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1. Introduction

In algebraic geometry, one of the most important dichotomies is the one between
characteristic 0 and positive characteristic p. Our intuition is formed from the
study of complex manifolds, which are manifestly of characteristic 0, but in num-
ber theory, the most important questions are in positive or mixed characteristic.
Algebraic geometry gives a framework to transport intuition from characteristic
0 to positive characteristics. However, there are also several new phenomena in
characteristic p, such as the presence of the Frobenius map, which acts naturally
on all spaces of characteristic p. Using the Frobenius, one can formulate the Weil
conjectures, and more generally the theory of weights. This makes many results
accessible over fields such as Fp((t)), which are wide open over fields of arithmetic
interest such as Qp. The theory of perfectoid spaces was initially designed as a
means of transporting information available over Fp((t)) to Qp, but has since found
a number of independent applications. The purpose of this report is to give an
overview of the developments in the field since perfectoid spaces were introduced
in early 2011.

2. Qp vs. Fp((t))

To study the transition between characteristic 0 and characteristic p, it is useful
to look at the corresponding local fields. In characteristic 0, we have the field of
p-adic numbers Qp:

Qp = {
∑

n�−∞
anp

n | an ∈ {0, 1, . . . , p− 1}} ,

∗This work was done while the author was a Clay Research Fellow.
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which can be regarded as ’power series in the variable p’. On the other hand, one
has the actual field of power series in the variable t:

Fp((t)) = {
∑

n�−∞
ant

n | an ∈ {0, 1, . . . , p− 1} = Fp} .

Although these two fields have formally ’the same’ elements, the basic addition
and multiplication operations are different: In Qp, one computes with carry, but
in Fp((t)) without carry. Also, t 7→ tp defines the Frobenius map of Fp((t)), but
there is no map Qp → Qp that sends p to pp.

There are several strategies to pass from one field to the other. Let us recall
the most important ones.

Letting p→∞. In model theory, one can formalize the idea that Qp becomes
isomorphic to Fp((t)) as p → ∞. This has the following implication: A first-
order statement is true for almost all fields Qp (for varying p) if and only if it is
true for almost all fields Fp((t)). The first application of this was the Ax-Kochen
theorem, [4], that a homogeneous polynomial of degree d in more than d2 variables
admits a solution over Qp, except for a finite list of primes p (which depends
only on d). In fact, the same result is true over Fp((t)) for all p. However, there
are counterexamples to the general statement over Qp, such as a quartic form in
18 variables over Q2 without a solution. More strikingly, this transfer principle is
used in the proof of the fundamental lemma: Ngô, [52], has proved the fundamental
lemma over Fp((t)) (for sufficiently large p), which could then be transferred to
Qp, if p is sufficiently large.1

However, this strategy cannot be used to get information about any fixed prime
number p. One of the ways in which one wants to compare two fields is to compare
the categories of finite extension fields. This is encapsulated by the absolute Galois
group GK = Gal(K/K) of a field K, where K is some separable closure of K. If
K is a local field such as Qp or Fp((t)), it comes with a decreasing ramification
filtration

GK ⊃ G(0)
K = IK ⊃ G(1)

K = PK ⊃ G(2)
K ⊃ . . . ;

here, PK ⊂ IK ⊂ GK are the wild inertia, resp. inertia subgroups. The ’tame

quotient’ Gtame
K = GK/G

(1)
K = GK/PK admits an explicit description, and PK is

a (not very explicit) pro-p-group.
Restricting ramification. From the explicit description of Gtame

K in the case
of local fields, one knows that Gtame

Qp

∼= Gtame
Fp((t)) canonically. In other words, there

is a canonical procedure to associate to a tame extension of Qp a tame extension
of Fp((t)). This result can be strengthened if one passes to extension fields. More
precisely, for any n ≥ 1,

GQp(p1/n)/G
(n)

Qp(p1/n)
∼= GFp((t))(t1/n)/G

(n)

Fp((t))(t1/n)
.

This is a result of Deligne, [21], relying on ideas of Krasner, [49], which formalizes
the idea that Qp(p1/n) and Fp((t))(t1/n) are ’close local fields’ (which get ’closer’ as

1One does not need model theory to do this, as Waldspurger, [66], had earlier shown this
transfer principle for large p directly.
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n→∞). Note that, again, this result plays a crucial role in the Langlands program,
namely it is used (through Henniart’s numerical local Langlands correspondence,
[37]) in the original proof of the local Langlands correspondence for GLn over Qp
by Harris-Taylor, [34].2

There is yet another approach, which gives a comparison of the whole Galois
group.

Making things perfect(oid). Let K = Qp(p1/p∞) =
⋃
mQp(p1/pm), which

we will momentarily confuse with its completion, which has the same absolute
Galois group GK . Then a theorem of Fontaine-Wintenberger, [32], states that the
absolute Galois groups of GK and GFp((t)) are isomorphic. This can be considered
as a limit case of Deligne’s theorem as one lets n = pm, m → ∞. Indeed, note
that as Fp((t))(t1/p

m

) is a purely inseparable extension of Fp((t)), GFp((t))(t1/pm )
∼=

GFp((t)). In fact, if one lets K[ be the completion of

Fp((t))(t1/p
∞

) =
⋃
m

Fp((t))(t1/p
m

) ,

then the theorem of Fontaine-Wintenberger states equivalently that GK ∼= GK[ .
This theorem is one of the foundational cornerstones of p-adic Hodge theory. More-
over, it is true in a wide variety of cases: Any ’deeply ramified’ extension of Qp
can be used in place of Qp(p1/p∞).

Note that the last approach gives the cleanest result: It works for any fixed p,
and produces an isomorphism of the whole Galois groups. However, it comes at
the expense of passing to infinite extensions. The theory of perfectoid spaces is a
generalization of this procedure to higher-dimensional objects.

3. The (generalized) Fontaine-Wintenberger isomor-
phism

To start, let us explain the general statement of the Fontaine-Wintenberger iso-
morphism.3

Definition 3.1. A perfectoid field is a complete topological field K, whose topol-
ogy comes from a nonarchimedean norm | · | : K → R≥0 with dense image, such
that |p| < 1 and, letting OK = {x ∈ K | |x| ≤ 1} be the ring of integers, the
Frobenius map Φ : OK/p→ OK/p is surjective.

Examples include the completions of Qp(p1/p∞), Qp(µp∞), Qp and Fp((t))(t1/p
∞

),

Fp((t)). Note that perfectoid fields can be of characteristic 0 or p. In the first case,

2The alternative proof given in [57] avoids this argument, and gives a proof of the local
Langlands correspondence for GLn over Qp which is purely in characteristic 0.

3It should be noted that the original result of Fontaine-Wintenberger is quite different, at least
in emphasis. The theorem as stated was only proved recently, and was noticed independently (at
least) by Kedlaya-Liu and the author.
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they contain Qp naturally, as |p| < 1. Note that Qp is not a perfectoid field (al-
though Zp/p = Fp has a surjective Frobenius map), because | · | : Qp → R≥0 has
discrete image 0 ∪ pZ ⊂ R≥0. In characteristic p, perfectoid fields are the same
thing as perfect complete nonarchimedean fields.

By a construction of Fontaine, one can take any perfectoid field K, and produce
a perfectoid field K[ of characteristic p, called the tilt of K. First, one defines
OK[ = lim←−Φ

OK/p, and then defines K[ as the fraction field of OK[ . It comes with

a natural norm, with respect to which OK[ ⊂ K[ is the ring of integers. In fact,
one has the following alternative description of K[.

Lemma 3.2. There is a natural identification of multiplicative monoids

OK[ = lim←−
x7→xp

OK = {(x(0), x(1), . . .) | x(i) ∈ OK , (x(i+1))p = x(i)} ,K[ = lim←−
x 7→xp

K .

In particular, x 7→ x] := x(0) defines a multiplicative map K[ → K, and the norm
|x|K[ = |x]|K on K[.

Proof. Let us only check the first identification. For this, one has to verify that
the projection map

lim←−
x 7→xp

OK → lim←−
x 7→xp

OK/p = OK[

is bijective. Indeed, any sequence (x̄0, x̄1, . . .) ∈ lim←−x 7→xp
OK/p lifts uniquely to

(x(0), x(1), . . .), where

x(i) = lim
n→∞

˜̄xi+n
pn

,

where ˜̄xj ∈ OK denotes an arbitrary lift of x̄j ∈ OK/p. The existence of this
p-adic limit follows from the basic fact that if a ∼= b mod p, then ap

n ∼= bp
n

mod pn+1.

As a basic example of the tilting equivalence, the perfectoid field K which is
the completion of Qp(p1/p∞) tilts to the perfect nonarchimedean field K[ which is
the completion of Fp((t))(t1/p

∞
). Under the identification

K[ = lim←−
x7→xp

K ,

the element t corresponds to the sequence (p, p1/p, p1/p2 , . . .). In particular, t] = p,
so in a vague sense, the map x 7→ x] is the map ’replace t by p’. However,
calculating it in general involves a p-adic limit, so e.g.

(1 + t)] = lim
n→∞

(1 + p1/pn)p
n

.

This already shows that any general theory of perfectoid objects has to be of an
analytic nature.

Theorem 3.3 ([47, Theorem 3.5.6],[58, Theorem 3.7]). Let K be a perfectoid field.
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(i) For any finite extension L/K, L is a perfectoid field.

(ii) The association L 7→ L[ defines an equivalence between the category of finite
extensions of K and the category of finite extensions of K[.

It is formal to deduce from part (ii) that the absolute Galois groups GK ∼= GK[

are isomorphic.

4. Untilting: Work of Fargues-Fontaine

The following question arises naturally: For a given perfectoid field L of character-
istic p, in how many ways can it be untilted to a perfectoid field K of characteristic
0, K[ ∼= L? The answer to this question leads naturally to the Fargues-Fontaine
curve, [30], [31]. In particular, they prove the following theorem.

Theorem 4.1. Fix a perfectoid field L of characteristic p. There is a regular
noetherian scheme XL of Krull dimension 1 (locally the spectrum of a princi-
pal ideal domain) over Qp whose closed points x are in bijection with equiva-
lence classes of pairs (K, ι), where K is a perfectoid field of characteristic 0 and
ι : L ↪→ K[ is an injection which makes K[ a finite extension of L; here, the pairs
(K, ι) and (K, ι◦Φn) are regarded as equivalent for any n ∈ Z. The degree [K[ : L]
is called the degree of x. Moreover, there are (infinitely many) points of degree 1.

In particular, one can always untilt a perfectoid field L to characteristic 0, and
the ways of doing so are parametrized by a 1-dimensional object. Note that if,
e.g., L is algebraically closed, then all points are of degree 1 and have algebraically
closed residue field. However, the curve lives only over Qp, and thus is not of finite
type over Qp. Concretely,

XL = Proj
⊕
n≥0

B+(L)ϕ=pn ,

where B+(L) is one of Fontaine’s period rings, a certain completion of W (OL)[ 1
p ].

A point of XL gives rise to an ideal I ⊂ W (OL)[ 1
p ] (well-defined up to the action

of Frobenius), and the corresponding perfectoid field of characteristic 0 is given by
K = W (OL)[ 1

p ]/I. This gives an explicit description of untilting in terms of Witt
vectors.

The work of Fargues-Fontaine has further connections with the theory of per-
fectoid spaces that we cannot explain in detail here, for lack of space, cf. [29]. For
the rest of this article, we will usually fix a perfectoid field K in characteristic 0,
which amounts to fixing a point ∞ ∈ XK[ of degree 1.

5. Perfectoid algebras

Definition 5.1. A perfectoid K-algebra is a Banach K-algebra R for which the
subring R◦ ⊂ R of powerbounded elements is a bounded subring, and such that



6 Peter Scholze

the Frobenius map Φ : R◦/p→ R◦/p is surjective.

The simplest example is R = K〈T 1/p∞〉 for which R◦ = OK〈T 1/p∞〉 is the
completion of OK [T 1/p∞ ] =

⋃
mOK [T 1/pm ]. In other words, perfectoid K-algebras

are algebras with ’lots of (approximate) p-power roots’. Note that perfectoid K-
algebras are always quite big, e.g. nonnoetherian; also, no ’smallness’ hypothesis
is imposed. The mixture of completeness and nonnoetherianity might cause big
trouble (as, e.g., completions of nonnoetherian algebras are not in general flat)!
However, it turns out that the ’bigness’ condition of surjective Frobenius forces
good behaviour.

One can apply Fontaine’s construction to any perfectoid K-algebra. This de-
fines the tilting functor: Let R be a perfectoid K-algebra. Set

R[◦ = lim←−
Φ

R◦/p = lim←−
x 7→xp

R◦

which is a OK[-algebra, and

R[ = R[◦ ⊗O
K[
K[ = lim←−

x 7→xp

R .

Proposition 5.2 ([58, Theorem 5.2]). Fix a perfectoid field K with tilt K[.

(i) For any perfectoid K-algebra R, the tilt R[ is a perfectoid K[-algebra with
subring of powerbounded elements R[◦ ⊂ R[.

(ii) The functor R 7→ R[ defines an equivalence between the category of perfectoid
K-algebras and the category of perfectoid K[-algebras.

Note also that for any perfectoid K-algebra R, one has a continuous multiplica-
tive map R[ → R, f 7→ f ].

6. Perfectoid Spaces

As remarked earlier, any theory of perfectoid objects has to be of an analytic
nature. This reflects itself algebraically in the fact that perfectoid algebras are
Banach algebras. On the level of spaces, it means that we have to work in some
category of nonarchimedean analytic spaces. The classical such category is Tate’s
category of rigid-analytic spaces, [64], but strong finiteness assumptions are built
into the foundations of this theory. There are (at least) two more recent approaches
to nonarchimedean analytic spaces: Berkovich’s analytic spaces, [8], and Huber’s
adic spaces, [40]. We choose to work with Huber’s adic spaces, because we feel
that it is the most natural framework; e.g., it interacts well with the theory of
formal models. Moreover, one glues spaces along open subsets, which is at least
technically convenient.4

Following Huber, we make the following definition in the perfectoid world:

4Somewhat more importantly, most examples of perfectoid spaces arise as ’inverse limits’ of
classical finite type spaces. The general topos-theoretic notion of inverse limit developed in SGA4
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Definition 6.1. A perfectoid affinoid K-algebra is a pair (R,R+), where R is a
perfectoid K-algebra, and R+ ⊂ R◦ is an open and integrally closed subring.

The role of the integral subalgebra R+ is certainly secondary, and one may
safely assume that R+ = R◦ on first reading.

Proposition 6.2. The association (R,R+) 7→ (R[, R[+) with

R[ = lim←−
x 7→xp

R , R[+ = lim←−
x 7→xp

R+

defines an equivalence between perfectoid affinoid K-algebras and perfectoid affinoid
K[-algebras.

To a pair (R,R+), Huber associates a space of continuous valuations.

Definition 6.3. A valuation on R is a map | · | : R→ Γ∪{0}, where Γ is a totally
ordered abelian group (e.g., Γ = R>0, but higher-rank valuations are allowed),
such that |0| = 0, |1| = 1, |xy| = |x||y| and |x + y| ≤ max(|x|, |y|). The valuation
| · | is continuous if for all γ ∈ Γ, the subset {x ∈ R | |x| < γ} ⊂ R is open.

There is an obvious notion of equivalence of valuations, and one defines Spa(R,R+)
as the set of equivalence classes of continuous valuations |·| onR such that |R+| ≤ 1.
For a point x ∈ Spa(R,R+), we denote by f 7→ |f(x)| the associated valuation.
One may find back R+ as

R+ = {f ∈ R | |f(x)| ≤ 1 ∀x ∈ Spa(R,R+)} .

One equips Spa(R,R+) with the topology generated by rational subsets: For
f1, . . . , fn, g ∈ R which generate R as an ideal, the subset

U(f1, . . . , fn; g) = {x ∈ Spa(R,R+) | |fi(x)| ≤ |g(x)|} ⊂ Spa(R,R+)

is a rational subset.

Proposition 6.4 ([38, Theorem 3.5]). The space Spa(R,R+) is a spectral space.
In particular, it is quasicompact, quasiseparated, and the rational subsets form a
basis for the topology consisting of quasicompact open subsets, stable under finite
intersections.

Again, one finds an interesting relation under tilting.5

Theorem 6.5 ([58, Theorem 6.3 (i)]). For any x ∈ Spa(R,R+), one may define
a point x[ ∈ Spa(R[, R[+) by setting |f(x[)| := |f ](x)| for f ∈ R[. This defines a
homeomorphism Spa(R,R+) ∼= Spa(R[, R[+) preserving rational subsets.

requires coherent topoi, and adic spaces have an underlying coherent topological space, as well as
a coherent étale topos. This makes the machinery of SGA4 available, which gets crucially used in
many applications. Berkovich spaces have compact Hausdorff underlying spaces, which are not
coherent.

5A closely related result was proved earlier by Kedlaya, [46].
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It is a priori not clear that f 7→ |f ](x)| actually defines a valuation, as the
strong triangle inequality might fail because of nonadditivity of f 7→ f ]. Moreover,
injectivity of Spa(R,R+) → Spa(R[, R[+) is not clear as one only remembers the
valuation on the image of R[ → R, which is far from dense. However, there is the
following crucial approximation lemma.6

Lemma 6.6 ([58, Corollary 6.7 (i)]). Assume K is of characteristic 0. Let f ∈ R
be any element, and fix any ε > 0. Then there exists g ∈ R[ such that for all
x ∈ Spa(R,R+),

|(f − g])(x)| ≤ |p|1−ε max(|f(x)|, ε) .

This means in particular that |f(x)| = |g](x)| except if both are very small.
However, f − g] may be quite large if f is large.

One wants to equip the topological space X = Spa(R,R+) with a structure
sheaf OX . For this, let U = U(f1, . . . , fn; g) ⊂ X be a rational subset. Equip
R[g−1] with the topology for which the image of R+[ f1g , . . . ,

fn
g ]→ R[g−1] is open

and bounded. Let R〈 f1g , . . . ,
fn
g 〉 be the completion of R[g−1] with respect to this

topology; it comes equipped with a natural subring

R〈f1

g
, . . . ,

fn
g
〉+ ⊂ R〈f1

g
, . . . ,

fn
g
〉 .

Proposition 6.7 ([39, Proposition 1.3]). The pair

(OX(U),O+
X(U)) =

(
R〈f1

g
, . . . ,

fn
g
〉, R〈f1

g
, . . . ,

fn
g
〉+
)

depends only on the rational subset U ⊂ X (and not on the choice of f1, . . . , fn, g ∈
R). The map

Spa(OX(U),O+
X(U))→ Spa(R,R+)

is a homeomorphism onto U , preserving rational subsets. Moreover, (OX(U),O+
X(U))

is initial with respect to this property.

The propositions of Huber so far have not used the assumption that R is per-
fectoid. This assumption is needed, however, to prove that OX is actually a sheaf.
Huber proved this when R is strongly noetherian, so e.g. if R is topologically of
finite type over K. Perfectoid K-algebras are virtually never (strongly) noetherian,
so this result does not help.

Theorem 6.8 ([58, Theorem 6.3]). Let (R,R+) be any perfectoid affinoid K-
algebra with tilt (R[, R[+). Let X = Spa(R,R+), X[ = Spa(R[, R[+). For any
rational subset U ⊂ X, let U [ ⊂ X[ be its image under the homeomorphism
X ∼= X[.

(i) The presheaves OX , OX[ are sheaves.

6A slightly stronger version (replacing 1− ε by p/(p− 1)− ε) appears in [47].
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(ii) For any rational subset U ⊂ X, the pair (OX(U),O+
X(U)) is a perfectoid

affinoid K-algebra, which tilts to (OX[(U [),O+
X[(U

[)).

(iii) For any i > 0, the cohomology group Hi(X,OX) = 0 vanishes. In fact,
Hi(X,O+

X) is almost zero, i.e. killed by the maximal ideal of OK .

The resulting spaces Spa(R,R+) (equipped with the two sheaves of topological
rings OX , O+

X) are called affinoid perfectoid spaces (over K). Objects obtained by
gluing such spaces are called perfectoid spaces over K.

Corollary 6.9. The categories of perfectoid spaces over K and over K[ are equiv-
alent. Here, if X tilts to X[, then the underlying topological spaces of X and X[

are canonically homeomorphic. Moreover, a subset U ⊂ X is affinoid perfectoid if
and only if U [ ⊂ X[ is affinoid perfectoid. For any such U , (OX(U),O+

X(U)) is a
perfectoid affinoid K-algebra with tilt (OX[(U [),O+

X[(U
[)).

For any perfectoid space X, one may define its étale site Xét.

Theorem 6.10 ([58, Theorem 7.12, Proposition 7.13]). Under tilting, Xét
∼= X[

ét.
Moreover, if X = Spa(R,R+) is affinoid perfectoid, then H0(Xét,O+

X) = R+

while Hi(Xét,O+
X) is almost zero for i > 0. In particular, H0(Xét,OX) = R while

Hi(Xét,OX) = 0 for i > 0.

The assertion Xét
∼= X[

ét is a far-reaching generalization of the Fontaine-
Wintenberger isomorphism. Indeed, if we put X = Spa(K,OK), which tilts to
X[ = Spa(K[,OK[), the assertion is precisely the Fontaine-Wintenberger isomor-
phism. The assertion about Hi(Xét,O+

X) is a strengthening of Faltings’s almost
purity theorem, which is essentially the version of it for the finite étale site. Let
us state it in our setup.

Theorem 6.11 ([58, Theorem 7.9 (iii)]). Let R be a perfectoid K-algebra, and
let S/R be finite étale. Then S is a perfectoid K-algebra, and S◦ is a uniformly
almost finite étale R◦-algebra.

The following is an easy corollary, which gives a higher-dimensional variant of
the Fontaine-Wintenberger isomorphism (for the finite étale case).

Corollary 6.12. Let R be a perfectoid K-algebra with tilt R[. Then tilting defines
an equivalence between the categories of finite étale R-algebras and finite étale R[-
algebras.

The almost purity theorem is interesting only in characteristic 0; in charac-
teristic p, it is easy. Originally, Faltings proved such statements in situations of
good reduction, [23], and then more generally in certain situations of semistable
(or more generally toric) reduction, [25]. We note that in Faltings’ situation, R
was the completion of an inductive limit of regular algebras. Then, by Zariski-
Nagata purity, the ramification locus of S◦ over R◦ is purely of codimension 1.
We know by assumption that there is no ramification in characteristic 0, as S/R
is finite étale. At the generic points of R◦/p, it follows from (the proof of) the
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Fontaine-Wintenberger result that there is almost no ramification. If there were
none, one would get that S◦/R◦ is finite étale. Faltings made the same argument
work in the almost world. It came as a surprise that no regularity assumption is
needed for the theorem.

Faltings’ almost purity theorem was the technical cornerstone for most of the
deep work in p-adic Hodge theory, as it provided a higher-dimensional variant
of the Fontaine-Wintenberger isomorphism. The given generalization made many
new applications possible, of which some are explained below.

7. Example: Projective spaces

Let us start with an explicit example of the tilting equivalence. Let K be a per-
fectoid field with tilt K[. Let us consider the case of projective space. In all
applications of perfectoid spaces, the hard part is to find a way to pass from ob-
jects of finite type over K to perfectoid objects. This is not possible in a canonical
way, and one has to make a choice.

On Pn, one has the map ϕ : Pn → Pn sending (x0 : . . . : xn) to (xp0 : . . . : xpn).
Consider PnK as an adic space over K. Then there is a perfectoid space (PnK)perf

over K such that
(PnK)perf ∼ lim←−

ϕ

PnK .

Here, ∼ lim←−, read ’being similar to the inverse limit’, is a technical notion that
accounts for the non-existence of inverse limits in the category of adic spaces, cf.
[62, Definition 2.4.1]. Explicitly, (PnK)perf is glued out of n+ 1 copies of

Spa(K〈T 1/p∞

1 , . . . , T 1/p∞

n 〉,OK〈T 1/p∞

1 , . . . , T 1/p∞

n 〉)

in the usual way. One can make the same construction over K[ to get (Pn
K[)

perf .

Theorem 7.1 ([58, Theorem 8.5]). The perfectoid space (PnK)perf tilts to (Pn
K[)

perf .
In particular, there are homeomorphisms of topological spaces underlying the adic
spaces

|PnK[ | ∼= |(PnK[)
perf | ∼= |(PnK)perf | ∼= lim←−

ϕ

|PnK | .

Similarly, there are isomorphisms of étale sites

(PnK[)ét
∼= (PnK[)

perf
ét
∼= (PnK)perf

ét
∼= lim←−

ϕ

(PnK)ét .

These constructions give a ’projection map’

π : PnK[ → PnK

defined on topological spaces and étale topoi, and given by (x0 : . . . : xn) 7→ (x]0 :
. . . : x]n) in coordinates.
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There are many variants to this theorem. All one needs is a ’dynamical system’
(X,ϕ) over K such that (with respect to a suitable integral model of X) ϕ is a lift
of Frobenius. For example, one might take X = Pn with

ϕ : (x0 : . . . : xn) 7→ (xp0 + pP0(x0, . . . , xn) : . . . : xpn + pPn(x0, . . . , xn))

for arbitrary homogeneous polynomial P0, . . . , Pn ∈ Zp[x0, . . . , xn] of degree p. In
that case, the tilt will still be (Pn

K[)
perf . One might also take a canonical lift of an

ordinary abelian variety, with its canonical lift of Frobenius. In that case, the tilt
will be the perfection of the ordinary abelian variety in characteristic p. However,
nothing of this sort works of curves of genus ≥ 2. Currently, there are very few
explicit examples of tilting for varieties besides the cases of toric varieties and
(semi-)abelian varieties. An interesting case might be the one of flag varieties.

8. Weight-monodromy conjecture

One application of the theory of perfectoid spaces is to a class of cases of the
weight-monodromy conjecture. Let us briefly recall the statement, cf. [18].

Let X over Qp (or a finite extension thereof) be a proper smooth variety. Fix a
prime ` 6= p. On the étale cohomology group V = Hi(XQp

,Q`), the absolute Galois

group GQp
acts. Fix a Frobenius element Frob ∈ GQp

. From the Weil conjectures,
[19], the Rapoport-Zink spectral sequence, [54], and de Jong’s alterations, [42], the
following is known about the structure of V :

(i) There is a direct sum decomposition V =
⊕2i

j=0 Vj , where all eigenvalues of
Frob on Vj are Weil numbers of weight j.

(ii) There is a nilpotent operator N : V → V mapping Vj → Vj−2, coming from
the action of the pro-`-inertia.

Conjecture 8.1 ([18]). For any j = 0, . . . , i, the map N j : Vi+j → Vi−j is an
isomorphism.

This is somewhat reminiscent of the Lefschetz decomposition, and is sometimes
said to be ’Mirror dual’ to it. There is a similar result for projective smooth families
of complex manifolds over a punctured complex disc, which is known to be true
by work of Schmid, [56], and Steenbrink, [63].

Deligne proved the analogue for X over Fp((t)) in [20].7 Our result deduces the
conjecture over Qp in many cases by reduction to equal characteristic, via tilting.

Theorem 8.2 ([58]). Let X be a geometrically connected proper smooth variety
over a finite extension of Qp which is a set-theoretic complete intersection in a
projective smooth toric variety. Then the weight-monodromy conjecture holds true
for X.

7Actually, he assumed that X is already defined over a curve, but this assumption can be
removed.
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Note that this result is new even for a smooth hypersurface in projective space.
Let us note that strictly speaking, the author is not aware of any (geometrically
connected projective smooth) X which does provably not satisfy this assumption.
However, we can also not prove it in any reasonable generality.

9. Close local fields: Work of Hattori

Recall that the theory of perfectoid spaces developed as a generalization of the
Fontaine-Wintenberger result which worked with infinite extensions of Qp. Hattori
shows that one can, however, use this theory to prove generalizations of Deligne’s
results on close local fields. Let us state here one of his results.

For a complete discrete valuation field K with valuation v (normalized with
image Z∪{∞}) and residue characteristic p, the absolute ramification index eK is
defined as eK = v(p). In particular, eK =∞ if K is of characteristic p.

Theorem 9.1 ([35, Theorem 1.2 (ii)]). Let K1 and K2 be two complete discrete
valuation fields of residue characteristic p, such that the residue fields k1

∼= k2 are
isomorphic. Let j ≤ min(eK1

, eK2
). Then there is an isomorphism

GK1/G
(j)
K1

∼= GK2/G
(j)
K2

.

The main novelty is that the residue fields ki are not assumed to be perfect.
Thus, Hattori has to use the Abbes-Saito ramification filtration for complete dis-
crete valuation fields with imperfect residue fields, [1]. This is defined in terms of
geometrically connected components of certain rigid-analytic varieties. Hattori’s
approach is to use perfectoid spaces to compare these rigid-analytic varieties in
different characteristics. For this, one has to check that connected components do
not change when passing to the perfectoid world, i.e. extracting a lot of p-power
roots; this uses the bound on the ramification degree and an explicit computa-
tion. Then the result follows from the homeomorphism X ∼= X[ of underlying
topological spaces.

In particular, this shows that the theory of perfectoid spaces gives new infor-
mation on the other approaches to changing the characteristic. We note that in
the representation theory of local groups, there are Hecke algebra isomorphisms
for not-too-ramified types of close local fields, mirroring the Galois story on the
automorphic side, cf. [43]. It would be interesting to see if perfectoid spaces can
shed new light on these Hecke algebra isomorphisms as well.

10. Rigid Motives: Work of Vezzani

Another way in which perfectoid spaces have been used to study phenomena of
changing the characteristic is in relation to Ayoub’s category of rigid motives, cf.
[5]. Rigid motives are defined by formally repeating some constructions from A1-
homotopy theory, working with the category of smooth rigid-analytic varieties, and
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replacing A1 by the closed unit ball. For any nonarchimedean field K and any ring
Λ, one gets the resulting category of rigid motives RigMot(K,Λ) with coefficients
in Λ.

The following theorem is due to Vezzani:

Theorem 10.1 ([65]). Let K be a perfectoid field with tilt K[. For any Q-algebra
Λ, the categories RigMot(K,Λ) ∼= RigMot(K[,Λ) are canonically equivalent.

This can be regarded as a version of the Fontaine-Wintenberger isomorphism for
’rigid motivic Galois groups’. Vezzani’s strategy is to compare both categories to
categories of ’perfectoid motives’ which one gets from (suitable) perfectoid spaces.
It is rather formal that these perfectoid motives are equivalent over K and K[,
and the task becomes to relate these to classical finite-type objects.

11. p-adic Hodge theory

The subject of p-adic Hodge theory can be regarded as a parallel to Deligne’s
formulation of complex Hodge theory as the interrelationship between the various
cohomology theories associated with compact Kähler manifolds. Let us recall the
most important results in the complex setting. Fix a compact Kähler manifold
X. One has the singular cohomology Hi(X,Z), the de Rham cohomology Hi

dR(X)
defined as hypercohomology of the holomorphic de Rham complex

Ω•X = OX → Ω1
X → . . .

and the Hodge cohomology groups Hi(X,ΩjX).

Theorem 11.1 (Poincaré lemma). The inclusion C→ Ω•X is a quasi-isomorphism
of sheaves of complexes. In particular,

Hi(X,Z)⊗ C = Hi(X,C) ∼= Hi
dR(X) .

Theorem 11.2 (Hodge). The Hodge-to-de Rham spectral sequence

Eij1 = Hj(X,ΩiX)⇒ Hi+j
dR (X)

degenerates at E1. In particular, Hi
dR(X) admits a decreasing de Rham filtration

Filj Hi
dR(X) with associated graded pieces Hj(X,Ωi−jX ).

Theorem 11.3 (Hodge). There is a canonical Hodge decomposition

Hi(X,Z)⊗ C =

i⊕
j=0

Hj(X,Ωi−jX ) .

Here, Hj(X,Ωi−jX ) is identified with the intersection

Filj Hi
dR(X) ∩ Fili−j Hi

dR(X) ,

using transversality of Fil• and the complex conjugate filtration Fil•.
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Now let C be a complete and algebraically closed extension of Qp. For ex-
ample, C = Cp, the completion of Qp. Note that C is perfectoid. Let X be a
proper smooth rigid-analytic variety over C. (In particular, X is of finite type,
and certainly not perfectoid.) This should be regarded as the analogue of a com-
pact complex manifold, which is not necessarily Kähler. Prior to the author’s work
on the subject, all work concentrated on the case of algebraic X, but it is shown
in [59] that this restriction is not necessary.

Again, one has de Rham and Hodge cohomology groups Hi
dR(X), Hi(X,ΩjX),

defined in the same way. What replaces singular cohomology is étale cohomol-
ogy Hi

ét(X,Zp). The following result generalizes a fact well-known for algebraic
varieties.

Theorem 11.4 ([59, Theorem 1.1], [60, Theorem 3.17]). Let X be a proper rigid-
analytic variety over C. Then Hi

ét(X,Zp) is a finitely generated Zp-module, which
vanishes for i > 2 dimX.

Properness is crucial here. In fact, already for a closed unit disc, the Fp-
cohomology is infinite-dimensional, due to the presence of Artin-Schreier covers.
This is in stark contrast with the `-adic case (` 6= p), where strong finiteness
statements are known by work of Berkovich and Huber, [9], [40].

Before explaining the proof of the theorem, let us recall another result from
[59].

Theorem 11.5 ([59, Theorem 1.2]). Let U be a connected affinoid rigid-analytic
variety over C. Then U is a K(π, 1) for p-torsion coefficients. In other words, for
every p-torsion local system L on U , the natural map

Hi(Xét,L)→ Hi(π1(X, x̄),Lx̄)

is a bijection, where x̄ ∈ X(C) is a base point, and π1(X, x̄) is the profinite étale
fundamental group.

There is Artin’s theorem on good neighborhoods which states that a smooth
algebraic variety in characteristic 0 is locally a K(π, 1). It is interesting to note
that no smallness or smoothness assumption is necessary for this result in the p-
adic world. Let us briefly sketch its proof as this gives a good impression on how
perfectoid spaces are used in applications to p-adic Hodge theory. Let Ũ → U be
’the universal cover of U ’, which is the inverse limit of all finite étale covers. It is
not hard to see that Ũ is an affinoid perfectoid space. Essentially, the existence
of enough p-th roots is assured as taking p-th roots is finite étale in characteristic
0. By formal nonsense, it is enough to prove that Hi(Ũét,Fp) = 0 for i > 0; we

already know that H1(Ũét,Fp) = 0 as this parametrizes finite étale Fp-torsors, of

which there are no more. Thus, we need to prove that Hi(Ũét,Fp) = 0 for i > 1.

Lemma 11.6. Let Y be an affinoid perfectoid space. Then Hi(Yét,Fp) = 0 for
i > 1.
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Proof. By tilting, we may assume that Y is of characteristic p. Then we have the
Artin-Schreier sequence

0→ Fp → OY → OY → 0 ,

and the result follows from vanishing of coherent cohomology: Hi(Y,OY ) = 0 for
i > 0.

Thus, the general idea is to cover X locally by pro-étale maps from perfectoid
spaces, and then use qualitative properties of perfectoid spaces, which are verified
in characteristic p. For this purpose, one introduces the pro-étale site Xproét, in
which X is locally perfectoid in a suitable sense.8

By resolution of singularities for rigid-analytic varieties, the proof of the finite-
ness theorem reduces to the proper smooth case; moreover, it is enough to handle
the case of Fp-coefficients. In that case, the argument is involved and makes heavy
use of the full machinery of perfectoid spaces, cf. [59]. Roughly, it proceeds in two
steps. First, one shows that Hi

ét(X,O
+
X/p) is almost finitely generated. This makes

use of the Cartan-Serre technique of shrinking covers, and the almost vanishing
of Hi(Yét,O+

Y ) on affinoid perfectoid spaces Y . As stated above, this vanishing
is a strengthening of Faltings’s almost purity theorem. One applies it by locally
covering X by perfectoid spaces. Then one uses a variant of the Artin-Schreier
sequence

0→ Fp → O+
X/p→ O

+
X/p→ 0

to deduce finiteness of Fp-cohomology. In fact, one gets the following basic com-
parison result at the same time.

Theorem 11.7 ([59, Theorem 1.3], [60, Theorem 3.17]). Let X be a proper rigid-
analytic variety over C. Then the natural map

Hi(Xét,Fp)⊗OC/p→ Hi(Xét,O+
X/p)

is an almost isomorphism, i.e. both the kernel and the cokernel are killed by the
maximal ideal of OC .

This is a variant on a result of Faltings, [25, Theorem §3.8]. It forms the
basic result which allows one to pass from étale cohomology to coherent coho-
mology (including here de Rham and Hodge cohomology). Note that the result
implies the following remarkable behaviour of M = RΓ(Xét,O+

X). After inverting
p, M [p−1] = RΓ(Xét,OX) = RΓ(X,OX) is usual coherent cohomology. However,
after (derived) modding out p,

M/p = RΓ(Xét,O+
X/p)

∼=a RΓ(Xét,Fp)⊗OC/p

is almost isomorphic to étale cohomology. In particular, M [p−1] lives only in
degrees 0 through dimX, while M itself has torsion going up until degree 2 dimX.

8The idea of the pro-étale site has turned out to be quite powerful for foundational questions,
even in the case of schemes. For new foundations for `-adic cohomology of schemes, see [10].
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It also shows the full strength of the result that Hi(Yét,O+
Y ) is almost zero for

i > 0, if Y is an affinoid perfectoid space: Certainly, nothing similar is true for a
finite type space. It means that all the torsion in the cohomology of O+

X gets killed
after passing to perfectoid covers. This will be at the heart of the applications to
torsion in the cohomology of locally symmetric spaces, cf. Section 17.

Let us now mention the analogues of the theorems in the complex world, stated
earlier. For definiteness, we assume here that X = X0 ×k C is the base-change of
some X0 defined over a completed discretely valued extension k of Qp with perfect
residue field. Moreover, we assume that X0 is proper and smooth.

Theorem 11.8 ([59, Corollary 1.8]). The Gk-representation Hi
ét(X,Qp) is de

Rham in the sense of Fontaine, and one has the comparison between étale and
de Rham cohomology

Hi
ét(X,Qp)⊗Qp BdR

∼= Hi
dR(X0)⊗k BdR .

In particular, Hi
dR(X0) is the filtered k-vector space associated with the de Rham

Gk-representation Hi
ét(X,Qp).

This is a known phenomenon in p-adic Hodge theory: To get the comparison
theorems, one has to extend scalars to Fontaine’s big period rings. Here, we use
BdR, which is a complete discrete valuation field with residue field C.

Theorem 11.9 ([59, Corollary 1.8]). The Hodge-to-de Rham spectral sequence

Eij1 = Hj(X,ΩiX)⇒ Hi+j
dR (X)

degenerates at E1. In particular, Hi
dR(X) admits a decreasing de Rham filtration

Filj Hi
dR(X) with associated graded pieces Hj(X,Ωi−jX ).

Note that no Kähler assumption is necessary here. It is interesting to note
that some non-Kähler complex manifolds have p-adic analogues, such as the Hopf
surface: Divide A2 \ {(0, 0)} by the diagonal action of multiplication by q for some
q ∈ k with |q| < 1 to get a proper smooth rigid-analytic variety X. This has
Hodge numbers h01 = dimH0(X,Ω1

X) = 0 while h10 = dimH1(X,OX) = 1, so
Hodge symmetry fails. However, Hodge-to-de Rham degeneration holds true for
the Hopf surface. Fortunately, Iwasawa manifolds for which the Hodge-to-de Rham
degeneration fails, do not have p-adic analogues.

The next result does not need a Kähler assumption either:

Theorem 11.10 ([59, Corollary 1.8], [60, Theorem 3.20]). There is a Hodge-Tate
decomposition

Hi
ét(X,Qp)⊗Qp C

∼=
i⊕

j=0

Hi−j(X,ΩjX)(−j) .

Here, (−j) denotes a Tate twist. More generally, if X is only defined over C, there
is a Hodge-Tate spectral sequence

Eij2 = Hi(X,ΩjX)(−j)⇒ Hi+j
ét (X,Qp)⊗Qp

C .
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It degenerates at E2 if X is algebraic or defined over k (and probably does in
general), giving a Hodge-Tate filtration on Hi

ét(X,Qp)⊗QpC with associated graded

pieces Hi−j(X,ΩjX)(−j).

Note the interesting differences between the Hodge-Tate spectral sequence and
the Hodge-de Rham spectral sequence: It starts at E2, and i and j are inter-
changed. Moreover, a Tate twist appears.

12. Relative ϕ-modules: Work of Kedlaya-Liu

At around the same time that the author wrote [58], Kedlaya-Liu, [47], [48], worked
out closely related results9 with the goal of constructing Qp-local systems on period
domains, as were conjectured by Rapoport-Zink, [55]. Let us briefly recall the
conjecture of Rapoport-Zink, in the case of the group GLn.

Fix a perfect field k of characteristic p, and let V be a k-isocrystal, i.e. a
W (k)[p−1]-vector space V of finite dimension n equipped with a σ-linear isomor-
phism φ : V → V . Moreover, fix a ’filtration type’, i.e. for each integer i ∈ Z
a multiplicity ni ≥ 0 such that n =

∑
ni. The space of decreasing filtrations

Fil• V ⊂ V for which gri V has dimension ni forms naturally an algebraic variety
F over W (k)[p−1]; we consider F as an adic space over W (k)[p−1].

If x ∈ F(K) is a point defined over a finite extension K of W (k)[p−1], then, by
a theorem of Colmez-Fontaine, [17], the triple (V, φ,Fil•) comes from a crystalline
representation L(x) of GK if and only if it is weakly admissible. Weak admissibility
is an analogue of a semistability condition, comparing Hodge and Newton slopes.
There is a maximal open subspace Fwa ⊂ F whose classical points are the weakly
admissible points, cf. [55].

Conjecture 12.1. For any smooth subspace X ⊂ F such that the universal fil-
tration restricted to X satisfies Griffiths transversality, there exists a natural open
subset Xa ⊂ Xwa := X ∩ Fwa with the same classical points, and a Qp-local sys-
tem L(X) on Xa, which gives the GK-representation L(x) when passing to the
fibre over any x ∈ Xa(K).

The original conjecture of Rapoport-Zink was more optimistic in that it conjec-
tured the existence of L(X) for X = F , and not only on subspaces where Griffiths
transversality is satisfied. However, this does not fit with the p-adic Hodge theory
formalism. Note that if the filtration is of ’minuscule type’, meaning that ni 6= 0
for at most two consecutive i, then Griffiths transversality is satisfied on all of F .
This assumption is satisfied in all cases investigated in [55], which are related to
p-divisible groups.

Kedlaya announced a proof of this conjecture in [45]. Very roughly, the strategy
of Kedlaya-Liu is to construct the local system locally in the pro-étale site and then
glue. This reduces the problem to the perfectoid case. Moreover, now one has to
construct a Qp-local system on the perfectoid space, or equivalently its tilt. But

9In particular, they proved Corollary 6.12 independently.
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in characteristic p, Qp-local systems can be constructed from ϕ-modules by Artin-
Schreier-Witt theory. Thus, first they build a ϕ-module over a relative Robba ring.
Then they need to show that the locus where this ϕ-module is pure of slope 0 is
open, and that locally on this locus, an integral structure exists. These theorems
are proved in [47]; they generalize previous results of Kedlaya on slope filtrations
and the existence of integral structures in the absolute setting, [44].

13. Universal covers of p-divisible groups and abelian
varieties

The following definition of a universal cover arose repeatedly in recent years, cf.
e.g. [27], [30]. We identify a formal scheme S with the functor it represents on
(discrete) rings, so e.g.

(Spf lim←−A/I
n)(R) = lim−→Hom(A/In, R) .

By a commutative group G over S, we mean an fqpc sheaf of commutative groups
on the category of discrete rings living over S. In other words, for any discrete ring
R with an R-valued point S(R), one has a commutative group G(R), satisfying
fpqc descent. We are particularly interested in the cases where G is an abelian
variety or a p-divisible group.

Definition 13.1. Let S be a formal scheme over Spf Zp, and let G/S be a com-

mutative group. The universal cover G̃ of G is defined as G̃ = lim←−×pG.

Let us record several examples.

(i) If G = Gm is the multiplicative group over Zp, then G̃ = Spf Zp〈T±1/p∞〉.

(ii) If G = Spf R[[T1, . . . , Td]] is a formal p-divisible group over a ring R, then

G̃ ∼= Spf R[[T
1/p∞

1 , . . . , T
1/p∞

d ]]. Indeed, if R is of characteristic p, then this
follows from the fact that p = FV , and, since G is formal, a power of F
is divisible by p, so that lim←−pG = lim←−F G

(pn). In general, it follows from

rigidity, cf. below. In particular, if R = OK is the ring of integers in a
perfectoid field K, then the generic fibre G̃η of G̃ is canonically a perfectoid
space over K.

(iii) If G = Ga is the additive group, then G̃ = 0. Indeed, if R is a discrete ring
over Spf Zp, then p is nilpotent in R. This implies that G̃(R) = lim←−×pR is

Mittag-Leffler zero.

For any formal scheme S over Spf Zp, we may consider the categories of uni-
versal covers of abelian varieties, resp. universal covers of p-divisible groups, over
S, as full subcategories of the category of commutative groups over S.
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Proposition 13.2. Let S′ ⊂ S be a closed immersion of formal schemes defined
by a topologically nilpotent ideal. Then the categories of universal covers of abelian
varieties (resp. p-divisible groups) over S and S′ are equivalent.

Proof. Using that abelian varieties and p-divisible groups deform, one gets essential
surjectivity. To prove full faithfulnes, one reduces formally to the case of a nilpotent
immersion of schemes S′ ⊂ S. In that case, one knows that the categories of abelian
varieties (resp. p-divisible groups) up to p-power isogeny are equivalent, cf. e.g.
[41]. As passage to universal covers turns p-power isogenies into isomorphisms, the
result follows.

Thus, the universal cover may be considered as a crystal on the infinitesimal
site. In particular, let us fix an abelian variety or a p-divisible group G0 over a
perfect field k of characteristic p, of height h. It has a universal deformation space
S ∼= Spf W (k)[[T1, . . . , Tk]] (cf. [41]), and a universal deformation G/S. However,
the universal cover G̃ is constant, equal to the evaluation of the crystal G̃0 on the
thickening S → Spec k.

Note that inside G̃ one has the Tate module TpG = ker(G̃→ G) = lim←−×pG[pn].

If one fixes a C-valued point of the generic fibre of S, where C is an algebraically
closed complete extension of W (k)[p−1], then Λ = (TpG)(OC) ∼= Zhp ⊂ G̃(OC) is

a Zp-lattice. Informally, one gets back G = G̃/TpG by quotienting G̃ by this Zp-
lattice. Here, G̃ is independent of the chosen point, but the Zp-lattice varies. This
is reminiscent of the complex uniformization of abelian varieties: Their universal
cover is constant, and different abelian varieties correspond to different Z-lattices
in the universal cover. Riemann’s theorem gives a condition on when the quotient
exists as an algebraic variety in terms of the existence of a polarization.

The following theorem is proved in joint work with Weinstein.10

Theorem 13.3 ([62, Theorem D]). Fix a p-divisible group G0 over a perfect field
k of height h and dimension d, as well as a complete and algebraically closed
extension C of W (k)[p−1]. Consider the category of lifts (G, ρ) of G0 to OC up
to quasi-isogeny: Here, G/OC is a p-divisible group, and ρ : G0 ×k OC/p →
G ×OC

OC/p is a quasi-isogeny. Then the category of lifts (G, ρ) is equivalent to
the category of Zp-lattices Λ ∼= Zhp ⊂ G̃0(OC) for which there exists a (necessarily

unique) h − d-dimensional subspace W ⊂ M(G0)(OC)[p−1] ∼= Ch such that the
image of Λ under the quasi-logarithm map

qlog : G̃0(OC)→M(G0)(OC)[p−1]

lies in W , and

0→ Λ[p−1]→ G̃0(OC)→ Ch/W → 0

is exact.

10One may deduce a similar result for abelian varieties by using Serre-Tate theory if one
incorporates a polarization to guarantee algebraization.
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To understand the last condition, consider the universal vector extension EG0

of G0, which is a crystal on the crystalline site of k. Then M(G0) = LieEG0 is
the covariant Dieudonné module of G0. Now one has the logarithm map

logEG0
: EG0(OC)→ LieEG0(OC)[p−1] = M(G0)(OC)[p−1] .

On the other hand, G̃0 = ẼG0, as the universal cover of vector groups vanishes.
Thus, one gets the quasi-logarithm map

qlog : G̃0(OC) = ẼG0(OC)→ EG0(OC)→M(G0)(OC)[p−1] .

After fixing a lift G and composing with the Hodge filtration M(G0)(OC)[p−1]→
(LieG)[p−1] corresponding to G, one gets the logarithm map G̃0(OC) = G̃(OC)→
G(OC)→ LieG[p−1]. Thus, the quasi-logarithm map is a ’universal logarithm for
all possible lifts of G0’. The condition comes from the fact that the image of Λ lies
in the kernel of the Hodge filtration M(G0)(OC)[p−1] → (LieG)[p−1], which is of
dimension h− d. Moreover, the sequence

0→ Λ[p−1]→ G̃(OC)→ (LieG)[p−1]→ 0

is exact.
This gives one analogue of Riemann’s theorem on the classification of complex

abelian varieties. The following theorem, again proved in joint work with We-
instein, [62], and closely related to the previous theorem, gives a different such
analogue. For this, we use that any p-divisible group G over OC has a Hodge-Tate
filtration

0→ (LieG)⊗OC
C(1)→ TpG⊗Zp

C → (LieG∗)∗ ⊗OC
C → 0 ,

which is an analogue of the Hodge-Tate filtration defined above for proper smooth
varieties over C, cf. Theorem 11.10. This Hodge-Tate filtration for p-divisible
groups was known previously, and is due to Faltings, [24], cf. also Fargues, [28].

Theorem 13.4 ([62, Theorem B]). The category of p-divisible groups over OC is
equivalent to the category of pairs (Λ,W ) where Λ is a finite free Zp-module, and
W ⊂ Λ⊗Zp

C is a C-subvectorspace.

The functor is given by G 7→ (TpG,LieG⊗OC
C(1)). This is analogous to the

classification of complex abelian varieties by their first singular homology, together
with the Hodge filtration.

14. Lubin-Tate spaces: Work of Weinstein

Weinstein has observed that the Lubin-Tate tower at infinite level carries a natural
structure as a perfectoid space. For this, fix an integer n ≥ 1 and a p-divisible
group G0 of dimension 1 and height n. The Lubin-Tate tower at infinite level



Perfectoid Spaces and their Applications 21

MG0,∞ parametrizes triples (G, ρ, α) where (G, ρ) is a deformation of G0 up to
quasi-isogeny as before, and α : Znp → TpG is an infinite level structure.

One may define a p-divisible group
∧
G0 of G0 of dimension 1 and height 1 by

taking the highest exterior power of the Dieudonné module M(G0), and passing
back to p-divisible groups. This uses crucially that G0 is of dimension 1. One may
construct an alternating map

det : G̃0 ⊗ . . .⊗ G̃0 →
∧̃
G0 .

This follows from the work of Hedayatzadeh, [36], or from a result in Dieudonné
theory in the joint work with Weinstein, [62]. Fix a perfectoid field K; then this
gives a similar map on the generic fibre, base-changed to K:

det : G̃0,K ⊗ . . .⊗ G̃0,K →
∧̃
G0

K
.

Inside
∧̃
G0K , one has the rational Tate module Vp(

∧
G0) ⊂

∧̃
G0K and an

exact sequence

0→ Vp(
∧
G0)→

∧̃
G0

K

log−→ Ga,K → 0 .

The following theorem is easy to deduce from Theorem 13.3, but was proved earlier
directly by Weinstein.

Theorem 14.1 (Weinstein). The following diagram is cartesian:

MG0,∞
� � //

��

(
G̃0,K

)n
det

��

Vp(
∧
G0) \ {0} �

� // ∧̃G0K

All intervening objects are perfectoid spaces over K, and the inclusions are locally
closed (i.e., open subsets of Zariski closed subsets).

All objects in this diagram can be made completely explicit. Weinstein has
used this to find explicit affinoid perfectoid subsets of MG0,∞ whose cohomology
realizes the local Langlands correspondence for specific supercuspidal representa-
tions, cf. [12]. Recall that it is known (by the work of Harris-Taylor, [34]) that
the cohomology of MG0,∞ realizes the local Langlands correspondence for all su-
percuspidal representations of GLn(Qp). It is remarkable that while at any finite
level, one cannot give an explicit description of the Lubin-Tate tower, it is possible
to describe MG0,∞, together with all group actions, explicitly.

In [62], it is proved that more general Rapoport-Zink spaces become perfectoid
at infinite level, and a description purely in terms of p-adic Hodge theory is given.
This made it possible to prove the duality isomorphism for basic Rapoport-Zink
spaces. In particular, one gets that Drinfeld and Lubin-Tate tower are isomorphic
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at infinite level as perfectoid spaces. This improves on earlier results of Faltings,
[26], and Fargues, [28], who proved such isomorphisms, but had to struggle with
formalizing them, as no category was known in which both infinite level spaces
lived a priori. Their method is to work with suitable formal models; for this, new
formal models have to be constructed first, which is at least technically challenging.

It was recently suggested by Rapoport-Viehmann, [53], that there should exist
a theory of ’local Shimura varieties’, which should relate to Rapoport-Zink spaces
in the same way that general Shimura varieties relate to Shimura varieties of PEL
type. The new perspective on Rapoport-Zink spaces mentioned above should make
it possible to prove (parts of) their conjectures.

15. p-adic cohomology of the Lubin-Tate tower

The Lubin-Tate tower plays an important role in the Langlands program because
its `-adic cohomology for ` 6= p realizes the local Langlands correspondence, cf.
[34]. In the emerging p-adic local Langlands program, which has taken a definitive
form only for GL2(Qp), cf. [13], one hopes for a similar realization of the p-adic
local Langlands correspondence. However, the Fp-cohomology of the Lubin-Tate
tower is too infinite due to the presence of many Artin-Schreier covers. Still, a
variant of Theorem 11.4 holds true in this context; for simplicity, we state only the
version with Fp-coefficients; a similar result holds true with Zp-coefficients.

Let F be a finite extension of Qp. Fix an admissible Fp-representation π of
GLn(F ). Using the Lubin-Tate tower at infinite level, which is a GLn(F )-torsor
over Pn−1

F̆
, where F̆ denotes the completion of the maximal unramified extension

of F , one gets an étale sheaf Fπ on Pn−1

F̆
. It is naturally D×-equivariant, and

equipped with a Weil descent datum. Here, D is the division algebra of invariant
1/n over F . The following theorem is work in progress of the author, and relies
on the techniques of the proof of Theorem 11.4 along with the duality between
Lubin-Tate and Drinfeld tower.

Theorem 15.1. Let C/F̆ be complete and algebraically closed. Then Hi(Pn−1
C ,Fπ)

is an admissible D×-representation, which vanishes for i > 2(n − 1), and is in-
dependent of C. The resulting functor from admissible GLn(F )-representations
to admissible D× × GF -representations is compatible with some global correspon-
dences.

This makes it possible to pass from GLn(F )-representations to Galois repre-
sentations in a purely local way. In the global setup, it proves that the GLn(F )-
representation determines the local Galois group representation.

16. Shimura varieties

Fix a reductive group G over Q with a Shimura datum of Hodge type, giving
rise to a Shimura variety SK , K ⊂ G(Af ), over the reflex field E. There is a
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Hecke-equivariant compactification S
∗
K , finite under the minimal compactification

S∗K → S
∗
K , and a flag variety F with G-action, such that the following are true.11

Theorem 16.1. Fix a tame level Kp ⊂ G(Apf ) and a map E → C to a complete

and algebraically closed extension C of Qp. Let (S
∗
K)ad denote the adic space

associated with S
∗
K ⊗E C. Then there is a perfectoid space S

∗
Kp over C such that

S
∗
Kp ∼ lim←−

Kp

(S
∗
KpKp)ad .

Moreover, there is a G(Qp)-action on S
∗
Kp and a G(Qp)-equivariant Hodge-Tate

period map

πHT : S
∗
Kp → F .

The map πHT is equivariant for the Hecke operators prime to p with respect to the
trivial action on F ; in particular, πHT contracts G(Apf )-orbits. There is a cover

of F by affinoid subsets U ⊂ F for which π−1
HT(U) ⊂ S

∗
Kp is an affinoid perfectoid

subset.

The geometry of πHT is very interesting. Consider the case of the modular
curve. Here, F = P1, and πHT is a p-adic analogue of the embedding of the
complex upper half-plane (which is a path-connected component of the inverse
limit over all levels lim←−K SK(C)) into P1(C). In both cases, the map is given by
the Hodge filtration.

In the case of the modular curve, S
∗
Kp = S∗Kp has a stratification into the

ordinary and the supersingular locus, Sord
Kp and Sss

Kp .12 The flag variety is F = P1.
Then, under πHT, all of Sord

Kp maps into P1(Qp), while the supersingular locus Sss
Kp

maps into Ω2. Here, Ω2 = P1 \ P1(Qp) is Drinfeld’s upper half-plane, which is
reminiscent of the complex upper and lower half-plane, which can be written as
P1 \ P1(R). It follows that πHT contracts connected components of the ordinary
locus to points, whereas it does something interesting on the supersingular locus.

On the ordinary locus, the map is given by the position of the canonical sub-
group. On the supersingular locus, Sss

Kp is a finite disjoint union of Lubin-Tate
towers at infinite level (for n = 2); these are isomorphic to the Drinfeld tower at
infinite level, which is a pro-finite étale cover of Ω2. The composite is πHT. In
particular, the isomorphism between Lubin-Tate and Drinfeld tower is built into
the geometry of πHT.

Let us note another perspective on what the Hodge-Tate period map does.
Namely, by Theorem 13.4, giving the Hodge filtration is equivalent to giving the p-
divisible group. This means that the Hodge-Tate period map, on geometric points
of the good reduction locus, is the map sending an abelian variety to its p-divisible
group (equipped with all extra structure).

11It should be possible to use the minimal compactification itself, and make F more explicit,
but so far this has not been worked out.

12We regard some points of the adic space corresponding to rank-2-valuations as part of the
ordinary locus which would usually be considered as part of the supersingular locus. We do so
by replacing the ordinary part by its closure.
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17. Torsion in the cohomology of locally symmetric
varieties

As the final topic, we summarize the application of these ideas to the study of
torsion in the cohomology of locally symmetric spaces.

Fix a reductive group G over Q. For any (sufficiently small) compact open
subgroup K ⊂ G(Af ), one has the locally symmetric space

YK = G(Q)\ (G(R)/K∞A
◦
∞ ×G(Af )/K) ,

where K∞ ⊂ G(R) is a maximal compact subgroup, and A∞ ⊂ G(R) are the
R-valued points of a maximal Q-split central torus, with identity component A◦∞.
Fixing a tame level Kp ⊂ G(Apf ), one defines the completed cohomology groups

H̃i(Kp) = lim←−
n

lim−→
Kp

Hi(YKpKp ,Z/pnZ) , H̃i
c(K

p) = lim←−
n

lim−→
Kp

Hi
c(YKpKp ,Z/pnZ) .

Also recall the cohomological degree q0, which is ’the first interesting cohomo-
logical degree’ (namely, the first one to which tempered automorphic representa-
tions of G contribute). The following conjecture was proposed by Calegari and
Emerton, [14].

Conjecture 17.1. The completed cohomology groups H̃i(Kp), H̃i
c(K

p) vanish for
i > q0.

Concretely, this means that all cohomology classes in higher degree become
infinitely p-divisible as one goes up along all levels at p. If G is a torus, the
conjecture is equivalent to Leopoldt’s conjecture. On the other hand, we proved
the following theorem.

Theorem 17.2 ([61, Theorem I.7]). Assume that G gives rise to a Shimura variety,
so that q0 is the (complex) dimension of the associated Shimura variety. Then
Conjecture 17.1 holds true for compactly supported cohomology.

If one establishes that also toroidal compactifications become perfectoid at
infinite level, then one gets the same result for usual cohomology. Unfortunately,
for all tori which give rise to Shimura varieties, the Leopoldt conjecture is trivially
satisfied, as the group of units is finite.

The key to the proof is to translate everything into the setting of Shimura
varieties at infinite level as perfectoid spaces. In that case, one can use the basic
comparison theorem to pass to the cohomology of O+/p. But at infinite level, one
has almost vanishing of higher cohomology of O+/p on affinoids as the space is
perfectoid. This shows vanishing above the middle dimension, which is exactly the
desired statement.

In fact, the same argument proves the following theorem over C, which the
author does not know how to prove directly.
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Theorem 17.3. Let X ⊂ PnC be a closed subvariety of dimension d. For any
m ≥ 0, let Xm ⊂ PnC be the pullback of X under the map PnC → PnC sending

(x0 : . . . : xn) to (xp
m

0 : . . . : xp
m

n ). Then, for any i > d,

lim−→
m

Hi(Xm,Fp) = 0 .

For classes in the image of cup product with c1(O(1)), this follows from the
fact that c1(O(1)) becomes infinitely p-divisible. By hard Lefschetz, this accounts
for everything rationally, but it does not say anything about possible p-torsion in
the cohomology.

18. Galois representations

It was conjectured since the 1970’s by Grunewald that torsion in the cohomology
of locally symmetric spaces gives rise to Galois representations. This conjecture
was made precise by Ash, [2], and is a ’mod p analogue’ of (one direction of) the
global Langlands conjectures. Since then, it was numerically verified in many cases:
what happens is that a Hecke eigenvalue system matches Frobenius eigenvalues of
a Galois representations for the first few hundred primes. However, even in these
examples, one could not prove that this happens for all primes.

Theorem 18.1 ([61, Theorem I.3]). Let G be the restriction of scalars of GLn
from a totally real or CM field F . Fix any compact open subgroup K ⊂ G(Af ).
Then, for any system of Hecke eigenvalues ψ appearing in Hi(YK ,Fp), there exists
a (unique) continuous semisimple Galois representation

ρψ : GF → GLn(Fp)

such that for all but an explicit finite set of ’ramified’ places v of F , the character-
istic polynomial of ρψ(Frobv) is described by the Hecke eigenvalues.

Moreover, there is a version of this theorem for Z/pnZ-cohomology, which in
the inverse limit over n gives results for classical automorphic representations. The
following result was proved earlier by Harris-Lan-Taylor-Thorne, [33], by a different
method.

Theorem 18.2 ([61, Theorem I.4]). Let π be a regular algebraic cuspidal automor-
phic representation of GLn(AF ), where F is totally real or CM. Fix an isomorphism
C ∼= Qp. Then there exists a unique continuous semisimple Galois representation

ρπ,p : GF → GLn(Qp)

such that for all but an explicit finite set of ’ramified’ places v of F , the character-
istic polynomial of ρπ,p(Frobv) is described by the Satake parameters.
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It should be noted that in general, the cohomology of the spaces YK has a lot of
torsion. The simplest example is the case of GL2 over an imaginary-quadratic field
in which the relevant YK are hyperbolic 3-manifolds. In that case, computations,
as well as theoretical results, show a huge amount of torsion, cf. e.g. [7]. Therefore,
the thrust of the above theorem lies in the p-torsion part of the cohomology. More-
over, recent work of Calegari-Geraghty, [15], explains how one may use sufficiently
fine information about existence of Galois representations for torsion classes to
prove automorphy lifting theorems for GLn over F . These properties seem to be
within reach. Together with the strong potential automorphy machinery as in the
work of Barnet-Lamb–Gee–Geraghty–Taylor, [6], this gives some hope that one
can establish potential converse results to Theorem 18.2.

Let us now briefly sketch the proof of Theorem 18.1 in the case F = Q. In that
case, one considers the Siegel moduli space SK , K ⊂ GSp2n(Af ), i.e. the moduli
space of principally polarized abelian varieties of dimension n. From the Borel-
Serre compactification, [11], it follows that the cohomology of the locally symmetric
space for GLn contributes to the cohomology of the Siegel moduli space. Note
that the Borel-Serre compactification is a compactification as a real manifold with
corners; this makes it possible that a purely real manifold appears in the boundary
of the algebraic variety SK . Thus, the task becomes to understand torsion in the
cohomology of SK . The theorem is the following.

Theorem 18.3 ([61, Theorem I.5]). Let SK , K ⊂ G(Af ), be any Shimura va-
riety of Hodge type. Then, for any system of Hecke eigenvalues ψ appearing in
Hi
c(SK,C,Fp), there exists a cuspidal eigenform f (possibly of larger level at p,

and undetermined weight) such that the Hecke eigenvalues of f are congruent to ψ
modulo p.

This produces congruences between torsion classes and classical cusp forms in
large generality. Note that the classes in which we are interested start life as classes
coming from the boundary; still, the theorem produces congruences to cusp forms.
In particular, for non-torsion classes, it is interesting as it produces congruences
between Eisenstein series and cusp forms. However, in the complementary case
where SK is proper, the theorem is also interesting as it controls all possible torsion
classes. For example, it proves the existence of Galois representations for all torsion
classes in U(1, n−1)-Shimura varieties, which is required in recent work of Emerton
and Gee, [22]. The point is that one knows how to attach Galois representations
to cusp forms in great generality, through the work on automorphic forms on
classical groups by Arthur [3] (cf. also [51] for unitary groups) and the work of
Clozel, Kottwitz and Harris-Taylor among others on the cohomology of Shimura
varieties, [16], [50], [34].

To prove the theorem, one starts by using the basic comparison theorem

Hi
c,ét(SK,C ,Fp)⊗OC/p ∼=a H

i
ét(S

∗
K,C , I

+/p) ,

where I+ ⊂ O+ is the ideal sheaf of functions vanishing at the boundary. This
variant of Theorem 11.7 is proved in [60, Theorem 3.13]. This provides a first
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bridge to the sheaf of cusp forms I+, but one still has to compute cohomology on
the étale site. Next, one passes to infinite level at p, and reduces to controlling

Hi
ét(S

∗
Kp , I

+/p) .

Here, S
∗
Kp is perfectoid, so we know that Hi

ét(U, I
+/p) is almost zero for i > 0

and affinoid perfectoid subsets U ⊂ S∗Kp ; this is a slight variant on Theorem 6.10.
This means that Hi

ét(S
∗
Kp , I+/p) can (almost) be computed by a Cech complex

whose terms are the sections of I+/p on affinoid subsets. The remaining task
is to approximate these forms on U by globally defined forms (of finite level),
without messing up the Hecke eigenvalues. Usually, the strategy is to multiply by
a multiple of the Hasse invariant. This kills all poles away from the ordinary locus,
and works if U is the ordinary locus. However, in our case we need to do the same
for a covering of all of S

∗
Kp .

The crucial property of the Hasse invariant is that it commutes with all Hecke
operators prime to p. In our setup, we can use the following construction: As

πHT : S
∗
Kp → F

is equivariant with respect to the trivial action of the Hecke operators prime to
p on F , any function that gets pulled back from F will commute with all Hecke
operators prime to p. The same stays true for sections of automorphic vector
bundles; automorphic vector bundles come via pullback from F .13 In this way,
one gets enough ’fake-Hasse invariants’ to proceed, and prove the result.
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[18] Deligne, P., Théorie de Hodge. I. Actes du Congrès International des Mathématiciens
(Nice, 1970), Tome 1, pp. 425–430. Gauthier-Villars, Paris, 1971.

[19] Deligne, P., La conjecture de Weil. I. Publ. Math. Inst. Hautes Études Sci. 43 (1974),
273–307.

[20] Deligne, P., La conjecture de Weil. II. Publ. Math. Inst. Hautes Études Sci. 52
(1980), 137–252.

[21] Deligne, P., Les corps locaux de caractéristique p, limites de corps locaux de car-
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École Norm. Sup. (4) 21 (1988), no. 4, 497–544.

[38] Huber, R., Continuous valuations. Math. Z. 212 (1993), no. 3, 455-477.

[39] Huber, R., A generalization of formal schemes and rigid analytic varieties. Math. Z.
217 (1994), no. 4, 513–551.

[40] Huber, R., Étale cohomology of rigid analytic varieties and adic spaces. Aspects of
Mathematics E30. Friedr. Vieweg & Sohn, Braunschweig, 1996.
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Études Sci. 111 (2010), 1–169.

[53] Rapoport, M, Viehmann, E., Towards a theory of local Shimura varieties.
arXiv:1401.2849.
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