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Abstract. We extend our methods from [24] to reprove the Local Langlands Corre-
spondence for GLn over p-adic fields as well as the existence of `-adic Galois represen-
tations attached to (most) regular algebraic conjugate self-dual cuspidal automorphic
representations, for which we prove a local-global compatibility statement as in the
book of Harris-Taylor, [10].

In contrast to the proofs of the Local Langlands Correspondence given by Henniart,
[13], and Harris-Taylor, [10], our proof completely by-passes the numerical Local Lang-
lands Correspondence of Henniart, [11]. Instead, we make use of a previous result from
[24] describing the inertia-invariant nearby cycles in certain regular situations.
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1. Introduction

The aim of this paper is to give a new proof of the Local Langlands Correspondence
for GLn over p-adic fields, and to simplify some of the arguments in the book by Harris-
Taylor, [10].

Fix a p-adic field F , i.e., a finite extension of Qp, with ring of integers O. Recall that
the Local Langlands Correspondence, which is now a theorem due to Harris-Taylor, [10],
and Henniart, [13], asserts that there should be a canonical bijection between the set of
isomorphism classes of irreducible supercuspidal representations of GLn(F ) and the set
of isomorphism classes of irreducible n-dimensional representations of the Weil group
WF of F , denoted π 7−→ σ(π). One possible local characterization of this bijection was
given by Henniart, [12], showing that there is at most one family of bijections defined
for all n ≥ 1 preserving L- and ε-factors of pairs, and also compatible with some basic
operations on both sides such as twisting with characters.

Our starting point is a new local characterization of the Local Langlands Correspon-
dence. First, we extend the map π 7→ σ(π) to all irreducible smooth representations π by
setting σ(π) = σ(π1)⊕. . .⊕σ(πt) if π is a subquotient of the normalized parabolic induc-
tion of π1 ⊗ · · · ⊗ πt, for some irreducible supercuspidal representations πi.1 The rough
idea is that one might hope to associate to any τ ∈ WF a function fτ ∈ C∞c (GLn(F ))
such that for any irreducible smooth representation π, we have

tr(fτ |π) = tr(τ |σ(π)) .

Now, it is easy to see that this is quite a bit too much to hope for, as fτ would have
nonzero trace on all components of the Bernstein center. The best thing to hope for is
to associate to some ‘cut-off’ function h ∈ C∞c (GLn(F )) a function fτ,h ∈ C∞c (GLn(F ))
such that for all irreducible smooth representations π, we have

tr(fτ,h|π) = tr(τ |σ(π)) tr(h|π) .

It turns out that there is a very natural way to do this, for many τ and h.
In the next few paragraphs, we assume that F = Qp for simplicity. Recall that it is

known that the cohomology of the Lubin-Tate tower realizes the Langlands Correspon-
dence, cf. e.g. [10], Theorem C, but only for supercuspidal representations. The idea
is that replacing the Lubin-Tate space, i.e. the moduli space of one-dimensional formal
groups of height n, by the moduli space of one-dimensional p-divisible groups of height
n, one adds exactly the extra amount of information necessary to get the Langlands
Correspondence for all irreducible smooth representations.

With this in mind, we just repeat the construction of the Lubin-Tate tower, except
that we start with objects defined over a finite field: Take some integer r ≥ 1 and a
one-dimensional p-divisible group H of height n over Fpr . Looking at its Dieudonné
module, this is equivalent to giving an element

β ∈ GLn(Zpr)diag(p, 1, . . . , 1)GLn(Zpr)

up to σ-conjugation by an element of GLn(Zpr), where σ is the absolute Frobenius
of Zpr .2 Let Rβ be the deformation space of H, with universal deformation H, and
let Rβ,m/Rβ be the covering parametrizing Drinfeld-level-m-structures on H. Then

1This is the Weil group representation underlying the Weil-Deligne representation attached to π. We
ignore the monodromy operator in this article.

2It would be more customary to write δ instead of β, but following this convention would result in
too many different δ’s throughout this article.
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GLn(Z/pm) acts on Rβ,m. We choose ` 6= p and take the global sections of the nearby-
cycle sheaves in the sense of Berkovich, [3]:3

Rψβ = lim
−→

H0(RψSpf Rβ,mQ̄`) ,

and their alternating sum [Rψβ]. These objects carry an action of WQpr × GLn(Zp).
Now take an element τ ∈WQp projecting to the r-th power of geometric Frobenius, and
let h ∈ C∞c (GLn(Zp)) have values in Q. Define a new function h∨ ∈ C∞c (GLn(Zp)) by
h∨(g) = h((g−1)t).

Our first theorem is the following.

Theorem 1.1. Define a function φτ,h on GLn(Qpr) by

φτ,h(β) = tr(τ × h∨|[Rψβ]) ,

if β is as above, and by 0 else. Then φτ,h ∈ C∞c (GLn(Qpr)), with values in Q independent
of `.

This allows us to define a function fτ,h ∈ C∞c (GLn(Qp)) by requiring that it has
matching (twisted) orbital integrals, cf. e.g. [1]. We use the normalization of Haar
measures that gives maximal compact subgroups volume 1. Note that this function fτ,h
itself is not well-defined, but e.g. its orbital integrals and its traces on representations
are.

For general p-adic fields F , we have an analogous definition of fτ,h ∈ C∞c (GLn(F ))
depending on τ ∈ WF projecting to a positive power of geometric Frobenius and h ∈
C∞c (GLn(O)): One only has to replace p-divisible groups with $-divisible O-modules,
i.e. p-divisible groups with O-action over O-schemes for which the two actions of O on
the Lie algebra agree. Now we can state our second theorem.

Theorem 1.2. (a) For any irreducible smooth representation π of GLn(F ) there is a
unique n-dimensional representation rec(π) of WF such that for all τ and h as above,

tr(fτ,h|π) = tr(τ |rec(π)) tr(h|π) .

Write σ(π) = rec(π)(1−n
2 ).

(b) If π is a subquotient of the normalized parabolic induction of the irreducible repre-
sentation π1 ⊗ · · · ⊗ πt of GLn1(F )× · · · ×GLnt(F ), then σ(π) = σ(π1)⊕ . . .⊕ σ(πt).
(c) The map π 7−→ σ(π) induces a bijection between the set of isomorphism classes of
supercuspidal irreducible smooth representations of GLn(F ) and the set of isomorphism
classes of irreducible n-dimensional representations of WF .
(d) The bijection defined in (c) is compatible with twists, central characters, duals, and
L- and ε-factors of pairs, hence is the standard correspondence.

The uniqueness assertion in (a) is clear, as the condition determines tr(τ |rec(π)) if
τ projects to a positive power of geometric Frobenius, and it is well-known that this
determines the representation. Hence this theorem gives a new local characterization
of the Local Langlands Correspondence, which can be informally summarized by saying
that the Local Langlands Correspondence is realized in the cohomology of the moduli
space of one-dimensional p-divisible groups of height n, for all irreducible smooth rep-
resentations. Also note that the extraneous division algebra acting in the Lubin-Tate
setting disappears in our formulation.

The proof of this theorem occupies the whole paper, and consists of a local and a
global part. Let us first say a few words about the global part of the story.

3We caution the reader that we use the language used e.g. in SGA; in Berkovich’s language, these
sheaves would be called vanishing cycle sheaves.
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The global arguments are inspired by the work [10] of Harris-Taylor and there is a
significant amount of overlap in the two approaches. In both cases, one considers the
cohomology of the Shimura varieties associated to unitary groups of signature (1, n− 1)
and split at p, uses it to construct `-adic Galois representations associated to certain
cuspidal automorphic representations of GLn, and (most importantly) proves a local-
global compatibility result at places of bad reduction. In the book of Harris-Taylor,
this is achieved by introducing so-called Igusa varieties and counting points on them.
This method has been extended to more general Shimura varieties through the work of
Mantovan, [19], [20], and Shin, [26], and allows one to give expressions for the trace of
arbitrary Hecke correspondences at p on a Shimura variety.

In our approach, we restrict attention to Hecke operators at p coming from the max-
imal compact subgroup. This has the technical advantage that one is pretty quickly
reduced to calculating traces of genuine group actions, instead of just correspondences.
In fact, one can work relatively over the Shimura variety with maximal compact level
structure at p, and reduce all counting problems to counting problems for the maximal
compact level structure, for which one can just appeal to the classical work of Kottwitz,
[17]. With this approach, all of the difficult arguments concerning counting of points,
stabilization, and using the trace formula can be borrowed from the work of Kottwitz.

At first sight, it may be surprising that it is enough to restrict attention to these
Hecke operators. Indeed, one has to spice up the arguments with the use of type theory
to get the arguments running: The necessary statements are recalled in Section 3. All
in all, we prove the following version of Theorem B of [10]. Fix an isomorphism Q̄`

∼= C.

Theorem 1.3. Let F be a CM field which is the composite of a totally real field F0 of
even degree over Q and an imaginary-quadratic field. Fix a place x of F which is split
over F0. Let Π be a cuspidal automorphic representation of GLn/F such that

(i) Π∨ = Π ◦ c, where c : GLn(AF) −→ GLn(AF) is complex conjugation;

(ii) Π∞ is regular algebraic, i.e. it has the same infinitesimal character as an algebraic
representation of ResF/Q(GLn) over C;

(iii) Πx is square-integrable.

Then there exists an integer a ≥ 1 and an `-adic representation R(Π) of Gal(F̄/F) of
dimension an such that for all finite places v of F whose residue characteristic is different
from `, we have

R(Π)|WFv = a · rec(Πv)

as elements of the Grothendieck group of representations of WFv .

Using p-adic Hodge theory, it would be no problem to show that one can choose a = 1,
cf. proof of Proposition VII.1.8 in [10]. Also, the restrictions on F are unnecessary, cf.
proof of Theorem VII.1.9 of [10]. Adding these extra arguments would reprove Theorem
B of [10].

With this theorem, one can almost prove part (a) of Theorem 1.2.
Now let us say a few words about the local arguments. It is easy to see that one

can relate the deformation theory of a general one-dimensional p-divisible group to the
deformation theory of its infinitesimal part, which gives some inductive formulas for the
functions fτ,h. These allow us to almost prove part (b) of Theorem 1.2.

More importantly, one can reconstruct large parts of the cohomology of the Lubin-
Tate tower from our function fτ,h, at least as far as the restriction of the GLn(F )-action
to GLn(O) is concerned. In fact, let [Rψ] denote the alternating sum of the global
sections of the nearby cycles for the Lubin-Tate tower. Then [Rψ] carries an action of

GLn(O)× (D× ×WF )0 ,
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where D is the central division algebra over F with invariant 1
n , and

(D× ×WF )0 = {(d, τ) ∈ D× ×WF | v(d) + v(τ) = 0} ,
and v denotes natural valuations on D× and WF . For any irreducible representation ρ
of D×, the space

[Rψ](ρ) = HomO×D(ρ|O×D , [Rψ])

carries an action of GLn(O) ×WF . Let π = JL(ρ) be the associated representation of
GLn(F ) via the Jacquet-Langlands correspondence.

Theorem 1.4. Let ρ be an irreducible representation of D× such that π = JL(ρ) is
supercuspidal. Then, as a virtual representation of the group GLn(O)×WF , the repre-
sentation [Rψ](ρ∨) is equal to (−1)n−1π∨|GLn(O) ⊗ rec(π).

After these steps, the main divergence to the known proofs occurs. In fact, it turns
out that a previous result from [24] allows us to give a direct proof of part (c) of Theorem
1.2, i.e. the bijectivity of the correspondence. We do so without showing at this point
that π 7−→ σ(π) preserves conductors or L- and ε-factors, i.e. we do not make use of the
numerical Local Langlands Correspondence of Henniart, [11]. This argument is given
in Section 12. It relies on a geometric result from [24] describing the inertia-invariant
nearby cycles in certain regular situations. This determines the inertia invariants σ(π)IF
for all irreducible smooth representations π, and implies that there are no supercuspidal
representations that stay supercuspidal after any series of base-changes.

Hence, at this point we have proven parts (a) to (c) of Theorem 1.2, i.e. we have
shown that with a natural local characterization of the Local Langlands Correspondence,
this correspondence is unique, exists, and gives the desired bijection. Moreover, it is also
compatible with global correspondences.

In fact, if one is only interested in parts (a) through (c) of Theorem 1.2 for repre-
sentations which are unitarily induced from supercuspidal, then global arguments are
only used at the following points.4 On the one hand, one needs Theorem 1.4, with some
undetermined representation rec(π). The results of Strauch in [27] give some hope that
this could be done locally. On the other hand, one needs the compatibility of π 7−→ σ(π)
with base-change. Alternatively, one might try to prove compatibility with automorphic
induction. For example, in the case where F/Qp is a cyclic extension, the ‘forgetful’ func-
tor given by mapping a $-divisible O-module to its underlying p-divisible group gives a
natural map from the moduli space of one-dimensional $-divisible O-modules of height
n to the moduli space of one-dimensional p-divisible groups of height n[F : Qp], which
seems to be related to automorphic induction.

We end the paper by using the method of non-Galois automorphic induction of Harris
and the technique of twisting with highly ramified characters of Henniart to deduce that
our correspondence satisfies the usual requirements on the Local Langlands Correspon-
dence, i.e., we prove part (d) of Theorem 1.2.

Let us also mention that one can arrange the arguments so that our proof of the Local
Langlands Correspondence does not makes use of the theory of types: One only proves
parts (a) and (b) of Theorem 1.2 for representations which are unitarily induced from
supercuspidal, and only proves the local-global-compatibility result under this assump-
tion. With this modification, the automorphic ingredients concerning Clozel’s base-
change from the unitary groups G to GLn are only those that are also used implicitly
(via reference to Harris’ non-Galois automorphic induction, [9]) by Henniart in his proof
of the Local Langlands Correspondence, [13].

4More precisely, one should say arguments involving Shimura varieties. Many statements from local
harmonic analysis that are used in the local arguments, e.g. base-change of representations, are only
proved by global means.
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The Shimura varieties that we use in our arguments are very special, and indeed
we use facts about them that are not true for general Shimura varieties. However,
the construction of the function φτ,h, which in the present paper is based on Faltings’
theory of group schemes with strict O-action, [7], taylored to our situation, works in
much greater generality. The details, all going well, along with the generalization of
Theorem 9.3, will appear in another paper, [23].

Finally, let us briefly summarize the content of the different sections. In Section 2,
we define the deformation spaces of p-divisible groups and the functions fτ,h, and prove
Theorem 1.1. We state Theorem 1.2, and the proof of parts (a) and (b) of this theorem
will be given by induction on n in Sections 3 – 11. We begin by analyzing the necessary
ingredients of the induction step in Section 3, thereby introducing certain statements
(i), (ii) and (iii) in Lemma 3.2, which will be proved by separate methods.

Section 4 provides some basic statements about norm maps and base-change identities
that will be useful throughout the text. Afterwards, in Sections 5 and 6, the proof of
statement (i) is given, by relating the deformation spaces of general one-dimensional
p-divisible groups to the deformation spaces of their infinitesimal parts. The geometric
part of the argument is given in Section 5, and the harmonic analysis part in Section 6.

Next, we prove statement (ii) in Sections 7 – 10 by a global argument. To set the
stage for the global argument, we prove some preparatory local statements in Section
7. Then, in Section 8, we introduce the Shimura varieties that we will study, along with
their integral models. The crucial counting argument is carried out in Section 9, and
the results are applied in Section 10 to prove statement (ii) and Theorem 1.3.

The missing statement (iii), along with Theorem 1.4, is proved in Section 11, via the
comparison with the Lubin-Tate tower.

After we have finished the proof of parts (a) and (b) of Theorem 1.2, we continue in
Section 12 by using our earlier results from [24] to prove part (c). As already indicated
above, in the final two Sections 13 and 14, we use Harris’ method of non-Galois auto-
morphic induction and Henniart’s method of twisting with highly ramified characters,
respectively, to prove part (d) of Theorem 1.2.

Notation. We use F to denote a finite extension of Qp with ring of integers O,
uniformiser $ and residue field κ. For any integer r ≥ 1, we let Fr/F be the unramified
extension of degree r, with ring of integers Or and residue field κr. The completion of
the maximal unramified extension of F is denoted F̆ , with ring of integers Ŏ. We use σ
to denote the arithmetic Frobenius of Fr over F , or also of F̆ . In contrast, σ0 denotes
the arithmetic Frobenius of the Witt vectors W (κr) over Zp.

Moreover, we denote the Weil group of F by WF , with inertia subgroup IF , and we
fix a geometric Frobenius element Frob ∈WF .

To clarify the distinction, global objects are often denoted by bold-face letters, so
that e.g. F will be a CM field with totally real subfield F0.

The symbol ∨ is used to denote duals, e.g. dual representations, dual abelian varieties,
and dual p-divisible groups. Also, if f is a function on GLn(R) for some ring R, we define
a new function f∨ on GLn(R) by f∨(g) = f((g−1)t).

Acknowledgments. First of all, I thank my advisor M. Rapoport for explaining me
the Langlands-Kottwitz method of counting points, which plays a crucial role in this
article, for his encouragement to work on this topic, and for the many other things he
taught me. Furthermore, my thanks go to Guy Henniart and Vincent Sécherre for their
advice in type theory, among other things.

2. Deformation spaces of p-divisible groups

Recall the following definition, cf. e.g. [7], where also the analogue of truncated
p-divisible groups is defined.
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Definition 2.1. Let S be an O-scheme on which p is locally nilpotent. A $-divisible
O-module H over S is a p-divisible group H over S together with an action ι : O −→
End(H) such that the two induced actions of O on the Lie algebra of H agree.

Now let H be a $-divisible O-module over a perfect field k of characteristic p, which
is given the structure of a O-algebra, via a map κ −→ k. Then the usual Dieudonné
module (M0, F0, V0) of H carries an action of

O ⊗W (k) =
∏
κ−→k

WO(k) ,

where WO(k) is the completion of the unramified extension of O with residue field k.
Let M be the component of M0 corresponding to the given map κ −→ k, which is a
free WO(k)-module. Assume that κ ∼= Fpj for some j. Then M carries a σ-semilinear
action of F j0 , which we denote by F in this context. One can check that M also admits
a σ−1-semilinear operator V satisfying FV = V F = $. The structure (M,F, V ) is
functorial in H and is called the relative Dieudonné module of H. It is an easy exercise
to see that all of Dieudonné theory goes through in this context.

In particular, to any β ∈ GLn(Or)diag($, 1, . . . , 1)GLn(Or), one can associate a
one-dimensional $-divisible O-module Hβ of height n over κr, by taking F = βσ.
Conversely, any one-dimensional $-divisible O-module of height n over κr is associated
to a unique GLn(Or)-σ-conjugacy class of such β.

Definition 2.2. (i) Let Rβ be the formal deformation space of Hβ as a $-divisible O-
module, with universal deformation Hβ.
(ii) Let Rβ,m be the covering of Rβ parametrizing Drinfeld-level-m-structures on Hβ, i.e.
sections X1, . . . , Xn ∈ Hβ[$m] such that∑

i1,...,in∈O/$m
[i1X1 + . . .+ inXn] = [Hβ[$m]]

as relative Cartier divisors on Hβ/Rβ.

Proposition 2.3. (i) The ring Rβ is a formally smooth complete noetherian local Or-
algebra, abstractly isomorphic to Or[[T1, ..., Tn−1]].
(ii) The covering Rβ,m/Rβ is a finite Galois covering with Galois group GLn(O/$mO),
étale in the generic fibre.
(iii) The ring Rβ,m is regular.

Proof. Using Proposition 5.1, one can reduce to the case where H is infinitesimal. All
statements can be checked after base-change to Ŏ, where these deformation spaces are
the classical Lubin-Tate spaces and everything is well-known, cf. e.g. [6] or [27]. �

Theorem 2.4. Associated to any double coset

β ∈ (1 +$mMn(O))\GLn(Or)diag($, 1, . . . , 1)GLn(Or)/(1 +$mMn(O)) ,

there is a separated, flat scheme Rβ,m of finite type over Or with smooth generic fibre
equipped with an action of GLn(O/$m), and a finite scheme Z ⊂ Spec Rβ,m ⊗Or κr
stable under this action such that the completion of Rβ,m at Z is GLn(O)-equivariantly
isomorphic to Rβ,m for any β ∈ β.

Proof. We recall the necessary facts from Faltings’ theory of group schemes with strict
O-action, [7]. First, giving an m-truncated $-divisible O-module (or BTm) over κr is
equivalent to giving the σ-semilinear action of F and the σ−1-semilinear action of V
with FV = V F = $ on a free Or/$m-module. Giving such data which come as the
truncation of some Hβ is then seen to be equivalent to giving β.
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Further, Faltings shows that the functor H 7−→ H[$m] from $-divisible O-modules
to m-truncated $-divisible O-modules is formally smooth, showing that Rβ is also
the versal deformation space of Hβ[$m]. Now this is a finitely presented functor, so
that Artin’s algebraization theorem, [2], shows that there is a separated scheme Rβ of
finite type over Or together with an m-truncated $-divisible O-module Hβ and a point
x ∈ Spec Rβ(κr) such that the completion of Rβ at x with Hβ restricted to this formal
completion is isomorphic to Rβ with Hβ[$m] for all β ∈ β.

By going over to a Zariski open subset and normalizing, we can assume that Rβ is
normal, flat over Or and smooth in the generic fibre, because these statements are true
in the completion at x. Now let Rβ,m be the normalization of Rβ in the covering of the
generic fibre parametrizing trivializations of Hβ. Then GLn(O/$m) acts on Rβ,m. Let
Z be the preimage of x in Rβ,m.

The statements comparing Rβ,m and Rβ,m are now clear, since Rβ,m is regular and
in particular normal.

Finally, one may pass to a suitable Zariski open subset to assume that Rβ,m is flat
over Or and smooth in the generic fibre, as these statements are true in the completion
at Z. �

We consider the formal nearby cycle sheaves in the sense of Berkovich, [3],5

Rψβ = lim
−→
m

H0(RψSpf Rβ,mQ̄`) .

Theorem 2.5. The space H0(RiψSpf Rβ,mQ̄`) is a finite-dimensional, continuous rep-
resentation of WFr ×GLn(O/$m), which vanishes outside the range 0 ≤ i ≤ n− 1.

Proof. This follows from Theorem 2.4, the comparison of formal nearby cycles with the
usual nearby cycles, i.e.,

RiψSpf Rβ,mQ̄` = RiψSpec R
β,m

Q̄`|Z⊗κr κ̄ ,

given by Theorem 3.1 of [3], and the finiteness results in the étale cohomology of schemes.
�

We see that the alternating sum of the cohomology groups induces an element [Rψβ] in
the Grothendieck group of representations of WFr×GLn(O) with continuous WFr -action
and smooth admissible GLn(O)-action.

Now, for any τ ∈ FrobrIF ⊂WFr and h ∈ C∞c (GLn(O)) taking values in Q, we define

φτ,h(β) = tr(τ × h∨|[Rψβ]) ,

where h∨ is defined by h∨(g) = h((g−1)t).

Theorem 2.6. This defines a function φτ,h ∈ C∞c (GLn(Fr)) with values in Q, indepen-
dent of `.

Proof. From Theorem 2.4, it follows directly that the function is locally constant in β.
The independence of ` follows from the results of Mieda, Theorem 6.2.2 of [21]. To apply
them, assume that h is the characteristic function of g ∈ GLn(O/$m). Use g to twist
the scheme Rβ,m with the unramified action of Gal(F̄ /F ) sending geometric Frobenius
to g. We get a scheme X with a finite subscheme Z such that

φτ,h(β) =
∑

x∈Z(κr)

tr(τ |(RψXQ`)x) .

Now the claim is an immediate consequence of Theorem 6.2.2 of [21]. �

5Our terminology is the one used e.g. in SGA and differs from Berkovich’s terminology, where these
sheaves are called vanishing cycle sheaves.
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Finally, we let fτ,h ∈ C∞c (GLn(F )) be associated to φτ,h, using the normalization of
Haar measures giving a maximal compact subgroup volume 1. Recall our second main
theorem.

Theorem 2.7. (a) For any irreducible smooth representation π of GLn(F ) there is a
unique n-dimensional representation rec(π) of WF such that for all τ and h as above,

tr(fτ,h|π) = tr(τ |rec(π)) tr(h|π) .

Write σ(π) = rec(π)(1−n
2 ).

(b) If π is a subquotient of the normalized parabolic induction of the irreducible repre-
sentation π1 ⊗ · · · ⊗ πt of GLn1(F )× · · · ×GLnt(F ), then σ(π) = σ(π1)⊕ . . .⊕ σ(πt).
(c) The map π 7−→ σ(π) induces a bijection between the set of isomorphism classes of
supercuspidal irreducible smooth representations of GLn(F ) and the set of isomorphism
classes of irreducible n-dimensional representations of WF .
(d) The bijection defined in (c) is compatible with twists, central characters, duals, and
L- and ε-factors of pairs, hence is the standard correspondence.

3. An application of the theory of types

If π is an admissible smooth representation of GLn(F ) and s ∈ C, then we let π[s] =
π ⊗ |det|s be the twisted representation.

For any collection π1, . . . , πt of irreducible essentially square-integrable representa-
tions of GLni(F ) such that πi does not precede πj for i < j in the sense of Bernstein-
Zelevinsky, [4], [29], we denote by �t

i=1πt the Langlands quotient of the normalized
parabolic induction of π1⊗· · ·⊗πt. It is known that this does not depend on the order-
ing of the πi. We extend the definition to any collection of πi by first reordering them
so that πi does not precede πj if i < j, which is always possible.

Let d be a divisor of n, hence n = dt for some integer t ≥ 1, and let π0 be a unitary
irreducible supercuspidal representation of GLk(F ). Then we call π = �t

i=1π0[ t+1
2 − i]

a generalized Speh representation of GLn(F ).

Lemma 3.1. (i) Let n = dt and π0 be as above and let π = �t
i=1π0[ t+1

2 − i]. Assume
that t ≥ 2. Then there exists a function h ∈ C∞c (GLn(O)) such that tr(h|ρ) = 0 for all
irreducible tempered representations ρ of GLn(F ) which are not of the form ρ = �t

i=1π[si]
for some numbers si ∈ C of real part 0, and for which tr(h|π) 6= 0.

(ii) Assume that h ∈ C∞c (GLn(F )) is such that for all irreducible tempered, non-
square-integrable representations π of GLn(F ) and for all generalized Speh representa-
tions π we have tr(h|π) = 0. Then tr(h|π) = 0 for all irreducible smooth representations
π of GLn(F ).

Proof. Part (i) follows from the results of Schneider and Zink in [22]. We deduce it
from Proposition 11 of [22]. This shows that there exists an irreducible representation τ
(equal to σP(λ) for P minimal in their notation) of GLn(O) that occurs in a tempered
representation ρ if and only if ρ = �t

i=1π[si] for some numbers si ∈ C of real part 0. We
let h be the character of τ∨. Then the first part of (i) holds true. But Proposition 11,
part (i), of [22] says that τ also occurs in π, which implies the second part of (i).

For part (ii), we first show that tr(h|π) = 0 for all properly induced representations
π. Indeed, let P be a maximal parabolic with Levi M = GLk × GLn−k, and let hP be
the (normalized, K-invariant) constant term along P , so that

tr(h|n-IndGLn(F )
P (F ) π1 ⊗ π2) = tr(hP |π1 ⊗ π2)

for all admissible smooth representations π1, π2 of GLk(F ) resp. GLn−k(F ). Then our
assumptions say that tr(hP |π1 ⊗ π2) = 0 for all irreducible tempered π1, π2, hence by
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Kazhdan’s density theorem, [15], this also holds for all π1, π2, which is what we have
claimed.

Now, if π is square-integrable, then π corresponds to some segment

I = [π0(1−t
2 ), π0( t−1

2 )] .

But one sees e.g. from Lemma I.3.2 of [10] that π+(−1)t�t
i=1π0[ t+1

2 −i] is an alternating
sum of induced representations in the Grothendieck group of admissible representations
of GLn(F ). This shows that tr(h|π) = 0, hence tr(h|π) = 0 for all tempered π and thus
by Kazhdan’s density theorem for all π. �

Lemma 3.2. Assume that the following conditions are satisfied:

(o) Parts (a) and (b) of Theorem 1.2 hold true for all n′ < n.

(i) If π is the (not necessarily irreducible) normalized parabolic induction of π1⊗· · ·⊗πt,
where t ≥ 2 and πi is an irreducible smooth representation of GLni(F ), then for all τ ,
h, we have

tr(fτ,h|π) = tr
(
τ |rec(π1)(n−n1

2 )⊕ . . .⊕ rec(πt)(n−nt2 )
)

tr(h|π) .

(ii) For any irreducible smooth representation π of GLn(F ) which is either essentially
square-integrable or a generalized Speh representation, there exists a Q-linear combina-
tion rec(π) of representations of WF with positive coefficients and total dimension n
such that for all τ , h, we have

tr(fτ,h|π) = tr(τ |rec(π)) tr(h|π) .

(iii) If π is a supercuspidal irreducible smooth representation of GLn(F ), then rec(π) is
a Z-linear combination of representations of WF .

Then parts (a) and (b) of Theorem 1.2 hold true for n.

Proof. First note that parts (ii) and (iii) imply that for π supercuspidal rec(π) is an n-
dimensional representation of WF : Writing rec(π) in the basis given by the irreducible
representations of WF , we know that all coefficients have to be nonnegative by (ii) and
integers because of (iii).

If π is an irreducible smooth representation of GLn(F ) with supercuspidal support
π1, . . . , πt, write σ(π) = rec(π1)(1−n1

2 ) ⊕ . . . ⊕ rec(πt)(1−nt
2 ), which is an n-dimensional

representation of WF . Let fτ be the function of the Bernstein center that acts through
the scalar tr(τ |σ(π)(n−1

2 )) on any irreducible smooth representation π. To prove the
existence of fτ , we have to show that

tr(τ |σ(π)(n−1
2 ))

defines a regular function on any component of the Bernstein center. It is clear that the
function depends only on the supercuspidal support, so that one immediately reduces to
the case of a supercuspidal component, given by unramified twists of some supercuspidal
representation π. In that case, choose h ∈ C∞c (GLn(O)) with tr(h|π) = 1. Then
tr(h|π′) = 1 for all unramified twists π′ of π, and hence

tr(τ |σ(π′)(n−1
2 )) = tr(τ |rec(π′)) = tr(fτ,h|π′) .

But the right-hand side does indeed give a regular function on this Bernstein component,
as does the trace of any C∞c -function.

It is enough to see that
tr(fτ,h|π) = tr(fτ ∗ h|π)

for all irreducible smooth representations π of GLn(F ).
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If π is properly induced or supercuspidal, this is clear because of condition (i), resp.
(ii). By part (ii) of Lemma 3.1, it is enough to check it for all generalized Speh representa-
tions π = �r

i=1π0[ r+1
2 − i], where π0 is a unitary irreducible supercuspidal representation

of a smaller GLd(F ). Choose h as in part (i) of Lemma 3.1. Then we see that

tr(fτ,h|π′) = tr(fτ ∗ h|π′)
for all tempered representations π′: For all except the square-integrable ones, we have
already seen this, and for square-integrable representations, it holds true because both
sides are scalar multiples of tr(h|π′), which vanishes by choice of h. Hence this equality
also holds true for any other irreducible smooth representation, in particular for π =
�r
i=1π0[ r+1

2 − i]. In that case, the equality says that

tr(τ |rec(π)) = tr
(
τ |σ(π)(n−1

2 )
)
.

This implies that rec(π) = σ(π)(n−1
2 ), and hence we know that for all h, the equality

tr(fτ,h|π) = tr(fτ ∗ h|π)

holds for all generalized Speh representations. As indicated above, this finishes the proof
by part (ii) of Lemma 3.1. �

4. Norm maps and p-divisible groups

In this section, we will study norm maps on integral elements by relating these to
different parametrizations of p-divisible groups. This will give a very concise proof of
base-change lemmas.

First, we consider the case of étale p-divisible groups. Let D be a semisimple algebra
over Qp with a maximal order OD.

Definition 4.1. Let S be scheme on which p is locally nilpotent. A D-group over S is
an étale p-divisible group H over S together with an action

ι : Oop
D −→ End(H)

such that H[p] is free of rank 1 over Oop
D /p.

There are two ways to parametrize D-groups H over Fpr . On the one hand, one
can look at the (contravariant) Dieudonné module M of H; then M ∼= OD ⊗Zp Zpr .
If we write σ0 for the absolute Frobenius of Zpr , then one can write the Frobenius
F of M as F = β−1σ0 for some β ∈ (OD ⊗Zp Zpr)×. This element is well-defined
up to σ0-conjugation by an element of (OD ⊗Zp Zpr)×. We call this the Dieudonné
parametrization.

On the other hand, one can first give a D-group H̃ over F̄p and then add a descent
datum to Fpr . Let Frob ∈ Gal(F̄p/Fpr) be the geometric Frobenius; then a descent
datum is given by an isomorphism α : Frob∗H̃ ∼= H̃, giving the action of Frob. Let

F : F̄p −→ F̄p
be the p-th power map; then there is the natural Frobenius isogeny F : H̃ −→ F ∗H̃
defined for any p-divisible group, which is an isomorphism in the case of étale p-divisible
groups. Then giving a descent datum α is equivalent to giving γ = α ◦ F−r : H̃ −→ H̃,
which is an Oop

D -linear automorphism. Since EndOop
D

(H̃) = OD, it follows that giving a
descent datum is equivalent to giving an element γ ∈ O×D. One easily checks that γ is
well-defined up to O×D-conjugation. We call this the Galois parametrization.

Proposition 4.2. This defines a bijection between the set of (OD⊗ZpZpr)×-σ0-conjugacy
classes in (OD ⊗Zp Zpr)× and the set of O×D-conjugacy classes in O×D, which we denote
by β 7−→ Nβ.

Further, the characteristic polynomials of Nβ and ββσ0 · · ·βσ
r−1
0 agree.
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Proof. The first part is clear by construction. For the second part, look at the Dieudonné
module of H̃: It is given by

M ⊗Zpr W (F̄p) ,
and the action of Frob is given by its action on the second factor, where it acts through
Frob−1 by contravariance. The Frobenius isogeny is given by F , and hence α ◦ F−r is
given by

γ = F−r ⊗ Frob−1 = (β−1σ0)−r ⊗ σr0 = Nβ .

For the last equality, note that the evaluation of (β−1σ0)−r takes place in the algebra
Oop
D ⊗ZpW (F̄p) of OD-linear endomorphisms of M ⊗Zpr W (F̄p). This implies the desired

statement. �

Now assume that h ∈ C∞c (O×D) is invariant under conjugation. We get a function
φh ∈ C∞c ((OD ⊗Zp Zpr)×) by setting φh(β) = h(Nβ).

We choose Haar measures on D× and (D ⊗Qp Qpr)× that give maximal compact
subgroups volume 1.

Proposition 4.3. In this situation, the functions φh and h have matching (twisted)
orbital integrals.

Remark 4.4. Taking D to be Mn(Qp) and h to be characteristic function of GLn(Zp),
this gives the usual base-change identity.

Proof. We have to show that for any β ∈ (OD ⊗Zp Zpr)×,

TOβσ0(φh) = ONβ(h) .

Let H be the D-group over Fpr associated to β. Consider the set X of D-groups H ′ over
Fpr together with an Oop

D -linear quasi-isogeny α : H ′ −→ H. On this set X, we have an
action of Γ = (End(H)⊗Zp Qp)× by composition.

First, it is easy to see that for any x ∈ X, the stabilizer Γx ⊂ Γ is a maximal compact
subgroup. This shows that all Γx have the same volume. We may normalize the Haar
measure by requiring that these subgroups have volume 1.

Note that we can define a Γ-invariant function h̃ on X by requiring h̃(H ′, α) =
h(γ(H ′)). We claim that

TOβσ0(φh) = ONβ(h) =
∑
x∈X/Γ

h̃(x) .

Now on the one hand, Dieudonné theory gives an isomorphism

Γ = {g ∈ (D ⊗Qp Qpr)× | g−1βgσ = β}
and an identification of X with

{g ∈ (D ⊗Qp Qpr)× | g−1βgσ ∈ O×D}/(OD ⊗Zp Zpr)× ,
by sending g to the D-group H ′ given by the lattice gM ⊂M⊗ZpQp and the correspond-
ing quasi-isogeny α : H ′ −→ H. Also h̃(H ′, α) = φh(g−1βgσ) under this correspondence.
This proves the equality

TOβσ0(φh) =
∑
x∈X/Γ

h̃(x) .

Reasoning in the same way with the other parametrization of X, we get the second
identity. �

Corollary 4.5. With h and φh as above, we have∫
(OD⊗ZpZpr )×

φh(β)dβ =
∫
O×D

h(γ)dγ .

Proof. This follows from the Weyl integration formula, since h and φh are associated. �
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Now we repeat these arguments for the case of one-dimensional formal O-modules of
height n.

Write D for the central divison algebra over F with invariant 1
n , with ring of integers

OD. There is a natural valuation v : D× −→ Z, taking $ ∈ F ⊂ D to n. Let Br be
the set of basic elements in GLn(Or)diag($, 1, . . . , 1)GLn(Or), by which we mean those
elements that are basic as elements of GLn(F̆ ). Also, we let Dr be the set of elements
of D× whose valuation is r.

Proposition 4.6. There is a natural bijection between GLn(Or)-σ-conjugacy classes in
Br and O×D-conjugacy classes in Dr, denoted β 7−→ Nβ. Further, the characteristic
polynomials of Nβ and ββσ · · ·βσr−1

agree.

Proof. Consider the set of formal one-dimensional $-divisible O-modules over κr of
height n; these are in bijection to each of the two sets. For the first, this is clear by
looking at the relative Dieudonné module, writing F = βσ. For the second, note that
over κ̄, there is a unique formal one-dimensional $-divisible O-module H̃ of height n,
for which End(H̃) = OD. Under this identification, the valuation on OD is given by
the height of endomorphisms of H̃. Giving the descent datum to κr is equivalent to
giving an element of D−r, using the same reasoning as in the étale case and the fact
that the Frobenius has height 1. We identify elements of D−r with elements of Dr via
the d 7→ d−1. The final statement is seen by looking at the Dieudonné module of H̃ as
in the case of étale p-divisible groups. �

For any function h ∈ C∞c (Dr) which is invariant under O×D-conjugation, we define
φh ∈ C∞c (Br) by φh(β) = h(Nβ). The next two statements are proved in the same way
as the corresponding statements in the étale case.

Proposition 4.7. The functions φh and h have matching (twisted) orbital integrals.

Corollary 4.8. We have the equality∫
Br

φh(β)dβ =
∫
Dr
h(d)dd .

5. Descent properties of the test function: Geometry

Pick some
β ∈ GLn(Or)diag($, 1, . . . , 1)GLn(Or)

and consider the associated $-divisible O-module Hβ over κr. Write

Hβ = H
0
β ×H

et
β

as the product of its infinitesimal and étale part. Let k be the height of H0
β as a formal

O-module. After σ-conjugation, we correspondingly get

β = (β0, βet) ∈
(
GLk(Or)diag($, 1, . . . , 1)GLk(Or)

)
×GLn−k(Or) .

Recall that one can also use the Galois parametrization for Het
β . Repeating the ar-

guments on étale p-divisible groups from Section 4 with relative Dieudonné modules
replacing usual Dieudonné modules (and keeping track of normalizations) shows that
the action of Frob on H

et
β (k̄) is through right multiplication by γ = (Nβet)−1.

Let Ŏ be the completion of the maximal unramified extension of O.

Proposition 5.1. (i) The connected components of Spf (Rβ,m ⊗Or Ŏ) are parametrized
by surjective O-linear maps

v : (O/$m)n −→ H
et
β [$m](k̄) .

In particular, GLn(O/$m) acts transivitely on the set of connected components.
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(ii) Let V ⊂ (O/$m)n be a direct summand of rank k over O/$m. Let

Spf (Rβ,m ⊗Or Ŏ)V

be the union of all connected components corresponding to v with ker v = V . Then
(Rβ,m⊗Or Ŏ)V is defined over Or; call it (Rβ,m)V . Further, the stabilizer of (Rβ,m)V ⊂
Rβ,m is PV (O/$m), where PV is the parabolic associated to V , i.e. the subgroup stabi-
lizing V .

In the following, we take V = (O/$m)k ⊂ (O/$m)n. We write Pk = PV .
(iii) The canonical projection

Spf (Rβ,m)V −→ Spf Rβ0,m ,

given by sending a deformation of Hβ with Drinfeld-level structure (X1, . . . , Xn) to its
infinitesimal part and the Drinfeld-level-structure given by (X1, . . . , Xk), is formally
smooth, inducing (noncanonical) isomorphisms of each connected component of

Spf (Rβ,m)V ⊗Or Ŏ

with
Spf (Rβ0,m ⊗Or Ŏ)[[T1, ..., Tn−k]] .

(iv) The map in (iii) induces a (canonical) Pk(O/$m)×WFr -equivariant isomorphism

RψSpf (Rβ,m)V Q̄`
∼= RψSpf Rβ0,m

⊗ Q̄`[GLn−k(O/$m)] ,

where the Pk(O/$m)-action factors through its Levi quotient, and the WFr -action is the
natural action on both nearby cycle sheaves and is the unramified action taking Frobr to
right multiplication by (γ−1)t = (Nβet)t on Q̄`[GLn−k(O/$m)].
(v) This gives an equality of virtual GLn(O)×WFr -representations

[Rψβ] = IndGLn(O)
Pk(O) ([Rψβ0 ]⊗ C∞c (GLn−k(O))) ,

where we take functions with values in Q̄`.
(vi) We have the following equality

φτ,h(β) = tr
(
h×Nβet|IndGLn(O)

Pk(O) φk,τ (β0)⊗ C∞c (GLn−k(O))
)
,

with Nβet acting through right multiplication by (Nβet)−1. Here φk,τ (β0) is the distri-
bution taking hk ∈ C∞c (GLk(O)) to

φτ,hk(β0) = tr(τ × h∨k |[Rψβ0 ]) ,

which we consider as an element in the Grothendieck group (with C-coefficients) of
admissible representations of GLn−k(O).

Proof. This is basically well-known. Part (i) follows from the canonical decomposition

Hβ = H
0
β ×H

et
β ,

identifying sections of Hβ with points of Het
β .

It is clear that the Galois action on the connected components is through the action
on H

et
β [$m](k̄). This action does not change ker v, hence the first part of (ii) follows.

The second is obvious.
Part (iii) follows from Proposition 4.5 of [6].
Now part (iv) follows from the invariance of nearby cycles under power series exten-

sions, see e.g. [10], Lemma I.5.6. Also part (v) is an immediate consequence of part (iv)
and the facts about the GLn(O/$m)-action from part (i) and (ii).

Finally, part (vi) follows from part (v) after taking dual GLn(O)-representations. �
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6. Descent properties of the test function: Harmonic analysis

In this section, we will translate the descent formula established in the last section
to establish condition (i) of Lemma 3.2. Basically, this is an application of the Weyl
integration formula, turning a statement about the values of φτ,h on elements into a
statement about its traces on representations.

Let Pk be the standard parabolic with Levi GLk×GLn−k and let Nk be its unipotent
radical. For any admissible representation π of GLn(F ) of finite length, let πNk be its
(unnormalized) Jacquet module with respect to Nk. Assume that

πNk =
tπ,k∑
i=1

π1
Nk,i
⊗ π2

Nk,i

as elements of the Grothendieck group of representations of GLk(F )×GLn−k(F ). Let ΘΠ

be the distribution on GLn(Fr) given by ΘΠ(β) = Θπ(Nβ). Define ΘΠ1
Nk,i

analogously.

For any φ ∈ C∞c (GLn(Fr)), we will write ΘΠ(φ) as tr((φ, σ)|Π), thinking of Π as the
base-change lift of π.

Lemma 6.1. In this situation,

tr((φτ,h, σ)|Π) =
n∑
k=1

tπ,k∑
i=1

p(n−k)r tr
(
h|IndGLn(O)

Pk(O)

(
tr((φk,τχBk , σ)|Π1

Nk,i
)
)
⊗ π2

Nk,i

)
,

where tr((φk,τχBk , σ)|Π1
Nk,i

) is the distribution on GLk(O) sending hk to

tr((φτ,h∨kχBk , σ)|Π1
Nk,i

) ,

where χBk is the characteristic function of the set Bk of all basic elements in

GLk(Or)diag($, 1, . . . , 1)GLk(Or) .
Again, we identify conjugation-invariant distributions with elements in the Grothendieck
group of admissible representations to make sense of this formula.

Proof. We follow the proof of Lemma 5.5 in [24]. This gives

tr((φτ,h, σ)|Π) =
n∑
k=1

p(n−k)r

tπ,k∑
i=1

∑
Tk⊂GLk,Tn−k⊂GLn−k

Tk anisotropic

|W (Tk × Tn−k,GLk ×GLn−k)|−1

×
∫

∆2
GLk(F )(Nt1)∆2

GLn−k(F )(Nt2)TOGLk×GLn−k
tσ (φτ,h)Θπ1

Nk,i
(Nt1)Θπ2

Nk,i
(Nt2)dt1dt2 ,

where the integral runs over the set of all t = (t1, t2) in

Tk(Fr)1−σ × Tn−k(Fr)1−σ\Tk(Fr)1 × Tn−k(Or) ,
where Tk(Fr)1 is the set of all t1 ∈ Tk(Fr) with vF (det t1) = 1. Further,

W (Tk × Tn−k,GLk ×GLn−k)

is the normalizer of Tk(F )×Tn−k(F ) in GLk(F )×GLn−k(F ) divided by Tk(F )×Tn−k(F ).
Now, we keep t1 fixed and look at the sum over Tn−k combined with the integral over

t2: ∑
Tn−k⊂GLn−k

|W (Tn−k,GLn−k)|−1

×
∫

Tn−k(Fr)1−σ\Tn−k(Or)

∆2
GLn−k(F )(Nt2)TOGLn−k

t2σ
(φτ,h(t1, ·))Θπ2

Nk,i
(Nt2)dt2 .

This is exactly the twisted Weyl integration formula computing tr(φτ,h(t1, ·)|Π2
Nk,i

).
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Lemma 6.2. We have

tr((φτ,h(t1, ·), σ)|Πn−k) = tr(h|IndGLn(O)
Pk(O) φk,τ (t1)⊗ πn−k)

for any irreducible smooth representation πn−k of GLn−k(F ).

Proof. For this, we first recall the following formula.

Lemma 6.3. Let f be a GLn−k(O)-conjugation-invariant locally constant function on
GLn−k(O) and let φ ∈ C∞c (GLn−k(Or)) be defined by φ(β) = f(Nβ). Then∫

GLn−k(Or)
φ(β)dβ =

∫
GLn−k(O)

f(γ)dγ .

Proof. This is proved in exactly the same way as Corollary 4.5, replacing Dieudonné
modules by relative Dieudonné modules. �

Hence if fτ,h(t1, ·) ∈ C∞c (GLn−k(O)) is defined by

fτ,h(t1, γ2) = tr
(
h× γ2|IndGLn(O)

Pk(O) φk,τ (t1)⊗ C∞c (GLn−k(O))
)
,

then tr((φτ,h(t1, ·), σ)|Πn−k) = tr(fτ,h(t1, ·)|πn−k) by Proposition 5.1, part (vi). We need
to see that

tr(fτ,h(t1, ·)|πn−k) = tr(h|IndGLn(O)
Pk(O) φk,τ (t1)⊗ πn−k) ,

but this follows from writing

C∞c (GLn−k(O)) =
⊕
π′n−k

π′n−k ⊗ π′∨n−k ,

where π′n−k runs over all irreducible representations of GLn−k(O), and decomposing
πn−k into irreducible representations. �

Now, we look at the sum over Tk and the integral over t1, which reads∑
Tk⊂GLk

Tk anisotropic

|W (Tk,GLk)|−1

∫
Tk(Fr)1−σ\Tk(Fr)1

∆2
GLk(F )(Nt1)TOGLk

t1σ
(ψ)Θπ1

Nk,i
(Nt1)dt1 ,

where ψ(t1) = tr(h|IndGLn(O)
Pk(O) φk,τ (t1) ⊗ π2

Nk,i
). This is the twisted Weyl integration

formula again, this time for ψχBk and GLk(F ). It calculates the trace

tr((ψχBk , σ)|Π1
Nk,i

) ,

which is exactly

tr
(
h|IndGLn(O)

Pk(O) (tr((φk,τχBk , σ)|Π1
Nk,i

))⊗ π2
Nk,i

)
by tracing through the definitions. �

Theorem 6.4. Assume that Theorem 1.2 holds true for all n′ < n. Assume that π is the
normalized parabolic induction of an irreducible representation π1⊗· · ·⊗πt of GLn1(F )×
· · ·×GLnt(F ), where t ≥ 2: Hence there exist representations rec(π1), . . . , rec(πt) of WF

such that
tr(fτ,hi |πi) = tr(τ |rec(πi)) tr(hi|πi) ,

for all i and all functions hi ∈ C∞c (GLni(O)). Then we have

tr(fτ,h|π) = tr
(
τ |rec(π1)(n−n1

2 )⊕ . . .⊕ rec(πt)(n−nt2 )
)

tr(h|π)

for all functions h ∈ C∞c (GLn(O)).

Proof. The proof reduces to Lemma 6.1 as the proof of Lemma 6.8 in [24] reduces to
Lemma 6.5 in [24]. �

This establishes condition (i) of Lemma 3.2.
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7. Comparison of two functions

In this section, we compare our function φτ,h with a closely related function φτ,h,h′
that arises naturally as a local ingredient in the global setup.

Fix a semisimple algebra D′ over Qp with maximal order OD′ . Then we define the
algebra D = Mn(F )×D′ with maximal order OD = Mn(O)×OD′ . Consider the group
scheme GD over Zp given by

GD(R) = (OD ⊗Zp R)× ,

which decomposes as GD = ResO/ZpGLn ×GD′ , where

GD′(R) = (OD′ ⊗Zp R)× .

In this context, we need the following type of p-divisible groups with extra structure.

Definition 7.1. (i) Let S be an O-scheme. An (O, D′)-group over S is a p-divisible
group H with an action

ι : Oop
D −→ End(H)

such that H decomposes as Hn ×H ′ under the action of Oop
D = Mn(O)op ×Oop

D′, where
H is a one-dimensional $-divisible O-module of height n and H ′ is a D′-group in the
sense of Definition 4.1.
(ii) A level-m-structure on an (O, D′)-group H consists of a Drinfeld-level-m-structure
on H and an isomorphism

Oop
D′/p

m ∼= H ′[pm]

of Oop
D′-modules.

There are two ways to parametrize (O, D′)-groups over κr. For the first, one looks
at the usual Dieudonné module M of H. Our assumptions imply that there is an
isomorphism of OD ⊗Zp W (κr)-modules

M ∼= OD ⊗Zp W (κr) .

If we write σ0 for the absolute Frobenius of W (κr), then, writing the Frobenius F of M
as F = δ−1

0 σ0, we get an element

δ0 ∈ GD(W (κr)Q) ,

which is well-defined up to σ0-conjugation by an element of GD(W (κr)). Here W (κr)Q
is the fraction field of W (κr).

The second possibility is to look at the decomposition H = H
n ×H ′. As above, one

can parametrize H by an element β ∈ GLn(Fr), well-defined up to σ-conjugation by
GLn(Or). Further, H ′ gives an element γ′ ∈ O×D′ using the Galois parametrization, and
an element β′ ∈ (OD′ ⊗ZpW (κr))× using the Dieudonné parametrization. These satisfy
γ′ = Nβ′.

Going through all definitions shows the following proposition, giving the relationship
between the two parametrizations.

Proposition 7.2. Under the canonical decomposition

GD(W (κr)Q) ∼=
( ∏
α:κ−→κr

GLn(Fr)
)
×GD′(W (κr)Q)

= GLn(Fr)×
( ∏
α:κ−→κr,α 6=id

GLn(Fr)
)
×GD′(W (κr)Q) ,

the element δ0 is GD(W (κr))-σ0-conjugate to ((β−1)t, 1, β′).
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Now fix an (O, D′)-group H over κr. We get a deformation space RH of H with
universal deformation H, and a covering RH,m/RH parametrizing level-m-structures on
the universal deformation.

Proposition 7.3. (i) The canonical map RH −→ Rβ is an isomorphism.

(ii) The canonical map
RH,m −→ Rβ,m ×Rβ (H ′[pm])×

is an isomorphism, where (H ′[pm])× ⊂ H ′[pm] is the open and closed subset of Oop
D′-

generators of the Oop
D′-module H ′[pm]. The O×D′-action on RH,m is given by sending

b ∈ O×D′ to left multiplication by b−1 on H ′[pm].
In particular, the covering RH,m/RH is a finite Galois cover with Galois group

GLn(O/$m)× (OD′/pm)× .

Proof. This follows from rigidity of étale covers: There is a unique deformation of a
D′-group to any infinitesimal thickening. �

Again, we can consider the global sections of the nearby cycle sheaves

RψH = lim
−→

H0(RψSpf R
H,m

Q̄`) .

They carry an action of WFr × GD(Zp). We get the following corollary of the last
proposition.

Corollary 7.4. There is a canonical WFr ×GD(Zp)-equivariant isomorphism

RψH
∼= Rψβ ⊗ C∞c (O×D′) ,

where we take functions with values in Q̄`.

In particular, let τ ∈ WF project to the r-th power of Frobenius, and let h ∈
C∞c (GLn(O)) and h′ ∈ C∞c (O×D′) have values in Q. We define the function φτ,h,h′(δ0) by

φτ,h,h′(δ0) = tr(τ × h∨ × h′|RψH) ,

if H corresponds to δ0, and by 0 if there is no such H. Then our results of Section 2
imply that φτ,h,h′ ∈ C∞c (GD(W (κr)Q)), and is independent of `. In fact, we have the
following result, which is the main result of this section.

Lemma 7.5. For any τ , h, h′, the functions φτ,h,h′ and f∨τ,h × h′ are associated.

Proof. We may assume that h′ is invariant under O×D′-conjugation. Take H which cor-
responds to δ0 and to (β, γ′) in the two parametrizations. In that case, we claim that

tr(τ × h′|C∞c (O×D′)) = h′(γ′) .

Indeed, the action of τ on H[pm](κ̄) is through right multiplication with γ′, and hence
the left-hand side may be computed as∫

O×
D′

h′(b−1γ′b)db = h′(γ′) ,

by assumption on h′.
It follows that

φτ,h,h′(δ0) = φτ,h(β)h′(γ′)

if δ0 and (β, γ′) parametrize the same (O, D′)-group over κr. Now the same argument
as in the proof of Proposition 4.3 shows the lemma. �
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8. Embedding into a Shimura variety

In order to apply certain global arguments, we embed the situation into a Shimura
variety. These Shimura varieties are of the kind considered by Harris-Taylor, and previ-
ously in a more general set-up by Kottwitz. We use Kottwitz’ notation as in [17], [16],
except that we stick to our convention of using bold-face letters for global objects.

We start with the following data:
• a totally real field F0 of even degree over Q;
• an infinite place τ of F0;
• a finite place x0 of F0;
• an imaginary quadratic field K such that the rational prime below x0 splits in K;
• an embedding K ↪→ C;
• a positive integer n.
We get the CM field F = KF0, and two places x, xc of F over F0.

Lemma 8.1. Given these data, there exist a central division algebra D over F of di-
mension n2, an involution ∗ on D of the second kind, and a homomorphism

h0 : C −→ DR

such that x 7−→ h0(i)−1x∗h0(i) is a positive involution on DR and such that the following
properties hold:
(i) The algebra D splits at all places of F different from x, xc;
(ii) If G0/F0 is the algebraic group defined by

G0(R) = {g ∈ (D⊗F0 R)× | gg∗ = 1} ,
then G0 is quasisplit at all finite places of F0 that do not split in F, is a unitary group
of signature (1, n−1) at τ , and is a unitary group of signature (0, n) at all other infinite
places6.

Remark 8.2. The order in the signature is important: Any infinite place τ ′ of F0 induces
an isomorphism D⊗F0 R ∼= Mn(C), unique up to conjugation, normalized by our choice
of embedding K ↪→ C. Under this identification, h0 takes the form

h0(z) = (diag(z, . . . , z, z, . . . , z))τ ′ ∈ DR =
∏
τ ′

D⊗F0 R ∼=
∏
τ ′

Mn(C) .

We say that G0 has signature (p, q) at τ ′ if the number of z’s appearing at τ ′ is p, and
the number of z’s is q. It is then easy to see that indeed G0 ⊗F0 R is isomorphic to the
unitary group U(p, q) of signature (p, q).

Proof. This is contained in Section I.7 of [10], in particular Lemma I.7.1. Note that our
D corresponds to Bop and our ∗ corresponds to ]β in the notation of [10]. �

We get the reductive group G/Q defined by

G(R) = {g ∈ (D⊗R)× | gg∗ ∈ R×} .

Remark 8.3. An assumption about the ramification of D is necessary to apply the global
Jacquet-Langlands correspondence relating automorphic representations of D× to auto-
morphic representations of GLn/F. The assumption that F be the composite of a totally
real field and an imaginary quadratic field implies that the action of the Galois group
on the dual group Ĝ is through the quotient Gal(K/Q), which makes applications of
base-change possible. The restriction on the degree of F0 over Q is needed to make the
lemma true.

6With the convention on the signature explained in the next few lines.
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Restricting h0 to C× and considering it as a morphism of algebraic groups over R
gives a map

h : ResC/RGm −→ GR .

Then the datum (G, h−1) defines a projective Shimura variety ShK for any compact
open subgroup K ⊂ G(Af ), cf. [17].

Over C, the group G decomposes as

GC =
( ∏

F0↪→C
GLn

)
×Gm ,

where the projections to GLn are given by the projection of

D⊗Q C =
∏

F↪→C
Mn(C)

to the factor corresponding to the embedding F0 ↪→ C and the fixed embedding K ↪→ C.
Further, the projection to Gm is the natural map g 7−→ gg∗. Recall the morphism

Gm −→ Gm ×Gm
∼= (ResC/RGm)⊗R C

z 7−→ (z, 1)

where the first factor corresponds to the identity map C −→ C and the second factor
corresponds to complex conjugation. Precomposing h with this morphism defines a
(minuscule) cocharacter

µ : Gm −→ GC .

Our assumptions imply that it is given by z 7→ diag(z, 1, . . . , 1) on the factor corre-
sponding to τ , by z 7→ 1 on the other GLn-factors, and by z 7→ z on the Gm-factor.

From here, it follows that the reflex field E is canonically isomorphic to F: The infinite
place τ of F0 and the embedding K ↪→ C give a canonical embedding of F into C, which
identifies F with E ⊂ C.

Our assumptions on p are the following. We require that p splits in K. Further, we
fix a place w of F above p, inducing a place u of K above p, and require that D splits
at w, i.e. w 6= x, xc. We set F = Fw and use the local notation O, κ, etc., as before.
We choose some rational prime ` 6= p and an isomorphism Q̄`

∼= C. Note that the
Grothendieck groups of continuous representations of WF with coefficients in either Q̄`

or C get identified, and we will ignore the distinction.
Now let ξ be an irreducible algebraic representation of G. We get `-adic local systems

FK on ShK for all compact open subgroups K ⊂ G(Af ), to which the action of G(Af )
extends, cf. e.g. [17]. Then we consider the direct limit of the étale cohomology groups
of ShK with coefficients in FK , i.e.

H∗ξ = lim
−→
K

H∗(ShK ,FK) .

We also consider the alternating sum [Hξ] as an element in the Grothendieck group of `-
adic representations of Gal(F/F)×G(Af ) with continuous Galois action and admissible
smooth G(Af )-action.

In order to apply the method of counting points modulo p, we first have to construct
integral models of the Shimura varieties over O. We have to explain how to choose the
data of PEL type in [17]. We take the simple Q-algebra B = Dop and V = D as a left
B-module via right multiplication. This gives C = EndB(V ) = D. Furthermore, choose
ξ ∈ D× with ξ∗ = −ξ close to h0(i). Then x 7−→ ξx∗ξ−1 defines a positive involution ∗B
on B. Moreover, we have an alternating pairing (·, ·) : V × V −→ Q defined by

(x, y) = trF/QtrD/F(xξy∗) ,
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where trD/F is the reduced trace. This pairing is compatible with ∗B, i.e. (bx, y) =
(x, b∗By) for all b ∈ B. Finally, we are given the homomorphism

h0 : C −→ CR = DR ,

and if ξ was chosen correctly, the form (·, h0(i)·) on VR is positive definite. This gives
the rational data of [17].

We have a decomposition

D⊗Q Qp
∼=
∏
p|p

D⊗F Fp ,

and for all places p|u we fix a maximal order OD,p in D ⊗F Fp. Equivalently, we have
maximal orders Oop

D,p in Bp. Using the involution ∗B, these give rise to maximal orders
in Bp for all places p of F above p, and hence to a maximal Z(p)-order OB in B. We
also get a unique self-dual Zp-lattice Λ in V ⊗Qp which is equal to OD,p at all places p
dividing u.

Further, writing
OD =

∏
p|u

OD,p ,

we get OB ⊗ Zp = Oop
D ×OD. Moreover, OD,w ∼= Mn(O), giving

OD = Mn(O)×OD′
with the obvious definition of OD′ , placing us in the situation of Section 7. With that
notation, we have

GQp = (GD ⊗Zp Qp)×Gm

= ResF/QpGLn × (GD′ ⊗Zp Qp)×Gm ,

giving us an integral model of G over Z(p). In particular, we get a maximal compact
open subgroup K0

p ⊂ G(Qp), which decomposes as

K0
p = GLn(O)×O×D′ × Z×p .

For m ≥ 1, we also consider the congruence subgroups

Km
p = (1 +$mMn(O))× (1 + pmOD′)× Z×p .

Assume we are given an abelian variety A up to prime-to-p-isogeny together with a
polarization λ of degree prime to p and a ∗B-homomorphism ι : OB −→ End(A) over a
scheme on which p is locally nilpotent. Looking at its p-divisible group A[p∞], we get a
decomposition

A[p∞] = (H(A)n ×H(A)′)× (H(A)n ×H(A)′)∨

corresponding to

OB ⊗ Zp ∼= (Mn(O)op ×Oop
D′)× (Mn(O)×OD′) .

In the situations we will consider, the p-divisible group H(A) = H(A)n×H(A)′ with its
Oop
D -action is an (O, D′)-group (so that the notion of level-m-structure from Definition

7.1 applies). In fact, over schemes on which p is locally nilpotent, this condition is
equivalent to the determinant condition of Kottwitz, cf. [17] and Lemma III.1.2 of [10].

Consider the functor that associates to a locally noetherian scheme S over O the set
of isomorphism classes of quadruples (A, λ, ι, ηp, X1, η) consisting of
• a projective abelian scheme A over S up to prime-to-p-isogeny,
• a polarization λ : A −→ A∨ of degree prime to p,
• a ∗B-homomorphism ι : OB −→ End(A), satisfying the determinant condition,
• a level-structure ηp away from p of type Kp,
• a level-m-structure ηp on H(A),
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where two objects
(A, λ, ι, ηp, ηp) , (A′, λ′, ι′, ηp′, η′p)

are called isomorphic if there exists an OB-linear prime-to-p-isogeny from A to A′ car-
rying λ into a Z×(p)-multiple of λ′, ηp into ηp′ and ηp into η′p.

For an explanation of the notion of a level-structure of type Kp, we refer to [17],
Section 5.

As in [17] and [10], Section III.4, one sees that if Kp is sufficiently small, then this
moduli problem is represented by a projective scheme ShKp,m. Furthermore, the ar-
guments of Kottwitz, cf. also [10], sections III.1 and III.4, show that the generic fibre
of ShKp,m is the disjoint union of |ker1(Q,G)| copies of the canonical model ShK of
the Shimura variety associated to (G, h−1,K), base-changed from F to F = Fw, where
K = Km

p K
p.

There is an obvious action of GLn(O)×O×D′ ×G(Ap
f ) on the tower of these integral

models. Further, the algebraic representation ξ gives rise to smooth `-adic sheaves
FKp,m on ShKp,m to which this action extends naturally. They are compatible with the
sheaves on the Shimura variety ShK .

9. Counting points modulo p

The main result of this section calculates the trace of certain operators on the coho-
mology of the Shimura varieties introduced in the last section.

Let τ ∈ FrobrIF ⊂WF , and take h ∈ C∞c (GLn(O)) and h′ ∈ C∞c (O×D′) with values in
Q. Further, fix the characteristic function eZ×p of Z×p ⊂ Q×p and take fp ∈ C∞c (G(Ap

f )),
again with values in Q. Then we get

f = h∨ × h′ × eZ×p × f
p ∈ C∞c (G(Af )) .

We will compute the trace tr(τ × f |[Hξ]). We fix m ≥ 1 such that h∨ × h′ × eZ×p is
bi-Km

p -invariant.
Fix a sufficiently small compact open subgroup Kp ⊂ G(Ap

f ) such that fp is bi-Kp-
invariant. In fact, assume that fp is the characteristic function of KpgpKp divided by
the volume of Kp for some gp ∈ G(Ap

f ). We have the following diagram.

ShKp∩(gp)−1Kpgp,m

p̃1vvnnnnnnnnnnnn
π

�� p̃2 ((PPPPPPPPPPPP

ShKp,m

π

��

ShKp∩(gp)−1Kpgp,0

p1
vvnnnnnnnnnnnn

p2
((PPPPPPPPPPPP
ShKp,m

π

��

ShKp,0 ShKp,0

We will evaluate tr(τ × f |[Hξ]) via the Lefschetz trace formula. Recall that the
upper correspondence in the diagram above extends canonically to a correspondence
u : p̃2!p̃

∗
1FKp,m −→ FKp,m and let

[fp] : H∗(ShKp,m ⊗ F̄ ,FKp,m) −→ H∗(ShKp,m ⊗ F̄ ,FKp,m)

be the associated map on cohomology. Of course, τ , h and h′ also act on the cohomology,
and it is a standard fact that

|ker1(Q,G)|tr(τ × f |[Hξ]) = tr(τ × h∨ × h′ × [fp]|H∗(ShKp,m ⊗ F̄ ,FKp,m)) .

We use proper base change to rewrite the cohomology as

H∗(ShKp,m ⊗ F̄ ,FKp,m) = H∗(ShKp,0 ⊗ κ̄, π∗RψFKp,m) .
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Let r′ = r[κ : Fp] and let F r
′

be the r′-th power of the relative Frobenius correspondence
on ShKp,0⊗κ̄. Then the action of WF on the nearby cycle sheaves gives a correspondence

F r
′∗π∗RψFKp,m

τ−→ π∗RψFKp,m ,

which on cohomology realizes the map τ . Furthermore, the actions of GLn(O) and O×D′
give a correspondence

π∗RψFKp,m
h∨×h′−→ π∗RψFKp,m

which on cohomology realizes the map h∨ × h′. Hence the composition c of the two
correspondences,

c : ShKp,0 ⊗ κ̄
p1◦F r

′

←− ShKp∩(gp)−1Kpgp,0 ⊗ κ̄
p2−→ ShKp,0 ⊗ κ̄

with the corresponding composition of the correspondences on the sheaf π∗RψFKp,m,
realizes a map on the cohomology whose trace equals tr(τ × f |[Hξ]).

Now we use the Lefschetz trace formula, see e.g. [28], Theorem 2.3.2. Hence we need to
evaluate the traces try(π∗RψFKp,m) at the fixed points y, i.e. y ∈ ShKp∩(gp)−1Kpgp,0(κ̄)
with x = (p1 ◦ F r

′
)(y) = p2(y).

At this point, we stop to check that all of Kottwitz’ arguments concerning the
parametrization of the fixed points y go through in our situation. We just make some
remarks on the crucial points.
• The analogue of Lemma 7.2 in [17] is true; one can even require that the hermitian
form be preserved on the nose. Indeed, our assumption that p be split in K immediately
reduces everything to the linear case, which is trivial to handle.

In particular, as in the article of Kottwitz, [17], p. 419, cf. also p. 429, we can associate
to any fixed point y an element δ ∈ G(W (κr)Q), well-defined up to σ0-conjugation by
G(W (κr)).7 In fact, note that the fixed point y gives rise to an (O, D′)-group Hy over
κr. Then the element δ can be more explicitly written as

δ = (δ0, t) ∈ GD(W (κr)Q)×W (κr)×Q = G(W (κr)Q) ,

where δ0 is the Dieudonné parametrization of Hy in the sense of Section 7, and t is some
element of p-adic valuation −1.
• Lemma 14.1 in [17] stays true. The crucial point is to check that for all δ ∈ G(W (κr)Q)
associated to a fixed point, the norm Nδ can be represented by an element of G(Qp).
This follows from our arguments in Section 7.
• One can describe the double coset K0

pδK
0
p similarly to the description made on pages

430-431 in [17], cf. Section 7 again.
As in Section 14 of [17], we also get an element γ ∈ G(Ap

f ), well-defined up to
conjugation, and an element γ0 ∈ G(Q), well-defined up to stable conjugation, which is
stably conjugate to γ and Nδ.

Lemma 9.1. We have

π∗RψFKp,m
∼= (π∗RψQ̄`)⊗FKp,0 .

Proof. In the following calculation, we use several times that π∗ and Rψ commute. First,

π∗RψFKp,m
∼= Rψπ∗π

∗FKp,0
∼= Rψ(π∗Q̄` ⊗FKp,0) ,

by construction of the sheaves and the projection formula.
Now we use that FKp,0 extends to a smooth sheaf on ShKp,0, because of the con-

struction of FKp,0 using the tower of Shimura varieties with varying K` ⊂ G(Q`), which

7Note that the number r is denoted j by Kottwitz.
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extend to the integral models considered. In particular, there is a canonical adjointness
morphism between

Rψ(π∗Q̄` ⊗FKp,0)
and

(Rψπ∗Q̄`)⊗FKp,0 .

In order to check that this is an isomorphism we reduce to torsion coefficients and then
localize in the étale topology so that (the torsion version of) FKp,0 becomes trivial.
Then it is clear. �

This gives
try(π∗RψFKp,m) = tr(γ0|ξ)try(π∗RψQ̄`) ,

cf. pages 433-434 in [17] for the computation of the trace on FKp,0 which gives tr(γ0|ξ).
Further, we have the following description of the completed local rings ÔShKp,0,x. As

before, Or is the unramified extension of O of degree r and Ŏ is the completion of the
maximal unramified extension of O.

Lemma 9.2. (i) There is a canonical isomorphism

ÔShKp,0,x
∼= RHy

⊗Or Ŏ ,

which maps the correspondence

Spf ÔShKp∩(gp)−1Kpgp,0,y

p1◦Frobr

xxqqqqqqqqqq
p2

&&MMMMMMMMMM

Spf ÔShKp,0,x Spf ÔShKp,0,x

to the Frobenius correspondence.
(ii) The isomorphism in (i) extends GLn(O)×O×D′-equivariantly to

π−1(Spf ÔShKp,0,x) ∼= Spf RHy ,m
⊗Or Ŏ .

The correspondence given by

π−1(Spf ÔShKp∩(gp)−1Kpgp,0,y
)

p̃1◦Frobr

vvlllllllllllll
p̃2

((RRRRRRRRRRRRR

π−1(Spf ÔShKp,0,x) π−1(Spf ÔShKp,0,x)

is mapped to the Frobenius correspondence under this identification.

Proof. This is an immediate consequence of the Serre-Tate theorem that deforming an
abelian variety is equivalent to deforming its p-divisible group. �

Recall that the local term try(π∗RψQ̄`) is the trace of the map

τ × h∨ × h′ : (π∗RψQ̄`)x = ((p1 ◦ F r
′
)∗π∗RψQ̄`)y −→ (p∗2π∗RψQ̄`)y = (π∗RψQ̄`)x .

But Lemma 9.2 and Theorem 3.1 of [3] imply that one can identify

(π∗RψQ̄`)x = H0(RψSpf R
Hy,m

Q̄`) ,

equivariantly for the GLn(O)×O×D′-action and compatible with the action of τ . Hence
we see that by definition of φτ,h,h′(δ0), we have

try(π∗RψQ̄`) = φτ,h,h′(δ0) .

Now all the further discussion of [17] applies and proves the following theorem.
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Theorem 9.3. With the notation of [17], we have

tr(τ × h∨ × h′ × eZ×p × f
p|[Hξ])

=
∑

(γ0;γ,δ)

c(γ0; γ, δ)Oγ(fp)TOδσ0(φτ,h,h′ × ep−1W (κr)×) tr(γ0|ξ) .

Note that Lemma 7.5 shows that the functions φτ,h,h′ × ep−1W (κr)× and f∨τ,h × h′ ×
ep−r′Z×p are associated.

Using this expression and going into the calculations of [16] that exploit the process
of pseudostabilization applicable to the Shimura varieties considered, we can rewrite the
last theorem in the following form.

Corollary 9.4. We have the following equality:

n tr(τ × h∨ × h′ × eZ×p × f
p|[Hξ]) = tr(f∨τ,h × h′ × ep−r′Z×p × f

p|[Hξ]) .

Proof. We just go through the most important steps in the calculation. Recall that
Kottwitz constructs in [16] a function f∞ on G(R), depending on ξ. Let

f = f∨τ,h × h′ × ep−r′Z×p × f
p × f∞

be the function on G(A). Then arguing as on pages 661-663 of [16], we see that the left
hand-side equals

nτ(G)
∑
γ0

SOγ0(f) ,

where τ(G) is the Tamagawa number of G, γ0 runs through the stable conjugacy classes
in G(Q) and SOγ0(f) is a stable orbital integral. Now the Arthur-Selberg trace formula
shows that this equals

n
∑
π

m(π) tr(f |π) ,

where π runs through automorphic representations for G with correct central character.
Using Lemma 4.2 of [16], this can be rewritten as∑

πf

tr(f∨τ,h × h′ × ep−r′Z×p × f
p|πf )

∑
π∞

m(πf ⊗ π∞)ep(π∞ ⊗ ξ) ,

using the notation ep to denote the Euler-Poincare characteristic as in [16]. Here we
have used that the N occuring in Lemma 4.2 of [16] equals n in our situation. Finally,
Matshushima’s formula reveals that this equals

tr(f∨τ,h × h′ × ep−r′Z×p × f
p|[Hξ]) .

�

10. Galois representations attached to automorphic forms

In this section, we will associate `-adic Galois representations to (most) regular al-
gebraic conjugate self-dual cuspidal automorphic representations of GLn/F, and prove
a local-global compatibility result for them. The construction is based on Clozel’s base
change from G to GLn, which we will use in the form given in Section VI of [10].

For any irreducible admissible representation πf of G(Af ), we define the isotypic
component

W ∗ξ (πf ) = HomG(Af )(πf , H
∗
ξ )

of H∗ξ . Taking the alternating sum gives an element [Wξ(πf )] in the Grothendieck group
of `-adic representations of Gal(F/F). Kottwitz proves in [16] that πf occurs either
only in even or only in odd degrees, so that in particular no cancellation can occur
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and ±[Wξ(πf )] is effective. Also recall the integer a(πf ) from [16], which is roughly the
multiplicity of πf : In fact, we have

dim [Wξ(πf )] = a(πf )n .

Corollary 10.1. Assume that πf is an irreducible admissible representation of G(Af )
with W ∗ξ (πf ) 6= 0. Let πp = πw ⊗ πwp ⊗ πp,0 corresponding to

G(Qp) = GLn(F )×D′× ×Q×p ,

assume that πp,0 is unramified and let χπp,0 be the character of WF ⊂WQp corresponding
to πp,0 by local class-field theory. Then for all τ ∈WF projecting to a positive power of
Frobenius and h ∈ C∞c (GLn(O)), we have

tr(f∨τ,h|πw) =
1

a(πf )
tr(τ |[Wξ(πf )]⊗ χπp,0) tr(h∨|πw) .

Proof. Take some function h′ ∈ C∞c (O×D′) such that tr(h′|πwp ) = 1, and take m ≥ 1 such
that both h∨ × h′ × eZ×p and f∨τ,h × h′ × eZ×p are bi-Km

p -invariant.
Further, take a compact open subgroup Kp ⊂ G(Ap

f ) such that πpf has Kp-invariants.
Because H∗(ShK ,FK) is finite-dimensional, there are only finitely many irreducible
admissible representations π′f with invariants under K = Km

p K
p and W ∗ξ (π′f ) 6= 0.

Now Corollary VI.2.3 of [10] implies that there exists a function fp ∈ C∞c (G(Ap
f ))

biinvariant under Kp with tr(fp|πpf ) = 1 and such that whenever π′f is an irreducible
admissible representation of G(Af ) with W ∗ξ (π′f ) 6= 0, with invariants under Km

p K
p,

and tr(fp|π′pf ) 6= 0, then π′f
∼= πf . Indeed, it is always possible to find fp such that the

conclusion π′pf
∼= πpf holds true, but Corollary VI.2.3 of [10] tells us that then already

π′f
∼= πf . Fix such an fp.
We apply Corollary 9.4 to these functions. Both sides of the equation reduce to the

contribution of W ∗ξ (πf )⊗ πf . Direct inspection reveals that the left-hand side is

n tr(τ |[Wξ(πf )]) tr(h∨|πw) ,

and the right-hand side gives

na(πf ) tr(f∨τ,h|πw)πp,0(p−r
′
) .

Rewriting gives the corollary. �

It is useful to be able to embed local components πw into a global representation πf .
This is achieved by the following theorem.

Theorem 10.2. Assume that π is an irreducible smooth representation of GLn(F ) that
is either essentially square-integrable or a generalized Speh representation. Then there
is an irreducible admissible representation πf of G(Af ) and an algebraic representation
ξ of G such that W ∗ξ (πf ) 6= 0, the component πp,0 is unramified and such that the
component πw of πf is an unramified twist of π.

Proof. This follows from Corollary VI.2.5 and Lemma VI.2.11 of [10]. �

Corollary 10.3. If π is an irreducible smooth representation of GLn(F ) that is either
essentially square-integrable or a generalized Speh representation, then there is a Q-
linear combination rec(π) of representations of WF with nonnegative coefficients such
that for all τ , h, we have

tr(fτ,h|π) = tr(τ |rec(π)) tr(h|π) .

Remark 10.4. As we can always write a p-adic field as Fw with all the assumptions on
F etc., this checks condition (ii) in Lemma 3.2.
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Proof. Apply Theorem 10.2 to π∨ and Corollary 10.1 to the resulting representations
πf , ξ. Then πw = π∨ ⊗ χ for some unramified character χ. The representation

rec(π) =
1

a(πf )
[Wξ(πf )]∨ ⊗ χ−1

πp,0 ⊗ χ
−1

satisfies the requirement. �

Furthermore, we have the following theorem from [10] constructing irreducible ad-
missible representations πf of G(Af ) with W ∗ξ (πf ) 6= 0 from cuspidal automorphic
representations of GLn/F.

Theorem 10.5. Let Π be a cuspidal automorphic representation of GLn/F such that
(i) Π∨ = Π ◦ c, where c : GLn(AF) −→ GLn(AF) is complex conjugation;
(ii) Π∞ is regular algebraic, i.e. it has the same infinitesimal character as an algebraic
representation of ResF/Q(GLn) over C;
(iii) Πx is square-integrable.
Then there exists an irreducible admissible representation πf of G(Af ), an algebraic
representation ξ of G such that W ∗ξ (πf ) 6= 0, and a character ψ of K×\A×K whose
infinite components are algebraic such that πw′ ∼= Πw′ and πp′,0 = ψu′ for all places w′,
u′ and p′ of F, resp. K, resp. Q, such that w′|u′|p′, p′ splits in K and w′ 6= x, xc.

Moreover, for any given prime p′ as above, one can arrange that πp′,0 is unramified.

Proof. All references refer to [10]. Use Theorem VI.1.1 to produce an automorphic
representation of D×. It continues to have properties analogous to (i) and (ii). Then
Lemma VI.2.10, Theorem VI.2.9 and the properties of the base-change map established
in Theorem VI.2.1 finish the proof. �

Combining this with Corollary 10.1, we get the following construction of Galois rep-
resentations. In its formulation, we assume that parts (a) and (b) of Theorem 1.2 are
true; we will only use this corollary after we have proven these assertions. We prefer to
state it now as it fits in with the discussion here.

Theorem 10.6. Let Π be a cuspidal automorphic representation of GLn/F such that
(i) Π∨ = Π ◦ c;
(ii) Π∞ is regular algebraic;
(iii) Πx is square-integrable.
Then there exists an integer a ≥ 1 and an `-adic representation R(Π) of Gal(F̄/F) of
dimension an such that for all finite places v of F whose residue characteristic is different
from `, we have

R(Π)|WFv = a · rec(Πv)
as elements of the Grothendieck group of representations of WFv .

Proof. Choose πf , ξ and ψ as in the theorem, and take a = a(πf ) as well as

R(Π) = [Wξ(πf )]∨ ⊗ χ−1
ψ ,

where χψ corresponds to ψ by global class-field theory. Because ψ is algebraic at all
infinite places, this makes sense.

The desired property is now immediate for all v 6= x, xc which are split over F0 and
for which πp′,0 is unramified, where p′ is the rational prime below v. By the Chebotarev
density theorem, this determines the virtual representation 1

aR(Π) uniquely. Now, since
for any given p′, one can choose πf , ξ and ψ so that πp′,0 is unramified, the condition
that πp′,0 be unramified can be dropped.

Now if v is arbitrary, take some real quadratic field R linearly disjoint from F such
that the rational prime below x splits in R, and the completions of R and K at the
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rational prime below v are isomorphic. Let F̃0 = F0R and F̃ = FR, and choose places
ṽ and x̃ above v and x in F̃; we can assume that ṽ 6= x̃, x̃c. Moreover, the assumptions
imply that ṽ is split over F̃0. Also F̃ṽ = Fv.

Taking the base-change Π̃ of Π to F̃, it continues to have the required properties,
hence we get a representation R(Π̃) and an integer ã ≥ 1. From Chebotarev density, it
follows that 1

ãR(Π̃) = 1
aR(Π)|Gal(F/F̃). Now applying the previous result at the place ṽ

gives the desired result for Π at v. �

Later we need a slight variant of Theorem 10.2 for GLn/F.

Theorem 10.7. Let π be an essentially square-integrable irreducible smooth represen-
tation of GLn(F ). Then there exists a cuspidal automorphic representation Π of GLn/F
such that
(i) Π∨ = Π ◦ c;
(ii) Π∞ is regular algebraic;
(iii) Πx is supercuspidal;
and such that the component Πw is an unramified twist of π.

Proof. This follows from Corollary VI.2.6 of [10]. �

11. Relation to the Lubin-Tate tower

In this section, we are back in the local situation. Let

β ∈ GLn(Or)diag($, 1, . . . , 1)GLn(Or)

be basic. Then the tower

(Spf Rm)m≥0 = (Spf Rβ,m ⊗Or Ŏ)m≥0

is called the Lubin-Tate tower. It does not depend on β, as the base-change of Hβ to κ̄
does not depend on β: it is the unique one-dimensional formal O-module H̃ of height n
over κ̄.

We describe compatible actions of

GLn(O)× (D× ×WF )0

on Spf Rm, where

(D× ×WF )0 = {(d, τ) ∈ D× ×WF | v(d) + v(τ) = 0} .

It is clear how GLn(O) acts. Now, for (d, τ) ∈ (D× × WF )0 with τ ∈ FrobrIF , one
gets quasi-isogenies d−1 : H̃ −→ H̃ of height r, F : H̃ −→ F ∗H̃ of height 1 and
τ : Frobr∗H̃ −→ H̃ of height 0. Hence the composition d−1×F−r× τ : H̃ −→ H̃ defines
a quasi-isogeny of degree 0, i.e. an automorphism. We get a corresponding action on
Spf Rm.

Let
Rψ = lim

−→
H0(RψSpf RmQ̄`)

be the global sections of the nearby cycle sheaves associated to the Lubin-Tate tower.
They carry an action of GLn(O) × (D× ×WF )0. It is known that this extends even
further, using Hecke operators, but we will not need this part of the action.

The following theorem is well-known.

Theorem 11.1. Each representation Riψ is an admissible smooth representation of
GLn(O), a smooth representation of O×D, and a continuous representation of IF . More-
over, Riψ vanishes outside the range 0 ≤ i ≤ n− 1.
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Proof. Everything except the smoothness of the O×D-action follows from Theorem 2.5.
This smoothness follows from a result of Berkovich, Corollary 4.5 of [3], cf. proof of [10],
Lemma II.2.8. �

Note that since β is basic, we can use the constructions of Section 4 to get an associated
norm d = Nβ ∈ D×, well-defined up to O×D-conjugation. Then (d−1, τ) ∈ (D× ×WF )0

if and only if τ ∈ FrobrIF . It is now an easy exercise to verify the following proposition.

Proposition 11.2. For all h ∈ C∞c (GLn(O)), the equality

φτ,h(β) = tr(τ × d−1 × h∨|[Rψ])

holds.

Now consider
˜[Rψ] = c-IndGLn(O)×D××WF

GLn(O)×(D××WF )0
[Rψ] .

In particular, for any irreducible representation ρ of D×, the space

[Rψ](ρ) = HomD×(ρ, ˜[Rψ]) = HomO×D(ρ|O×D , [Rψ])

carries an action of GLn(O) ×WF . Let π = JL(ρ) be the associated representation of
GLn(F ) via the Jacquet-Langlands correspondence, characterized by the equality

tr(g|π) = (−1)n−1 tr(d|ρ)

for all regular elliptic g ∈ GLn(F ) and d ∈ D× such that g and d have the same
characteristic polynomial.

Recall that we have already shown that there is a nonnegative Q-linear combination
of WF -representations rec(π) such that for all τ and h

tr(fτ,h|π) = tr(τ |rec(π)) tr(h|π) .

The following corollary translates this property into a statement about the cohomology
of the Lubin-Tate tower.

Corollary 11.3. Let ρ be an irreducible representation of D× such that π = JL(ρ)
is supercuspidal. Then, as a virtual representation of the group GLn(O) × WF , the
representation [Rψ](ρ∨) is equal to (−1)n−1π∨|GLn(O) ⊗ rec(π).

Remark 11.4. One can define a natural action of GLn(F ) ×WF on [Rψ](ρ∨), and the
proposition stays true when considering the action of GLn(F ) ×WF on both objects.
However, our methods do not prove this.

Proof. Let h ∈ C∞c (GLn(O)) and τ ∈ FrobrIF . Let Π be the base-change of π to
GLn(Fr). Note that if

β ∈ GLn(Or)diag($, 1, . . . , 1)GLn(Or)
lies in the support of the twisted character ΘΠ,σ of Π, then β is basic, i.e. β ∈ Br. We
compute, using Corollary 4.8,

tr(τ |rec(π)) tr(h|π) = tr(fτ,h|π) = tr((φτ,h, σ)|Π)

=
∫
Br

φτ,h(β)ΘΠ,σ(β)dβ

= (−1)n−1

∫
Br

tr(τ ×Nβ−1 × h∨|[Rψ])Θρ(Nβ)dβ

= (−1)n−1

∫
Dr

tr(τ × d−1 × h∨|[Rψ])Θρ(d)dd

= (−1)n−1 tr(τ × h∨|[Rψ](ρ)) .

This exactly proves the corollary. �
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Now we can check condition (iii) of Lemma 3.2, finishing the proof of parts (a) and
(b) of Theorem 1.2.

Corollary 11.5. For any supercuspidal representation π of GLn(F ), the virtual repre-
sentation rec(π) can be represented by a Z-linear combination of representations.

Proof. The theory of newvectors for GLn, [14], exhibits a representation of GLn(O)
that occurs with multiplicity 1 in π∨|GLn(O). By the last proposition, the corresponding
isotypic component of [Rψ](JL−1(π)∨) is a Z-linear combination of representations of
WF that represents (−1)n−1rec(π). �

12. Bijectivity of the correspondence

For an irreducible smooth representation π of GLn(F ), let σ(π) = rec(π)(1−n
2 ) be the

associated Weil group representation, normalized appropriately. In this section, we will
prove that π 7→ σ(π) gives a bijection between irreducible supercuspidal representations
of GLn(F ) and irreducible representations of WF of dimension n.

Theorem 12.1. The correspondence π 7→ σ(π) has the following functorial proper-
ties.
(i) If n = 1, then σ(π) is given by local class-field theory.
(ii) If π is an irreducible subquotient of the normalized parabolic induction of the irre-
ducible representation π1 ⊗ · · · ⊗ πt of GLn1(F )× · · · ×GLnt(F ), then

σ(π) = σ(π1)⊕ . . .⊕ σ(πt) .

(iii) If χ is a character of F×, then σ (π ⊗ χ ◦ det) = σ(π)⊗ σ(χ).
(iv) If F ′/F is a cyclic Galois extension of prime degree, if π is an irreducible supercus-
pidal representation of GLn(F ), and Π is the base-change lift to GLn(F ′), then

σ(Π) = σ(π)|WF ′ .

(v) If σ(π) is unramified, then π has an Iwahori-fixed vector (equivalently, the supercus-
pidal support of π consists of unramified characters).

Proof. Part (i) follows directly from the comparison with Lubin-Tate tower, and the
well-known description of its cohomology. Alternatively, one can deduce it from global
class-field theory and the local-global compatibility result for rec(π).

Part (ii) is part (b) of Theorem 1.2, which we have already proved.
Assertions (iii) and (iv) are Lemma VII.2.1 and Lemma VII.2.4 of [10], respectively.

Their proofs carry over without change, using our Theorem 10.6 instead of Theorem
VII.1.9 of [10].

Finally, part (v) is a corollary of our previous work. Using parts (i) and (ii), one
immediately reduces to the case that π is a supercuspidal representation of GLn(F ) for
n ≥ 2. In that case, we prove that σ(π)IF = 0.

For this purpose, introduce for any r ≥ 1 the function φr,h =
∫

FrobrIF
φτ,hdτ ; this

makes sense as the WFr -representations involved are continuous. In fact, one easily
checks that

φr,h(β) = trss(Frobr × h∨|[Rψβ]) ,
where we use the semisimple trace as in [24].

We claim that φr,h(β) is constant for all basic

β ∈ GLn(Or)diag($, 1, . . . , 1)GLn(Or) .
Let RIFRψβ be the derived invariants of Rψβ under IF . The cohomology groups of this
complex carry an admissible action of FrobrZ ×GLn(O). Then Lemma 7.5 of [25] says
that

(1− qr)trss(Frobr × h∨|[Rψβ]) = tr(Frobr × h∨|[RIFRψβ]) ,
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where q is the cardinality of κ. Therefore it suffices to show that the cohomology groups
of the complex RIFRψβ are independent of β. But this follows from the description of
these groups given in Corollary 5.6 of [24].8

Now if π is a supercuspidal representation of GLn(F ) with base-change lift Π to
GLn(Fr) and associated representation ρ of D× via the Jacquet-Langlands correspon-
dence, then as in the proof of Corollary 11.3,

tr(Frobr|σ(π)IF ) tr(h|π) =
∫

FrobrIF

tr(τ |σ(π)) tr(h|π)dτ =
∫

FrobrIF

tr(fτ,h|π)dτ

=
∫

FrobrIF

tr((φτ,h, σ)|Π)dτ = tr((φr,h, σ)|Π)

=
∫
Br

φr,h(β)ΘΠ,σ(β)dβ = const.
∫
Br

Θρ(Nβ)dβ

= const.
∫
Dr

Θρ(d)dd = 0 ,

because ρ has no invariants under O×D. �

We axiomatize the situation.

Definition 12.2. We say that a family of maps associating to any finite extension F/Qp

and any irreducible smooth representation π of GLn(F ) an n-dimensional representation
σ(π) of WF is a functorial extension of class-field theory if it is natural in the sense that
it commutes with isomorphisms F ∼= F ′ and has the properties (i) through (v) of the last
theorem.

Our results show that the map π 7−→ σ(π) is a functorial extension of class-field
theory.

Theorem 12.3. For any functorial extension of local class-field theory, the map from
irreducible supercuspidal representations of GLn(F ) to n-dimensional representations of
WF is injective with image consisting exactly of the irreducible n-dimensional represen-
tations of WF .

Proof. First, it is clear that if there exists a functorial extension of local class-field theory,
then any irreducible smooth representation of GLn(F ) has an Iwahori-fixed vector after
a finite series of cyclic base-changes. In particular, supercuspidal representations become
unramified after a finite series of cyclic base-changes, as they always stay (up to twist)
unitarily induced from supercuspidals.

Now we prove the theorem by induction on n, the case n = 1 being obvious.
First, we check that if π is supercuspidal, then σ(π) is irreducible. Choose a series of

cyclic extensions of prime degree F = F0 ⊂ F1 ⊂ . . . ⊂ Fm such that the base-change of
π from F to Fm is not supercuspidal, but the base-change to Fm−1 is still supercuspidal.
Replacing F by Fm−1, we can assume that there is a cyclic extension of prime degree
F1/F such that the base-change Π of π from F to F1 is not supercuspidal.

Let τ ∈ Gal(F1/F ) ∼= Z/gZ be a generator. The results of Arthur-Clozel, [1], Lemma
6.10, imply that Π = Π1 � Πτ � . . . � Πτg−1

1 for some supercuspidal representation Π1

with Π1 6∼= Πτ
1 .

By induction on n, we know that σ(Π1) is irreducible. Further σ(π)|WF1
= σ(Π1) ⊕

. . . ⊕ σ(Π1)τ
g−1

, with σ(Π1) 6∼= σ(Π1)τ , by induction, because Π1 6∼= Πτ
1 . This implies

that σ(π) is irreducible.

8At least in the case F = Qp, but the description generalizes without problems. Note that one may
use the algebraizations constructed in Theorem 2.4 instead of the Shimura varieties considered in [24].
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Now we check that the map is bijective. Choose any irreducible n-dimensional rep-
resentation σ of WF . We choose a series of cyclic extensions of prime degree F = F0 ⊂
F1 ⊂ . . . ⊂ Fm such that the restriction of σ to WFm is not irreducible, but the restriction
to WFm−1 is still irreducible.

In this situation, σ|WFm
= Σ ⊕ . . . ⊕ Στg−1

, where τ generates Gal(Fm/Fm−1) ∼=
Z/gZ, and Σ is an irreducible representation of WFm with Σ 6∼= Στ . By induction,
there is a unique supercuspidal representation Π of GLn

g
(Fm) with σ(Π) = Σ. Then

Πm = Π � . . . � Πτg−1
lifts to a unique representation Πm−1 of GLn(Fm−1), and this

representation satisfies

σ(Πm−1)|WFm
= Σ⊕ . . .⊕ Στg−1

,

whence σ(Πm−1) = σ|WFm−1
: Because Σ 6∼= Στ , there is a unique representation of

WFm−1 with restriction to WFm being equal to Σ ⊕ . . . ⊕ Στg−1
, namely Ind

WFm−1

WFm
Σ.

This discussion shows that there is a supercuspidal representation Πm−1 of GLn(Fm−1)
with σ(Πm−1) = σ|WFm−1

.
We claim that this representation Πm−1 is unique. Indeed, the base-change Πm of

Πm−1 to GLn(Fm) cannot be supercuspidal, as σ(Πm) = σ(Πm−1)|WFm
is not irreducible.

Hence Πm = Π�. . .�Πτg−1
for some supercuspidal representation Π of GLn

g
(Fm). Then

σ(Π)⊕ . . .⊕ σ(Π)τ
g−1

= Σ⊕ . . .⊕ Στg−1
,

which implies that after replacing Π by Πτ i for some i, we have σ(Π) = Σ. By induction
on n, this determines Π uniquely, hence Πm and finally Πm−1.

Now we use descending induction on i = m − 1,m − 2, . . . , 0. Changing notation
if necessary, we can assume that i = 1. Hence we have an irreducible n-dimensional
representation σ of WF whose restriction σ1 to WF1 is still irreducible, and we know
that there exists a unique supercuspidal representation π1 of GLn(F1) with σ(π1) = σ1.
Again, F1/F is a cyclic extension of prime degree g, and we let τ be a generator of
Gal(F1/F ).

Note that στ1 ∼= σ1; hence πτ1 ∼= π1 by the uniqueness assertion already established.
The results of Arthur-Clozel, [1], Theorem 6.2, then say that π1 lifts to a supercuspidal
representation π′ of GLn(F ). We know that

σ(π′)|WF1
= σ(π1) = σ|WF1

.

This implies that σ(π′) = σ ⊗ χ for some character χ of Gal(F1/F ), which we also
consider as a character of F× via local class-field theory. In particular, for π = π′⊗χ−1,
we have σ(π) = σ, which shows the existence of π.

Now assume that π, π′ are two representations with σ(π) = σ(π′) = σ. Then their
respective base-changes π1, π′1 to F1 satisfy σ(π1) = σ(π′1) = σ1. As σ1 is irreducible,
both π1 and π′1 are supercuspidal, so that by induction π1

∼= π′1. Now the uniqueness
of lifts, [1], Proposition 6.7, implies that π ∼= π′ ⊗ χ for some character χ. But then
σ ∼= σ ⊗ χ, which implies χ = 1, as σ1 is irreducible. �

13. Non-galois automorphic induction

In this section, we repeat Harris’ arguments constructing certain cuspidal automorphic
representations associated to some Weil group representations which are induced from
a character. The crucial steps are presented in a slightly more general context.

We need the following definitions.

Definition 13.1. Let L be a number field.
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(i) A cuspidal automorphic representation Π of GLn/L is called potentially abelian if
there exists an n-dimensional representation Σ of WL such that for all finite places v of
L, the representations Πv and Σ|WLv satisfy

Σ|WLv = σ(Πv) ,

and for all infinite places, they are associated via the archimedean Local Langlands Cor-
respondence.
(ii) An n-dimensional representation Σ of WL is called algebraic if for all embeddings
L ↪→ C, the corresponding restriction to WC ∼= C× is a direct sum of characters of the
form z 7−→ zpzq for some integers p, q.

The name potentially abelian is motivated by the fact that representations of the Weil
group become a direct sum of characters after restriction to a subgroup of finite index.

We need to reformulate Theorem 10.6 with a slightly different normalization. Call
Π∞ regular L-algebraic if Π∞(n−1

2 ) is regular algebraic. We note that this notion of
regularity is better behaved with respect to functorialities: For example, one checks
easily that it is compatible with automorphic induction, cf. the general discussion
of Buzzard-Gee, [5]. We still use the notation F to denote a CM field which is the
compositum of a totally real field F0 of even degree over Q and an imaginary-quadratic
field. Recall that we have fixed a place x of F which is split over F0.

Corollary 13.2. Let Π be a cuspidal automorphic representation of GLn/F such that
(i) Π∨ = Π ◦ c;
(ii) Π∞ is regular L-algebraic;
(iii) Πx is square-integrable.
Then there exists an integer a ≥ 1 and an `-adic representation R(Π) of Gal(F̄/F) of
dimension an such that for all primes v of F whose residue characteristic is different
from `, we have

R(Π)|WFv = a · σ(Πv)
as elements of the Grothendieck group of representations of WFv .

Proof. It suffices to find a character φ of F×\A×F such that φ−1 = φ ◦ c and φ∞(n−1
2 )

is algebraic. We refer to the easy verification of its existence in [10], proof of Corollary
VII.2.8. �

Lemma 13.3. If Π is potentially abelian, associated to Σ, and Π∞ is regular L-algebraic,
then Σ is algebraic.

Proof. This is a direct consequence of the archimedean Local Langlands Correspondence.
�

Lemma 13.4. Let Σ be an algebraic representation of WL and let ` be a prime number.
Fix an isomorphism ι : Q̄`

∼= C. Then there is an `-adic representation σ` of Gal(L̄/L)
such that for all finite places v of L such that v does not divide `, the restrictions Σ|WLv
and σ`|WLv are identified via ι.

Proof. In the case of characters, this can be done by a simple direct construction, made
explicit e.g. by Fargues in [8], page 4. The general case can be reduced to this special
case by passing to a finite extension and descending back to L. Another possibility is
to use Langlands’ work, [18], on automorphic forms on tori, as explained in Section 4 of
[5]: Note that the representation Σ of WL necessarily factors through the L-group of a
torus. �

Now we are ready to state the theorem that will enable us to construct the non-Galois
automorphic induction.
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Theorem 13.5. Let Π be a cuspidal automorphic representation of GLn/F such that
Π∨ ∼= Π ◦ c, Π∞ is regular L-algebraic, and Πx is supercuspidal.
(i) If there exists an n-dimensional representation Σ of WF such that Π and Σ are asso-
ciated at all infinite places and for all almost all finite places, then for all finite places
v, we have

Σ|WFv = σ(Πv) ,

i.e., Π is potentially abelian.
(ii) Let F′/F be a cyclic extension of prime degree and assume that there is only one place
x′ of F′ above x. Further, assume that denoting by Π′ the base-change of Π to F′, that
Π′x′ is supercuspidal, and that Π′ is potentially abelian.

Then Π is potentially abelian.

Proof. For (i), there are systems of `-adic representations σ1
` , σ

2
` associated to both

Σ and Π, by Lemma 13.4 and Corollary 13.2, respectively. These agree at almost all
places by assumption, hence by Chebotarev σ1

` = σ2
` . Now one uses that Σ and σ1

` are
associated for all finite places v which do not divide `, and the corresponding result for
Π.

For (ii), let Π′ be associated to Σ′. Note that Σ′ extends to a representation Σ of WF.
After twisting, we may assume that Πx and Σ|WFx are associated: Our results on Local
Langlands show that there is a unique such choice of Σ.

Now Σ gives rise to a system of `-adic representations σ1
` , and Π gives rise to a second

system of (virtual) `-adic representations σ2
` . They agree after restriction to Gal(F̄/F′),

giving the irreducible representation σ′`. Assume that ` is not divisible by x. Then
there is a unique Q-linear combination σ` of `-adic representations of Gal(F̄/F) with
nonnegative coefficients such that the restriction to Gal(F̄/F′) is σ′`, and such that σ`
agrees locally at x with σ1

` : The virtual representation σ` is a sum of twists of σ1
` with

characters of Gal(F′/F), and the coefficients of this sum can be read off by looking at
the restriction to x, showing that only the coefficient of σ1

` is nonzero.
Hence we see that σ1

` = σ2
` for all ` which are not divisible by x. As above, this gives

the result. �

Finally, we can prove the theorem on non-Galois automorphic induction.

Theorem 13.6. Let F3
0 ⊃ F2

0 ⊃ F1
0 be extensions of totally real fields of even degree over

Q, such that F3
0/F1

0 is a solvable Galois extension. Write n = [F2
0 : F1

0]. Further, let K
be an imaginary-quadratic field. We let Fi = Fi0K for i = 1, 2, 3. Further, let x be place
of F1, which is split over F1

0 and inert in F3.
Assume that χ is a character of F2×\A×F2 such that

(i)χ−1 = χ ◦ c,
(ii) For any infinite place τ of F2, the component χτ is of the form zpτ z−pτ , where pτ ∈ Z
and pτ 6= pτ ′ whenever τ 6= τ ′,
(iii) The stabilizer of χx ◦NormF3/F2 in Gal(F3/F1) is equal to Gal(F3/F2).

Then there exists a potentially abelian cuspidal automorphic representation IF1

F2χ of

GLn/F1 associated to Σ = IndWF1

WF2
χ.

Proof. First note that Π = IF1

F2χ automatically has the properties Π∨ ∼= Π ◦ c, Π∞ is
regular L-algebraic, and Πx is supercuspidal: These follow from strong multiplicity 1
and the compatibility at all places.

Now we proceed by induction on [F3
0 : F1

0]. Choose a subextension F3
0 ⊃ F4

0 ⊃ F1
0 such

that F4
0/F1

0 is cyclic Galois of prime degree. Write F4 = F4
0K.
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Assume first that F4
0 ⊂ F2

0. Then we know that there exists IF4

F2χ. If we put IF1

F2χ =
IndF1

F4IF4

F2χ, where Ind denotes automorphic induction, [1], then we know that Π = IF1

F2χ

and IndWF1

WF2
χ are associated at all infinite places and almost all finite places, by the

usual statements about automorphic induction. Looking at the place x, we see that Πx

is supercuspidal, and hence Π is cuspidal automorphic. Using Theorem 13.5, part (i),
we are done in this case.

Now we are left with the case F4
0 ∩ F2

0 = F1
0. By induction, we have a cuspidal

automorphic representation Π′ = IF4

F2F4(χ ◦NormF2F4/F2), associated to

Σ′ = IndWF4

WF2F4
(χ ◦NormF2F4/F2) = Σ|WF4 .

Note that our assumptions imply that Σ′x is irreducible. By strong multiplicity 1, Π′ is
invariant under Gal(F4/F1), hence descends to a cuspidal automorphic representation Π
of GLn/F1, unique up to twist. There is a unique choice of Π such that Πx is associated
to Σx, by our results on Local Langlands. Note that Π∞ is regular L-algebraic and Πx

is supercuspidal, as Σx is irreducible. Also Π∨ ∼= (Π ◦ c) ⊗ χ for some character χ of
Gal(F4/F1). As in [10], pp.241-242, one checks that there is some Artin character ψ
such that Π̃ = Π ⊗ ψ satisfies Π̃∨ ∼= Π̃ ◦ c. Then Theorem 13.5, part (ii), shows that
Π̃ is potentially abelian. Therefore Π is potentially abelian, associated to a Weil group
representation which is a twist of Σ by a character of Gal(F4/F1). Looking at the place
x, we see that it is equal to Σ. �

14. Compatibility of L- and ε-factors

We return to the local setting. Let AF be the free abelian group with generators
given by the supercuspidal representations of GLn(F ), any n ≥ 1, and let GF be the
Grothendieck group (with Z-coefficients) of WF . Recall that one can define L- and ε-
factors for elements of these groups, by extending linearly from the supercuspidal, resp.
irreducible, representations.9 In the same way, one defines the central character ωπ for
π ∈ AF , the determinant detσ for σ ∈ GF , the dual π∨ resp. σ∨, and the twist π ⊗ χ
resp. σ ⊗ χ for a character χ of F×, using local class-field theory in the latter case.

Fix a nontrivial additive character ψ : F −→ C×.

Theorem 14.1. The correspondence AF −→ GF given by π 7−→ σ(π) has the following
properties.

(i) In degree 1, it is given by local class-field theory.

(ii) It is compatible with twisting, i.e. σ(π ⊗ χ) = σ(π)⊗ χ.

(iii) It is compatible with duals, i.e. σ(π∨) = σ(π)∨.

(iv) It is compatible with central characters, i.e. detσ(π) = ωπ.

(v) It is compatible with L- and ε-factors of pairs, i.e.

L(π1 × π2, s) = L(σ(π1)⊗ σ(π2), s)

ε(π1 × π2, s, ψ) = ε(σ(π1)⊗ σ(π2), s, ψ) .

Proof. We have already seen parts (i) and (ii). By Brauer induction and linearity, it
suffices to check all properties only for representations π with σ(π) = IndWF

WF ′
χ, where χ

is a character of WF ′ . Fix two such representations π1 and π2.

9A word of warning may be in order: One can send an irreducible smooth representation π to its
supercuspidal support, considered as an element of AF , and hence define L(π, s), but this does not agree
with the usual definition in general.
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Lemma 14.2. There exists a global field F with a place w such that F ∼= Fw and two
potentially abelian cuspidal automorphic representations Π1, Π2 of GLni/F such that
(Πi)w is an unramified twist of πi for i = 1, 2, and for which the associated Weil group
representations Σi are irreducible.

Proof. This follows from Theorem 13.6 after embedding everything into the global pic-
ture (Note that the Weil group representations that occur are irreducible, as they are
irreducible at x.). That this can be done is checked e.g. in [10], proof of Lemma VII.2.10,
and [13], Section 3. �

Note that this implies statement (iv), since det Σ1 = ωΠ1 , e.g. by strong multiplicity
1. To prove statement (v), one uses the functional equation for L-functions of pairs,
together with the trick of twisting with highly ramified characters, cf. Corollary 2.4 of
[13]. Finally, part (iii) follows from part (v) by looking at poles of L-functions. �
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