Hc extends to a map fo, : Go, = Ho, -

Proof. For each n > 1, we have to check that the map G[p"]|r — H[p"]r extends
to R*. Both schemes G[p"], H[p"] in question are affine, and finite locally free over
R*. Thus, the question whether this morphism extends is the question whether a
matrix with entries in R has entries in RT. As

R* ={f€R|VzeSpa(R,R") : |f(x)] <1},

we can reduce to the case of a point, i.e. R = K is a complete nonarchimedean
field, and K™ C K is an open and bounded valuation subring. We may also assume

201 the proof, we are really only using that Rt C R is bounded, and that this property passes
to rational subsets.
21Here, we use that RT C R is bounded.
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that K is algebraically closed, and rename C = K, C* = K*+. By assumption, the
map extends to O¢. Let mp, C Oc¢ be the maximal ideal; it is also contained in
C*. Then Ct/mop, C Oc/me,, is a valuation subring. Finally, we are reduced to
the following lemma. O

Lemma 4.2.16. Let V be a valuation ring of characteristic p with quotient field
K. Let G, H be p-divisible groups over V with constant Newton polygon. Then the
map

Hom(G, H) — Hom(G g, Hg)
is a bijection.

Remark 4.2.17. Using this lemma, one can remove the noetherian hypothesis from
the main result of [Ber80], i.e. the same fully faithfulness result holds true for any
integral domain R in place of V. Indeed, to check whether a homomorphism over
K extends to R, one has to check whether certain matrices over K have entries in
R, which can be checked on valuation rings.

Proof. The map is clearly injective. For surjectivity, we have to check as above that
certain matrices with coefficients in K have entries in V. Thus, we may assume
that K is algebraically closed.

Observe that it is enough to prove the result up to quasi-isogeny. Indeed, if
f: G — H becomes divisible by p over K, then G[p|x C G is killed by f, whence
its flat closure G[p] C G is killed by f, which shows that f is divisible by p.

Now, e.g. by the Dieudonné-Manin classification, both Gx and Hg admit a
quasi-isogeny to a completely slope divisible p-divisible group Go, Hy (defined over
]Fp C V). We may assume that these quasi-isogenies are genuine isogenies; then
we may take their flat closures over V and divide G, resp. H, by them; thus,
we may assume that Gx and Hg are completely slope divisible. Then by [0Z02,
Proposition 2.3], G and H are themselves completely slope divisible. As V is
perfect, both G and H decompose as a direct sum of their isoclinic pieces, cf. [0Z02,
Proposition 1.3]; thus G = Gg xg, V., H= Hyxg V.

Finally, we use that the Dieudonné module functor on V is fully faithful, cf. [Ber80].
Thus, as G and H come via base extension from [, it remains to show that if (D, ¢)
is any isocrystal over I, then

(D ®@w @,)[1/p] WWV)[1/p)¢=" = (D W (F,)[1/9] W(K)[1/p])?=" .

We may assume that D = D) is simple of slope A = s/r. In that case, we have to
prove

W(V)[L/p]? =7 = W(K)[1/p]" =¥

Clearly, the left-hand side is contained in the right-hand side. If s # 0, then
the right-hand is 0, as follows by looking at the p-adic valuation of any nonzero
element. We are left with the case s = 0, where r = 1. But W(K)[1/p]*=! =Q, C
W (V)[1/p]#=1, finishing the proof.

Using Lemma 4.2.15, we only have to check the result on geometric rank 1 points.
But now, by [SW13, Theorem B], p-divisible groups over O¢ are equivalent to pairs
(T, W), where T is a finite free Zy-module, and W C T ®z, C is the Hodge-Tate
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filtration. Thus, it remains to check that the Hodge-Tate filtration is preserved,
but this is true as we started with an element of the fibre product

(Mp,oo X715, Mp,oo)(R,RY) .

We also have the following surjectivity result.

Lemma 4.2.18. Let C/E(Cpoo) be a complete algebraically closed extension with
ring of integers O¢. Then the map

T : Mp oo (C,0c) = Fl ,(C,Oc)
18 surjective.

Proof. Given x € %‘5#(0, O¢), we get (corresponding to the representation G —
GL(V), and using [SW13, Theorem B]) a p-divisible group G/O¢ with trivialized
Tate module, which by functoriality comes equipped with an action of Op and a
principal polarization. To give a point of Mp o (C, O¢), it remains to construct a
quasi-isogeny p over O¢ /p. For this, note that the proof of Proposition 4.2.6 gives
an identification between the G-bundle &g corresponding to G, and the G-bundle
&, corresponding to the point z. By assumption, x € 9@%7#(0, O¢), so there is
an isomorphism of G-bundles &, =2 &, which gives an isomorphism of G-bundles
Eg =2 &. Using Theorem 4.1.4, this gives the desired quasi-isogeny. (I

Using these results, we can compute the dimension of the strata ﬁﬁgy e Fl -
Here, we define the dimension as the Krull dimension, i.e. the length of the longest
chain of specializations.

Proposition 4.2.19. Let K be a complete nonarchimedean field with ring of inte-
gers Ok and residue field k. Let X be a partially proper adic space over Spa(K, Of).
Then the dimension of X is equal to the mazimal transcendence degree of k(x) for
x € X, where k(x) is the residue field of the ring of integers O (5 in the completed
residue field K(z) at x.

Remark 4.2.20. Recall that a map f : X — Y of analytic adic spaces is partially
proper if for any complete nonarchimedean field K with ring of integers O C K
and open and bounded valuation subring K™ C K (so K C Ok), the map

X(K,K") = X(K,Ok) Xy (K,0x) Y (K, K™T)

is a bijection. This is the analogue of the valuative criterion for properness in this
setup.

Proof. As X lives over Spa(K,Ok), it is analytic, and thus any point generalizes
to a rank 1 point. It is thus enough to prove the more precise assertion that for
any rank 1 point z, the dimension of the closure @ is equal to the transcendence
degree of k(x). But the closure {x} gets identified with the Zariski-Riemann space
for k(x)/k (using partial properness), whose dimension is equal to the transcendence
degree of k(z)/k. O

Proposition 4.2.21. Let K be a complete nonarchimedean field with ring of in-
tegers Ok and residue field k. Let f : X — Y be map of partially proper adic
spaces over Spa(K,Ok), and fix a rank 1 point x € X, with image y € Y. Let
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X N v P
Xy = X xy{y} be the fibre of f overy. Let{z} C X,{y} CY and {x}Xy C Xy
be the respective closure. Then
—X —Y —X,
dim{z} =dim{y} +dim{z} *.
Proof. Let k(z) and k(y) have the same meaning as in Proposition 4.2.19. Then the
statement translates into the additivity of transcendence degrees for the extensions

k(x)/k(y)/k. 0

Proposition 4.2.22. For any complete nonarchimedean field K/Op., the space
Aute(Xp)™ Xspa(o,,0,) Spa(K, Ok)

is partially proper over Spa(K, Ok), of dimension (2p,vy).

Proof. The adic generic fiber is partially proper by Lemma 4.2.15. (A quasi-self-
isogeny respecting extra structures over Spa(C, O¢) will also respect the extra struc-
tures when it extends to Spa(C, CT) by the injectivity of the map in Lemma 4.2.16.)

For the claim about the dimension of Autg(X;)*d X$pa(0,,0,) Spa(K, Ok), it is
enough to consider a connected component, all of which are by Proposition 4.2.11
given by
1/p> 1/p> 1/p> 1/p>
Spa(Opllzy/? .z P 1L Opllel" 2P ]]) Xspa(o.0,4) SPAK, Ox) -

To compute the dimension, we may assume that K is algebraically closed. Then
K is perfectoid, and by tilting we can assume that K is of characteristic p. In that
case, the space is topologically the same as

Spa(Ogllx1,...,z4]], Opllz1, ..., z4]]) X Spa(05,0) Spa(K, Ok) .

But this is the d-dimensional open unit disc over K. O

Proposition 4.2.23. The dimension of fﬁ%# is equal to (2p, 1) — (2p, vp).

Proof. Both %L, and Mp o are partially proper adic spaces over Spa(E7 Op) of
dimension (2p, ). Pick any rank 1 point x € Mp o such that the dimension of
m is (2p, u), and let y € ﬁbe# be its image. Let  be a geometric point above y,
corresponding to a completed algebraic closure C' of K(y), and pick a lift of § to
Mp 0, using Lemma 4.2.18. Then Proposition 4.2.21 shows that

(2p, )y < dim {y} + dim Mp o0 -
But dim Mp  y = dim Mp 5, and using Proposition 4.2.14 and the choice of ¢,
one has _
dim M'D,oo,g = dim Autg(Xb)ad XSpa(OE,OE) Spa(C, Oc) .
The latter has been computed in Proposition 4.2.22, showing the inequality
dim ﬁé&u > dim {y} > (2p, p) — (2p,vp) .

For the converse, pick any rank 1 point y € F#¢g ,. As before, one sees that
dim Mp o,y = (2p, ), so pick a rank 1 point € Mp o, whose closure is of
dimension (2p, ;). Applying Proposition 4.2.21, we see that the dimension of the

closure of x in Mp  is at least dim {y}+(2p, v5,). On the other hand, the dimension
of the closure of x is bounded by dim Mp o = (2p, ). This shows that

dim {y} < (2p, 1) — (2p,m) ,

which (as y was arbitrary) proves the other inequality. a
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4.3. A product formula. We now return to our global setting, where we want to
study the Hodge-Tate period map wgr : Sx»r — F¥;. Recall that we are restricting
to the case when the Shimura datum (G, X) is of PEL type.

More precisely, we fix global PEL data as follows, cf. [Kot92b, §5]. Let B be a
finite-dimensional simple Q-algebra with center F', and let V be a faithful finitely
generated B-representation. Let * be a positive involution on B, and F* = F*=1,
On V, we fix a nondegenerate Q-valued alternating form (-,-) such that (bv,w) =
(v,b*w) for all v,w € V and b € B. Let G/Q be the algebraic group whose R-valued
points are

G(R) = {z € Endpgr(V @ R) | zz* € R*} .
We assume that G is connected; under the classification of [Kot92b], this amounts
to excluding type D. Finally, we fix a *-homomorphism h : C — Endpgr(V ®@ R)
such that the symmetric real-valued bilinear form (v, h(i)w) on V ® R is positive-
definite. Note that h induces a map, denoted in the same way, h : Resc/r — Gr,
and in particular a Shimura datum.

We need to assume that these data are “unramified” at p. More precisely, we
assume that Bg, is a product of matrix algebras over unramified extensions of Q,,
and fix a maximal Z,)-order Op C B; we assume that x preserves Op. Finally,
we assume that there exists a Z,-lattice A C V that is self-dual under (-,-) and
stable under Op, and we fix such a A. Using these data, we can define a connected
reductive group Gz, over Z,) with generic fibre G as

Gz, (R) ={r € Endo,gr(A® R) | zz" € R} .

We fix the hyperspecial maximal compact open subgroup K, = Gz, (Z,) C G(Q,).

Let K?P C G(A’;) be a compact open subgroup, and fix a place p|p of E. As
in [Kot92b], one can define a moduli space of abelian varieties with extra structures
Sk, kv over Op, C E. In most cases, the generic fibre SKpr/E of Sk, kr is the
Shimura variety corresponding to (G, {h}); in general, however, the Hasse principle
for the group G fails, and it consists of [ker!(Q, G)| copies of this Shimura variety.
Thus, the notation of this section conflicts slightly with the previous notation for
Shimura varieties of Hodge type.

Let F, be the residue field of Op . The special fiber Sk k» X0, F; admits
a Newton stratification by locally closed strata 5”}’([) v indexed by b € B(G, u™1),
cf. [RR96]: A point € Sk, k» X0p, Fq gives rise to a p-divisible group with
extra structure, which can be translated into an isocrystal with G-structure, and
is classified by an element b € B(G). By [RR96], this element actually lies in
B(G,p™1).

One of the main results of [Man05] is a decomposition of the Newton stratum
Y}’{p v into the Rapoport-Zink space 9’ and the Igusa variety Ig® corresponding
to b. Thus, we first recall these two objects. From the last section, we already know
the Rapoport-Zink space:

For b € B(G,u~1), choose a completely slope divisible p-divisible group X; over
F, with extra structures giving rise to the o-conjugacy class b, as in [Man05, §3].
Let Dins,p be the integral data corresponding to the base extension of B,V,Og, A
to Zy, and (u,b). Then Diynp is of PEL type, and we consider the corresponding
Rapoport-Zink space M? := Mp, , ,, which lives over O, where E is the completion
of the maximal unramified extension of E),.

Next, we want to introduce the Igusa variety.
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Definition 4.3.1. We let Igb/Spec F, be the functor sending an F,-algebra R to
the set of isomorphism classes of pairs

{(A,p) | A€ Tk, k0 (R) , p: Ap™] = X x5, R},

where A € Sk, kv»(R) is an abelian variety equipped with extra structures (and
satisfying the determinant condition) and the isomorphism p is compatible with the
extra structures; as usual, it is only supposed to preserve the polarization up to a
scalar, i.e. an automorphism of pp~ R.

Remark 4.3.2. This definition is different from the Igusa varieties defined in [Man05],
and we will explain their relation below.

Proposition 4.3.3. The functor Ig® is representable by a scheme.

Proof. Tt is enough to prove that the map Igb — LK, kv XO0g., Fq is relatively
representable. Let A be the universal abelian variety over .#f x». Then we are

considering the inverse limit of the schemes parametrizing isomorphisms A[p"] =
Xp[p™] compatible with extra structures, each of which is representable. O

From the definition of Igb, it is evident that the group of automorphisms of X,
respecting the extra structures acts on it. However, we give next an alternative
description of Igb which shows that the larger group Autg(X,) acts on Igb.

Lemma 4.3.4. For an Fq—algebm R, Igb(R) can be identified with the set of isomor-
phism classes of pairs (A, p), where A € Sk, kr(R) is an abelian variety considered
up to p-power isogeny (respecting the extra structures) and

p:Ap™] =X, X5, R
is a quasi-isogeny (respecting the extra structures).

Proof. Bach element (A, p) of Ig®(R) determines a pair (A, p) as in the statement
of the lemma.
Conversely, given A € .7k, k»(R) with a quasi-isogeny

p: AP = X, x5, B,
we can find a unique abelian variety A’ with extra structures equipped with a
p-power isogeny to A, such that A[p>°] gets identified with X, i.e. the induced
quasi-isogeny

p A'p™] = Xy xg, R
is an isomorphism. Then (A’, p’) defines a point of Ig®(R), as desired. O

Corollary 4.3.5. The formal group scheme Autg(ib) acts canonically on IgP.
Moreover, Igb is perfect, i.e. the Frobenius map is an automorphism.

Proof. The first part follows from Lemma 4.3.4 by acting on p (noting that quasi-
isogenies of X} are the same as automorphisms of Xb).

For the second part, we have to see that for any F,-algebra R, the Frobenius
of R induces an automorphism of Igb(R). But pulling back under Frobenius in-
duces an equivalence on the category of abelian varieties up to p-power isogeny
(as Verschiebung gives an inverse up to multiplication by p). Similarly, pull back
under Frobenius induces an equivalence on the category of p-divisible groups up to
quasi-isogeny, showing that the datum of p is preserved. [
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Now we recall the more classical objects; for more details, see [Man05]. The leaf
€ corresponding to X, is the subset of the locally closed stratum y}}p Kxr X7, Fq
where the fibers of the p-divisible group A[p*°] at all geometric points are isomorphic
to Xbi

@ = {x € I | Aalp™] X (o) (@) = Xp x5, (m)} .

This is a priori defined only as a subset of 5’}’(? Kr XF, Fq, but Proposition 1

of [Man05] shows that %" is a closed subset and defines a smooth subscheme of
Y]b(p xr» X, Fq when endowed with the induced reduced structure. We note that

contrary to the objects defined so far, €° depends on the choice of X, within its
isogeny class.
Recall that
Xy = i1 X,
where the X; are isoclinic p-divisible groups of strictly decreasing slopes A; € [0, 1].
Let Gy be the p-divisible group of the universal abelian variety </ /.7 k» restricted
to €°. Then Gy is completely slope divisible, with slope filtration

0CGy1 C--- CGpy =G,

with gg = Gp.i/Gs,i—1 isoclinic of slope A;. The Op-action on G and the polarization
respect this filtration, so that each Gf is endowed with an Op-action and there are
induced polarizations G} — (GJ)V for all 4,7 with \; + \; = 1.

Definition 4.3.6. The (pro-)Igusa variety is the map
Atant = C°
which over a €°-scheme S parametrizes tuples (p;)'_, of isomorphisms
pi:Gi xr S 5 X Xspec F, O

which are compatible with the Op-actions on G and X;, and commute with the
polarizations on G and Xy, up to an automorphism of fipe 5.

Remark 4.3.7. A version of these Igusa varieties is considered in [Man05] (see also
Section IT of [HTO01] for the case of one-dimensional p-divisible groups). Rather
than trivializing the whole isoclinic p-divisible group G, one trivializes the G [p™]
for some positive integer m. More precisely, let ﬂl\l}[ant’m be the moduli space of
isomorphisms on %’-schemes S

pim = Golp™] = Xilp™] x5, S,

which (fppf locally) lift to arbitrary m’ > m and which respect the extra structures.
Proposition 4 of [Man05] shows that the underlying reduced subscheme of Jﬁant’m

is a finite étale and Galois cover of €.

In view of the theory developed in Section 4.1, we can identify the set of endomor-
phisms of X;[p™], which lift to arbitrary m’ > m, with the p™-torsion in the étale
p-divisible group Hx, x,. Now consider the intersection of the scheme-theoretic im-
ages of the automorphisms of X;[p™*+*] inside the automorphisms of X;[p™] (under
the natural restriction map). By Lemma 4.1.5, the images of &/ut(X;[p™**]) —
o ut(X;[p™]) will stabilize for large enough k, giving rise to an open and closed
subscheme of the finite étale scheme Hx, x,[p™]. This shows that /&ant’m — &
is a quasitorsor under an étale group scheme. From [Man05, Proposition 4] (which
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produces sections over a finite étale cover), it follows that they are actually torsors.
In particular, we see that fl\l}mm,m is actually already reduced.
Thus, the scheme
b : b
]Mant = m jMant,m

m

is a pro-étale cover of €.

Note that, as Igb is reduced, the natural map Igb — Sk, Kk» factors over Igb —
€*. Moreover, as any homomorphism between p-divisible groups preserves the
slope filtration by Corollary 4.1.10, we see that any isomorphism G, = X, induces

isomorphisms G} = X;, and thus there is a natural map Ig® = .7,

Proposition 4.3.8. The perfect scheme Ig® is the perfection of T via the

natural map Igb — fl\l;[ant-

ant’

Proof. Let (4,..)P%! be the perfection of #, .. Then we claim that the p-
divisible group G, over ¢ becomes canonically isomorphic to X, when pulled back
t0 (Aane) P Recall that Gy, has a slope filtration

0CGp1 C-+- CGpyr =Gy,

with gg = Gb,i/Gp.i—1 isoclinic of slope A;. Moreover, when pulled back along
I — €°, each Gi becomes trivialized to X;.
The existence of the slope filtration on G, means that we have integers 0 < ¢, <
coe < tg < t; < s, such that fori =1,...,7:
(1) the slope A; = &;
(2) the quasi-isogenies
F? s
E Gy — (gb,i)(p )7
where F is the Frobenius isogeny, are genuine isogenies.
(3) the induced maps

o : Gy — (G5)@
are isomorphisms.

s
pti

The inequalities between the t; imply that
iterations of

acts nilpotently on Gy ;1. Repeated

S

o (Go))? ) = Gy

can be used to construct canonical splittings G < Gp; over (S, )P

Thus, G decomposes canonically into G; X - -+ X G,. over (fﬁant)perf, and this is
trivialized to X; x -+ x X, = X,, as desired. O

We remark that J,(Q,) C Autg (Xb) acts on Ig®. However, only a certain sub-
monoid of J,(Q,) acts on £, .; Mantovan, [Man05], does however construct a
canonical action of J,(Q,) on the étale cohomology of .#, .. From Proposi-
tion 4.3.8, it follows that the étale cohomology of .Y, . is also the étale cohomology
of Ig®, on which we have a natural action of Jp(Qp). We leave it to the reader to

verify that this is the same action as the one constructed by Mantovan.

Corollary 4.3.9. The map Ig® — € is faithfully flat.
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As the map is obviously a quasitorsor under the automorphisms of X, respecting
the extra structure, this implies that it is in fact a torsor under this group. Note
that € is smooth, while the scheme of automorphisms of X; is a highly nonreduced
object like Specf[?p[[Xll/pm7 e ,X;/pm]]/(Xl7 ..., X4). The fact that a torsor under
this group over something smooth is a perfect scheme forces the smooth directions
of the base to match with the nonreduced directions of the group, so that one can
deduce that the dimension of €° is d = (2p,14), for example by looking at the
transitivity triangle for the cotangent complex.

Proof. As ﬂl\l}[ant is a cofiltered limit of smooth schemes along affine transition maps,
its Frobenius morphism is (faithfully) flat, and thus Ig® — 4. . is faithfully flat.
We have already seen that %y, . — € is faithfully flat, so we get the result. O

As Ig® is a perfect scheme, it lifts uniquely to a flat p-adic formal scheme over
W (F,) = Op, which we denote by Ig%é. As a moduli problem on Nilp%pé, it

parametrizes abelian varieties up to p-power isogeny in .k, kr, equipped with an

isomorphism of A[p>°] with (the canonical lift of) Xb, respecting all extra structures.
One can also describe this deformation of Ig® to mixed characteristic differently.
For this, fix a lift (X;)o, of X, up to quasi-isogeny (with its extra structures) to
Ok, where Of is the ring of integers of some complete nonarchimedean field K/F;
in other words, pick a point (Xp)o, € MP(Ok). This is possible (with K = E), as
9M® is formally smooth. One gets the following lemma.
Lemma 4.3.10. The points of the formal scheme Igl(’gk = Igl(’gE Xo, Ok over
R € Nilpg,  are given by the pairs (A, p), where A € Sk, r»(R) is an abelian
variety with extra structure, and
P A[poo] = (Xb)OK Xox R
is an isomorphism compatible with the extra structure. (]

We will also need a variant of Igusa varieties, where one trivializes A[p>°] only
up to quasi-isogeny.

Definition 4.3.11. Let X° be the functor sending R € Nilpc(g)E , to the set of pairs
(A, p), where A € Sk, k»(R) is an abelian variety with extra structure, and

p: Ap=] xr R/p = Xy x5, R/p
is a quasi-isogeny compatible with the Opg-action and the polarization, up to an

automorphism of fipe r/p-

Fix a lift (Xp)o, of Xp to Ok as above. We define a map of formal schemes over
OKa
Igh, xo, M — Xb .
For R € Nilpyy , let

(4,0),(G,0) € (g0, x M)(R) .

Thus, A € Sk, kr(R) is an abelian variety with extra structure, equipped with an
isomorphism

p: A[poo] = (Xb)OK X0k R .
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On the other hand, G is a p-divisible group with extra structure over R, equipped
with a quasi-isogeny p’ to X, over R/p, which lifts uniquely to a quasi-isogeny
(denoted in the same way)
p/ G — (Xb)OK X0k R.

We get the composite quasi-isogeny G — A[p>]. It follows that there is a unique
quasi-isogeny of p-power order A" — A such that A'[p®] — A[p™>] gets identified
with G — A[p>°]. This defines a new point A" € .k, x»(R), which comes equipped
with a quasi-isogeny

p/ : A,[poo] =g - (Xb)OK Xox R,
and in particular a quasi-isogeny to X, over R/p.

Lemma 4.3.12. The map constructed above induces an isomorphism, and fits into
a commutative diagram

Igh, o, M ———— Xb,
Mo me.

Here, the first vertical map is projection onto the second factor, and the second
vertical map sends (A, p) € Xb to (A[p™], p) € MP.
In particular, choosing K = E above, X° is representable by a formal scheme.

Proof. The diagram commutes by construction.

We now define the inverse of the top horizontal map: suppose we are given a
pair (A’, p') € X*(R). In order to define (G, p’) € MP(R) we just take (A'[p>],p).
From the quasi-isogeny

P Al[poo] = (Xp)ox Xox R,
we find a quasi-isogeny of p-power degree A’ — A such that the induced quasi-
isogeny
p: AP = (Xp)ox xox R
is an isomorphism, so we get (A,p) € Igl(’gk (R). It is easy to verify that this
construction is inverse to the horizontal map. O

We would like to say that X is an Autg(gb)-torsor over the completion of Sk ir
along Y}’{p Kx»- 1t is clear that it is a quasitorsor, and it remains to show that the
map is locally surjective in some topology, the naive choice of course being the fpqc
topology.

If this were true, then one could take the pushout along Autg(Xy) — J,(Q,) to
get a Jp(Q,)-torsor over be{pr, This Jp(Qp)-torsor can in fact be constructed, as
in the following proposition (which will not be used in the sequel, but is included
as it fits the current discussion).

Proposition 4.3.13. Let S be a scheme over IF‘p, and let X be a p-divisible group
with extra structure over S. Assume that there is some b € B(G) such that all fibres
of X are quasi-isogenous to Xy (compatibly with extra structures). Then there is a
natural Jy(Q,)-torsor over S which above any geometric point T € S parametrizes
quasi-isogenies between Xz and X, (compatible with extra structures).
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Remark 4.3.14. The J,(Q,)-torsor is to be understood as in [BS15a]; more precisely,
there is a sheaf of (abstract) groups on Spros; corresponding to the topological group
Jp(Qp), and we are considering a torsor on Sproet under this sheaf of groups. If S is
connected and locally topologically noetherian and Z € S is a geometric base point,
this corresponds to a map

P8, Z) = Jy(Q,)

This map, and the J;(Q,)-torsor, only depend on X up to isogeny. We remark
that the displayed map may have noncompact image in general, but the image is
compact in case X admits a slope decomposition (or is isogenous to such an X);
this explains [0Z02, Example 4.2], where a p-divisible group over a non-normal
base is constructed which is not isogenous to one admitting a slope filtration. We
remark that most Newton strata, e.g. the basic one, give such examples: For the
basic Newton stratum, the image of the displayed homomorphism is a discrete
cocompact subgroup of J;(Q,) related to p-adic uniformization.

Proof. We may assume that S is perfect. In that case, we consider the functor
sending any T € Sprest to the set of quasi-isogenies between Xp and (X3)r, re-
specting extra structures. This is a J;,(Q,)-quasitorsor, and we want to prove that
it is a torsor.

First, we check this when S is strictly local, so assume S = Spec R is the
spectrum of a strictly henselian perfect ring R. In that case, we need to show
that there is a quasi-isogeny between X and X,, compatible with extra structures.
As there is such a quasi-isogeny over the special point, the result follows from the
following lemma.

Lemma 4.3.15. Let R be a strictly henselian perfect ring with residue field k. Then
the functor G — Gy, from the category of p-divisible groups over R with constant
Newton polygon, up to isogeny, to p-divisible groups over k up to isogeny is an
equivalence of categories.

Remark 4.3.16. In fact, the proof will show that if G and H are p-divisible groups
with constant Newton polygon over R, then there is a constant ¢ depending only
on the heights of G and H such that for any homomorphism ¢ : Gy, — Hj, over k,
p°yy, lifts to a (necessarily unique) homomorphism G — H. (Cf. [0Z02, Corollary
3.4].)

Proof. Choose an embedding F, < R. Assume for the moment that we know
that any p-divisible group G over R with constant Newton polygon is isogenous
to Go,r := Go XF, R for some p-divisible group Gy over H‘_’p. By the Dieudonné-
Manin classification, the functor in the lemma is essentially surjective. To check
fully faithfulness of the functor, we may restrict to calculating Hompg(G, H)[1/p]
where G = Gy g, H = Hy g. By fully faithfulness of the Dieudonné module func-
tor over perfect rings (first deduced by Gabber from results of Berthelot, [Ber80],
cf. also [Laul3, Theorem D]), it is then enough to check that for any isocrystal
(D, ) over F,,

(D@ W(R)1/p)?~" = (D@ W(k)[1/p)*~" .

We may assume that D = D) is simple of slope A; if A # 0, then there are no
p-invariants, and if A = 0, then both sides are equal to Q.
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It remains to see that any p-divisible group G over R with constant Newton
polygon is isogenous to a constant p-divisible group.?? More precisely, choose a
completely slope divisible Gg /Fp with an isogeny v : G — Gy which one can
assume to be of degree bounded only in terms of the height h of G. Then we claim
that there is a (necessarily unique) quasi-isogeny ¢ : G — Gy g lifting 9, and
whose degree is bounded only in terms of h; i.e. there is a constant ¢ = ¢(h) such
that p°y : G — G g is an isogeny.

For this, assume first that R is an integral domain, with quotient field K. By
Lemma 4.2.16 (cf. Remark 4.2.17), the functor from p-divisible groups over R to
p-divisible groups over K is fully faithful. We can find an isogeny 9% : Gk — Go,k
of degree bounded only in terms of h, which then extends to a map ¥’ : G — Gy r
of degree bounded only in terms of h. Over k, ¥, and v, differ by a quasi-isogeny
of Gg of bounded degree; correcting ¢’ by this quasi-isogeny gives the desired quasi-
isogeny ¢ : G — Gy g lifting 1y, which is of bounded degree.

In general, let {p;} be the minimal prime ideals of R (which may be infinitely
many);?? then the result holds true over each R/p;, which is still a strictly henselian
perfect ring. Let R C [[; R/p: be the subring of those elements f = {f; € R/p;}
for which f := f; € k is independent of . Then R is another strictly henselian
perfect ring, R — R, and there is an isogeny

’Q/JR : GR — GO,R .
Indeed, p“y 5 will be an actual isogeny, and then to write down this isogeny, one
has to write down many matrices with entries in R; but one has these matrices
with entries in R/p; for each ¢, reducing to the same matrix over k. It remains to
see that vy is defined over R, i.e. that some matrices with coefficients in R have
coefficients in R. For each i, R/pZ]:Z is a strictly henselian perfect ring, so d’R/p,;R

is uniquely determined; by uniqueness, it must be given by the base extension of
YRr/p,» which is already known to exist. Thus, we finish by observing that

R={feR|Vi:f modp; € R/p; C R/p:R} .

To verify the displayed equation, we observe that R — R is a v-cover in the sense
of [BS15b], so that by [BS15b, Theorem 4.1 (i)] (applied to £ = Ox)

R={feR|f®l=10fc RoyR}.

As everything is reduced, the latter equality can be checked as a system of equalities
in

(R®R R)/pi(R®R R) = R/p;R ®pp, R/MiR,
as desired. O

Now we go back to a general perfect base scheme S. We need to find a quasi-
isogeny between X and X (compatible with extra structures) locally on Sprost. For
any geometric point Z € S, we can find such a quasi-isogeny over Sz. Thus, fixing
any n, after replacing S by an étale neighborhood of Z and X by a quasi-isogenous
p-divisible group, we can assume that there is an isomorphism X[p"] = X;[p"]
compatible with extra structure.

22 [0Z02, Corollary 3.6] in the case where R is the perfection of a noetherian strictly
henselian ring R’ and G is defined over R’.

231f there are only finitely many, e.g. if S is the perfection of a noetherian scheme, one can
argue as in [0Z02, end of proof of Proposition 3.3].
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In that case, we can look at the K,-quasitorsor S — S of isomorphisms Xp &
(Xp)r compatible with extra structures on the category of perfect S-schemes T,
where K C Jy(Qp) is the compact open subgroup of automorphisms of X, com-
patible with extra structures. Note that S is representable by a perfect scheme.
We claim that if n was chosen large enough (depending only on X,), then this
quasitorsor is a torsor, i.e. S — S is faithfully flat. This will then give the desired
quasi-isogeny locally on Sprosr (namely over the pro-étale cover S5 —09).

To show that S is a torsor, we need to see that it is faithfully flat, so we can
assume that S = Spec R is strictly local. We need to show that there is an
isomorphism X 2 (X,)g compatible with extra structures, assuming that such an
isomorphism exists on p™-torsion for n big enough.

As before, let k be the residue field of R. Then X and X} have isomorphic p"-
torsion; from [Sch13a, Lemma 4.4] one deduces that there is an isomorphism ), :
Xp = X, compatible with extra structures, if n was chosen large enough; moreover,
one can assume that this isomorphism reduces to the given one X;[p"] =& Xj[p"]
on p™/%-torsion (say, n = 2m is even). From Lemma 4.3.15 and Remark 4.3.16, we
see that 1, lifts to a quasi-isogeny v : (X3)r — X such that py : (Xp)p — X
and p°~! : X — (X}) g are actual isogenies, where c is a constant depending only
on Xp. Then the kernel G' C (Xp)g of p°1 is contained in the p?“~torsion; thus, it
is the kernel of p° : (Xp)r[p*] — X[p?°] = (Xp)r[p?] (if m > 2¢, which we may
assume). By choosing m large enough and using Lemma 4.1.5, we may arrange
that p°i lies in Hx, x,[p?“](R). But as R is strictly henselian perfect,

be,xb [pQC](R) = be7xb [pzc](FP) :

It follows that G C (Xp)g is constant, G = Go g, for Go C X, with X;,/Go = X,
compatibly with extra structures (as this is true over k). But then p©y factors over
an isomorphism

(Xb/GO)R =X )

where the left-hand side is isomorphic to (X;)z. This gives the desired isomorphism
X 2 (X,)r compatible with extra structures. O

Now we go back to the study of Igusa varieties. Let X° := (X*)2% be the adic
generic fiber of the formal scheme X°.

Definition 4.3.17. Let X2, be the functor on complete affinoid (E(Cp), OE(Cpoc))_

algebras sending (R, RT) to the set of triples (A, p,a), where (A, p) € X°(R, RT)
and

a:A—=T,A
is a morphism of Op-modules such that

(1) the pairing (-,-) on A matches the pairing on T, A induced by the polariza-
tion and the fixed choice of p-power roots of unity, and
(2) the induced maps

A= T,AX(C,CT),
on all geometric points Spa(C,C™T) of Spa(R, RT) are isomorphisms.

Remark 4.3.18. There are natural maps X* — 9M® and X% — M, defined by
sending an abelian variety to its p-divisible group. We can check on the level of
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moduli problems that X% fits into the Cartesian diagram

X — MO

L

Xb Mb ,

therefore it is representable by an adic space.

We let (Igl(’gK)f;d be the generic fiber of the formal scheme Ig%, o
Corollary 4.3.19. We have an isomorphism

b yad b~ b
(IgOK)% X Spa E,0; Moo - Xoo,K'
1% ( E)
In particular, X% is preperfectoid.

Proof. The first part follows from the decomposition of ¥* in Lemma 4.3.12, and the
cartesian diagram of Remark 4.3.18. The final assertion follows formally from the
facts that M?_ is preperfectoid, and that Igl(’gK is locally of the form W(R)®o, Ok
for a perfect ring R, so that (if K is perfectoid) its generic fibre is a perfectoid
space. O

We let ?/C'\go be the perfectoid space associated with X% as in [SW13, Proposition
2.3.6]. Let Sk» be the perfectoid infinite-level Shimura variety over E,. Let St C
Sk» be the locus of those points Spa(K, KT) — Sk» over which the universal
abelian variety over K extends to KT, and defines a point of Y}’{p kv over the
residue field of KT. This is the preimage under the continuous specialization map
of the locally closed subset yfl)(pr C Sk, kr X0p, Fq, and thus Sk, C Sk» is a
locally closed subset.

Lemma 4.3.20. The perfectoid space b maps to Sb, by forgetting the quasi-
isogeny p and to M2, by sending (A, p) to (A[p>],p). The induced map

b b b \A
Xoo — (Moo Xﬁfc,u SKP)
is an isomorphism of perfectoid spaces.

In other words,

XY —— Mb

[ -

THT,
Sb, —= Flg,
becomes a Cartesian diagram when one takes points over a perfectoid space.

Proof. Note that the diagram commutes by Remark 4.2.8. Therefore, the map in
the lemma is well-defined. We first check the fact that the diagram is Cartesian on
(C, O¢)-points, where C/E((p=) is complete and algebraically closed with ring of
integers Oc. A (C, O¢)-point of 8%, gives rise to a couple (A, a), where A/O¢ is
an abelian variety with extra structures and o : A — T, A(C, O¢) is an isomorphism
compatible with extra structures. A (C, O¢)-point of M¥_ gives us a triple (G, 3, p),
where G/O¢ is a p-divisible group with extra structures, 3 : A = T,G(C,Oc¢) is
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a trivialization of its integral Tate module and G xo, Oc/p — X, x5, Oc /pis a
quasi-isogeny.

The fact that (A, «) and (G, 3, p) are mapped to the same point of F#¢ , under
77 and 78, means that the Hodge-Tate filtrations on T),A ® C' and T,G ® C
are identified under the isomorphism 8o a~!. Now [SW13, Theorem B| gives an
isomorphism A[p™®] = G extending the given isomorphism on the generic fibre.
Thus, the given data assemble into a point of X%, and one checks that these
constructions are inverse.

Now, if (R, Rt) is any perfectoid affinoid F (Cpe= )-algebra, one gets similar data
(A, ), (G, B, p) over RT. One has to check that the isomorphism 8o a~! between
A[p>™|r and Gg extends to RT. This follows from Lemma 4.2.15 above. O

Putting together Remark 4.3.18 and Lemma 4.3.20, we get a diagram with Carte-
sian squares (the right one when evaluated on perfectoid spaces)

xb xb St.,
[

HT
e MO —— Pl

4.4. Etale cohomology. Fix a prime ¢ = p, and consider the map
THT SK;D — yg@ju .

In this final subsection, we use the geometric results established so far to identify
the fibres of F = Rrpr.Z/¢"Z with the cohomology of Igusa varieties. In this
section, we make the additional assumption that .k k» is proper over Og . It is
known that this is equivalent to asking that G is anisotropic over Q, cf. [Lanll].

Let C' be a complete algebraically closed extension of Ev’(Cpoo), with an open
and bounded valuation subring C* C C, and fix a point x € Fg ,(C,CT); we
assume that C' is the completed algebraic closure of the residue field of Fq ,, at
the underlying (topological) point. We are interested in understanding the stalk
Fo = (Rimyr.Z/0"Z),. In this respect, we have the following general base change
lemma.

Lemma 4.4.1. Let f : Y — X be a quasicompact and quasiseparated map of
analytic adic spaces, and for definiteness assume that X is either a locally strongly
noetherian adic space or a perfectoid space over Spa(Z,,Z,), andY is perfectoid.?*
Let x € X be a point with residue field K(x) and open and bounded valuation
subring K (x)*. Let C(z) be a completed algebraic closure of K (x) with an open and
bounded valuation subring C(z)* C C(&) lifting K(x)", giving rise to a geometric
point T = Spa(C(z),C(z)T) — X. Let

Yz = (Y xx Spa(C(z),C(z)*)"

be the fibre of Y over &, which is a perfectoid space over C(&). For any sheaf G of
abelian groups on Ye and all © > 0, the natural map

(R'f.G)z — H'(Yz,0)

24we only need to know that they have well-defined étale sites, and that the same holds for all
fibres of f over geometric points. For example, the lemma is also true when one asssumes instead
that both X and Y are perfectoid.
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is an isomorphism.

Here, and in the following, these statements will also be true for sheaves of groups
and i = 0, 1, and sheaves of sets and i = 0. We will not spell this out.

Proof. Let U; = Spa(R;, Rj') — X be a cofinal system of affinoid étale neighbor-
hoods of Z; then
Spa(C(ﬂf), C($)+) ~ yﬂlspa(ij R;r) )
J

and one has

(R f.G)z = h_rgH%Y xx Spa(R;, R)),9) .
J

It remains to see that
lim H'(Y xx Spa(R;, R}),G) = H'(Yz,G) .
J

But this follows from Yz ~ @j (Y xx Spa(R;, R;')) (cf. [SW13, Proposition 2.4.3]),
where all terms are quasicompact and quasiseparated, and the resulting consequence
for étale cohomology, cf. [Sch12a, Corollary 7.18].%° O

In particular, the fibre
(RTgre 20" )y = H (Skco o, 2" T) .
Next, we reduce to the case of rank 1 points. For this, we use the following lemma.

Lemma 4.4.2. Let X be a quasicompact and quasiseparated analytic adic space,
and for definiteness assume that X is a perfectoid space.?® Let U C X be a quasi-
compact open subset which contains all rank 1 points of X. Then, for any locally
constant sheaf G of abelian groups on Xg and all i > 0, the natural map

H'(X,G) = H'(U,G)
is an isomorphism.

Proof. Let j : U < X be the inclusion. It is enough to prove that G — Rj,.G is an
isomorphism. This can be checked on geometric points, which, using Lemma 4.4.1,
reduces us to the case X = Spa(C, C'") for some complete algebraically closed field
C with an open and bounded valuation subring C* C C. Then U = Spa(C, DT)
for a different open and bounded valuation subring D™ C C, containing CT. As
X is strictly local, the sheaf G is the constant sheaf associated with some abelian
group G. But as any étale cover of X splits, one has RI'(X,G) = G, and similarly
for U, giving the result. O

Applying Lemma 4.4.2 to the inclusion Sg» 3 C Skr , shows that
(RZWHT*Z/KnZ)x = (RZTFHT*Z/EnZ)i = Hi(SKp@, Z/fnZ) .
Thus, we will from now on assume that = Z is a rank 1 point, and write Ct = Oc¢.

Now choose b € B(G, 1) such that x € fﬁ’é’#. If y € Skr 4 is any (geometric)
rank 1 point, the argument of Lemma 4.2.18 shows that y € S%,. Thus, S';}p’x =

251 the discussion around [Sch12a, Corollary 7.18], the X; are assumed to be strongly noe-
therian; the discussion is also valid if all X; are perfectoid.

26Again, the lemma also holds true when X is a strongly noetherian adic space, or whenever
X has a well-behaved étale site.
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Skra XSkp Sw» C Skr is a quasicompact open subset with the same rank 1
points, so applying Lemma 4.4.2 once more, we see that

(R Z/0" L)y = H' (Syy o, Z/C"Z) .

Now we apply Lemma 4.2.18 to lift x € ﬁél&u(Q O¢) toapoint z € M2 (C, Oc),
giving rise in particular to a p-divisible group (Xp)o,, (with extra structures) lifting
Xp. Then Lemma 4.3.20 identifies the fibre S}’{p)x with the fibre X;’O’Z. This, in
turn, gets identified with (Igl(’g C)Zd by Corollary 4.3.19. Combining the discussion
so far, we see that

(RimpriZ/0" L) = H'((Ig),, )24, Z/0"Z) .
Next, we pass to the special fibre.

Lemma 4.4.3. Let X/F, be a perfect scheme and let C be a complete algebraically
closed monarchimedean field whose residue field contains F,. Let Xo. be the flat
formal scheme over Spt Oc which is the unique lifting of X X Oc/p, and let
Xo = (.’foc)f;d be its generic fibre, which is a perfectoid space. For all i, the
canonical maps

HY(X,Z/0"Z) + H' (Xo.,Z/"Z) — H (X, Z/"Z)
are isomorphisms.

Proof. The question is local on X, so we can assume that X is affine. Then we
can write X = @X ; as a cofiltered inverse limit of affine schemes X; which are
perfections of schemes of finite type over F,. One also gets Xo ~ I'&nj X;.c, so
all cohomology groups in question become a filtered colimit over j; thus, we can
assume that X is the perfection of an affine scheme X of finite type. Then the
cohomology of X agrees with the cohomology of Xj.

Moreover, the cohomology of X¢,, is the same as the cohomology of its special
fibre X Xf, k, where k is the residue field of O¢, which in turn agrees with the
cohomology of X Xf, k. Thus, the first map is an isomorphism by invariance of
étale cohomology under change of algebraically closed base field.

Also, under tilting, the étale cohomology of X agrees with the étale cohomology
of Xcv. We may thus assume that C is of characteristic p. In that case, one can
also form X9 0. = Xo Xgpec F, Spf O¢ and its generic fibre Aj ¢, which is a rigid-
analytic variety over C, with X ~ @Frob Xo,c. Thus, the cohomology of X
agrees with the cohomology of & . Finally, we are reduced to proving that the
map

H (X000, Z/("7) — H(Xo.c,Z/"Z)
is an isomorphism. The right hand side can be computed, by [Hub96, Corollary
3.5.17], in terms of H*=7(X, xg, k, RIYZ/"T).

It is enough to see that, if X is a scheme of finite type over Fp, then the complex
of nearby cycles of Xy ¢ = X XF, C'is quasi-isomorphic to the constant sheaf Z/¢"Z.
By [SGAT73, XIII 2.1.4], we can compute the stalk of RIYZ/{"Z at a geometric
point Z as H?((Xo,0.)z X C,Z/I"Z), with (Xo.0.)z the strict henselization of
Xo,06 = Xo XF, Oc¢ at . We conclude, since the map Xo.c — Spec O¢ is the
base change along the map Spec Oc — Spec F, of the universally locally acyclic
map Xo — F,. (For universal local acyclicity, we use the definition of [Del77].
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Every scheme of finite type is universally locally acyclic over a point, cf. [Del77,
Th. finitude, Théoreme 2.13].) O

Thus, we get _ _
(Rimpr.Z)0" L), = H' (1", 2/0"Z) ,
where Igb / ]Fp is the perfect scheme introduced in Definition 4.3.1. Using Proposi-
tion 4.3.8, we finally arrive at the following formula.

Theorem 4.4.4. For any geometric point T of Flg,, contained in ﬁ(%’u, there is
an isomorphism
(RimpreZ/0"L)s = H' (18", 2/ Z) = lim H' (Fjang s Z/C'Z) -

m

It (only) depends on the choice of a lift of T to M2, and is compatible with the

007’

Hecke action of G(AY). O

One can formulate a version of this result where one replaces Z/¢"Z by the local
system corresponding to an algebraic representation &.
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5. THE COHOMOLOGY OF IGUSA VARIETIES

The goal of this section is to compute the alternating sum of cohomology groups
[H(Jg°, Q)] as a virtual representation of G(A%}) x Jy(Qp). We will work with (the
Igusa varieties corresponding to) unitary Shimura varieties. Our setup is similar to
that of [SS13] (see Section 5.1 for more detail) and we intend to prove a version of
Theorem 6.1 of [Shill] in this situation.

By Proposition 4.3.8 and since perfection does not change the étale topos, it is
enough to work with the classical objects .y, .. By Poincaré duality, it is enough to
compute the alternating sum of the compactly supported cohomology groups. Sug
Woo Shin has derived a formula for the alternating sum [H. (%, Q¢)] as a sum of
stable orbital integrals for G and its elliptic endoscopic groups (see Theorem 5.2.3).
We reinterpret this formula as the geometric side of the twisted trace formula and
compare it to the spectral side.

5.1. Setup. We assume that F' = F*-K is the composition of a totally real field F'™
and an imaginary quadratic field K. Let ¢ € Gal(F/F ™) be the non-trivial element.
Let G/Q be a unitary similitude group preserving an alternating hermitian form
(, ) onan F-vector space V of dimension n. Let Splp, p+ denote the set of rational
primes v such that every prime of F'* above v splits in F. We make the following
further assumptions on F' and G.

(1) F* £

(2) the set of rational primes which are ramified in F is contained in Splg,p+;

(3) G is quasi-split at all finite places.
See Section 10 of [SS13] for a discussion of these conditions. The first condition
is needed in order to identify the stable trace formula for Igusa varieties with the
geometric side of the trace formula (avoiding so-called cuspidal subgroups). The
second condition is imposed to avoid issues with L-packets and base change for
unitary groups.?” The third condition implies that endoscopic representations will
contribute to [He( Y., Qr)], and is thus in some sense the hardest case.

Let h : C — Endp(V)r be an R-algebra homomorphism such that h(z¢) = h(z)¢
for all z € C and such that the bilinear pairing (v, w) — (v, h(7)w) is symmetric
and positive definite. Then (F,¢,V,(, ), h) is a Shimura datum of PEL type. The
fact that c is an involution of the second kind implies that the PEL datum is of
type (A), according to the classification on page 375 of [Kot85].

The R-algebra homomorphism h induces a homomorphism of algebraic groups
h: Resc/rGy — Gr. Then (G, {h}) is a Shimura datum as in Section 2.1. For K C
G(Ay) an open compact subgroup, we can define the Shimura variety Sk, which has
a model over the reflex field F. Let p be the Hodge cocharacter corresponding to
h. We follow the slight abuse of notation in denoting by Sk not the actual Shimura
variety, but the PEL moduli problem, which is the disjoint union of |[ker'(G, Q)|
copies of the actual Shimura variety. This factor |ker1((@7 @G)| will thus appear in
many formulas below.

Also assume that the prime p is unramified in F' and splits in K (so, in particular,
it lies in Splp, p+ ).

Let p be a prime in the reflex field E of the Shimura datum above the rational
prime p. Let K C G(Ay) be a compact open subgroup which is sufficiently small

27 Actually, (2) implies (1).
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and has the form K?K,, such that K, C G(Q,) is hyperspecial. The fact that p is
unramified in ' means that good integral models .k of Sk exist over Og,.

We fix a field isomorphism ¢, : Q; = C throughout. If G is a topological group,
such that every neighborhood of the identity contains a compact-open subgroup
and € is an algebraically closed field of characteristic 0, we let C$°(G) be the space
of smooth, compactly supported, Q-valued functions on G (usually they will be
C-valued; if they are valued in Qy, then by smooth we mean locally-constant). We
let Irr(G) denote the set of isomorphism classes of irreducible admissible repre-
sentations of G over Q and Groth(G) be the corresponding Grothendieck group.
For all the groups we consider, we choose Haar measures and transfer factors as
in [Shil0, Shill].

In particular, if G is an unramified group over a non-archimedean field F, we
choose a hyperspecial maximal compact subgroup K and a Haar measure such that
K has volume 1. We let H"(G(F)) be the subspace of C°(G(F)) consisting of
bi-K-invariant functions, which is an algebra with respect to convolution.

5.2. A stable trace formula. In this section, we recall the main constructions
and results of [Shil0]. For any open compact subgroup K C G(Ay) which is
hyperspecial at p we have an integral model .7 /Og,. As described in Section 4.3,
the special fiber of ., has a Newton polygon stratification, in terms of elements
b € B(G,u1). Fix b and also a p-divisible group with extra structures Xb/IF‘p as
in Section 4.3. Recall that J,(Q,) is the group of quasi-self-isogenies of X which
respect all the extra structures.

By the Iqusa variety ﬂl\l}[ant we mean the projective system of Fp—schemes Jﬁam’ KP,m>
where K? C G(A’;) runs over sufficiently small open compact subgroups and m runs
over positive integers. Each of these schemes is a finite Galois cover of the leaf %},
inside .7%. Define

[HC(/I\ZZIantv@Z)] = @(_1)k hﬂ Hf(]f/[ant,KP,mv@f)'
k KPm

Since each of the summands is an admissible representation of G(A%}) x J,(Q,), we
think of [H.(#Y..., Q¢)] as a virtual representation in Groth(G(A}) x Jp(Qp)).
Often, we will fix a finite set S of places of Q including p, 0o and all places at
which F ramifies. If we fix a compact open subgroup K*° C G(A®) which is a
product of hyperspecial maximal compact open subgroups K, C G(Q,), we let

[Hc(jl\?[ant’ @4)] Sux

be the summand of [H.(.#, ., Q)] of those representations which are unramified
outside S. More precisely, any element 7 € Groth(G(A%}) x J,(Q,)) can be written

as a (possibly infinite) sum
™= Z n;m; ,
i

where m; runs through the irreducible representations of G(A’;) X Jp(Qp) (all of which
decompose into a tensor product), n; € Z, and for each compact open subgroup
K cC G(A?) x Jp(Qy), there are only finitely many i for which n; # 0 and 7% = 0.

Then we define
WSur = Z n;m; .

7;:71'7{(3730



72 A. CARATANI AND P. SCHOLZE

Let Groth(G(A%}) x Jy(Q,))*™ denote the subgroup of Groth(G(A%) x Jy(Qp))

consisting of those m for which 7 = 7%, Then there are nondegenerate trace
pairings

Groth(G(Az}) x Jp(Qp)) X CEO(G(A?) x Jp(Qp)) = C
and

Groth(G(A}) x Jy(Qp))™ x (HU(G(A%)) ® CF(G(Asy\ (1) X J5(Qp))) = C.

Let ¢ € CX(G(A}) x J,(Qy)). We say that ¢ is acceptable if it satisfies the
conditions of Definition 6.2 of [Shi09]. The main condition is that ¢ is a linear com-
bination of functions of the form ¢ x ¢,,, where ¢, is supported on v-acceptable el-
ements of J,(Q,). These are those elements & € J,(Q,), § = (§;) € [[}—, Fut*(X;),
such that any eigenvalues e; of §; satisfy

vp(e;) < vp(e;) whenever \; > A\,
(Definition 6.1 of [Shi09]).

Remark 5.2.1. This condition will separate components of J,(Q,) corresponding to
different slopes in terms of their p-adic valuation, which in turn is needed in order
to transfer functions from J,(Q,) to G(Q,). See Lemma 3.9 of [Shil0] and Lemma
V.5.2 of [HTO01] for more details.

Lemma 6.3 of [Shi09] guarantees that the twist of any ¢ by a sufficiently high power
of Frobenius is acceptable.

We recall the set £(G) of elliptic endoscopic triples for G. In fact, we work more
generally: let F be a local or global field of characteristic 0 and let G be a connected
reductive group over F. An endoscopic triple for G is a triple (H,s,n), Where H
is a quasl split connected reductive group over F, s is an element of Z(H ) and
Ik H— Gisan embedding of complex Lie groups. The triple has to satisfy certain
conditions, as in 7.4 of [Kot84]. Let I' := Gal(Q/Q). An endoscopic triple is called
elliptic if (Z(I:I)F)o C Z(G). We will use the notion of isomorphism of endoscopic
triples in Section 2.1 of [Shil0], which is stronger than the one in [Kot84]. We let
E°1(G) be the set of isomorphism classes of elliptic endoscopic triples for G.

Assume that G9° is simply-connected (this will be the case for G := G, our
unitary similitude group). We use Weil groups to construct L-groups; then we can
choose an extension of 7 to an L-group morphism 7 : “H — *G by Proposition 1
of [Lan79].

Assume that F is a local field. Given 7, Langlands and Shelstad (see [LS87])
define a transfer factor

A H(F)ss,(G,H)freg X G(F)sb — (C7

which is canonical up to a non-zero constant.

The fundamental lemma and the transfer conjecture, which are now theorems
due to Ngo, Waldspurger and others (see [Ng610, Wal97]), assert that for each
function ¢ € C°(G(F)), there exists ¢/ € C°(H(F)) satisfying an identity about
the transfer of orbital integrals

SORE gy = > A(ys,7)e(G,)0SH)(9)
YEG(F)ss/~

(see Theorem 3.1 of [SS13] for an explanation of the notation). If H, G and 7 are
unramified and if ¢ € HY(G(F)), then A can be normalized such that ¢ can be
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taken to be 7*(¢), where 7* : H"(G(F)) — H" (H(F)) is the morphism of unram-
ified Hecke algebras induced from 7 via the Satake isomorphism. In particular, if
¢ is the idempotent associated to a hyperspecial maximal compact subgroup, then
¢ can also be taken to be the idempotent of a hyperspecial maximal compact
subgroup.

Let ¢ € C°(G(A%) x J5(Qp)) be an acceptable function of the form

o= 1] du. with ¢, € CZ(G(Q.)), v # b, &y € CZ(J5(Qy)).

VF# 0O
Let (H,s,n) € E(Q).
Definition 5.2.2. Let ¢ := ¢"2¢lloll € C(H(A)), where:

o ¢P s the Langlands-Shelstad transfer of ¢P (as described above);

o ¢l is constructed by Kottwitz in Section 7 of [Kot90], where we take the
trivial algebraic representation of G as an input (this corresponds to the
fact that our local system on Sy, . is Qu.) We give more details in the
case when G is a unitary similitude group below.

) (bf is constructed in Section 6 of [Shil0]. The function ¢£I s the key
construction of [Shil0]; we give more details in Section 5.4 below.

The following is the main result of [Shil0], Theorem 7.2 of loc. cit.
Theorem 5.2.3. Let ¢ and ¢™ be as above, with (H,s,n) € EY(G). Then

tr(@le He( Atane> Q) = [ker' (Q, Q)| Y (G, H)STH (1),
(H,s,m)
Remark 5.2.4. Shin’s result is in fact valid for any PEL Shimura variety of type
(A) or (C). We recall that

ker’(Q, G) := ker (HI(Q,G) — HHl(Qv,G)> )

and that Sy is the disjoint union of |ker'(Q,G)| copies of the Shimura variety
for G. Also, «(G,H) = 7(G)7(H)'|Out(H,s,n)|~ . The term STH(¢H) is a
sum of stable orbital integrals over (representatives of) Q-elliptic semisimple stable
conjugacy classes in H(Q).

In the case of our unitary similitude group G, the set £'(G) only depends on the
quasi-split inner form G,, of G and in [Shill], Shin gives a concrete description of
a set of representatives for the isomorphism classes in £Y(G,,). If @ = (n;)5_, is a
vector with entries positive integers, one can define a quasi-split group G5 over Q as
in Section 3.1 of [Shill]. Define G Lz := [[;_; GL,, and let iz : GLy — GL(x n,)
be the natural map. Let

D =075 Pryy - Pn)s
where ®,, is the matrix in GL,, with entries (®,,);; = (71)”152-’71“_]-. Then G5 is
the algebraic group over Q sending a Q-algebra R to

Ga(R) ={(\,g) € R* x GLz(F ®q R)|g - ®5 - 'g° = \®z}.
Since G is quasi-split at all finite places, we have

G XQAf ZGn XQAf
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and we fix such an isomorphism.
The representatives for £(G,,) can be taken to be

{(Gnvsnynn)} U {(Gnl,n27Snl,n2777n1,n2)|n1 +ng =mn,n; >ng > 0}7

where (n1,n2) may be excluded if both n; and ny are odd numbers (see condition
7.4.3 of [Kot84]). Here, s, = 1 € Gu,8nmp = (1, (Inyy —Iny)) € Gryingy o 18
the identity map and 7y, n, : G’nhnz — @, is the natural embedding induced by
GL,, x GL,, — GL,.

If we choose a Hecke character w : A /K* — C* such that w|,« g« corresponds
via class field theory to the quadratic character associated to I/Q, we can extend
Mny,n, t0 an L-morphism

~ . L L
77n1,n2 . Gn17n2 — Gn

(See Section 3.2 of [Shill] for the precise formula.) By Proposition 7.1 of [Shill],
w can be chosen such that the set of primes where o is ramified is contained in
Splp)p- As a consequence, we can use the explicit transfer factors described in
Section 3.4 of [Shill] at all places not equal to p,0o. These are compatible with
the Langlands-Shelstad transfer described above: at unramified places v, we take

My g 2 Y (Gn(Qu)) = HY (G ny (Qu))

making use of the fundamental lemma [Ng610]. Since we have fixed an isomorphism
G xgAf = G, xg Ag, we can also think of this as a transfer from G to Gy, n, at
places away from p, co.

We also describe the explicit transfer at the place co. The transfer is as in
Section 7 of [Kot90] and uses Shelstad’s theory of real endoscopy and the Langlands
correspondence for real reductive groups; see also Section 3.5 of [Shill] for any
unfamiliar notation. Recall that over R, G is an inner form of the quasi-split
unitary similitude group G,,. For any discrete L-parameter ¢¢. for Gy, with L-
packet II(pg,, ), define

1
Poc, = )] > om

SOGﬁ')| rel(pa,)

where ¢, is a pseudo-coefficient for 7. When g, ~ ¢¢ corresponds to an L-
packet Igisc(G7(R),£Y) for some irreducible algebraic representation ¢ of Gy, the
function ¢, _ is called an Euler-Poincaré function; we denote it also by ¢q, ¢.

The desired function ¢fo will be a precise linear combination of the Euler-Poincaré
functions for L-parameters ¢¢ . for which fjop ., corresponds to the trivial algebraic
representation of G¢ (see 5.11 of [Shill] for the precise formula).

For further use, we record a version of Theorem 5.2.3 for the group G.

Corollary 5.2.5. If ¢ - ¢, € CF(G(A}) x Jp(Qp)) is acceptable, then

(| eeHe (Ffany: Q) = [ker' (Q, G)| Y u(G, G7) ST (¢7),
Gy

where Gz Tuns over the set described above and ¢" is obtained from ¢ as in Defi-
nition 5.2.2.
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Remark 5.2.6. The constants (G, Gz) can be computed explicitly:
T(G)T(Gr) ™t if = (%,%)

G,Gq) =
UG, Gx) {T(G)T(Gﬁ)_l otherwise.

5.3. Base change and the twisted trace formula. Let Gj := Resk /(G xK).
One can define L-morphisms BCj : “G5 — LGy and énl,nz : L(Gnhn2 — LG, and
there is a commutative diagram of L-morphisms

(5.3.1) LGy my —— LGy

J{Bcnl,nz J(BC"

LG, ny —— LGy

In this section, we review the associated base change for the groups Gz and G
as well as the twisted trace formula. Let S be a finite set of primes containing
00, p and all the primes where either the CM field F' or the Hecke character v are
ramified. Recall that, by the assumptions in Section 5.1, we can and will arrange
that Sﬁn C SplF/F*'

We can define a notion of BC-transfer of functions as in Section 4 of [Shill]. If
v is a finite place of Q such that v ¢ S, then the dual map to the L-morphism BCjy
defines the transfer

BC:'L‘ : Hur(Gﬁ(Qv)) — Hur(Gﬁ(@v))>

(Case 1) of Section 4.2 of [Shill]. Otherwise, if v € Sin C Splp,p+ then Section
4.2 of loc. cit., (Case 2), constructs a BC-transfer ¢, € C°(Gz(Q,)) of f, €
C*(G7(Qy)). We remark that, if v splits in K (e.g. if v = p), one can check

directly that BC} is surjective. It is also possible to define a transfer 2;, as in
Section 4 of loc. cit., making the obvious diagram commutative.

At o0, the transfer is defined in Section 4.3 of loc. cit. Let £ be an irreducible
algebraic representation of (G7)c, giving rise to the representation = of (Gz)c¢ which
is just 2 := £®&. Recall that ¢, ¢ is the Euler-Poincaré function for . Associated
to Z, Labesse defined a twisted analogue of the Euler-Poincaré function, a Lefschetz
function fg, = [Lab91]. The discussion on page 24 of [Shill] implies that fg, = and
¢a, ¢ are BC-matching functions.

Define the group
G/ = (Resx gGL1 x Resp/oGL7) x {1,6},
where O(\, )0~ = (A%, \°g%) and ¢f = fIJ%ng);Ll. If we denote by G% and G30
the cosets of {1} and {#} in G}, then G} = G U GZ%f. There is a natural Q-
isomorphism Gz = G, which extends to an isomorphism
Gy x Gal(K/Q) = Gg

so that ¢ € Gal(K/Q) maps to 6. Using this isomorphism, we write Gz and G0
for the two cosets.

If f e CX(Gr(A)) (with trivial character on Ag ), then we define f@ to be
the function on Gz0(A) obtained via translation by 6. The (invariant) twisted trace
formula (see [Art88a, Art88b]) gives an equality

(5.3.2) 1879 (10) = IC79(10).

geom spec
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The left hand side of the equation is defined in Section 3 of [Art88b], while the
right hand side is defined in Section 4 of loc. cit.
Let fg, = and ¢, ¢ be as defined above. The following is Corollary 4.7 of [Shill].

Proposition 5.3.1. We have the following equality:
(5.3.3) Igaim (f0) = 7(G) 7' ST (9),
when ¢ and f satisfy
¢ = 0" sy, - bane and f =[5 fou. - fo, =
with ¢° a BO-transfer of f°, ¢s,.. a BC-transfer of fs,. .

Proof. We sketch the proof here: first, use Theorem 4.3.4 of [Lab99] to rewrite the
sum of stable orbital integrals on the right as the elliptic part of the twisted trace
formula for Gz#. Then the geometric side of the twisted trace formula for Gz6
is simplified using similar techniques to those in Chapter 7 of [Art88b]: the key
facts are that the Lefschetz function fg, = is cuspidal, so only §-elliptic elements
contribute, and that [F'T : Q] > 2, so that the only Levi subgroup that contributes
to the geometric side is Gz6 itself. O

We now explain how to construct our test functions, which is exactly as in the
proof of Theorem 6.1 of [Shill]. We let (f™)¥ be any function in H" (G, (A%))
and fg |, be any function in C2°(Gn(Asy,,,,))- We let ¢57¢Sﬁn\{p} be their
BC-transfers, as described above. We take ¢, € C°(J,(Q,)) be any acceptable
function and set

s
¢ = (725 : ¢Sfin\{p} : ¢p'
From these test functions, we construct all the other test functions we will need.

First, for each elliptic endoscopic group Gz we let ¢™ be constructed from ¢ as

in Definition 5.2.2. Let (f™"2)% and (f™"2) S5y De obtained from (f™)?® and

f’SIfm\{p} by transfer along the L-morphism (. We choose fpﬁ so that BCA( f;‘) =
qbg (recall that BC% is surjective at p). We can define f7 explicitly, as a linear
combination of Lefschetz functions for representations Z(pz) of Gy for which 7o pz
corresponds to the trivial representation of G (see (6.7) of [Shill] for the precise
formula). Finally, we set

=" () sumey Lo - T
By the commutative diagram of L-morphisms (5.3.1), we can apply Proposition 5.3.1
to f and ¢™. To check the compatibility, see (4.18) of [Shil1] for primes away from
S, (4.19) of loc. cit. for primes in Sg, \ {p} and compare the precise formulas for
#7 and fZ. We mention that the formulas for ¢ and f7 use as input an inner
form G of Gy, over R; in loc. cit. this inner form has a specific signature (a group

of so-called Harris-Taylor type), but here we work more generally. In particular,
the integer ¢(G) appearing there is defined as $dim(G(R)/KsAS,).

Theorem 5.3.2. We have an equality
tr(@|ee[Ho(Atans Qo)) = [ ker' (Q, G)|7(G) D eq - IS (f70),

G

where e; = & if i = (2,2) and €5 = 1 otherwise.
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Proof. This follows by combining Corollary 5.2.5, Remark 5.2.6, Proposition 5.3.1
and equation (5.3.2). O

Fix G7z. We now proceed to simplify the spectral side Ig,eg(fﬁQ). We need the
following notation from [Shill]: let My be a minimal Levi subgroup of Gz. For M
a rational Levi of G containing My, choose a parabolic subgroup @ containing M
as a Levi. The group W% (ap)yeq defined in [Art88b] acts on the set of parabolic
subgroups which have M as a Levi component. The automorphism @7519 of Gz
preserves M and acts on W% (a M )reg- By combining Proposition 4.8 and Corollary
4.14 of [Shill], we have the following expression for the summands on the right hand

side of Theorem 5.3.2.

Proposition 5.3.3. There is an equality

Gr 9 |WM| -1 -1 Gx i ’

150 (f Z T det(@310 = 1) oo 3t (n—IndQ (HM)g(f")oA)
s

where M Tuns over the Levi subgroups of Gy containing My and Il; Tuns over the

irreducible @glﬁ—stable subrepresentations of the discrete spectrum Rz gisc-

Remark 5.3.4. The subscript { indicates a possible twist by a character of Ag_
corresponding to an irreducible algebraic representation & of G5 and A’ is a nor-
malized intertwiner on n — Ind " (ITpr)e. We do not make this precise, as we will

not need these details. We do note that, as I is <I>ﬁ f-stable, n — Indg (Iar)e is
f-stable.

5.4. The transfer at p. We recall the construction of the function qﬁgﬂ start-
ing from an acceptable function ¢, € C°(J,(Qp)), as well as the representation-
theoretic counterpart to this construction, Redli

The group J,(Q,) is an inner form of a Levi subgroup M,(Q,) of G(Q,); for
further reference, we recall their precise definitions, following Chapter 1 of [RZ96].
According to Definition 1.8 of loc. cit., an element b of G(L) is called decent if
there exists a positive integer s such that

(bo)* = sv;(p)o”,
where sv; factors through a morphism G,, — G. By Section 4.3 of [Kot85], any
o-conjugacy class b € B(G) admits a decent representative b; as G is quasisplit,
one can moreover arrange that v; is defined over Q,, cf. [Kot85, p. 219]. Let M; be
the centralizer of v in G, which is a QQ-rational Levi subgroup. Then b is a basic
element of My, and J is an inner form of M.

Fix Gy an elliptic endoscopic group for G. The set E;H(Jb,G,Gﬁ) is defined
in Section 6.2 of [Shi09]; it consists of certain isomorphism classes (M., S7,M7)
of Gi-endoscopic triples for Jy(Q,). The function qﬁg is constructed via transfer
from ¢, on J,(Q,) to Ma,(Q,), followed by a version of transfer from M¢,(Q,) to
G7(Qp). We remark that the latter step makes crucial use of the acceptability of
¢p, cf. Lemma 3.9 of [Shil0].

There is a representation-theoretic counterpart to this construction. This is a
group morphism

Red? : Groth(G(Q,)) — Groth(J,(Q,)).

Red% will be defined as the composition of the following maps:
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Groth(G7(Q,)) » € Groth(Mq,(Qy)),

(Mg si,ma)

where the sum runs over Gjz-endoscopic triples in ESH(JZ,, G,Gy) and the
map on each term is a linear combination of normalized Jacquet functors
(indexed over a finite set of allowed Levi embeddings Mg, — Gz);

Groth(Mg,(Q,)) — Groth(My(Q,)),

which is the functorial transfer with respect to the L-morphism 7z. Both
Mg .. and M, are (restrictions of scalars of ) products of general linear groups
and the transfer ends up being a normalized parabolic induction.
3)
Groth(M,(Qp)) — Groth(J,(Qp)),

which is the Langlands-Jacquet map on Grothendieck groups, defined by [Bad07].

(See Section 5.5 of [Shill] for the precise definition of these three maps; even
though the case we are considering is slightly more general, the formulas will be
exact analogues.)

Remark 5.4.1. When 7i = (n), 5;H(Jb, G, Gy) has only one element, namely (M, 1,id).

The morphism Redz consists of a normalized Jacquet functor followed by the
Langlands-Jacquet map.

We record the relationship between Red% and qﬁg in the following lemma.

Lemma 5.4.2. For any m, € Groth(Gz(Qy)),

tr mp(6F) = tr (Red(m,)) (6):

Proof. The statement follows in the same way as Lemma 5.10 of [Shill] (see also
Lemmas 6.3 and 6.4 of [Carl2| for a unitary group with a slightly different sig-
nature). The idea is that the constructions of both Red% and ¢" can be broken
down into the three steps outlined above and the constructions in each of these
steps are dual to each other. One of the key points is that the transfer of ¢, from
Jp(Qp) to Mg, (Q,) can be broken down into transfer from J,(Q,) to the quasi-
split form M, (Q,) followed by transfer from M;(Q,) to M¢,(Q,). The other key
point is the slightly non-standard transfer between Mg, and Gy, where the desired
compatibility follows from Lemma 3.9 of [Shil0]. O

We note that the whole situation decomposes into a product. Namely, let
P1,...,Pm be the primes of F'T above p, and fix a decomposition p = uu® in K. We
denote by p; also the place of F' lying over p; in F*, and u in K, and by p¢ the
complex conjugate place of F. With these choices, we get a decomposition

Gg, = [ [ Resr,, 0, GLn % Gy -

Here, the projection to the G,,-factor is the unitary similitude factor, and the
projection to the general linear groups is via the projection
VeeQ, =V erF, eV er ) > PVerkF, .
i

7
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The resulting constructions above admit similar decompositions. In particular,

i=1
and J, = [[;~, Jbo, X Gy, Also, any irreducible representation m, of G(Q,) decom-
poses into a tensor product

m
Tp = ®7rpi @ o
i=1

where T, is an irreducible representation of G L, (F}, ), and m is a character of Q.
A similar discussion applies to representations of

G(Q,) = [[ GLa(Fp,) x Q} -
i=1
Lemma 5.4.3. Let wg € Irr(Gr(Qp)) be decomposed as

m
i _ 7 i
T, = ®7rpi KMy -
i=1

Assume that there is some i such that ﬂ;’; transfers to a generic principal series
representation of GL,(Fy,) and Jy, is a non-quasi-split inner form of My,. Then

Red4(m,) = 0.

Proof. This follows from the explicit description of Red% above, which includes
the Langlands-Jacquet map. If 77? satisfies the above condition, then its image
p in Groth(M,(Q,)) will have as M, (Fy,)-components only generic principal se-
ries representations. Indeed, to see this, note that by the definition in Section 2
of [Shil0], for a Gz-endoscopic triple, the L-morphism L'Mg,. — LM, is the re-
striction of the L-morphism 7, n, : LGnl,n2 — L@,. The condition of being a
generic principal series representation can be interpreted on the dual side, and is
then easily deduced from this diagram. But if p € Groth(M;(Q))) has only generic
principal series representations as Mp, (Fy,)-components, then it lies in the kernel
of the Langlands-Jacquet map whenever Jp, is a non-quasi-split inner form, by the
construction of this map following Theorem 3.1 and Proposition 3.3 of [Bad07]. O

5.5. Generic principal series. Fix test functions f% € H" (G, (A%)), fs,\(p} €
C2°(Gn(Agy\ (py)) and let ¢, dg, \(p) be their base change transfers to G, (A%)
and Gy, (Agg,\(py) as defined in Section 5.3. Let ¢, € C2°(J,(Q,)) be any function.
Set

¢ = ¢S¢Sfiu\{p} ¢P'

Lemma 5.5.1. The trace tr(@|ee[He(Fpun, Qe)]) can be written as a linear com-
bination of terms of the form

tr (IS (1)) 0 A%) tr (1) s, ) (P s ) © st () 1 (Redis () (@) )

where 77;7 € Rep(Gr(Qp)) base changes to H;L € Rep(G(Qp)), the component at p
of a 0-stable isobaric irreducible automorphic representation II" of Gy. Moreover,
I is of the form
i Gx
" = (n—IndQ HM)§ 5
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where Iy occurs in the (relatively) discrete part of the automorphic spectrum of
the Levi subgroup M of a parabolic Q C G and I, is cohomological (with respect
to the trivial algebraic representation,).

Proof. We follow the proof of Proposition 6.1 of [Shill], in a more general situation,
but without keeping track of endoscopic signs and constants.

First, assume that the function ¢, is acceptable, in which case we can define
the transfers qbg € C(Gr(Qp)). Since the base change map at p is surjective, we
can choose f} € C2°(G(Qp)) which transfers to ¢. Then we also get the transfers
[l € C(Gr(Qp)). We set

=5 fam £

By combining Theorem 5.3.2 and Proposition 5.3.3, we can write tr(¢|to[He( e Qr)])
as a finite linear combination on terms of the form tr (II"(f7) o A’), where II" is a
f-stable irreducible automorphic representation of Gz.

Recall that each II" is of the form (n — IndgﬁHM)g, where II; occurs in the
(relatively) discrete part of the automorphic spectrum of the Levi subgroup M of
Gy. The fact that II7 is f-stable follows from Remark 5.3.4 and the irreducibility
of TI" follows from the fact II;; is unitary and that, for general linear groups,
any parabolic induction of a unitary representation is irreducible. Moreover, the
representation ITy; must be isobaric, since it contributes to the discrete spectrum of
M. (This follows from the classification of automorphic representations occurring
in the discrete spectrum of general linear groups due to Moeglin and Waldspurger,
[MWS89]. See, for example, Theorem 1.3.3 of [Art13] and the discussion below
it.) Now the strong multiplicity one result due to Jacquet and Shalika (the main
result of [JS81], see also Theorem 1.3.2 of [Art13]) implies that the string of Satake
parameters outside the finite set S determines II;;. The parabolic induction II"
is also isobaric, because it is irreducible, and therefore it is determined by (IT7%)%.
To check that I, is cohomological (for the trivial representation), it is enough to
determine the infinitesimal character of TI7. , which can be done using the definition
of the test functions at oco.

Decompose the intertwiner A’ as (A’)P - A7, Using the fact that II” is 6-stable
and that the base change map at p is injective (since p splits in the quadratic field
K), we can rewrite tr (Hg(f;?) o A) as tr Wﬁ((bﬁ), for some representation 7T;i in
Irr(G7(Qp)) (at least up to a sign). Now, using Lemma 5.4.2, we can rewrite the
latter as tr Red%(ﬂg)(qﬁp).

Keeping ¢P fixed, we have a formula for tr(é|te[He( A0, Qr)]) as a finite linear
combination of traces of ¢, against irreducible representations of J,(Q,). At this
stage, we can take ¢, to be any smooth, compactly-supported function on J,(Q,),
not necessarily an acceptable one. Indeed, recall that the twist of any such ¢? by
any sufficiently high power of Frobenius is acceptable, so the equality above holds
for qﬁz(,N) for sufficiently large N. The argument in the proof of Lemma 6.4 of [Shi09]
now proves that the desired equality holds for every integer N and, in particular,
for N = 0. ]

Corollary 5.5.2. Fiz ¢g, \{p} and ¢p. If 17 is a @-stable automorphic representa-
tion of Gy as in Lemma 5.5.1 which contributes to tr(¢|ee[He( I anes Qe)]), then the
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transfer of (II")S to G = G,, (via i) occurs in BC® ([Hcgﬂﬁant, Q¢))®*). Con-

versely, any G(AY)-subrepresentation of BCS ([H(Sanss Qo) %) is of the form
115, where TI = . (IT7).

Proof. Since we have fixed ¢g, 1\ (p} and ¢y, tr(¢[ee[He( I ane, Qr)]) can be written
as a linear combination of finitely many terms of the form tr ((II")%((f7)%) o A).
We will ignore the sign that comes from the choice of the normalized intertwiner
A5, Recall that f(7)% is the transfer of ()% along C:. We can therefore rewrite
these terms as

tr () (()%)) = tr (G (MHS((FM)F)
Since ¢° is the BC-transfer of (f™)°, we can also write tr(¢|ue[He( Iy, Qe)]) as a
linear combination of finitely many terms of the form tr (TI¥((f™)®)), where II¥ runs
over irreducible admissible G(A“)-representations which occur in BC® ([Ho( S0 Q)] %),

The corollary now follows from the linear independence of unramified Hecke char-
acters. O

Remark 5.5.3. A subrepresentation II% of BC® ([He( I 0, Qr)]%*) is of the form
IT%, where II = fﬁ*(Hﬁ) could be obtained from II" for several different Gz €
&°1(@). For example, in the Case ST which is discussed in Section 6 of [Shill],

the contribution is from an endoscopic group Gy, », but also from a Levi subgroup
M of G.

Our goal is now to construct a Galois representation
rn: Gal(F/F) — GL,(Qp)

attached to the automorphic representation IT := (5 .(II7) (or rather the auto-
morphic representation of GL, (Ar) obtained from II by forgetting the similitude
factor). We will build this from the Galois representations attached to regular L-
algebraic, essentially self-dual, cuspidal automorphic representations of GL,,(Ar),
where m € Z>;. We will use the notions of L-algebraic and C-algebraic representa-
tions due to Buzzard-Gee [BG15] and note that in the case of general linear groups
these notions only differ by a character twist.

By Lemma 5.5.1, I, is cohomological, which implies that II7 is C-algebraic.
Write II" = ¢ ® II; ® II; according to the decomposition Gy, n,(A) = AJ, X
GL,,(Ap)xXGL,,(Ar). Each II; is a regular C-algebraic, f-stable isobaric automo-
prhic representation of GL,,,(Ar). The automorphic representation IT;| det |(*=7)/2
is regular L-algebraic.

Recall that we’ve chosen an isomorphism ¢y : Qp = C.

Theorem 5.5.4. There exists a Galois representation
i : Gal(F/F) — GL,(Qy)
such that for any place q of F,
Foss (1—n;)/2
WD (Ti|Ga1(Fq/Fq)) ~ 1, rec (Hi7q| det | ; ) :
where rec denotes the local Langlands correspondence normalized as in [HT01].%®
28For our purposes, it is enough to know the compatibility up to semisimplification, i.e. with-

out identification of the monodromy operator, which is the most subtle part of the local-global-
compatibility.
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Proof. Recall that the representation ITI” was constructed as n — Indgﬁ (Ips) (re-
call that for us £ is trivial), for some automorphic representation IIy; which is
@T?Llﬁ—stable and which occurs in the discrete automorphic spectrum of some Levi
subgroup M of Gz. This means we can write

GLyp,
Hi =n-— Inin (HMl) y

where M, is the Levi subgroup of parabolic subgroup @Q; of GL,,, and Il is <I>;i1 0-
stable and occurs in the discrete automorphic spectrum of M;. The classification
of the discrete automorphic spectrum for general linear groups due to Moeglin and
Waldspurger [MW89] together with the fact that Il is @, '0-stable tells us that
IIps, can be expressed in terms of regular L-algebraic, conjugate self-dual cuspidal
automorphic representations of (possibly a product of) general linear groups. (We
remark that the conjugate self-dual, regular algebraic case suffices here because
I, is <I>T?th9—stable and has regular infinitesimal character, since II” has regular
infinitesimal character.) The existence of the Galois representation r; and the
compatibility with the local Langlands correspondence now follows from the main
theorems of [Shill], [CH13] and [Carl2]. O

Let v be a place of I above a prime g € Splg, ;o\ (SU{(}). Let g, denote the car-
dinality of the residue field of v. Let T; , € Z[G(Qq)//G(Z,)] be the characteristic
function of

GLn(Op,)diag(wy, ..., @, 1,...,1)GL,(OF,) x [ GLn(Or,) x Z) x L

f wWH#V
inside
G(Q,) = [[ GLn(Fu) x QF xQF

where w runs over all places of F' lying over q.

Corollary 5.5.5. Let II° be an irreducible admissible G(AS)-subrepresentation of
BCS ([H(Hanes Qo) **). Then there ezists a Galois representation

THS,E : Gal(F/F) — GLn(@g)
unramified outside the places above S U {¢} and such that for all finite places v
lying above a prime q € Splg, ;o \ (S U {}), the Frobenius eigenvalues of rys g

match the Satake eigenvalues of II° at v. More precisely, for every such prime v,
the characteristic polynomial of rps ,(Frob,) is given by the image of

X" — Tl,vXn_l N (_1)iqz(i_l)/2Ti,vXn_i N (_1>nq;z(n—1)/2Tn’v
under the Satake parameter map corresponding to II° and the isomorphism L[l.

Proof. Choose an automorphic representation II" = 1 @ II; @ IIy of Gz as in
Corollary 5.5.2. By Theorem 5.5.4, there exist Galois representations r; associated
to the L-algebraic representations IT;| det |(*=7:)/2,

We recall the definition of the L-morphism C; from [Shill]. Let € : Z — {0,1}
be the unique map such that e(n) = n (mod 2). On the level of dual groups Gz,
the morphism (5 is induced by the embedding GL5; — GL,,. We extend this to an
L-morphism using the Hecke character w, via
w € Wi <w(w)_N(n17n2),w(w)_N(nl’nz), <w(w)e(n—n1)~ln1 0 ) >><1w

occd

0 w(w)e(n*an.[nQ
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and, if w* is a fixed element in Wy \ Wi,

w* (an17n27a’n1y'ﬂ27 ((I)nhnzq);l)o’Eq’) xw*.
(See loc. cit. for any unexplained notation, though only the definition of € will
matter for what follows.)

The character w satisfies wu(2) = (2/2)%/? for some odd integer §, since wey :
C* — C* extends the sign character on R*. The character of GL,,(Ar) defined by
| det \("i*”)/Qw(NF/;C odet)¢(»=") is L-algebraic, since ((n—mn;)+e(n—n;)8)/2 € Z,
so it corresponds to a character ¢; : Gal(F/F) — Q.

Let I := Cpy oy« (1), Write T = o ® TI°, according to the decomposition
G(A) = AZ x GL,(Ap). Set

H? = Hi| det |(1—m)/2‘ det ‘(m_n)/zw(NF/lC o det)e(n—nq,)
By the definition of Enhnz,*, we get the identity
1] det | =/% = 0 — Ind@r” qp,, (I ®115).

The representation on the RHS is L-algebraic and normalized parabolic induction
is compatible with this notion and with the local Langlands correspondence rec, so
the term on the LHS, I1°| det |(1*")/2, is also L-algebraic, with corresponding Galois
representation rps , 1= ®7_,7r; ® €; (matching via rec). One checks directly that
the relationship between II° and 18 ¢ is as in the statement of the theorem. [

Remark 5.5.6. Essentially, rpys , is constructed from the Galois representation as-
sociated to the C-algebraic representation II" compatibly with the transfer of rep-
resentations from Gp to G along the L-morphism é:ﬁ. Let p = [[;~, p; be the
decomposition of p into prime ideals of F. If we set II := Zﬁ,*(Hﬁ) and

I, = (@ Hpi> @ 1,0,

i=1
then II,, and THS)AGM(FM/FM) are related via the geometric normalization of the

local Langlands correspondence for every ¢ = 1,...,m. This is a consequence of
the local-global compatibility at p; in Theorem 5.5.4. In particular, if for some 4

1S ¢l Gal(Fy, /Fy,) = Xid B0 D Xign

decomposes as a direct sum of characters such that for all a # b, Xi,ax;bl is not
the cyclotomic character, then II,, is a generic principal series representation of

In the following, we fix a Galois representation
r: Gal(F/F) — GL,(Qy)
which is unramified outside S U {¢}, and restrict attention to the summand
BOP([He( Aytane: Q)] * )7 of BO® ([He(Fpanes Qo))

coming from representations IT° as above, with TS =

The following theorem is the key result of this section. Recall that we have fixed
a prime p|p of the reflex field E, so that we have embeddings £ — C, E — E, —
@p. For convenience, let us fix an isomorphism ¢, : Qp = C compatible with the
embedding of F.
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Theorem 5.5.7. For each prime p; of F, let
S; = {7 : F — Cli, o7 induces p;} .

Assume that for each i, S; contains at most one T for which prq, is nonzero, where
G has signature (pr,q;) at 7 : F'— C. Moreover, for each i for which S; contains
some T for which prq; is nonzero, assume that

TGal(Fy, /Fy,) — Xi1 D -+ D Xin

decomposes as a direct sum of characters, such that for all a # b, Xz‘,aXi_bl 18 not
the cyclotomic character.
Then, if b € B(G,u™") is not p-ordinary,?

BCP([HC<‘%1\};Iant’Q€)]Sur)T = 0 .

Proof. Assume the contrary. Then there is some 6-stable isobaric automorphic rep-
resentation I1" of G as above, with IT := (. (IT") contributing to BC¥ ([He (A ane Qe)]%™)
and such that rr, = 7. The component Hﬁ of TT" at p comes from a unique repre-
sentation 77 € Irr(G7(Q,)) via base change. We may decompose

m
i Ao
T = ®7Tpi ®mo
i=1

according to
m

Ga(Qp) = [[ GLa(F) x Q)
i=1
By the assumption on r and the local-global compatibility in Remark 5.5.6, we
know that 7y, transfers to a generic principal series representation of G' L, (Fy,) for
all ¢ for which S; contains some 7 with p,;q, # 0. By Lemma 5.4.3, Red%(w{?) =0
as soon as Jp, is not quasisplit for some such ¢, so that in this case there is no
contribution by Lemma 5.5.1.
It remains to see that if b € B(G,u~!) is not p-ordinary, then there is some i
for which S; contains some 7 with p,¢, # 0, such that J,, is not quasisplit.
We can decompose
m
p=((i)i=1,..m o) : Gm = Gg, = [[C ] GILna,) * Cuma, i
i=1 Fﬂi%(@p
let G; = Res F, /@, GLy. Then p; is a conjugacy class of minuscule cocharacters of

G, and we have a decomposition
B(G7M_1) = HB(GMMZI) )
i=1

as the Gy, factor plays no role here. In each factor GL,, g , p has the form

t— diag(t,...,t,1,...,1)
with ¢ occuring p, times, and 1 occuring ¢, times, where 7 : F' — @p = C is the
corresponding complex place. In particular, for each i for which S; does not contain
any 7 with prq, # 0, u; is central, which implies that B(G;, ,ui_l) has precisely one

1

297 might be more accurate to write p~ "-ordinary.
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element. If there is exactly one such 7, then denoting by p; - the corresponding
component of u;, one sees that

B(Gispii ') = B(GLn/Fps 1))

using the relative B(H/L) = B(L, H) for a reductive group H over a p-adic field
L.2% Now the result follows from the next lemma. O

Lemma 5.5.8. Let L be any p-adic field, and let
w:Gy — GL, : twdiag(t,... 6, 1,...,1)

be a minuscule cocharacter with n — q occurences of t and q occurences of 1. Then
there is exactly one element b € B(GL,/L, 1) for which Jy is quasisplit, namely
the p-ordinary element represented by diag(w=*,...,@w 1 1,...,1), withn — q oc-
curences of the uniformizer w of L, and q occurences of 1.

Proof. By the choice of u, we know that for any b € B(GL,/L,u~!), the slopes
A; satisfy —1 < \; < 0. If some slope A is nonintegral, then J, is not quasisplit,
as it contains a factor which is a general linear group over the division algebra of
invariant A (mod 1) over L. Thus, if J, is quasisplit, then all slopes are equal to 0 or
—1; from the equality «(b) = —pu one deduces that slope —1 occurs with multiplicity
n —q, and slope 0 with multiplicity ¢, which corresponds to the p-ordinary element
b=diag(w™',...,w 1, 1,...,1). For this b, J, 2 GL,_, x GL, is quasisplit. O

5.6. Simple Shimura varieties. In this section, we sketch how to adapt the ar-
guments above for Kottwitz’ simple Shimura varieties as in [Kot92a]. This includes
the case of Shimura varieties which admit g-adic uniformization, for some rational
prime ¢ distinct from p and £. In that case, our main result is related to level-raising
results, as shown in [Thol4].

Recall that F = FT - K. Assume that we have a PEL datum of the form
(B,*,V,{, ),h), where B is a division algebra with center F', V is a simple B-
module, and * is an involution of the second kind. Then the corresponding Shimura
varieties Sk are proper and the group G has no endoscopy. Assume that B is split
at all places over p, in which case the constructions and results of Section 5.4
carry over. However, Theorem 5.2.3 simplifies considerably. We follow Section 6
of [Shil2], where it is assumed that p is inert in F'*; this assumption is not necessary
for our purposes. As above, let G, be a quasi-split inner form of G over Q and fix
an isomorphism G, ~ G over Q.

Proposition 5.6.1. Let ¢ = ¢P¢, € C°(G(A}) x Jp(Qy)), with ¢, an acceptable
function. Then

tr(0]ee He(Atans, Q) = [ ker' (Q, G)[e(G, Gn) ST (6°7).

Proof. The other terms in the stable trace formula vanish by Lemma 7.1 of [Shil0].
O

We can now combine this with the stable trace formula for the Sk, which is
Theorem 6.1 of [Art89] and which is simplified in our situation as in Proposition
6.3 of [Shil2], also making use of Lemma 5.4.2 for G,,(Q,) ~ G(Q,). We get

Red’, ([H(Sk,Q0)]) = eg - d(Gz) - [He(Fane Qo]

305, far, we were only using the case L = Qp, and did not include this in the notation.
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where eg, d(Gr) are certain non-zero constants. Again, we appeal to Lemma 6.4
of [Shill] to extend a trace identity from acceptable ¢, to all ¢, € C°(J,(Q,)). We
combine this with Matsushima’s formula, which gives a description of [1, H Sk, Q¢)]
in terms of automorphic representations of G. We get an analogue of Corollary 6.12
of [Shil2].

Corollary 5.6.2. We have the following equality in Groth(G(A%) x J,(Qy)):
[teHe(Aane: Q)] = (=17 DY~ e(mg) [ [Redy ()] -

L

The sum runs over admissible representations 7y of G(Ay) such that 77w is an
automorphic representation of G, for some representation 7o, of G(R) which is
cohomological for the trivial algebraic representation. The coefficients c¢(my) are
related to the automorphic multiplicity of m¢m.

In this case, the existence of Galois representations is also known, as the sta-
ble base change of such 7 to GL, has been established by Shin in the appendix
to [Goll4]. As before, for a Galois representation

r:Gal(F/F) — GL,(Qy) ,
we restrict attention to the summand [H.(#Y, ., Q¢)]» of

[Hc(jl\l;[ant? @5)]
coming from representations 7 as above, with r , = r.
We get the following analogue of Theorem 5.5.7, which is proved in the same
way.
Corollary 5.6.3. For each prime p; of F' above p, let
S; = {1 : F — Cli, o 7 induces p;} .

Assume that for each i, S; contains at most one T for which p,q, is nonzero, where
G has signature (pr,q-) at 7 : F < C. Moreover, for each i for which S; contains
some T for which prq. is nonzero, assume that

TGal(Fy, /Fy,) — Xi1 D - D Xin

decomposes as a direct sum of characters, such that for all a # b, Xi.,aX;bl 18 not
the cyclotomic character.
Then, if b € B(G, u~1) is not pu-ordinary,

[Hc(jle/[an‘w@E)]r =0.
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6. TORSION IN THE COHOMOLOGY OF UNITARY SHIMURA VARIETIES

In this final section, we give a precise formulation and proof of our main result.
We start by formulating and proving the critical perversity result.

6.1. Perverse sheaves on the flag variety. Consider the Hodge-Tate period
map
THT S[{p — yfg’u
for a compact Hodge type Shimura variety. In this section, we would like to make
precise in which sense Rmgr.Fp is perverse.?!
Recall the following result on preservation of perversity under nearby cycles.

Theorem 6.1.1 ([I1194, Corollaire 4.5]). Let K be a complete discretely valued
nonarchimedean field with ring of integers O and completed algebraic closure C
with Oc C C, and let £ be a prime which is invertible in Ok . Let X be a scheme
of finite type over Ok . Let Xo, be the base-change to Oc¢, with geometric generic
fibre j : Xy = Xo, ®ox C — Xo, and geometric special fibre i : X5 — Xo,.
Let F be a perverse Fy-sheaf on X,y = X xo, K. Then RY.F = i*Rj.7|x, is a
perverse sheaf on Xs.

Moreover, nearby cycles in the scheme setting agree with nearby cycles in the
formal /rigid setting. More precisely, we have the following result.

Theorem 6.1.2 ([Hub96, Theorem 3.5.13]). Let the situation be as in Theo-
rem 6.1.1. Let X, be the associated rigid-analytic variety over K, considered as
an adic space, with base change Xy to C. There is a natural morphism of sites
X Xjee = (Xs)er, gwen by lifting an étale map Y — X5 to an étale map of formal
schemes over O¢, and then taking the generic fibre.

Let F24 be the pullback of F under Xg — X¢o. Then

RA(F*|x,) = RO.F .

In our situation, it is hard to give a direct definition of perversity of Rmyr.[Fy.
However, the above properties suggest that at least, for every formal model X of
the flag variety #q ., the nearby cycles Rix Rrpr.JF¢ should be a perverse sheaf
on the special fibre Xz of X. This is still not true, as G(Q,) acts on Rryr.Fy;
one can only hope for the K-invariants to be perverse, for any sufficiently small
K, C G(Qp). Thus, we work with the equivariant sites introduced in [Schl5a, §2].

First, note that Rmgr.[Fy is a canonically a complex of sheaves on the equivariant
site (Flc,,./G(Qp))ss. More precisely, one has the map of equivariant sites

7ar/G(Qp) : (Skr/G(Qp))er — (Fla 1 /G(Qp))ét

and one can look at R(mur/G(Qp))et+Fe, and this pulls back to Rryr.F, under
the projection (Fla .)er — (Pl /G(Qp))es. To check the latter statement, note
first that by passing to slice categories, using [Schlba, Proposition 2.9], one may
replace G(Q,) by any compact open subgroup K, C G(Q,), and then one can pass
to the limit using [Sch15a, Proposition 2.8].

Now take any étale U = Spa(A, A°) — Flg,,. By [Schlba, Corollary 2.5], the
action of K, extends to a continuous action on U if K, is sufficiently small. Let

31 As we are far from a finite type situation, we avoid talking about Qg-sheaves. We could talk
about Z/{™Z-sheaves, but in that case the notion of perversity is slightly subtle as Z/¢"Z is not
a field. For our applications, the Fy-case is enough.
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i = Spf(A°) with special fibre Yy = Spec(A°/p). Then K, acts trivially on &l
if K, is sufficiently small, by continuity of the Kj-action and finite generation of
A°/p. It follows that any étale map to s lifts to a Kp-equivariant étale map to
o, (where C' = C,), giving a natural morphism of sites

)‘U/Kp : (Uﬁ/Kp)ét — ng_’ét .

Proposition 6.1.3. Let

7yt : SKp — QEG#
be the Hodge-Tate period map for a compact Shimura variety of Hodge type and any
sufficiently small compact open subgroup KP C G(AZ;). Let & € Flg,, be a geo-
metric point. Then there exists a neighborhood basis of affinoid étale neighborhoods
U = Spa(A4, A°) of x in Flg , such that, denoting L = Spf(A°),

Ry i« (R(muT /G(Qp))Fo)|u, /x, (205 )]
is a perverse sheaf on Us for any sufficiently small pro-p compact open subgroup
K, C G(Qp).

Proof. By [Sch15b, Theorem IV.1.1 (i)], one can find some affinoid étale (in fact,
open) neighborhood U of x such that Sk»r iy = Sk» X 7., U is affinoid perfectoid,
and equal to the preimage of an affinoid étale Sk k»,v — Sk, Kx» for any sufficiently
small K. These properties will then also be true for any étale V' — U that factors
as a composite of finite étale maps and rational embeddings, and such V are cofinal.
Thus, fix any U with the stated properties.

Let

THT,U : SK:D,U —U = Spa(A, Ao)
be the restriction of mgyp. As mgp is partially proper, so is wyry. If K, is
sufficiently small, mg7 r is Kp-equivariant, and induces a map

WHT,U/KP : SprU/Kp — U/Kp .
Also

(R(mar/G(Qp))«Fo)lu/x, = Rrur,u i, «Fe s

and by [Schlba, Proposition 2.12], there is an equivalence of sites (Skr.v/Kp)er =
SK,K»Uét-

Now any Sk, kru = Spa(RKpr7U,R§(pr7U) has its natural integral model
Sk, kr»,u = Spf(R kv ), with inverse limit & x» v = Spf(R» 1), where Skr v =
Spa(Rkr v, Ri» 7). We get a map of formal schemes

Tary : Grry — U
Modulo p, we get a map of schemes

TaTs, P OKrus — Us
with & x» v,s = Spec(Ry, ;/p), and s = Spec(A°/p). But U is of finite type over
Fp, and Ggr s = @Kp Sk, Kk»,U,s in the category of (affine) schemes. It follows
that mpr, factors over a map
TaT K, M, ¢ Ok, ke Us — s
(of affine schemes of finite type over ;) for any sufficiently small K,,. We claim that
THT, K, u, satisfies the valuative criterion of properness. If K is an algebraically

closed field with a rank-1-valuation ring V C K, and we are given a V-point of
s together with a lift of the corresponding K-valued point to a K-valued point of
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Sk, Kx»,U,s, we need to show that this K-valued point is in fact V-valued. We may
lift the K-valued point of S, kr v,s to Sxr v,s (as all transition maps are finite
and surjective). We may then find a complete algebraically closed extension C/Q,
with residue field K and a (C, O¢)-valued point of Sk» y specializing to this K-
valued point of Skr 7s. Let CT C O¢ be the preimage of V' C K. Then the image
of the (C, O¢)-valued point of Sk» ¢ under Tyr y is a (C, O¢)-valued point of U
which extends to a (C,C")-valued point. As w7 is partially proper, it follows
that we get a (C, C)-valued point of Sk» 7, which specializes to a V-valued point
of Sxr vy,s and thus of Sk, kxr v,s, as desired.

Thus, 7y K, 4, is a map of affine schemes of finite type over I, which satisfies
the valuative criterion of properness, i.e., it is finite.>? Now consider the following

diagram, where we have base-changed some spaces and maps to algebraically closed
fields.

THT,Uz/Kp

(Skr,v,n/Kp)et

]

Sk, K»U,ijét Au/K,

AGKFKP,UJ/

Gk, Kxr,U56t

(Uﬁ/KP)ét

Us st

THT,Kp,i5
We are interested in the pushforward of Fy from the upper left to the lower right cor-
ner, computed via the upper right corner. We may equivalently compute it via the
lower left corner. In that case, the first pushforward is perverse by Theorem 6.1.1
and Theorem 6.1.2, up to the shift (2p, u) = dim Sk, kr .. But Tyr K, g1, is finite,
S0 it also preserves perversity under pushforward. O

We will need the following consequence, which is a statement purely about the
cohomology of Igusa varieties. For the statement, let S be a finite set of primes
such that K? = KEK®, where K° C G(A?) is a product of hyperspecial maximal
compact open subgroups, and K5 C G(A%). Let

T% = Z[G(A})//K®]

be the abstract (commutative) Hecke algebra of K®-biinvariant compactly sup-
ported functions on G(A]sc).

Corollary 6.1.4. Fiz a mazimal ideal m C T, and among all b € B(G, u~") with
the property that the m-torsion

H'(Ig", F)[m] # 0

for some i € Z, take some b with d = (2p,1) minimal. Then H'(Ig" F;)[m] is
nonzero only for i = d.

The idea is that the sheaf (Rmyr.F¢)m is concentrated on a subset of dimen-
sion (2p, u) — d by assumption. Thus, ﬁﬁgﬁt is one of the largest strata where
(Rmpr+F¢)m is nonzero. But as this sheaf is (up to shift) perverse, one concludes
by observing that on the largest stratum where a perverse sheaf is nonzero, it is

32Thus, we are in the somewhat curious situation that w7 ¢, is ind-finite, but 7y ¢ has
fibres of positive dimension.
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concentrated in one degree. However, as the notion of perversity is defined via
nearby cycles, we need to rewrite this argument slightly.

Proof. As
Hi(Igba FZ) = h_I)l’l Hi(‘yle/[ant,m’ FZ) ’
m
where the transition maps are split injective (namely, projections are given by
averaging operators over compact open subgroups of J,(Q,)), and the terms on the
right are finite-dimensional, we see that the m-torsion is nonzero precisely when the
m-localization is nonzero. Thus, we may work with the localization at m instead.

Now Rmgr.F, (in fact, the G(Qp)-equivariant version R(mur/G(Qp))stFe) is a
sheaf of Tg-modules, as the Hecke operators away from p act trivially on Fl¢ ,.
We may thus form the localization (Rrgr«F¢)m. We claim that (Rrpr.Fp)m is
concentrated on the union Fg’ 2d u of ﬁf’é L over all ' with (2p, 1) > d (which is a
closed subset of Fl¢ ;).

Indeed, if y € Hq,,, does not lie in FUZ d , then it lies in ﬁfb ,, for some b with
(2p,vp) < d. Now Theorem 444 computes the fibre of Rw HT*IE"Z at any geometric
point above y as RF(Ig ,Fg). We may pass to localizations at m in this statement,
and thus the assumption of the corollary shows that the localization of (RTg7.F¢)m
at y vanishes.

Next, we claim that for any affinoid étale U — g, with formal model 4,
equivariant under K, with trivial action on i, the nearby cycles

RAv /s (R(mpr/G(Qp)iFe)m) |Uﬁ/K,,
are supported on a closed subset of iz of dimension (2p, u) — d. Indeed, the sheaf
is supported on the closure in 4 of the preimage U=2% C U of JEG uC Hlg,,. But
UZ4 C U is a closed subset of dimension < (2p, u1) —d, and then the same is true for
its closure in U: If x € 4, is a point whose closure is of dimension e, then the closure
in U of any lift & € U of  will have at least dimension e (as the specialization map
is specializing).
Recall that RAy g« (R(maT/G(Qp))«Fo)|u, /K, [(20, )] is perverse. It follows
that the same is true for its localization
(R i« (R(m T | G(Qp)) s Fo) v, /16, [(205 1)) m
=RAv/k,« (R(Ta1/G(Qp)<Fo)m) lu,/x,[(20: 1)]

at m. This sheaf is supported on a scheme of finite type of dimension (2p, u) — d.
It follows that the localization

(RAv/ 5, (R(mr/G(Qp)sFo)m) |0, /x5, ) |2

at any geometric point T € Uz whose closure is of dimension (2p, u) — d is concen-
trated in degree d.
Now pick b as in the statement, and choose a rank 1 point y € ﬁél&u with

dim@ = (2p, ) — d, and a geometric point § above y. One has an identification
(R rraFe)m,g = RU(1g", Fo)m

On the other hand, choose a cofinal system of affinoid étale neighborhoods U; =

Spa(R;, R}) — Flg,, of § as in Proposition 6.1.3, with formal models ;. Let

Z; € U; 5 be the specialization of , which is a geometric point of &l; ;. If 7 is large

enough, the dimension of the closure of Z; will be equal to (2p, 1) — d: One needs
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to arrange that the image of Ry — Ok — k(7), where K(7) is the completed
residue field at 7, with ring of integers Ok ;) and residue field k(y), contains a
transcendence basis. Also, choose compact open subgroups K, ; C G(Q,) that act
on U; and trivially on i; ,, such that the K, ; shrink to 1.

In that situation, we know that for all large enough i

(RAG 60 (R(Ti0 /G (@) F)m) 1, 6, )
is concentrated in degree d. Finally, we conclude by observing that
(Rrpr.Fo)mg = 1im (RAv,/rc, o« (R(1a7/G(Qp))Fe)m)

z;

T *

Ui,ﬁ/Kp,i>
O

6.2. A genericity assumption. In our main theorem, we impose a genericity
assumption at some auxiliary prime. In this section, we briefly study this genericity
condition.

Definition 6.2.1. Let L be a p-adic field, and let
p:Gal(L/L) — GL,(F,)

be an unramified, continuous representation, with ¢ # p. Then p is decomposed
generic if the eigenvalues Ay, ..., A\, of p(Frob) satisfy Aa/Xo & {1,q} for all a # b,
where Frob s an arithmetic Frobenius, and q is the cardinality of the residue field

of L.

We note that this condition actually only depends on the semisimplification of
D, but also implies that p is semisimple. In particular, if
p:Gal(L/L) — GL,(Qy)
is a continuous representation, the condition that the reduction p be decomposed

generic is unambiguous.

Lemma 6.2.2. Assume that
p:Gal(L/L) — GL,(Q)

is a continuous representation such that the reduction p is decomposed generic.
Then p decomposes as a sum p = @?:1 Xi of characters, and xa/Xp s not the
cyclotomic character for any a # b.

In particular, the representation of GL,, (L) corresponding to p is a generic prin-
cipal series representation.

Proof. We may conjugate p into GL,(Of) for some finite extension K C Q.
Writing p = @D, X;, we may further conjugate p into the matrices in GL,,(Ok)
which are diagonal modulo a uniformizer @w of Ox. Now we try to conjugate p
into the matrices which are diagonal modulo higher powers of w. By standard
calculations in deformation theory, the relevant obstruction groups are given by

HY(Gal(L/L),X4/Xs)

for a # b. But if B
Xy : Gal(L/L) — F)

denotes the unramified character sending Frob to A, then it is well-known that
HY(Gal(L/L),x,) =0
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if A\ & {1,¢}. By assumption, it follows that all relevant obstruction groups vanish.
The final statement follows because X, /X, is not the cyclotomic character. O

6.3. Conclusion. Finally, we can tie everything together and prove our main the-
orem.

Let us recall the relevant Shimura varieties. We fix a compact Shimura variety
of PEL type, associated with PEL data (B,x*,V,(-,-)) of type A satisfying one of
the following assumptions. In both cases, ' = F'™ . K is a CM field with totally
real subfield '™ containing an imaginary quadratic field K.

Case 1. Assume that B is a central division algebra over F, and V = B is a
simple B-module.

Case 2. Assume that B = F, F'™ # Q, the corresponding group G is quasi-split
at all finite places, and if a rational prime ¢ is ramified in F, then F/F7 is split at
all places above q.

In both cases, let Splz sr+ denote the set of rational primes ¢ such that every
place of '™ above g splits in F'. Moreover, fix a finite set S of primes such that
F and G are unramified outside S, and pick a sufficiently small compact open
subgroup K = KsK*® C G(Ay) = G(Ag) x G(A?) such that K* is a product
of hyperspecial maximal compact open subgroups K, C G(Q,). In Case 2, we
assume that S C Splp,p+. Finally, take some rational prime £. We will consider
the following abstract Hecke algebra

T® = ® Z[G(Qq)//Kq] :
q€Spli /o \(SU{L})
Theorem 6.3.1. Let m C T° be a mazximal ideal such that
H'(Sk,Fp)m #0
for some i € Z.

(1) There is a (unique) semisimple continuous Galois representation
pm : Gal(F/F) — GL,(F,)

unramified outside the places above SU{{}, such that for all finite places v
lying above a prime q € Splic g \ (SU{}), the characteristic polynomial of
pm(Frob,,) is given by the image of

X" — Tl,an_l + ...+ (_1)iq1i)(i—1)/2Ti’vXn—i 4o+ (_1)nq;z(n—1)/2Tn’v

under a fived embedding TS /m < Ty, where q, is the cardinality of the
residue field at v, and

Tiw € ZIG(Qq)// K]

18 the characteristic function of

GLn(Op,)diag(wy, ..., @y, 1,...,1)GL,(OF,) x [[ GL#(Or,) x Z}
\—H w;ﬁv
inside

G(Qy) = [[ GLa(Fu) x Q;

where w runs over all places of F' lying over the same place of K as v.
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(2) Assume that there is some rational prime p € Splic ;o\ (SU{{}), split as p =
uu in K, and a prime p|p of E such that the following condition involving
the primes p;lu of F, i = 1,...,m, and the sets S; from Theorem 5.5.7
holds true. For any i, there is at most one 7 € S; such that p-q, # 0; if
there is such a T € S;, then pn is decomposed generic at p;. Then

H'(Sk,Fr)m # 0
only for i = dim Sk .

Before giving the proof, let us explain in two examples how the condition (2)
can be ensured, thus connecting it with the conditions stated in the introduction.

Remark 6.3.2. Assume that there is a prime p which is completely decomposed in
F and such that p,, is unramified and decomposed generic at all places above p.
Using Chebotarev, there are then many such p, and we can assume that p & SU{¢}.
In that case, all sets S; in (2) have just one element, and we see that the desired
condition is satisfied.

Remark 6.3.3. Assume that the signature of G is (0,n) at all except for one infinite
place. Moreover, assume that there is some finite prime v of F' such that py is
unramified and decomposed generic at v. By Chebotarev, there are then many such
v which are moreover decomposed over the rational prime p of Q, with p ¢ SU{¢}.3
In particular, p needs to be split in K. There is just one 7 for which p,q, # 0, and
by choosing the prime p of the reflex field correctly, one can arrange that this 7
appears in S; for p; = v. We see that condition (2) applies.

Proof. We write out the argument in the more involved Case 2.
For part (1), pick any p € Spli,q \ (S U{¢}). Then K = K,K? is decomposed.
There is a Hochschild-Serre spectral sequence relating
H'(Sk»,Fy)

and H'(Sk,F;).3* In particular, it follows that if 4 is minimal with H*(Sg,F¢)m #
0, then

Hz(SKT’aFZ)m 7& 0.
Thus, there is some b € B(G, 1) such that

H(Ig", Fo)m # 0

for some i € 7Z; otherwise we would have

(RT"HT*FK)m =0 s
and hence

RF(SKP,]Fg)m == 0

by the Leray spectral sequence for mgr : Sgr — FHg,. Now pick some b €
B(G, p~') with d = (2p, ) minimal such that for some i € Z

i b
H'(Ig°, Fo)m #0 .
33In Chebotarev’s theorem, only places with residue field IF, contribute to the Dirichlet density.

34Here and in the following, all cohomology groups are étale cohomology groups after base
change to an algebraically closed field.
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In that case, this group is nonzero exactly for ¢ = d by Corollary 6.1.4. Tak-
ing invariants under a pro-p-compact open subgroup of J,(Q,) (which is an exact
operation), this implies that

Hi(jl\ljlant,ma Ff)m

is nonzero at most for i = d; if m is large enough, it is nonzero if ¢« = d. It follows
that the cohomology with Z-coefficients is concentrated in the middle degree and
flat, and thus the Q,-cohomology

Hi(jle/[ant,m? Z[)m ® QZ

is nonzero for ¢ = d. By Poincaré duality (and applying the same discussion with
the “dual” set of Hecke eigenvalues), the same holds true for compactly supported
cohomology. We have a decomposition

[Hc(jl\l;[ant’ Qf)]sur = [Hc(fl\l;lanm Qé)]fmur + [H0<fl\l;lant7 QZ)]Sur’m

according to systems of Hecke eigenvalues lifting m, or a different set of Hecke
eigenvalues modulo ¢, and by concentration in one degree, the first summand is
nonzero in the Grothendieck group, and its base change BCP? is still nonzero. It
follows that there is some IT° as in Lemma 5.5.1 whose Hecke eigenvalues lift m.
Then Theorem 5.5.5 implies that there is a Galois representation rys ,, whose
reduction is the desired Galois representation py,.

Now, we deal with part (2). We choose p and p as guaranteed in the statement.
It is enough to prove that H'(Sk,F¢)n is nonzero only for i > dim Sk; the other
bound follows by Poincaré duality (and the result for the “dual” ideal, which sat-
isfies the same hypothesis). Now a Hochschild-Serre spectral sequence shows that
it is enough to prove that

Hi(SKp,Fg)m - O

for i < dim Sk. As above, we take some b € B(G, 1) with d = (2p, 1) minimal
such that

H'(Ig" Fy)m # 0
for some ¢ € Z. We get concentration in middle degree in this case, and hence the
argument above shows that there is some Galois representation r lifting py with

Bcp([HC(jl\l;IanU@f)]Sur)T 7& 0 .

But by Lemma 6.2.2 and the assumptions on p, p and py,, the hypothesis of The-
orem 5.5.7 are satisfied. Thus, if b is not p-ordinary, we arrive at a contradiction.
It follows that b is p-ordinary.

In that case, (2p, u) = (2p,vp) = dim Sk, so Corollary 6.1.4 shows that

H(Ig" F)m

vanishes for i < dim Sk, for all b € B(G,u~'). Thus, (R‘7mg1«F¢)m vanishes for
i < dim Sk, and the result follows by applying the Leray spectral sequence for
7wt : SKp %EEG,H' O
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