
Tree-automatic scattered linear orders

Sanjay Jain?, Bakhadyr Khoussainov??, Philipp Schlicht, and Frank
Stephan? ? ?

1 Department of Computer Science,
National University of Singapore, Singapore 117543, Republic of Singapore

sanjay@comp.nus.edu.sg
2 Department of Computer Science,

The University of Auckland, Auckland, New Zealand
bmk@cs.auckland.ac.nz

3 Mathematical Institute,
University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany.

schlicht@math.uni-bonn.de
4 Department of Mathematics and Department of Computer Science,

National University of Singapore, Singapore 117543, Republic of Singapore
fstephan@comp.nus.edu.sg

Abstract. We study tree-automatic linear orders on regular tree lan-
guages. We first show that there is no tree-automatic scattered linear or-
der, and in particular no well-order, on the set of all finite labeled trees.
This also follows from results of Gurevich-Shelah [8] and Carayol-Löding
[4]. We then show that a regular tree language admits a tree-automatic
scattered linear order if and only if all trees are included in a subtree of
the full binary tree with finite tree-rank. As a consequence of this charac-
terization, we obtain an algorithm which, given a regular tree language,
decides if the tree language can be well-ordered by a tree automaton.
Finally, we connect tree automata with automata on ordinals and de-
termine sharp lower and upper bounds for tree-automatic well-orders on
natural examples of regular tree languages. Our proofs use elementary
techniques of automata theory.

1 Introduction

The aim of this paper is to study tree-automatic linear orders on regular tree
languages. More precisely, given a regular tree language A, we would like to know
whether A can be ordered by a tree-automatic scattered or well-founded linear
order. This is a part of a larger theme where the goal is to classify tree and word-
automatic structures. Much work has already been done on the classification of
automatic structures in certain classes such as linear orders, Boolean algebras,
abelian groups [6] [13] [15] [16] [21] [26], [3]. Recent results by Kuske, Lohrey

? Supported in part by NUS grants R252-000-420-112 and C252-000-087-001.
?? Supported in part by the Marsden Fund of New Zealand

? ? ? Supported in part by NUS grants R146-000-114-112 and R252-000-420-112.

2 Sanjay Jain, Bakhadyr Khoussainov, Philipp Schlicht, and Frank Stephan

and Liu indicate that there is no complete characterization of those linear orders
that can be presented by tree automata [17] [18] [19]. Therefore, in this paper we
restrict the classification question by considering tree-automatic structures with
domain being a fixed regular tree language A. This is formalized in Definition
4. Our hope is to derive algebraic properties of tree-automatic structures with
the given domain A, and to obtain some algorithmic consequences from this
simple yet natural restriction. Delhommé in [6] proved one of the first important
characterization results on tree-automatic structures. Namely, a well-ordered set
has a tree-automatic presentation if and only if it is a proper initial segment
of the ordinal ωω

ω

. Our question can also be seen as a refinement of the work
of Delhommé. As a consequence of our study, we give an alternative proof of
Delhommé’s result (See Theorem 22).

The first result of this paper (Theorem 10) shows that there is no tree-
automatic scattered linear order on the set T (Σ) of all finite binary trees labeled
by symbols from a finite alphabet Σ. As a consequence one obtains that there is
no tree-automatic well-order on the set T (Σ). We note that this consequence can
also be derived from Gurevich and Shelah’s theorem stating that no monadic
second-order definable choice function exists on the infinite binary tree T2 [8] and
finite-set-interpretablity of tree-automatic structures on T2 [5]. We also note that
it is possible to prove Theorem 10 through the theorem of Gurevich and Shelah,
and the result of Colcombet and Löding showing that for certain tree-automatic
equivalence relation there is a tree-automatic selector function. Our proof of
Theorem 10, however, uses basics of tree automata, mainly the Pumping lemma.
In this sense, our proof is simpler and elementary. The second result of our
paper (Theorem 17) characterizes all tree-automatic languages that admit tree-
automatic scattered linear orders. Namely, we prove that a regular tree language
has a tree-automatic well-order if and only if the language has a finite tree-rank.
Roughly, the language has tree rank k if the maximal height of the full binary
finite tree embedded into the language is k. For instance, the language T (Σ)
has no finite rank. This theorem has an algorithmic consequence. Namely, there
exists an algorithm that given a regular tree language decides if the language
can be well-ordered by a tree-automaton. The third contribution of this paper
is the connection between certain types of tree-automatic structures and finite
automata on ordinals. This connection is then used to give an alternative proof of
Delhommé’s theorem showing that ωω

ω

is the smallest ordinal that has no tree-
automatic presentation. Finally, we give examples of regular tree languages and
describe the spectra (e.g. lower and upper bounds) of tree-automatic well-orders
on them.

2 Preliminaries

We start with some basic notions needed for this paper and some background.
By a structure A we mean a tuple (A,R1, . . . , Rn), where A is the domain (or the
universe) of the structure and R1, . . ., Rn are atomic relations on A. The main
structures of our study will be linearly ordered sets. A structure A = (A,≤) is

Tree-automatic scattered linear orders 3

a linearly ordered set if ≤ is a partial order on A such that for all x, y ∈ A we
have either x ≤ y or y ≤ x. A linearly ordered set A = (A,≤) is a well-order
if every non-empty subset of A has a ≤-minimal element. Well-ordered sets are
also called ordinals. A linearly ordered set A = (A,≤) is called scattered if no
embedding exists from the natural order of the set of all rational numbers into A.
There is an equivalent definition of scatteredness in terms of Cantor-Bendixson
ranks that we will give at the end of Section 2. To define (word) tree-automatic
structures we recall the following definitions from automata theory.

A finite alphabet is denoted by Σ. As always, Σ? denotes the set of all finite
words over Σ. A finite automaton is a tupleM = (S, ι,∆, F), where S is the set
of states and ι ∈ S is the initial state, ∆ ⊆ S×Σ×S is the transition table, and
F ⊂ S is the set of final states. A run of M on word w = σ1σ2 . . . σn ∈ Σ? is a
sequence of states q0, q1, . . . , qn such that q0 = ι and (qi, σi+1, qi+1) ∈ ∆ for all
i ∈ {0, 1, . . . , n − 1}. If qn ∈ F , for some run of M on w, then the automaton
M accepts w. The language ofM is L(M) = {w | w is accepted byM}. These
languages are called regular or finite automaton recognizable.

A Σ–tree is a mapping t : dom(t)→ Σ such that the domain dom(t) is a finite
prefix-closed subset of the binary tree {0, 1}? such that for every non-leaf node
v ∈ dom(t) we have v0, v1 ∈ dom(t). The symbol λ denotes the root of dom(t).
Every node v in the domain of any Σ–tree is binary string over {0, 1}. The bound-
ary of dom(t) is the set ∂dom(t) = {xb | x is a leaf of dom(t) and b = 0 or b = 1}.
The set of all Σ-trees is denoted by T (Σ). Sometimes we refer to Σ-trees simply
as trees.

Definition 1. A tree automaton is a tuple M = (S, ι,∆, F), where S is the set
of states and ι ∈ S is the initial state, ∆ ⊆ S × Σ × (S × S) is the transition
table, and F ⊆ S is the set of final states.

A run of the tree automatonM on tree t is a mapping r : dom(t)∪∂dom(t)→
S such that r(λ) = ι and (r(x), t(x0, r(x0), r(x1)) ∈ ∆ for all x ∈ dom(t). If for
every leaf x ∈ dom(t) we have both r(x0) ∈ F and r(x1) ∈ F , then the run r
is said to be accepting. Automaton M accepts the tree t, if there is a run of M
on t which is accepting. The tree language of M is L(M) = {t ∈ T (Σ) | t is
accepted by M}. These tree languages are called regular or tree-automatic.

To define tree-automatic and word-automatic structures, we need one tech-
nical notion. Let t0, . . ., tn−1 be trees. For x ∈ dom(t0) ∪ . . . ∪ dom(tn−1) and
i < n, we set t′i(x) = ti(x) if x ∈ dom(ti), and t′i(x) = � if x 6∈ dom(ti).
The convolution of the trees t0, . . ., tn−1 is then the tree given by a map-
ping conv(t0, . . . , tn−1) from dom(t0) ∪ . . . ∪ dom(tn−1) to (Σ ∪ {�})n which
satisfies for all x ∈ dom(t0) ∪ . . . ∪ dom(tn−1) that conv(t0, . . . , tn−1)(x) =
(t′0(x), . . . , t′n−1(x)). We say that an n-ary relation R on T (Σ) is tree-automatic
if the convolution conv(R) = {conv(t0, . . . , tn−1) | (t0, . . . , tn−1) ∈ R} is a reg-
ular tree language. One can easily modify the convolution operation for finite
strings, and hence define automatic relations on the set Σ?. These now allow us
to give the following definition.

4 Sanjay Jain, Bakhadyr Khoussainov, Philipp Schlicht, and Frank Stephan

Definition 2. A structure A = (A,R1, . . . , Rn) is called tree-automatic (word-
automatic) if domainA and the atomic relationsR1, . . .,Rn are all tree-automatic
(automatic). For a structure B, if B is isomorphic to the structure A then we say
that A is a tree-automatic (word-automatic) presentation of B. We often refer to
tree and word-automatic structures and presentations as automatic structures
and presentations, respectively.

Automatic presentations A of a structure B can be identified with finite col-
lections of automata for the domain and atomic relations of A. Moreover, the
definition of automata presentability is a Σ1

1 -definition in arithmetic since au-
tomata presentability of B requires a search for an isomorphism from automatic
structures A to B. However, we often abuse our definition and refer to automata
presentable structures as automatic structures. Examples of (tree-)automatic
structures are Presburger arithmetic (N; +) which is word-automatic and Skolem
arithmetic (N;×) which is tree-automatic but not word-automatic [14]. Other ex-
amples of (tree-)automatic structures include term algebras, configuration spaces
of Turing machines and the countable atomless Boolean algebra.

The decidability of the emptiness problem and closure properties of regular
languages give us the following uniform decidability theorem:

Theorem 3 ([2, 10–12]). Let FO+ ∃ω be the extension of the first-order logic
with the ∃ω (there are infinitely many) quantifier. There exists an algorithm,
that given an automatic presentation of A and a formula φ(x1, . . . , xn) in FO+
∃ω–logic, produces an automaton that recognises all tuples (a1, . . . , an) from the
structure that make the formula true. In particular the first-order theory of any
automatic structure is decidable.

We use this theorem in this paper often without referencing the theorem directly.
However, we will often use a proof of the fact that tree-automatic relations are
closed under ∃ω–quantifier. Therefore, for completeness of the paper, we provide
a simple proof of this fact in the next section.

Blumensath and Grädel [2] address automaticity of structures in terms of
interpretability. They proved that there are specific automatic structures that
encompass all automatic structures in the first-order logic. For instance, a struc-
ture is word-automatic if and only if it is first-order interpretable in the following
extension of Presburger arithmetic (ω; +, |2), where x|2y iff x is a power of 2 and
y is a multiple of x. In this sense, automaticity is equivalent to first-order inter-
pretability. There are other logical characterisations of automaticity, e.g. through
finite set interpretations as in [5], and the reader is referred to [5] [23].

The definition below is central to this paper and refines the definition of au-
tomaticity by placing the emphasis on automatic domains. For the definition, we
fix a class of structures K, where structures are identified up to isomorphism. For
instance, K can be the class of well-ordered sets, undirected graphs of bounded
degree, trees, Abelian groups and so on.

Definition 4. For a regular tree language X, the algebraic spectrum of X with
respect to the class K, denoted by AlgSpecK(X), is the class of all structures

Tree-automatic scattered linear orders 5

B ∈ K such that there exists a tree-automatic structure A with domain X
isomorphic to B. If B ∈ AlgSpecK(X) then we say that the set X admits (the
isomorphism type of) the structure B. The spectrum AlgSpecK(X) for word-
automatic languages X is defined similarly.

For example, no tree-automatic (or word-automatic) language admits a structure
with undecidable first-order theory. The results in [24] show that 0? admits a
well-order α if and only if α < ω2. In [24] it is proven that if X is regular and X
admits an ordinal α then α < ωω. Generally, Delhommé [6] showed that if X is
regular andX admits a well-founded partial orderA then the height ofA is below
ωω (see also [13]). Also, as mentioned above, Delhommé [6] shows that no regular
tree language admits ordinals greater or equal to ωω

ω

. Another nice example
is the result by Tsankov in [26] showing that no regular language admits the
additive group of rational numbers (Q; +). We stress that Definition 4 calls for a
refined analysis of automaticity, and hence interpretability, of structures. Proving
that a certain structure (e.g. the ordinal ωn) is not admitted by a given regular
or regular tree language requires a deep analysis of underlying automata and
understanding algebraic or model-theoretic properties of underlying structures
of interest. In this paper the class K as in Definition 4 will be the class of linearly
ordered sets.

For this paper, we need to define Cantor-Bendixson ranks (CB-ranks) of
linearly ordered sets. These are ordinals assigned to linearly ordered sets L =
(L,≤). Elements x, y ∈ L are ∼–equivalent if the interval between x and y is
finite. The relation ∼ is an equivalence relation. The order ≤ naturally induces a
linear order on the quotient set L/ ∼. Denote the resulting order by L′. This new
linearly ordered set L′ is sometimes called the derivative of L. We iterate this
process and produce the sequence of derivatives as follows: L0 = L, L1 = L′0,
Lα+1 = Lα′ and Lβ is the quotient of L by the union of the equivalence relations
for Lα for α < β if β is a limit ordinal.

Definition 5. We say that a linearly ordered set L is scattered if there exists an
α such that Lα is a finite linearly ordered set. The least ordinal α for which Lα
is finite is called the Cantor-Bendixson rank of L. We denote it by CB-rank(L).

It is well-known that L is scattered if and only if there is no embedding of the
order of the rational numbers into L [22]. This justifies our original definition of
scatteredness given at the beginning of the introduction. Examples of scattered
linearly ordered sets are the order of integers, well-ordered sets and their finite
sums and products.

3 Basic results

In this section we assume that the cardinality of Σ is at least 2. Our first
result shows that the set T (Σ) of all Σ–trees admits a tree-automatic dense
linear order without end-points, that is the order of the rational numbers.

Proposition 6. The language T (Σ) admits the order of the rational numbers.

6 Sanjay Jain, Bakhadyr Khoussainov, Philipp Schlicht, and Frank Stephan

Proof. Without loss of generality we assume that Σ = {a, b} and we declare
a < b. For any given two trees p, q ∈ T (Σ) such that p 6= q consider the left-most
node x(p,q) in the convolution tree conv(p, q) for which p′(x(p,q)) 6= q′(x(p,q)),
where p′ and q′ are defined in the definition of convolution operation for trees.
Here the left-most node is taken with respect to the pre-order on the nodes of
the tree conv(p, q). Now we define the relation v on T (Σ) as follows. For trees
p, q ∈ T (Σ) declare p v q if and only if either p = q or conv(p, q)(x(p,q)) ∈
{(a, b), (�, b), (a,�)}.

We now claim that the relation v is the desired one. Note that the relation is
tree-automatic. A tree automaton recognising this relation can be described as
follows. On input conv(p, q) the automaton non-deterministically selects a path
leading to x(p,q). At all nodes v left of x(p,q) the automaton verifies that p(v) =
q(v). Once the node x(p,q) is reached the automaton accepts the tree. If node
x(p,q) does not exist then the automaton fails along the non-deterministically
chosen path that searches for x(p,q).

It is not hard to verify that the relation v is a linear order on T (Σ). We need
to show that v is dense and has no end-points. Indeed, take a tree p ∈ T (Σ).
Let v be any leaf of p; thus x(p,q) is a prefix of v . We now extend p to p1 such
that p1(v0) = a and p1(v1) = b, and we extend p to p2 such that p2(v0) = b and
p2(v1) = b. In this way we have p1 v p v p2. Hence, v is a linear order without
end-points.

Let p, q be such that p 6= q and p v q. Consider x(p,q). Assume that p(x(p,q)) =
a and either q(x(p,q)) = b or q(x(p,q)) = �. Let v be a leaf of p above x(p,q). Extend
p to p2 (as above) using v. Then p v p2 v q. Assume that p(x(p,q)) = � and
q(x(p,q)) = b. Let w be a leaf of q above x(p,q). Extend q to q1 using the node w.
Then p v q1 v q. Hence the linear order v is dense.
The next two propositions prove two known results. The first shows that tree-
automatic structures are closed under taking the quotients with respect to tree-
automatic congruence relations. The second shows that tree-automatic relations
are closed under the there are infinitely many quantifier operation ∃ω. We provide
the proofs of these two facts since we will use the ideas of their proofs further
in this paper. Note that the proof of the first fact in [1] contains unrecoverable
error. Colcombet and Löding in [5] give a correct proof of the the first fact in
more general ω-tree automata setting. Our proof is more direct and considers
the simpler finite case.

Proposition 7. Suppose ∼ is a tree-automatic equivalence relation on a tree-
automatic set A. There is a tree-automatic function f picking representatives
from the ∼–equivalence classes.

Proof. For each p ∈ A, set t(p) to be the Σ–tree such that the domain of t(p)
is the set ∩q∼pdom(q) and t(p) labels every node of its domain by some default
value. The tree t(p) does not need to be in A. There is a constant c such that
for all p ∈ A there is a q ∈ A for which q ∼ p and every node in q is at distance
at most c from dom(t(p)). To prove this, we list all leaves u0, u1, . . . , un−1 in
dom(t(p)). We start with q0 = p, and for each m < n proceed, inductively, as

Tree-automatic scattered linear orders 7

follows. There is a Σ–tree t ∼ qm which does not contain um0 and um1. By
the pumping lemma, there is a qm+1 ∼ t such that qm+1 coincides with qm on
all nodes below um and the height of the subtree of qm+1 above um is bounded
by a constant. By transitivity we have qm ∼ qm+1. Doing this with all nodes
u0, . . . , un−1, we produce a tree qn ∼ p. The tree qn is the desired tree q. Consider
the set S(p) = {q ∈ A | p ∼ q and each x ∈ dom(q) is at most c edges away from
dom(t(p))}. The relation q ∈ S(p) is tree-automatic. We define f(p) as follows.
Restrict the order v from Proposition 6 to S(p) and take f(p) to be the least
element of S(p) with respect to the order v.

Proposition 8. Let R(x, y, ā) be a tree-automatic binary relation in variables
x and y and fixed parameters ā = (a1, . . . , an) ∈ T (Σ)n. Consider the following
set S = {p ∈ T (Σ) | there exist at most finitely many q such that R(p, q, ā)}.
The relation S is tree-automatic.

Proof. For trees p, q ∈ T (Σ) we write p ⊆d q if and only if dom(p) ⊆ dom(q).
It is clear that ⊆d is tree-automatic. Consider the following set S′:

S′ = {p | ∃q ∈ T (Σ)∀t(R(p, t, ā)→ t ⊆d q)}.

The relation S′ is first-order definable from tree-automatic relations ⊆d and R.
Therefore the relation S′ is regular. It is now not hard to verify that S = S′.
The next corollary can be viewed as a geometric interpretation of the proposition
stated above.

Corollary 9. Consider the relations R and S as in Proposition 8. For every
p ∈ S define the following Σ–tree φ(p):

(a) dom(φ(p)) = ∪R(p,q)dom(q).
(b) φ(p) labels every node v ∈ dom(φ(p)) by a default value, say by a ∈ Σ.

The function φ : p→ φ(p), where p ∈ S, is tree-automatic. Hence, there exists a
constant c such that every node v ∈ dom(φ(p)) is at most c edges away from a
node in the domain of p.

4 Non-scatteredness

In this section we prove that the set T (Σ) of all Σ-trees does not admit a
scattered tree-automatic linear order. As a corollary one obtains that there is no
tree-automatic well-order on the set T (Σ). Our proof uses the Pumping lemma
for tree automata and the uniform decidability theorem. In this sense our proof
is elementary and self-contained (yet a bit technical).

There are alternative ways to prove this. For instance, the corollary can be
proved using Gurevich and Shelah’s theorem stating that no monadic second-
order (MSO) definable choice function exists on the infinite binary tree T2 [8]
and the fact that a structure is tree-automatic iff it is finite set-interpretable in
T2 [5]. Another possible way to prove the theorem is the following. First, show

8 Sanjay Jain, Bakhadyr Khoussainov, Philipp Schlicht, and Frank Stephan

that every MSO definable scattered linear order on L ⊆ {0, 1}? can be used to
define an MSO definable well-order on L. Secondly, show that if T (Σ) has a
tree-automatic scattered linear order then the set of all slim trees has an MSO
definable scattered order. A tree is slim if its branching nodes form a chain. The
slim trees determine an MSO definable scattered linear order, and hence also a
well-order, on {0, 1}?. This contradicts the theorem of Gurevich and Shelah. We
mention the result of A. Carayol and C. Löding in [4] for an automata-theoretic
proof of Gurevich-Shelah’s theorem as opposed to set-theoretic techniques in [8].

Theorem 10. T (Σ) does not admit a tree-automatic scattered linear order.

Proof. Suppose by way of contradiction that ≤ is a tree-automatic scattered
linear order on T (Σ). Consider the set A = {t ∈ T (Σ) | for all v ∈ dom(t)(t(v) =
a)}, where a ∈ Σ is fixed. We write x ∈ t instead of x ∈ dom(t). The restriction
of ≤ to A is scattered tree-automatic linear order on A. For rest of the proof we
consider trees from A.

A node in t is branching if it has exactly two successors. A node x̃ generates
a tree x iff x̃ is a branching node in x and every branching node ỹ ∈ x is a prefix
of x̃. Define B = {x ∈ A | x is generated by some node x̃}. We use x, y, z and
U, S, T to refer to trees in B and A, respectively. For x ∈ B, x̃ denotes the node
that generates x. For each x ∈ B let σx be the the path from the root λ to x̃.
Notice that σx uniquely determines x for x ∈ B. The set Strings = {σx | x ∈ B}
admits the order v, where σx v σy iff x ≤ y. The word-automatic linear order
(Strings,v) is isomorphic to (B,≤). The CB-rank r of (Strings,v) is finite as
proved in [16] [24].

Consider the sequence of derivatives of B defined just before Definition 5:
B0, B1, . . . , Br, where B0 = B. Let n = |Br| and m be the number of infinite ∼
equivalence classes in Br−1. We can assume that the order ≤ on T (Σ) is chosen
such that the triple (r, n,m), called the extended rank of (B,≤), is the smallest
possible with respect to lexicographical ordering of triples. Note that r ≥ 1.

We now give an inductive analysis of the sequence B0, B1, . . . , Br, define
the relations ≤m+1, ∼m+1 and Cm+1, constants cm+1 and dm+1, and functions
tm+1, fm+1 and repm+1, where 0 ≤ m < r. For m = 0 we have: B0 = B,
∼0= {(x, x) | x ∈ B}, and ≤0=≤. So, assume that for m, we have already
defined Bm, ∼m and ≤m on Bm.

For x, y ∈ Bm, set Cm+1(x, y) be the interval [x, y] if x ≤m y and [y, x] if
y ≤m x. Write x ∼m+1 y, where x, y ∈ Bm, if the interval Cm+1(x, y) is finite.
Note that x ∼m+1 y iff there is a tree U ∈ A such that for all z ∈ Cm+1(x, y) we
have dom(z) ⊆ dom(U). Hence ∼m+1 is recognised by a tree automaton.

We recast the proof of Proposition 7 to extract the constant cm+1 and the
function repm+1 that selects representatives from the ∼m+1-classes. For x ∈ Bm,
let tm+1(x) be the intersection of all the trees y ∈ Bm with x ∼m+1 y. There
exists a constant cm+1 independent of x such that for some y ∈ Bm we have
Cm+1(x, y) is finite and y is at most cm+1 edges away from tm+1(x). Then
repm+1(x) is the length-lexicographically least y such that Cm+1(x, y) is finite
and y is at most cm+1 edges away from tm+1(x). Now set Bm+1 = {repm+1(x) |
x ∈ Bm} and ≤m+1 be the ≤ restricted to Bm+1. Thus, we have the following:

Tree-automatic scattered linear orders 9

Claim 11. There is a descending sequence B0, B1, . . . , Br of subsets of B such
that B0 = B and, for m = 0, 1, . . . , r

(a) Each of B0, B1, . . ., Br is tree-automatic.
(b) Each tree-automatic linearly ordered set (Bm,≤m), m = 0, . . . , r, is isomor-

phic to the mth derivative of (B,≤).
(c) For each Bm, m = 0, . . . , r, for each x ∈ Bm there is exactly one y ∈ Bm+1,

where y = repm+1(x), such that Cm+1(x, y) is finite.
(d) The function x → repm+1(x), where x ∈ Bm, is tree-automatic. Moreover,

there exists a constant cm+1 such that for all x ∈ Bm we have repm+1(x) is
at most cm+1 edges away from tm+1(x).

The next claim defines the constant dm+1 and the function fm+1. The proof
follows from the first-order definability and the Pumping lemma.

Claim 12. For each x ∈ Bm let fm+1(x) be the tree U ∈ A such that U is
the union of all the domains of y ∈ Bm such that y ∈ Cm+1(x, repm+1(x)).
Then the mapping x → fm+1(x), where x ∈ Bm, is tree-automatic and there is
a constant dm+1 such that every node in fm+1(x) is at distance at most dm+1

from a branching node in x.

Without loss of generality, we assume that dm ≥ cm, m = 1, . . . , r.

Claim 13. There exists a tree z ∈ B such that ({u ∈ B | z̃ is a branching node
in u}, <) has extended rank (r′, n′, k′) with (r′, n′, k′) <lex (r, n, k).

Proof. Start with a tree x in Br such that the ∼r–equivalence class of x in
Br−1 is infinite. There are v, w ∈ Br−1 satisfying the following conditions:

– v ≤ x ≤ w;
– v ∼r w;
– either v = min{u ∈ Br−1 : u ∼r x} or |ṽ| > |x̃|+ d1 + . . .+ dr + 2;
– either w = max{u ∈ Br−1 : u ∼r x} or |w̃| > |x̃|+ d1 + . . .+ dr + 2.

We fix v and w chosen above. Take any sequence xr, xr−1, . . ., x0 that satisfies
the following conditions:

1. xr = x and xm ∈ Bm, where m = 0, 1, . . . , r.
2. xm ∼m+1 xm+1, where m ∈ {0, 1, . . . , r − 1}.
3. Either xr−1 < v or xr−1 > w.

Assume first that xr−1 < v. Consider now the following sequence of nodes

ṽr, ṽr−1, . . . , ṽ1, ṽ0

where ṽr = ṽ, and each ṽm is obtained from ṽm+1 by omitting the top dm+1

edges of ṽm+1 for m = r − 1, . . . , 1, 0.
Now, by inverse induction, using the conditions put on the constants and

functions fr, one can prove that ṽm is a prefix of x̃m+1 form = r−1, r−2, . . . , 1, 0.

10 Sanjay Jain, Bakhadyr Khoussainov, Philipp Schlicht, and Frank Stephan

Due to the the length of v, we have |ṽ0| ≥ 2. Again using induction, one can
show that if x̃r−1 > w then x̃0 extends the prefix w̃0 of w of length 2.

Now choose z such that z̃ has length 2 and z̃ is different from ṽ0, w̃0. Hence
x̃0 cannot be a node which extends z̃. For u ∈ B, let REP0(u) = u and de-
fine REPi+1(u) as follows: let u0 = u, ui+1 = repi+1(ui); REPi+1(u) = ui+1.
Now, all u ∈ B containing z̃ as a branching node satisfy: REPr(u) 6= x, or
REPr−1(u) = y for some y ∈ Br−1 with v ≤ y ≤ w.

Now consider the set: Z = {u ∈ B | z̃ is a branching node in u}. As, for all
u ∈ Z, REPr(u) 6= x, or REPr−1(u) = y for some y ∈ Br−1 with v ≤ y ≤ w, we
immediately have that extended rank of (Z,≤) is less than (r, n,m). There are
now two cases to consider.

Case 1. For all the u ∈ B containing z̃ as a branching node, REPr−1(u) 6∼r x.
In this case the linearly ordered set ({u ∈ B | z̃ is a branching node in u}, <)
has rank (r′, n′,m′) such that either r′ < r or r′ = r and n′ < n. Hence, z is the
desired tree.

Case 2. There exists a tree u ∈ B containing z̃ as a branching node such
that REPr−1(u) = y for some y ∈ Br−1 with v ≤ y ≤ w. In this case the
linearly ordered set ({u ∈ B | z̃ is a branching node in u}, <) has a smaller rank
(r′, n′,m′) such that if r′ = r and n′ = n then m′ < m. Hence, z is again the
desired tree.

Claim 14. There exists, in contradiction to the assumption, a scattered tree-
automatic linear order (T (Σ),≤′) such that the extended rank of (B,≤′) is
strictly less than (r, n, k).

Indeed, take the tree z from the previous claim. Consider the set A′ all Σ-trees
which contain z̃ as a branching node and which do not have branching nodes
incomparable to z̃. Let ≤′ be the restriction of ≤ to A′. Thus, A′ = (A′,≤′) can
be viewed as a tree-automatic scattered linear order of the set T (Σ). The linearly
ordered set (B,≤′) has extended rank (r′, n′,m′) smaller than the extended rank
of (B,≤). This contradicts the choice of ≤.

Corollary 15. The set T (Σ) of all Σ–trees does not admit any well-ordering.

Note that almost all parts of the proof of Theorem 10 worked only on the trees
in B of the special form which are generated by nodes. A straightforward gen-
eralization gives the following corollary.

Corollary 16. Let α, β, γ, δ be strings such that β and γ are different but of the
same length. Let A = {x : some node x̃ ∈ α(β∪γ)∗δ generates the tree x}. Then
there is no tree-automatic scattered linear order on A.

5 A characterisation result

The techniques of the previous section can be applied to characterize regular
tree languages that admit scattered linear orders. For this, we need to introduce

Tree-automatic scattered linear orders 11

the concept of tree rank. We say that a tree t (labeled or not labeled) embeds
into tree q if there exists an injective map h from t into q that preserves the
prefix relation. By n-th full binary tree we mean the finite tree tn of height n in
which every node at height < n has exactly two children in tn. We say that an
infinite tree T has tree-rank n, written tr(T) = n, if tn embeds into T but tn+1

does not embed into T .

Theorem 17. Let A be an infinite regular tree language. Then the following
three conditions are equivalent.

(1) There exists a tree-automatic linear ordering ≤ such that (A,≤) is a scattered
linearly ordered set.

(2) There exists a tree-automatic linear ordering v such that (A,v) is a well-
ordered set.

(3) The infinite tree A =
⋃
{dom(t) : t ∈ A} forms a tree of finite tree-rank.

Proof. The implication (2)→ (1) is obvious. We prove the implication (3)→ (2).
Assume that (3) is true. One way to prove this is by induction on the rank. But
below we provide a more explicit proof. There exists a finite binary tree t such
that t cannot be embedded into the tree A. Below the ranks are with respect
to the tree A; that is, the tree-rank of a node x̃ ∈ A is the tree-rank of the
subtree of A above x̃. Hence, for each branching node x̃ in A and its immediate
successors x̃0 and x̃1 we have one of the following:

– The tree-ranks of x̃0 and x̃1 are both below that of x̃.
– One of the immediate successors has tree-rank that is equal to the tree-rank

of x̃ and the other immediate successor has strictly smaller tree-rank.

Now one introduces a naming-function Λ from the nodes of A to strings where
the name of the root is the empty string and for every node x̃ for which Λ has
already been defined and which satisfies x̃, x̃0, x̃1 ∈ A, the value of Λ is defined
on the successors of x̃ as follows:

– Λ(x̃0) = Λ(x̃)a and Λ(x̃1) = Λ(x̃)b iff the tree-rank of x̃0 is strictly below
the tree-rank of x̃;

– Λ(x̃0) = Λ(x̃)b and Λ(x̃1) = Λ(x̃)a iff the tree-rank of x̃0 equals to the tree-
rank of x̃ and (therefore) the tree-rank of x̃1 is strictly below the tree-rank
of x̃.

From the definition of Λ we see that whenever x̃, ỹ ∈ A have a common prefix
of length n then the first n symbols of Λ(x̃) and Λ(ỹ) are the same.

As we have already noted the tree-rank of at least one of the nodes x̃0 and x̃1
must be strictly below the tree-rank of x̃. Furthermore, the tree-rank is always
one of the numbers 0, 1, . . ., c, where c is a some constant. For each of the possible
tree-ranks d there is a first-order formula which tells us whether the tree-rank of
a given node is at least d. Therefore, by the uniform decidability Theorem 3, the
mapping Λ is tree-automatic. Moreover, there exists a tree-automatic predicate
which checks whether Λ(x̃) <lex Λ(ỹ). We note that as the tree-rank of the root
is at most c, there is no node x̃ in A for which Λ(x̃) contains more than c a’s.

12 Sanjay Jain, Bakhadyr Khoussainov, Philipp Schlicht, and Frank Stephan

Now we define the relation v on the given regular set A of trees as follows.
For trees s, t ∈ A, we set s v t if and only if either s = t or the domains of s, t are
different and the node x̃ in the symmetric difference (of the domains) with the
lexicographically largest value Λ(x̃) satisfies x̃ ∈ t− s or the domains are equal
and the lexicographically maximal x̃ for which the labels are different satisfies
that the label of s is strictly before the label of t in some predefined ordering of
the labels. This relation v is definable from tree-automatic relations. Hence v
is a tree-automatic relation well-order.

What remains to show is (1) implies (3). For this we show that if (3) is false
then (1) is false.

So assume that the tree-rank of the union A of the domains of trees in A
is infinite. Obviously A is a regular set of strings. There is a string α where
the automaton accepting A takes the state after processing α also again after
processing αβ and αγ for two incomparable extensions — if such an α would not
exist, the tree-rank would be finite. Without loss of generality these extensions
are of the same length — otherwise replace β and γ by β|γ| and γ|β|, respectively.
There is a string δ which permits to go from the state after α into an accepting
state. Hence α(β ∪ γ)∗δ ⊆ A.

For each x̃ ∈ α(β ∪ γ)∗δ, we assign besides the tree x another tree, denoted
by τx, from the language A as follows. As A is recognised by a tree automaton
there is for each x̃ in A a tree in A containing x̃ which is recognised by the
automaton for A. One can choose this tree such that the automaton recognising
the tree does not repeat any state after leaving the domain of x. Hence there is a
constant c such that all nodes in such a tree are at a distance at most c from the
domain of x. Among all the trees of the language A which contain the node x̃
and have this distance property there is a lexicographically least one. We set τx
be this tree. The mapping from x to τx is tree-automatic. Furthermore, we can
without loss of generality assume that the mapping is one-one, as otherwise we
might just replace β and γ by βc+1 and γc+1, respectively. If now A would admit
a tree-automatic scattered linear order ≤ then the set B = {x : x̃ ∈ α(β ∪ γ)∗δ}
would also admit a tree-automatic scattered linear order ≤′ by

x ≤′ y ⇔ τx ≤ τy.

However, such an order cannot exist by Corollary 16. Therefore the negation of
(3) implies the negation of (1).

The tree-rank of A =
⋃
{dom(t) : t ∈ A} is either infinite or bounded by

the number of states of a deterministic tree-automaton accepting the nodes in
A. Therefore one can determine this upper bound and then use the first-order
formulas described in Theorem 17 and apply Theorem 3 to check if the tree-rank
of A is properly above this bound. This decides whether A has finite tree-rank
and thus we have

Corollary 18. It is decidable if a given regular tree language can be well-ordered
by a tree automaton.

Tree-automatic scattered linear orders 13

The next theorem shows that the set Σ? of all strings admits all word-automatic
scattered linear orders. This stands in sharp contrast to Theorem 10. We need
the following simple lemma.

Lemma 19. If L = (L,≤) is a word-automatic linearly ordered set with at least
one infinite ∼-class then the set Σ? admits L.

The proof is easy. Recall that x ∼ y if there are finitely many elements
in the interval determined by x and y. Consider an infinite ∼-equivalence class
[x] = {y | x ∼ y in L}. This class [x] is a regular language. Consider the following
regular language:

C = [x] ∪ (Σ? \ L).

The linearly ordered set ([x],≤), where ≤ is the order in L, is isomorphic to either
the positive integers or the negative integers or all integers. Assume, without loss
of generality, that ([x],≤) is isomorphic to the positive integers, that is, to the
ordinal ω. We now write Σ? as follows:

L[x] ∪ C ∪R[x],

where L[x] = {z ∈ L | z < x and z 6∈ [x]} and R[x] = {z ∈ L | z > x and
z 6∈ [x]}. Define the following linear order ≤new. The order ≤new preserves the
old order ≤ on the sets L[x] and R[x], orders the strings in [x]∪ (Σ? \L) length-
lexicographically, and declares all the elements in C be greater than all elements
in L[x], and all the elements in C be less than all elements in R[x]. The linear
order ≤new is clearly word-automatic.

It is easy to see that ≤new is a linear order on Σ?. In addition, the original
word-automatic linearly ordered set L is isomorphic to (Σ?,≤new). Hence, Σ?

admits L. This proves the lemma.

Theorem 20. The set Σ? admits every word-automatic infinite scattered linear
order.

Proof. Every word-automatic infinite scattered linearly ordered set has at least
one infinite ∼-class. So the theorem follows from the following lemma.

We do not know if the theorem above is true for all infinite word-automatic
linear orders.

6 Lower and upper bounds

Let A be an infinite tree-automatic set of trees which has a tree-automatic well-
ordering. Now let minord(A) and maxord(A) be the minimum and the supre-
mum, respectively, of the ordinals α such that A admits a tree-automatic well-
ordering of type α. In this section we study the possible range of values minord
and maxord can take. If all branching nodes in the trees in A are of the form
1n and Σ is unary, then minord(A) = ω and maxord(A) = ω2. If |Σ| > 1 then
then minord(A) = ω and maxord(A) = ωω (see for instance [24]).

14 Sanjay Jain, Bakhadyr Khoussainov, Philipp Schlicht, and Frank Stephan

We will generalize the situation above to the case when the tree-rank of⋃
{dom(t) : t ∈ A} is at most k. For this, we connect tree-automatic structures

with structures recognized by automata running along an ordinal of the form ωk.
Suppose γ is an ordinal and Σ is a finite alphabet. A (deterministic) γ-automaton
is a finite automaton together with a limit transition function P(S)→ S, where
S is the set of states. The letters of a finite input word w : γ → Σ ∪ {�} (i.e.
all but finitely many of its letters are �) are read successively. At every limit
time λ ≤ γ the state is determined by the limit transition function applied to
the set of states appearing unboundedly often before λ, as in Muller automata.
The input is accepted if the state at γ is accepting.

Definition 21. Suppose γ is an ordinal and A is a set of finite γ-words. A
structure A = (A,R1, ..., Rn) is (finite word) γ-automatic if the domain and the
relations are recognizable by (deterministic) γ-automata.

If A is a set of Σ-trees, we write TA = {dom(t) : t ∈ A}.

Theorem 22. Let Ck denote the set of binary trees such that each branching
node contains at most k 0s. The following conditions are equivalent for (rela-
tional) structures A.

(1) A is isomorphic to a tree-automatic structure with domain B ⊆ Ck.
(2) A is isomorphic to a tree-automatic structure with domain B such that

tr(TB) ≤ k + 1.
(3) A is isomorphic to an ωk+1-automatic structure.

Proof. The implication (1)→(2) holds since tr(TCk
) = k + 1.

Let us prove the implication (2)→(3). We would like to simulate the run of
the tree automaton on a tape of length ωk+1. Let T = TB . Let Tσ := {τ ∈ T :
τ ⊆ σ ∨ σ ⊆ τ} and tr(σ) := tr(Tσ) for σ ∈ T . Consider the following injection
F : T → ωk+1. Let F (λ) = 0. If tr(σ0) 6= tr(σ1), let F (σ0) = F (σ) +ωtr(σ0) and
F (σ1) = F (σ) + ωtr(σ1). If tr(σ0) = tr(σ1) < tr(σ), let F (σ0) = F (σ) + ωtr(σ)

and F (σ1) = F (σ)+ωtr(σ1). Now everyΣ-tree t defines a finite ωk+1-word w with
w(α) = t(s) if F (s) = α. We simulate the run of the tree automaton on input
t by a nondeterministic ωk+1-automaton on input w as follows. While the tree
automaton runs simultaneously along several branches, the ωk+1-automaton will
run the various computations one after the other, in the order of the F -images
of the nodes. Once we are at a limit, we need to recall the state at a previous
time. The T -predecessor of s with F (s) = ωn0 +ωn1 + ...+ωnl and n0 ≥ ... ≥ nl
is the unique r ∈ T with F (r) = ωn0 + ωn1 + ... + ωnl−1 . Hence at any time
α = ωkmk + ωk−1mk−1 + ...+m0 < ωk+1 we need to remember only the states
at the ordinals ωkmk + ωk−1mk−1 + ...+ ωimi for i ≤ k. If the tree automaton
has m states, we can simulate it with an ωk+1-automaton with mk+1 states.
We may finally replace the nondeterministic ωk+1-automaton by a deterministic
ωk+1-automaton (see [20, Theorem 7]).

Let us prove the implication (3)→(1). We consider the bijection G : ωk+1 →
TCk

defined by G(ωkmk + ωk−1mk−1 + ...+m0) = 1mk01mk−10...1m0 . Let F =

Tree-automatic scattered linear orders 15

G−1. We simulate the deterministic ωk+1-automaton by a nondeterministic tree
automaton. For each σ ∈ TCk

, the tree automaton guesses the state s at time
F (σ1). The following run of the tree automaton above σ1 is based on s. The run
of the tree automaton above σ0 simulates the ωk+1-automaton between F (σ0)
and F (σ1) and checks whether the state at time F (σ1) is s.

Note that a similar connection has been studied by Finkel and Todorcevic in [7,
Proposition 3.4]. Through this correspondence we obtain by [25, Proposition 16]

Corollary 23. The rank of every scattered tree-automatic linear order is below
ωω. In particular, every tree-automatic ordinal is below ωω

ω

(Delhommé [6]).

We now give examples of natural regular tree languages and determine minord
and maxord.

Theorem 24. For k ≥ 1 we define the following tree-automatic languages:

– Ak consists of all unlabeled trees where each branching node is of the form
0m1n for some m ∈ {0, 1, . . . , k − 1} and n ∈ {0, 1, 2, . . .}.

– Ck consists of all trees where each branching node contains at most k 0s.

Then the following statements hold:

(a) minord(Ak) = ωk, maxord(Ak) = ωk+1,
(b) minord(Ck) = ωk+1, and maxord(Ck) = ωω

k+1
.

Proof. (a) We first show that minord(Ak) ≤ ωk. We can identify each tree
t ∈ Ak with the tuple (a0, a1, . . . , ak−1), where ai is largest such that 0i1ai is a
branching node in t. This gives us a one to one correspondence between Nk and
Ak. The lexicographical order on Nk gives us the ordinal ωk. This order also
induces a tree-automatic order on Ak. Hence minord(Ak) ≤ ωk.

Consider any automatic ordering ≤ for Ak. We use our identification of trees
t ∈ Ak with tuples (a0, a1, . . . , ak−1) in Nk. Using an argument similar to the
proof of pumping lemma we have, for a large enough constant c, the following
statements:

(α) For a0, a1, . . . , ak−1 ≥ 1, if (ca0, ca1, . . . , cai, . . . , cak−1) ≤ (ca′0, ca
′
1, . . . , ca

′
i,

. . . , ca′k−1), then (ca0, ca1, . . . , c(ai+1), . . . , cak−1) ≤ (ca′0, ca
′
1, . . . , c(a

′
i+1),

. . . , ca′k−1).
(β) For a0, a1, . . . , ak−1 ≥ 1, (ca0, ca1, . . . , cai, . . . , cak−1) ≤ (ca0, ca1, . . . , c(ai +

1), . . . , cak−1). Otherwise, the ordering ≤ is not a well order, by (α).
(γ) Without loss of generality we may assume the following statement (γ). For

i with 0 ≤ i < k − 1, (ca0, ca1, . . . , cak−1) ≤ (ca′0, ca
′
1, . . . , ca

′
k−1), when

[a′i = 2, ai+1 = 2, (aj = 1, for j with 0 ≤ j ≤ i or i+1 < j ≤ k−1), (a′j = 1,
for j with 0 ≤ j < i or i < j ≤ k − 1)]; otherwise, one can just reorder the
coordinates to get the above property.

(δ) Statements (α), (β) and (γ) together with the reverse induction on i give
the next statement (δ). (ca0, ca1, . . . , cai, . . . , cak−1) ≤ (ca′0, ca

′
1, . . . , ca

′
i,

. . . , ca′k−1), whenever for some i with 0 ≤ i ≤ k − 1, [(aj = a′j for j < i),
ai < a′i and (aj , a′j ≥ 1, for j with 0 ≤ j ≤ k − 1)].

16 Sanjay Jain, Bakhadyr Khoussainov, Philipp Schlicht, and Frank Stephan

Thus, the set {(ca0, ca1, . . . , cak−1) : ai > 0, for 0 ≤ i ≤ k − 1}, under the
ordering ≤, has order type ωk. We conclude that minord(Ak) = ωk.

We now prove that maxord(Ak) = ωk+1 by induction on k. This holds for k =
1 by [24]. So assume that it holds for k, and consider an ordering≤ on Ak+1. Then
there exists a constant c such that for b0, b1, . . . , bk ≤ c, Ab0,b1,...,bk

= {(ca0 + b0,
ca1 + b1, . . . , cak + bk) : ai > 0, for i with 0 ≤ i ≤ k} has order type ωk+1.

For all b < c, let Cib = {(a0, a1, . . . , ak) : ai = b}. Then, by induction order
type of Cib is at most ωk × mi

b, for some constant mi
b. This implies that the

order type of Ak+1 is at most ωk+2. This proves part (a).

(b) It follows from [25] and the correspondence in Theorem 22 thatmaxord(Ck) =
ωω

k+1
and minord(Ck) ≤ ωk+1. To show that minord(Ck) ≥ ωk+1, it is suffi-

cient to consider a regular tree language Bk such that a node x̃ is a branching
node in some tree in Bk iff x̃ has at most k 0s and arbitrary many 1s. Note that
this property does no uniquely determine Bk.

Consider the subset of Bk consisting of the trees in which there is one main
branch, and all offshoots have depth at most c′, for some constant c′. This
subset also satisfies the hypothesis of the theorem and is automatic. By coding
the offshoots (as they are of bounded depth) into the labels, one can furthermore
assume that all the branching nodes of the trees are on the main branch.

Thus, it is sufficient to prove the theorem for the languages Bk where, each
tree in Bk is a labeled tree and all the branching nodes are on the same branch.
Now using the pumping lemma, one has that, for some constant c, when one
considers the subset B′k of Bk, in which a branching node α12c+d (if it exists)
has the same label as the branching node α1c+d, for all d, then this subclass
also satisfies the hypothesis of the theorem and thus it is sufficient to prove the
theorem for such classes Bk.

As there are only finitely many possibilities for labels on nodes α1c+d, for d ≤
c, we can essentially ignore the labels for the purposes of proving the theorem.
Now, any tree in B′k can be represented using (a0, a1, . . . , ar), where r ≤ k and
1a001a10 . . . 01ar is the maximal branching node in the tree. Then, essentially
using the proof of Part (a), we can achieve the desired result. This proves part
(b).

Theorem 25. Let A be an infinite regular tree language. Then minord(A) and
maxord(A) are of the form ωβ, and maxord(A) is not attained.

Proof. Let m = ωα0n0 + ... + ωαknk with α0 > ... > αk and ni > 0 for all
i ≤ k. Suppose m = minord(A). Since ωα0n0 = (ωα1n1 + ...+ ωαknk) + ωα0n0,
we obtain a tree-automatic well-order L on A of type ωα0n0 by swapping the
two parts. Let otpL(a) denote the order type of a in L. Then Ai := {a ∈ A :
ωα0i ≤ otp(a) ≤ ωα0(i + 1)} is tree-automatic for each i < n0. The sets Ai can
be intertwined into a tree-automatic well-order on A of type ωα0 .

Suppose m = maxord(A). Suppose there is a tree-automatic well-order on
A of type m. If a ∈ A is its least element, we can define a well-order of type
m+ 1 on A by x ≤ y if (x ≤ y ∧ x 6= a ∧ y 6= a) ∨ (y = a). This contradicts the
definition of m and hence m is not attained.

Tree-automatic scattered linear orders 17

Suppose k ≥ 1. Then there is a tree-automatic well-order L on A of type
above ωα0n0 and some a ∈ A with otpL(a) = ωα0n0. Since (ωα1n1 + ... +
ωαknk) + ωα0n0 = ωα0n0, we obtain a tree-automatic well-order of type m on
A by swapping the two parts.

Suppose k = 0 and α0 ≥ ω. Let us consider a tree-automatic well-order L
on A of type at least ωα0(n0 − 1). We let A0 be the set of successors in A with
otpL(a) < ωα0 and A1 the set of limits in A with otpL(a) < ωα0 . Then A0

and A1 are tree-automatic and both have type ωα0 . We obtain a tree-automatic
well-order of type m on A by attaching A0 on top of A \A0.

Suppose k = 0 and 1 ≤ α0 < ω. Let us assume that n0 ≥ 2. We consider a
tree-automatic well-order L on A of type ωα0(n0− 1). We define B as the set of
all a ∈ A with otpL(a) = ωα0−12i+ δ for some i ∈ N and some δ < ωα0−1. This
set is first-order definable in (A,≤) and hence tree-automatic. Then B has type
ωα0 and A \ B has type ωα0(n0 − 1). We obtain a tree-automatic well-order of
type m = ωα0n0 on A by attaching B on top of A \B.

References

1. Achim Blumensath. Automatic structures. Diploma thesis, RWTH Aachen, 1999.

2. Achim Blumensath and Erich Grädel. Automatic structures. In 15th Annual IEEE
Symposium on Logic in Computer Science (Santa Barbara, CA, 2000), pages 51–
62. IEEE Computer Society Press, Los Alamitos, CA, 2000.

3. Gábor Braun and Lutz Strüngmann. Breaking up finite automata presentable
torsion-free abelian groups. International Journal of Algebra and Computation
21:8, 1463–1472, 2011.

4. Arnaud Carayol and Christof Löding. MSO on the Infinite Binary Tree: Choice
and Order. CSL 2007: 161-176

5. Thomas Colcombet and Christof Löding. Transforming structures by set interpre-
tations. Logical Methods in Computer Science, 3:2:4:1–36, 2007.

6. Christian Delhommé. Automaticité des ordinaux et des graphes homogènes. C. R.
Math. Acad. Sci. Paris 339(1), 510, 2004.

7. Olivier Finkel and Stevo Todorcevic. A hierarchy of tree-automatic structures. J.
Symbolic Logic 77(1), 350-368, 2012.

8. Yuri Gurevich and Sharon Shelah. Rabins uniformization problem. J. Symb. Log.
48(4), 11051119, 1983.

9. Wilfrid Hodges. Model Theory. Cambridge University Press, 1993.

10. Bernard R. Hodgson. On direct products of automaton decidable theories. Theo-
retical Computer Science, 19:331–335, 1982.

11. Bernard R. Hodgson. Décidabilité par automate fini. Annales des sciences
mathématiques du Québec, 7(1):39–57, 1983.

12. Bakhadyr Khoussainov and Anil Nerode. Automatic presentations of structures.
Logic and computational complexity (Indianapolis, IN, 1994), volume 960 of Lecture
Notes in Computer Science, pages 367–392. Springer, Berlin, 1995.

13. Bakhadyr Khoussainov and Mia Minnes. Model-theoretic complexity of automatic
structures. Annals of Pure and Applied Logic, 161(3):416–426, 2009.

14. Bakhadyr Khoussainov and Mia Minnes. Three lectures on automatic structures.
Proceedings of Logic Colloquium 2007. Lecture Notes in Logic, 35:132–176, 2010.

18 Sanjay Jain, Bakhadyr Khoussainov, Philipp Schlicht, and Frank Stephan

15. Bakhadyr Khoussainov, André Nies, Sasha Rubin and Frank Stephan. Automatic
structures: richness and limitations. Logical Methods in Computer Science, volume
3, number 2, 2007. 19th IEEE Symposium on Logic in Computer Science, LICS
2004, 14-17 July 2004, Turku, Finland, Proceedings; IEEE Computer Society,
pages 44–53, 2004.

16. Bakhadyr Khoussainov, Sasha Rubin, and Frank Stephan: Automatic linear orders
and trees. ACM Trans. Comput. Log. 6(4): 675-700 (2005)

17. D. Kuske, J. Liu, M. Lohrey. The isomorphism problem for ω-automatic trees, in
Proc. of CSL 2010: 396-410. LNCS 6247, Springer, 2010.

18. D. Kuske, J. Liu, M. Lohrey. The isomorphism problem for classes of automatic
structures, in Proc. of LICS 2010: 160-169. IEEE Computer Society, 2010.

19. D. Kuske, J. Liu, M. Lohrey. The isomorphism problem on classes of automatic
structures with transitive relations. To appear in Transactions of American Math
Society.

20. Itay Neeman. Monadic theories of wellorders. In Logic, Methodology and Philos-
ophy of Science Proceedings of the Thirteenth International Congress (Glymour,
Wei, Westerstahl, eds.), pp. 108121, College Publications, 2009.

21. André Nies and Pavel Semukhin. Finite automata presentable Abelian groups.
Annals of Pure and Applied Logic, 161:458–467, 2009.

22. Joseph G. Rosenstein. Linear Orderings. Academic Press, New York, 1982.
23. Sasha Rubin. Automata presenting structures: a survey of the finite string case.

The Bulletin of Symbolic Logic, 14(2):169–209, 2008.
24. Sasha Rubin. Automatic Structures. PhD thesis, 2004, The University of Auckland.
25. Philipp Schlicht and Frank Stephan. Automata on ordinals and automaticity of

linear orders. To appear in Annals of Pure and Applied Logic.
26. Todor Tsankov. The additive group of the rationals does not have an automatic

presentation. The Journal of Symbolic Logic, 76:1341-1351, 2011.

