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Abstract. Bruyère and Carton lifted the notion of finite automata reading infinite
words to finite automata reading words with shape an arbitrary linear order L.
Automata on finite words can be used to represent infinite structures, the so-
called word-automatic structures. Analogously, for a linear order L there is the
class of L-automatic structures. In this paper we prove the following limitations
on the class of L-automatic structures for a fixed L of finite condensation rank α.
Firstly, no scattered linear order with finite condensation rank above ωα+1 is L-
automatic. In particular, every L-automatic ordinal is below ωω

α

. Secondly, we
provide bounds on the (ordinal) height of well-founded order trees that are L-
automatic. If α is finite or L is an ordinal, the height of such a tree is bounded
by ωα+1. Finally, we separate the class of tree-automatic structures from that of
L-automatic structures for any ordinal L: the countable atomless boolean algebra
is known to be tree-automatic, but we show that it is not L-automatic.

1 Introduction

Finite automata play a crucial role in many areas of computer science. In particular,
finite automata have been used to represent certain classes of possibly infinite struc-
tures. The basic notion of this branch of research is the class of automatic structures
(cf. [11]): a structure is automatic if its domain as well as its relations are recognised
by (synchronous multi-tape) finite automata processing finite words. This class has the
remarkable property that the first-order theory of any automatic structure is decidable.
One goal in the theory of automatic structures is a classification of those structures
that are automatic (cf. [5,13,12,10,14]). Besides finite automata reading finite or infinite
words there are also finite automata reading finite or infinite trees. Using such automata
as representation of structures leads to the notion of tree-automatic structures [3]. The
classification of tree-automatic structures is less advanced but some results have been
obtained in the last years (cf. [5,7,9]). Bruyère and Carton [4] adapted the notion of fi-
nite automata such that they can process words that have the shape of some fixed linear
order. If the linear order is countable and scattered, the corresponding class of languages
possesses the good closure properties of the class of languages of finite automata for
finite words (i.e., closure under intersection, union, complement, and projection) and
emptiness of a given language is decidable. Thus, these automata are also well-suited
for representing structures. Given a fixed countable scattered linear order L this leads to
the notion of L-automatic structures. In case that L is an ordinal Schlicht and Stephan
? The first author is supported by the DFG research project GELO.



[17] as well as Finkel and Todorcevic [6] studied the classes of L-automatic ordinals
and L-automatic linear orders. Here we study L-automatic linear orders for any count-
able scattered linear order L and we study L-automatic well-founded order forests (i.e.,
forests (seen as partial orders) without infinite branches):

1. If a linear order is L-automatic and L has finite condensation rank below α, then it
is a finite sum of linear orders of condensation rank below ωα+1. As already shown
in [17], this bound is optimal.

2. If a well-founded order forest is L-automatic for some ordinal L, then its ordinal
height is bounded by L · ω.
If a well-founded order forest is L-automatic for L some linear order of condensa-
tion rank n ∈ N, then its ordinal height is bounded by ωn+1.
These two bounds are optimal.

3. A well-founded L-automatic order forest has ordinal height bounded by ωω·(α+1)

where α is the finite condensation rank of L.

In order to prove 1. and 3. we observe that the notion of finite-type products from [17]
and the notion of sum-augmentations of tamely colourable box-augmentations from
[9,7], even though defined in completely different terms, have a common underly-
ing idea. We introduce a new notion of tamely colourable sum-of-box augmentations
that refines both notions and allows to prove a variant of Delhommé’s decomposition
method (cf. [5]) for the case of L-automatic structures. The main results then follow
as corollaries using results from [7] and [9]. For the other two results, we provide an
L-automatic scattered linear ordering of all L-shaped words if L has finite condensation
rank n ∈ N or if L is an ordinal. Extending work from [14], we provide a connection
between the height of a tree and the finite condensation rank of its Kleene-Brouwer or-
dering (with respect to this L-automatic ordering) that allows to derive the better bounds
stated in 2.

As a very sketchy summary of these results, one could say that we adapt techniques
previously used on trees to use them on linear orders. This raises the question whether
there is a deeper connection between L-automatic structures and tree-automatic struc-
tures. It is known that all ωn-automatic structures are tree-automatic (cf. [6]). Moreover,
from [17] and [5] it follows that ωω

ω

is ωω-automatic but not tree-automatic. It is open
so far whether every tree-automatic structure is L-automatic for some linear order L.
We make a first step towards a solution by showing that the countable atomless boolean
algebra is not L-automatic for any ordinal L (while it is tree-automatic, cf. [1]).

2 Preliminaries

2.1 Scattered Linear Orders

In this section, we recall basic notions concerning scattered linear orders. For a detailed
introduction, we refer the reader to [16]. A linear order (L,≤) is scattered if there is no
embedding of the rational numbers into (L,≤).

Given a scattered linear order L = (L,≤), an equivalence relation ∼ is called a
condensation if each ∼ class is an interval of L. We then write L/∼ := (L/∼,≤′) for
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the linear order of the ∼ classes induced by ≤ (i.e., for ∼-classes x, y, x ≤′ y iff there
are k ∈ x, l ∈ y such that k ≤ l). As usual, for L a scattered linear order and l, l′

elements of L, we write [l, l′] for the closed interval between l and l′. For each ordinal
α we define the α-th condensation ∼α by x ∼0 y iff x = y, x ∼α+1 y if the closed
interval [x, y] in L/∼α is finite and for a limit ordinal β, x ∼β y if there is an α < β
such that x ∼α y. The finite condensation rank FC(L) is the minimal ordinal α such
that L/∼α is a one-element order. We also let FC∗(L) be the minimal ordinal α such
that L/∼α is a finite order. There is such an ordinal α if and only if L is scattered. It is
obvious from these definitions that FC∗(L) ≤ FC(L) ≤ FC∗(L) + 1.

As usual, for a linear order L = (L,≤) and a sequence of linear orders (Li)i∈L we
denote by

∑
i∈L Li the L-sum of the (Li)i∈L.

We conclude this section by recalling the notion of Dedekind cuts of a linear order.
Let L = (L,≤) be a linear order. A cut of L is a pair c = (C,D) where C is

a downward closed subset C ⊆ L and D = L \ C. We write Cuts(L) for the set
of all cuts of L. For cuts c, d, we say that c and d are the consecutive cuts around
some l ∈ L if c = (C,D) and d = (C ′, D′) such that C = {x ∈ L | x < l}
and C ′ = {x ∈ L | x ≤ l}. Cuts(L) can be naturally equipped with an order (also
denoted by ≤) via c = (C,D) ≤ d = (C ′, D′) if C ⊆ C ′. We say a cut c = (C,D)
has no direct predecessor (or direct successor), if it has no direct predecessor (or direct
successor, respectively) with respect to ≤. Let us finally introduce a notation for values
appearing arbitrarily close to some cut (from below or from above, respectively).

Definition 1. Let L = (L,≤) be a linear order, and w : L → A be a mapping. Let
c = (C,D) ∈ Cuts(L). We define

lim
c−

w := {a ∈ A | ∀l ∈ C∃l′ ∈ C l ≤ l′ and w(l′) = a} and

lim
c+

w := {a ∈ A | ∀l ∈ D∃l′ ∈ D l′ ≤ l and w(l′) = a}.

2.2 Automata for Scattered Words and Scattered-Automatic Structures

For this section, we fix an arbitrary linear order L = (L,≤).

Definition 2. Let Σ� be some finite alphabet with � ∈ Σ�. An L-word (over Σ) is a
map L → Σ�. An L-word w is finite if the support supp(w) := {l ∈ L | w(l) 6= �} of
w is finite. W (L) denotes the set of L-words.

Definition 3. Letw1, w2 be L-words over alphabetsΣ1 andΣ2, respectively. We define
the convolution of w1 and w2, denoted by w1 ⊗ w2, to be the L-word over alphabet
Σ1 ×Σ2 given by [w ⊗ v](l) := (w(l), v(l)).

We recall Bruyère and Carton’s definition of automata for L-words [4]. Then we
introduce the notion of (finite word) L-automatic structures generalising the notion of
ordinal-automatic structures from [17].

Definition 4. An L-automaton is a tuple A = (Q,Σ, I, F,∆) where Q is a finite set
of states, Σ a finite alphabet, I ⊆ Q the initial and F ⊆ Q the final states and ∆ is a
subset of (Q×Σ ×Q) ∪

(
2Q ×Q

)
∪
(
Q× 2Q

)
called the transition relation.
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Transitions in Q × Σ × Q are called successor transitions, transitions in 2Q × Q are
called right limit transitions, and transitions in Q× 2Q are called left limit transitions.

Definition 5. A run of A on the L-word w is a map r : Cuts(L)→ Q such that

– (r(c), w(l), r(d)) ∈ ∆ for all l ∈ L and all consecutive cuts c, d around l,
– (limc− r, r(c)) ∈ ∆ for all cuts c ∈ Cuts(L) \ {(∅, L)} without direct predecessor,
– (r(c), limc+ r) ∈ ∆ for all cuts c ∈ Cuts(L) \ {(L, ∅)} without direct successor.

Here the operators limc− and limc+ are applied to the order on Cuts(L) as opposed
to L. The run r is accepting if r((∅, L)) ∈ I and r((L, ∅)) ∈ F . The language of A
consists of all L-words w such that there is an accepting run of A on w.

For some L-word w and states q, q′ of A we write q w−→
A

q′ if there is a run r of A
on w such that r((∅, L)) = q and r((L, ∅)) = q′.

Example 6. The following L-automaton accepts the set of finite L-words over the al-
phabet Σ. Let A = (Q,Σ, I, F,∆) with Q = {el, er, n, p}, I = {n}, F = {n, p},
and

∆ = {(n, �, n), (p, �, n)} ∪ {(n, σ, p), (p, σ, p) | σ ∈ Σ \ {�}}
∪ {({n}, n), (n, {n}), (p, {n}), ({p}, el), (er, {p}), ({n, p}, el), (er, {n, p})}.

For each w ∈ W (L), r((C,D)) =

{
p if max(C) exists and max(C) ∈ supp(w)
n otherwise,

defines an accepting run if w is a finite L-word. On an L-word w with infinite support,
the successor transitions require infinitely many occurrences of state p. But then some
limit position is marked with an error state el or er (where l means ’from left’ and r
’from right’) and the run cannot be continued (see Appendix B for details).

Automata on words (or infinite words or trees or infinite trees) have been applied
fruitfully for representing structures. This can be lifted to the setting of L-words and
leads to the notion of (oracle)-L-automatic structures.

Definition 7. Fix an L-word o (called an oracle). A structure A = (A,R1, R2, . . . Rm)
is L-o-automatic if there are L-automata A,A1, . . . ,Am such that

– A represents the domain of A in the sense that A = {w | w ⊗ o ∈ L(A)}, and
– for each i ≤ m, Ai represents Ri in the sense that Ri = {(w1, w2 . . . , wri) |
w1 ⊗ w2 ⊗ · · · ⊗ wri ⊗ o ∈ L(Ai)}, where ri is the arity of relation Ri.

We say that an L-o-automatic structure is finite word L-o-automatic if its domain
consists only of finite L-words. Let FL denote the class of all finite word L-oracle-
automatic graphs.

For the constantly �-valued oracle o (∀x ∈ L o(x) = �), we call an L-o-automatic
structure L-automatic. We call some structure A scattered-automatic (scattered-oracle-
automatic, respectively) if there is some countable scattered linear order L′ (and some
oracle o) such that A is finite word L′-automatic (L′-o-automatic, respectively).

Rispal and Carton [15] showed that L-oracle-automata are closed under comple-
mentation if L is countable and scattered which implies the following Proposition.
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Proposition 8. If L is a countable scattered linear order, the set of finite word L-o-
automatic structures is closed under first-order definable relations.

2.3 Order Forests

Definition 9. An (order) forest is a partial order A = (A,≤) such that for each a ∈ A,
the set {a′ ∈ A | a ≤ a′} is a finite linear order.

Later we study the rank (also called ordinal height) of L-automatic well-founded
forests. For this purpose we recall the definition of rank. Let A = (A,≤) be a well-
founded partial order. Setting sup(∅) = 0 we define the rank of A by rank(a,A) =
sup{rank(a′,A) + 1 | a′ < a ∈ A} and rank(A) = sup{rank(a,A) + 1 | a ∈ A}.

3 Sum- and Box-Augmentation Technique

Delhommé [5] characterised the set of ordinals that can be represented by finite tree-
automata. His results relies on a decomposition of definable substructures into sum- and
box-augmentations. Huschenbett [7] and Kartzow et al. [9] introduced a refined notion
of tamely colourable box-augmentations in order to bound the ranks of tree-automatic
linear orders and well-founded order trees, respectively. We first recall the definitions
and then show that the decomposition technique also applies to finite word scattered-
oracle-automatic structures.

Before we go into details, let us sketch the ideas underlying the sum- and box-
augmentation technique. Given an L-o-automatic structure A with domain A and some
automaton A (called parameter automaton) that recognises a subset of A × W (L),
let us denote by Ap the substructure of A induced by A and p, i.e., with domain
{a ∈ A | a⊗p ∈ L(A)}. The main proposition of this section says that there is a certain
class C of structures (independent of p) such that each Ap is a tamely colourable sum-of-
box augmentation of structures from C. C consists of finitely many L-oracle-automatic
structures and scattered-oracle-automatic structures where the underlying scattered lin-
ear order has finite condensation rank strictly below that of L. This allows to compute
bounds on structural parameters (like finite condensation rank of linear orders or ordinal
height of well-founded partial orders) by induction on the rank of L. We say a structural
parameter ϕ is compatible with sum-of-box augmentations if for A a sum-of-box aug-
mentation of A1, . . . ,An, there is a bound on ϕ(A) in terms of ϕ(A1), . . . , ϕ(An). The
decomposition result tells us that some L-automatic structure A is (mainly) a sum of
boxes of scattered-automatic structures where the underlying orders have lower ranks.
Thus, by induction hypothesis ϕ is bounded on these building blocks of A. Thus, ϕ(A)
is also bounded if ϕ is compatible with sum- and box-augmentations.

3.1 Sums and Boxes

The next definition recalls the notion of sum- and box-augmentations. We restrict the
presentation to structures with one binary relation (but the general case is analogous).
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Definition 10. – A structure A is a sum-augmentation of structures A1, . . . ,An if the
domain of A can be partitioned into n pairwise disjoint sets such that the substruc-
ture induced by the i-th set is isomorphic to Ai.

– A structure A = (A,≤A) is a box-augmentation of structures B1 = (B1,≤B1),
. . . ,Bn = (Bn,≤Bn) if there is a bijection η :

∏n
i=1Bi → A such that for all

1 ≤ j ≤ n and all b̄ = (b1, . . . , bn) ∈ B1 × · · · ×Bn

Bj ' A�η({b1}×···×{bj−1}×Bj×{bj+1}×···×{bn}).

– Let C1, . . . , Cn be classes of structures. A structure A is a sum-of-box augmentation
of (C1, . . . , Cn) if A is a sum-augmentation of structures B1, . . . ,Bk such that each
Bj is a box-augmentation of structures Cj,1, . . . ,Cj,n with Cj,i ∈ Ci.

Definition 11. Let A = (A,≤) be a sum-of-box augmentation of structures Bi,j =
(Bi,j ,≤i,j) via the map η :

⊔n
i=1

∏k
j=1Bi,j → A. This sum-of-box augmentation is

called tamely colourable if for each 1 ≤ j ≤ k there is a function ϕj : (
⊔n
i=1Bi,j)

2 →
Cj with a finite range Cj such that the (ϕj)1≤j≤k determine the edges of A in the
sense that there is a set M ⊆

∏k
j=1 Cj such that η(b1, . . . , bk) ≤ η(b′1, . . . , b

′
k) iff

(ϕ1(b1, b′1), . . . , ϕk(bk, b′k)) ∈M .

3.2 Decomposition of Scattered-Automatic-Structures

In this section, we prove that the sum- and box-augmentation technique applies to fi-
nite word scattered-oracle-automatic structures. Fix an arbitrary scattered order L with
FC(L) = α ≥ 1. Assume that L =

∑
z∈Z Lz where each Lz is a (possibly empty) sub-

order with FC(Lz) < α. We first introduce notation concerning definable subgraphs.

Definition 12. Let o ∈ W (L) be some oracle. Let G = (V,E) be a finite word L-o-
automatic graph. For each parameter automatonA and parameter p ∈W (L), we write
GAp for the induced subgraph of G with domain V Ap := {w ∈ V | w ⊗ p ∈ L(A)}.

We write Gp and Vp for GAp and V Ap if A is clear from the context.

Definition 13. Let c0 = (C0, D0) and c1 = (C1, D1) be cuts of L. For a finite L-word
w we say w is a (c0, c1)-parameter if supp(w) ⊆ D0 ∩ C1, i.e., the support of w is
completely between c0 and c1.

For the rest of this section, we fix two numbers z0 < z1 ∈ Z and define the cuts
c0 := (

∑
z<z0

Lz,
∑
z≥z0 Lz) and c1 := (

∑
z≤z1 Lz,

∑
z>z1

Lz). We also define the
scattered orders LL :=

∑
z<z0

Lz and LR :=
∑
z>z1

Lz . The main result of this
section is a uniform sum-of-box decomposition of all substructures defined by a given
parameter automaton.

Theorem 14. Let G be some finite word L-oracle-automatic graph (V,E) where E
is recognised by some automaton AE with state set QE and let A be a parameter
automaton with state set Q. There are

– a set CL of exp(|Q|2 + 2|QE |2) many LL-oracle-automatic graphs, and
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– a set CR of exp(|Q|2 + 2|QE |2) many LR-oracle-automatic graphs,

such that for each (c0, c1)-parameter p the subgraph GAp is a tamely-colourable sum-
augmentation of box-augmentations of (CL,FLz0

,FLz0+1 , . . . ,FLz1
, CR). 3

Proof. Let o be the oracle such that G is finite word L-o-automatic. By definition, we
can write L as the sum LL +Lz0 +Lz0+1 + · · ·+Lz1 +LR. Induced by this decompo-
sition there is a decomposition of any L-word w as w = wLwz0wz0+1 . . . wz1wR such
that wj is an Lj-word. In particular, our parameter and oracle decompose as

p = pLpz0pz0+1 . . . pz1pR and o = oLoz0oz0+1 . . . oz1oR.

Independently of the choice of the (c0, c1)-parameter p, pL and pR are constant func-
tions (with value �).

In order to construct a sum-of-box decomposition of Gp, we first define the building
blocks of this decomposition. For this purpose, we define equivalence relations ∼ip⊗o
for each i ∈ {L,R, z0, z0 + 1, . . . , z1} on Li-words as follows. For Li-words w,w′ set
w ∼ip⊗o w′ if and only if

1. for all q, q′ ∈ Q q
w⊗pi⊗oi−→
A

q′ ⇐⇒ q
w′⊗pi⊗oi−→
A

q′ and

2. for all q, q′ ∈ QE q
w⊗w⊗oi−→
AE

q′ ⇐⇒ q
w′⊗w′⊗oi−→
AE

q′.

Note that for fixed i, p, o there are at most exp(|Q×Q|+ |QE ×QE |) many ∼ip⊗o
equivalence classes. As domains of the αi-oracle-automatic building blocks of our de-
composition we use the sets K(i, w, p, o) := {x | x ∼ip⊗o w} for each Li-word w. We
augment this notation by writing K(i, v, p, o) := K(i, w, p, o) for L-words v, where
w is the restriction of v to Li. Now for each M ⊆ QE × QE we define a structure
KM (i, w, p, o) = (K(i, w, p, o), EM ) where (w1, w2) ∈ EM if w1, w2 ∈ K(i, w, p, o)
and there is a (q, q′) ∈ M such that q w1⊗w2⊗o−→

AE
q′. Recall that pL and pR are indepen-

dent of the concrete choice of the (c0, c1)-parameter p whence (for fixed o) the sets

CL :=
{
KM (L, w, p, o) |M ⊆ QE ×QE , p a (c0, c1)-parameter

}
CR :=

{
KM (R, w, p, o) |M ⊆ QE ×QE , p a (c0, c1)-parameter

}
have each at most exp(|Q|2 + 2|QE |2) many elements (up to isomorphisms).

Our next goal is the definition of the function η that witnesses the decomposition
claimed in this theorem. For this purpose, let ∼p⊗o denote the equivalence on L-words
that is the product of the ∼ip⊗o.4 Let

η :
⊔

[w]∈Vp/∼p⊗o

K(L, w, p, o)×

(
z1∏
i=z0

K(i, w, p, o)

)
×K(R, w, p, o) −→ Vp

(xL, xz0 , xz0+1, . . . , xz1 , xR) 7→ x := xLxz0xz0+1 . . . xz1xR.

3 Recall that FL is the class of all finite word L-oracle-automatic graphs, see Definition 7.
4 Thus, for w = wLwz0wz0+1 . . . wz1wR and v = vLvz0vz0+1 . . . vz1vR we have w ∼p⊗o v

iff wi ∼ip⊗o vi for all i ∈ {L,R, z0, z0 + 1, . . . , z1}.
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It follows from the definitions that η is a well-defined bijection (using the fact that some
L-word x belongs to Vp iff there is a run

qI
xL⊗pL⊗oL−→

A
qz0

xz0⊗pz0⊗oz0−→
A

qz0+1 . . . qz1
xR⊗pR⊗oR−→

A
qF

for some initial state qI and a final state qF ).
We finally prove that η witnesses that Gp is a tamely-colourable sum-augmentation

of box-augmentations of (CL,FLz0
,FLz0+1 , . . . ,FLz1

, CR). For any w ∈ Vp, let Fw be
the restriction of Gp to η

(
K(L, w, p, o)×

(∏z1
i=z0

K(i, w, p, o)
)
×K(R, w, p, o)

)
. It

is clear that Gp is a sum augmentation of (Fw1 ,Fw2 . . . ,Fwk) for wi representatives of
the ∼p⊗o-classes. From now on let IE(FE) denote the initial (final) states of AE .

1. Fix w = wLwz0wz0+1 . . . wz1wR ∈ Vp. We show that Fw is a box-augmentation
of (CL,FLz0

,FLz0+1 , . . . ,FLz1
, CR). For this purpose, fix i ∈ {L,R, z0, z0 +

1, . . . , z1} and let
←
w := wL . . . wi−1,

←
o := oL . . . oi−1,

→
w := wi+1 . . . wR, and

→
o := oi+1 . . . oR. Let Mi be the set defined by

(q1, q2) ∈Mi ⇐⇒ ∃qI ∈ IE , qF ∈ FE qI
←
w⊗←w⊗←o−→
AE

q1 and q2
→
w⊗→w⊗→o−→
AE

qF . (1)

The function

ηwi : K(i, w, p, o)→ Vp, xi 7→ wLwz0wz0+1 . . . wi−1xiwi+1 . . . wz1wR

embeds KMi(i, w, p, o) into Gp because

∀xi, yi ∈ K(i, w, p, o) (xi, yi) ∈ EMi

⇔∃(q1, q2) ∈Mi q1
xi⊗yi⊗oi−→
AE

q2

(1)⇔∃qI ∈ IE , qF ∈ FE qI
←
w⊗←w⊗←o−→
AE

q1
xi⊗yi⊗oi−→
AE

q2
→
w⊗→w⊗→o−→
AE

qF

⇔ (ηwi (xi), ηwi (yi)) ∈ E.
2. We show that the decomposition is tamely colourable. For all j ∈ {L,R, z0, z0 +

1, . . . , z1}, let cj : (
⊔

[w]∈Vp/∼p⊗o
K(j, w, p, o))2 → Q2

E be the colouring func-

tion satisfying cj(xj , yj) := {(q, q′) ∈ AE | q
xj⊗yj⊗oj−→
AE

q′}. The colour functions

(cj)j∈{L,R,z0,z0+1,...z1) determine E because for w = wLwz0wz0+1 . . . wz1wR

and v = vLvz0vz0+1 . . . vz1vR,

(wLwz0wz0+1 . . . wz1wR, vLvz0vz0+1 . . . vz1vR) ∈ E

⇐⇒∃q0, . . . qk ∈ QE

 q0 ∈ IE , qk ∈ FE , and

q0
wL⊗vL⊗oL−→
AE

q1
wz0⊗vz0⊗oz0−→

AE
q2 . . . qk−1

wR⊗vR⊗oR−→
AE

qk



⇐⇒∃q0, . . . qk ∈ QE


q0 ∈ IE , qk ∈ FE , and

(qi−1, qi) ∈ cj(wj , vj) with j =


L if i = 1,
R if i = k,

z0 +m if i = m

 .
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4 Bounds on Scattered-Oracle-Automatic Structures

4.1 FC-Ranks of Linear-Orders

In this section, we first study the question which scattered linear orders are L-oracle-
automatic for a fixed order L. We provide a sharp bound on the FC-rank. For the
upper bound we lift Schlicht and Stephan’s result [17] using our new sum- and box-
decomposition from the case where L is an ordinal (detailed proof in Appendix C):

Theorem 15. Let L be a scattered order of FC∗ rank 1 + α (0, respectively) for some
ordinal α. Then every finite word L-oracle-automatic scattered linear order A satisfies
FC∗(A) < ωα+1 (FC∗(A) < ω0 = 1, respectively).

If L is an ordinal of the form ω1+α, Schlicht and Stephan [17] showed that the
supremum of the L-automatic ordinals is exactly ωω

α+1
whence Theorem 15 is optimal.

From our theorem we can also derive the following characterisation of finite FC-rank
presentable ordinals (cf. Appendix E).

Corollary 16. Let L be a countable scattered linear order with FC(L) < ω. The finite
word L-oracle-automatic ordinals are exactly those below ωω

FC(L)+1
.

The oracle in this claim cannot be removed. In fact, 0 and 1 are the only finite word Zn-
automatic ordinals if n ≥ 1 (any Zn-automatic linear order with 2 elements contains a
copy of Z).

4.2 Ranks of Well-Founded Automatic Order Forests

We next study scattered-oracle-automatic well-founded order forests. Kartzow et al. [9]
proved compatibility of the height function with sum- and box-augmentations. To-
gether with our decomposition theorem, this yields a bound on the height of an L-
oracle-automatic well-founded order forest in terms of FC(L). Unfortunately, in im-
portant cases these bounds are not optimal. For scattered orders L where the set of
finite L-words allow an L-oracle-automatic order which is scattered, we can obtain bet-
ter bounds. If L is an ordinal or has finite FC-rank, the set of L-words allows such a
scattered ordering. If the finite L-words admit an L-automatic scattered order ≤, the
Kleene-Brouwer ordering of an L-oracle-automatic well-founded order forest with re-
spect to ≤ is L-oracle-automatic again. Thus, its FC-rank is bounded by our previous
result. Adapting a result of Kuske et al.[14] relating the FC-rank of the Kleene-Brouwer
ordering with the height of the forest, we derive a bound on the height (cf. Appendix
D). Our main result on forests is as follows.

Theorem 17. – Let L be an ordinal or a scattered linear order with FC(L) < ω.
Each L-oracle-automatic forest F = (F,≤) has rank strictly below ωFC(L)+1.

– Let L be some scattered linear order. Each L-oracle-automatic forest F = (F,≤)
has rank strictly below ωω·(FC(L)+1).

Remark 18. The bounds in the first part are optimal: for each ordinal L and each c ∈ N,
we can construct an L-automatic tree of height ωFC(L) · c (cf. Appendix D.5).
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5 Separation of Tree- and Ordinal-Automatic Structures

Theorem 19. The countable atomless Boolean algebra is not finite word L-automatic
for any ordinal L.

This theorem is proved by first showing that, if the atomless Boolean algebra is finite
word L-automatic for some ordinal L, then it already is ωn-automatic for some n ∈
N. This follows because any finite word L-automatic structure for L an ordinal above
ωω has a sufficiently elementary substructure that has a ωn-automatic presentation for
some n ∈ N. In the case of the countable atomless Boolean algebra any Σ3-elementary
substructure is isomorphic to the whole algebra. Extending Khoussainov et al.’s monoid
growth rate argument for automatic structures (cf. [12]) to the ωn-setting, we can reject
this assumption (cf. Appendix F). This answers a question of Frank Stephan.
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A Basics on Scattered Linear Orders

Recall the following basic (folklore) results.

Lemma 20. Let L = (L,≤) be a scattered linear order with FC(L) = α. For all l, l′ ∈
L, there are some n ∈ N and scattered linear orders L1,L2, . . . ,Ln of condensation
rank strictly below α such that [l, l′] ∼= L1 + L2 + · · ·+ Ln.

Proof. L can be written as
∑
i∈Z Li for Li scattered linear orders with FC(L) < α. If

l comes from the j-th factor of this sum and l′ form the j′-th, then [l, l′] is isomorphic
to L′j +

∑j′−1
i=j+1 Li + L′j′ where L′j and L′j′ are suborders of Lj and Lj′ whence they

have rank below α. ut

Lemma 21. Let γ ∈ {ω, ω∗, ζ}, Li be a scattered order of FC∗ rank α. The order
L :=

∑
i∈γ Li is of rank FC∗(L) = α+ 1.

Proof. Since FC∗(Li) = α, for all β < α the β-th condensation of Li contains infinitely
many nodes. Thus, also the β-th condensation of L contains infinitely many equivalence
classes containing elements in Li. Thus, for each i ∈ γ such that i + 2 ∈ γ and
for every xi ∈ Li, xi+2 ∈ Li+2 the β condensation of xi and the β-condensation
of xi+2 are separated by infinitely many nodes (the β condensations of Li+1). Thus,
the α condensation of L does not identify nodes of Li and Li+2. Thus, it contains a
suborder isomorphic to γ, whence FC∗(L) ≥ α + 1. On the other hand, since each
Li has rank α the α-condensation of L is a γ-sum over finite linear orders. Hence its
α+ 1-condensation is finite and FC∗(L) ≤ α+ 1. ut

Lemma 22. [Lemma 4.16 of [8]] Let L be a linear order and α < FC(L). There is a
closed interval I of L such that I is a scattered linear suborder of L, FC(I) = α + 1,
and FC∗(I) = α.

B Correctness of the Automaton in Example 6

States el and er report errors from left and from right, respectively, i.e., a cut is forced
to be visited in state el if it is a right limit step such that left of this limit infinitely many
positive positions appear.

On input w, the successor transitions mark the support of w by state p and all other
successor positions in w by n. Let P (w) ⊆ Cuts(w) be defined by (C,D) ∈ P (w) if
∃x ∈ supp(w) such that x = max(C). If w has finite support, then

r(c) :=

{
p if c ∈ P (w)
n otherwise

defines an accepting run on w.
We now prove that there is no accepting run if w is not a finite word. Heading for

a contradiction assume that r is an accepting run of A on w and w has infinite support.
Then r((∅, L)) = n = r((L, ∅)). We want to show that there is a cut c such that
r(c) = el or r(c) = er.
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If we are able to show this, we arrive at a contradiction: if r(c) = el then c is not the
maximal cut. But there is no successor transition and no left limit transition from state
el. Thus, r cannot assign states to the cuts to the right of c, which is a contradiction. If
state er occurs, the argument is the same using the cuts to the left of c.

We show that there is a cut that is assigned an error state el or er. Assume that there
is an infinite ascending chain l1 < l2 < l3 < . . . in L such that {li | i ∈ N} ⊆ supp(w).
For C := {x ∈ L | ∃i ∈ N x ≤ li} and D := L \C the cut c := (C,D) has no direct
predecessor. Moreover, p ∈ limc− r because state p occurs at each cut associated to one
of the li. Thus, if there is a right limit transition applicable at c, it assigns state el to c.
If there is no infinite ascending chain in supp(w), then there is an infinite descending
chain. The analogous argument shows that then state er occurs.

C Proof of Theorem 15

Huschenbett [7] used the sum-of-box decomposition technique in order to prove a
strict bound on the finite condensation rank of tree-automatic scattered linear orders.
His result relies on the fact that the finite condensation rank behaves well with box-
decompositions in the following sense. Let α0⊕ · · · ⊕αn denote the commutative sum
of α0, ..., αn.

Lemma 23. [Proposition 4.11 in [8]] For each scattered linear order A that is a
tamely-colourable box-augmentation of B1, . . . ,Bn, its rank is bounded by

FC∗(A) ≤ FC∗(B1)⊕ FC∗(B2)⊕ · · · ⊕ FC∗(Bn).

Moreover, Khoussainov et al. have already shown that FC∗ rank behaves well with
sum-augmentations.

Lemma 24. [Proposition 4.4 in [13]] For each scattered linear order A that is a sum-
augmentation of B1, . . . ,Bn, its rank is determined by

FC∗(A) = max{FC∗(B1),FC∗(B2), . . . ,FC∗(Bn)}.

Proposition 25. Let α be a scattered order of FC rank 1 + γ (0, respectively) for some
ordinal γ. Every α-oracle-automatic scattered linear order has FC∗ rank strictly below
ωγ+1 (ω0 = 1, respectively).

Proof. In the case FC(α) = 0 the domain of an α-automatic structure has at most |Σ|
many elements. The theorem follows because every finite linear order has FC∗ rank 0.

Now let FC(α) = 1 +γ. As induction hypothesis assume that the theorem holds for
all orders β with FC(β) < 1 + γ. Heading for a contradiction assume that L = (L,≤)
is an α-oracle-automatic scattered linear order such that FC∗(L) ≥ ωγ+1. Let ≤ be
recognised by some automaton with state set Q≤. Due to Lemma 22 the automaton A
corresponding to the formula ϕ(x, y1, y2) := y1 ≤ x ≤ y2 is a parameter automaton
such that for each n ∈ N there is a parameter pn such that Lpn is a scattered linear order
with FC∗(Lpn) = ωγ · n. Assume that A has state set Q.

12



Now, fix some n0 ∈ N such that n0 > 42+2·exp(|Q|2+2|Q≤|2). Due to Theorem 14,
there are sets C0, C1 of size exp(|Q|2 + 2|Q≤|2) such that for each n ≤ n0, Lpn is
a tamely-colourable sum-augmentation of box-augmentations of C0, C1 and sets of βi-
oracle-automatic structures where FC(βi) < FC(α) (cf. Lemma 20). By choice of n0,
there is some 1 ≤ m < n0

4 such that for all structures A ∈ C0 ∪ C1

FC∗(A) ≤ ωγ ·m or
FC∗(A) > ωγ · 4m.

(2)

Now consider the decomposition of Lp4m . Due to Lemma 24 there is a suborder L′ of
Lp4m with FC∗(L′) = ωγ ·4m that is tamely-colourable box-augmentation of structures
(C0,C1,B1, . . . ,Bk) where C0 ∈ C0,C1 ∈ C1, and Bi a βi-oracle-automatic structure
for each 1 ≤ i ≤ k. Note that for each 1 ≤ i ≤ k, by induction hypothesis FC∗(Bi) <
ωγi+1 for some γi < γ. Thus,

FC∗(B1)⊕ · · · ⊕ FC∗(Bk) < ωmax{γi|1≤i≤k}+1 ≤ ωγ .

Moreover, since C0 and C1 are substructures of L′, we have FC∗(Ci) ≤ ωγ ·4m whence
(2) implies that FC∗(Ci) ≤ ωγ ·m for i ∈ {0, 1}. Due to the properties of⊕ and Lemma
23 we arrive at the contradiction

FC∗(L′) = ωγ · 4m ≤ FC∗(C0)⊕ FC∗(C1)⊕ FC∗(B1)⊕ · · · ⊕ FC∗(Bk)
≤ ωγ ·m⊕ ωγ ⊕ ωγ ·m
< ωγ · 4m.

ut

Theorem 15 now follows as a corollary of this Proposition.

Corollary 26. Let α be a scattered order of FC∗ rank 1 + γ (0, respectively) for some
ordinal γ. Every finite word α-oracle-automatic scattered linear order has FC∗ rank
strictly below ωγ+1 (ω0 = 1, respectively).

Proof. If α is a scattered linear order such that FC∗(α) = 1 + γ, then there are linear
orders αi with FC(αi) ≤ 1 + γ for 1 ≤ i ≤ k such that α =

∑k
i=1 αi.

Theorem 14 implies that each finite word α-oracle-automatic scattered linear order
L is a tamely colourable sum-of-box augmentations of (Fα1 , . . . ,Fαk), the classes of
finite word αi-oracle-automatic structures. Due to Lemmas 23 and 24 there are αi-
oracle-automatic scattered linear orders Li (for 1 ≤ i ≤ k) such that FC∗(L) ≤
FC∗(L1) ⊕ · · · ⊕ FC∗(Lk). Since FC∗(Li) < ωγ+1 for each 1 ≤ i ≤ k, we imme-
diately conclude that FC∗(L) < ωγ+1. ut

D Ranks of Forests

We now introduce a variant of the height of a well-founded partial order called infinity
rank and denoted by∞-rank.
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Definition 27. Let P = (P,≤) be a well-founded partial order. We define the ordinal
valued∞-rank of a node p ∈ P inductively by

∞-rank(p,P) = sup{α+ 1 | ∃∞p′(p′ < p and∞-rank(p′,P) ≥ α)}.

The∞-rank of P is then

∞-rank(P) = sup{α+ 1 | ∃∞p ∈ P ∞-rank(p,P) ≥ α}.

Lemma 28. [9] For P a well-founded partial order, we have

∞-rank(P) ≤ rank(P) < ω · (∞-rank(P) + 1).

In this section, we prove the following bound on the ranks of α-automatic order
forests.

Theorem 29. Let α be some scattered linear order.

1. Every α-oracle-automatic order forest F = (F,≤) such that
– F is also the domain of some α-oracle-automatic scattered linear order, and
– FC(α) = 1 + γ

has rank strictly below ω1+γ+1 and∞-rank strictly below ωγ+1.
2. – If FC(α) < ω, then every α-oracle-automatic order forest has rank strictly

below ωFC(α)+1.
– If FC(α) = ω + c0 for some c0 < ω, then every α-oracle-automatic order

forest has rank strictly below ωω·(c0+1).
– If FC(α) = ω·c1+c0 for c0, c1 < ω and c1 ≥ 2, then every α-oracle-automatic

order forest has rank strictly below ωω
2·(c1−1)+ω·(c0+1).

– If FC(α) ≥ ω2, then every α-oracle-automatic order forest has rank strictly
below ωω·FC(α)+ω .5

Remark 30. If α is an ordinal or FC(α) < ω, we show in the next section that every
α-oracle-automatic set F of finite α-words allows a scattered linear order. Thus, if α
satisfies one of these conditions, then the better bounds hold.

D.1 A Scattered Order of Scattered Words

We first show that scattered orders α of finite rank allow a scattered order of all finite
α-words that is α-automatic. Afterwards, we show that the analogous result holds in
case that α is an ordinal. Our first claim is proved by induction on the FC-rank and
the FC∗-rank of α. We prepare our result by defining an automaton that determines at
every cut the left and the right rank of this cut. Given a cut c = (C,D) without direct
predecessor, the left rank is the minimal rank of the induced suborders of nonempty
upwards closed subsets of C. Analogously, the right rank is the minimal rank of the
induced suborders of nonempty downwards closed subsets of D.

5 In particular, if FC(α) = ωn · cn + ωn−1 · cn−1 + · · · + ω · c1 + c0 such that n ≥ 2,
c1, c2, . . . , cn < ω, and cn 6= 0, then every α-oracle-automatic order forest has rank strictly
below ωω

n+1·cn+ωn−1+1·cn−1...ω
2·c1+ω·(c0+1).
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Definition 31. For Σ arbitrary, let Cn = (Qn, Σ, In, Fn, ∆n) be an automaton with
state set Qn := {0, 1, . . . , n} × {0, 1, . . . , n}, initial states In = {0} × {0, 1, . . . , n}
and final state Fn = {0, 1, . . . , n} × {0}. In order to define its transition relation, we
use the following notation for i ≤ n, let Pi be defined by

{S ∈ 2Qn | ∀j > i ∀k (j, k), (k, j) /∈ S and ∃k ≤ i (i, k) ∈ S or (k, i) ∈ S}.

The transition relation of Cn is

∆n = {((i, 0), σ, (0, j)) | σ ∈ Σ and i, j ∈ {0, 1, . . . n}}
∪ {((i, j), X) | X ∈ Pj}
∪ {(X, (i, j)) | X ∈ Pi}

Lemma 32. Let α be some scattered linear order and w an arbitrary α-word. Inter-
preting Cn as an α-automaton, there is an accepting run r of Cn on w if and only if
FC∗(α) ≤ n. In this case, r is the unique accepting run and for every cut c = (C,D)
the state at c is

– in {0} × {0, 1, . . . , n} if c has a direct predecessor,
– in {0, 1, . . . , n} × {0} if c has a direct successor,
– in {k}× {0, 1, . . . , n} (with k ≥ 1) if c has no direct predecessor, and for each cut
c′ < c there is a cut c′′ such that c′ < c′′ < c and FC(α�(c′′,c)) = k, and

– in {0, 1, . . . , n} × {k} (with k ≥ 1) if c has no direct successor, and for each cut
c′ > c there is a cut c′′ such that c′ > c′′ > c and FC(α�(c,c′′)) = k.

Proof. First, let n ≥ FC∗(α). This implies, that for all cuts c′′ and c, the suborder
induced by (c′′, c) has FC-rank at most FC∗(α) ≤ n. Moreover, if c is a cut without
direct predecessor, and if c1 < c2 < c3 < · · · < c is an infinite chain of cuts whose
limit is c, then FC(α�(ci,c)) stabilises at some i0. Thus, the following function r is well-
defined. It is a function r : Cuts(α) → Qn where for each cut c = (C,D) we have
r(C,D) = (i, j) such that

1. i = 0 if c has a direct predecessor or C = ∅,
2. otherwise, i = min{FC((c′, c)) | c′ < c},
3. j = 0 if c has a direct successor or D = ∅,
4. otherwise, j = min{FC((c, c′)) | c′ > c}.

A straightforward induction on the left and right rank of each cut in α shows that r is
consistent with the transition relation, i.e., r is an accepting run of Cn on each α-word.

We next show that r is the unique run of Cn on α-words. Heading for a contradiction
assume that r′ is another accepting run on some α-word and that c = (C,D) satisfies
r(c) = (i, j) 6= r′(c) = (i′, j′). Without loss of generality (the other case is symmetric),
we may assume that i 6= i′ and c has been chosen such that i is minimal with this
property. We distinguish the following cases:

– Assume that i = 0. Since r′ is accepting, c cannot be the minimal cut. Thus, c has
a direct predecessor c′. But independent of the successor transition used between c′

and c, r′(c) ∈ {0}×{0, 1, . . . , n} whence i = i′ = 0 contradicting the assumption
i 6= i′.
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– Assume that i ≥ 1. The right limit transition applied by r at c shows that there is a
cut c′ < c such that for all c′′ ∈ (c′, c), r(c′′) ∈ {0, 1, . . . , i−1}2. By minimality of
i, r and r′ agree on this interval. But then again the applicable right limit transitions
always imply that i′ = i contradicting i′ 6= i.

Finally, we have to show that there are no accepting runs of Cn on α-words if
FC∗(α) > n. Assume that FC∗(α) > n. Due to Lemma 22, α contains an inter-
val α′ with FC∗(α′) = n + 1. We show that there is no function r : α′ → Qn
which is consistent with the transition relation ∆n. Up to symmetry, α′ contains an
upwards closed interval of the form

∑
ω βi with FC(βi) = n. As shown in the first

part, there is an accepting run r′ of Cn+1 on this sum. For the maximal cut cmax of α′,
we have r′(cmax) = (n + 1, 0). In fact, one easily sees that the previous arguments
apply to any (possibly non-accepting run) on α′ in the sense that any run on α′ satisfies
r′(cmax) ∈ {n+ 1}×{0, 1, . . . , n+ 1}. Since ∆n ( ∆n+1, any run of Cn on α is also
a run of Cn+1 that does not use states from {n + 1} × {0, 1, . . . , n + 1}. But we have
seen that any run of Cn+1 on α′ would label cmax with such a state. Thus, there is no
run of Cn on α′ whence there can neither be a run of Cn on α. ut

The automaton Cn will be useful to decompose an order α with FC∗(α) = n into
finitely many pieces α = α1 + α2 + · · ·+ αk of FC-rank at most n.

Lemma 33. Let α be an order with FC∗(α) = n and r the accepting run of Cn on
α-words. Let c, d be consecutive cuts of maximal rank in the sense that

– c is minimal or r(c) = (i, j) with max(i, j) = n,
– d is maximal or r(d) = (k, l) with max(k, l) = n, and
– for all e ∈ (c, d), r(e) = (x, y) we have max(x, y) < n.

Then the interval (c, d) of α has FC-rank at most n.

Remark 34. In particular, this lemma implies that in an order α with FC∗(α) = n there
are only finitely many cuts of left or right rank n.

Proof. By induction on i, we prove that for arbitrary cuts c ≤ d the following holds.
If for all cuts e strictly between c and d we have r(e) ∈ {0, 1, . . . , i − 1}2 then
FC((c, d)) ≤ i.

For i = 0, the condition implies that c = d whence FC((c, d)) = FC(∅) = 0.
Now assume that this claim holds for i − 1 and that for all cuts e ∈ (c, d) we have
r(e) ∈ {0, 1, . . . , i − 1}2. By definition of the limit transitions, we know that r(c) ∈
{0, 1, . . . , n} × {0, 1, . . . , i} and that r(d) ∈ {0, 1, . . . , i} × {0, 1, . . . , n}. From our
construction of the accepting run r (compare the previous proof), we conclude that there
are cuts c < c1 ≤ d1 < d such that FC((c, c1)) ≤ i− 1 and FC((d1, d)) ≤ i− 1. Next,
we claim that there are only finitely many cuts c1 < e < d1 such that r(e) ∈ Mi−1 :=
({i−1}×{0, 1, . . . , {i−1})∪({0, 1, . . . , {i−1})×{i−1}). Otherwise there would be
an infinite ascending or descending chain of cuts in Mi−1 whose limit e would satisfy
c1 ≤ e ≤ d1 and r(e) /∈ {0, 1, . . . , i−1}2 contradicting our assumptions on the interval
(c, d). Thus, let c1 = e1 < e2 < · · · < en−1 < en = d1 be a finite sequence of cuts
such that for all c1 ≤ e ≤ d1 we have r(e) ∈ Mi−1 only if there is a 1 ≤ j ≤ n with
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e = ej . Thus, (c, d) = (c, c1) +
∑n−1
i=1 (ei, ei+1) + (d1, d) is a finite sum of intervals

that (by induction hypothesis) have FC-rank at most i − 1. Thus, FC((c, d)) ≤ i as
desired. ut

Let us collect one more fact about Cn+1. Assume that α is an order with FC(α) =
FC∗(α) = n+1. This implies that α =

∑
γ∈Γ αγ where Γ ∈ {ω, ω∗,Z} and FC(αγ) ≤

n where for infinitely many γ ∈ Γ we have FC(αγ) = n. Thus, Cn has an accepting
run on each αγ that agrees with the run of Cn+1 on α on the interval αγ . Hence, the run
of Cn+1 assumes only finitely many often a state from Mn := {n} × {1, 2, . . . , n} ∪
{1, 2, . . . , n} × n} on each αγ . The next lemma follows immediately.

Lemma 35. Let α be an order with FC(α) = n+ 1. Let r be the accepting run of Cn+1

on some α-word. The suborder induced by the cuts {c | r(c) ∈ Mn} form a suborder
of Z.

Then there is an accepting run of Cn+1 on every α-word but no run of Cn on some
α-word.

Lemma 36. Suppose that α is a scattered linear order with FC(α) < ω. Then there is
an α-oracle-automatic scattered linear order on the set of finite α-words.

Proof. We define automataAn (and Bn, respectively) for each n < ω which uniformly
define α-automatic scattered linear orders on the finite α-words over a fixed alphabet
Σ for all scattered linear orders α with FC(α) ≤ n (and FC∗(α) ≤ n, respectively).
Note that for α with FC(α) = 0 there is a finite number of α-words over Σ whence the
construction of A0 is trivial.

Suppose that we have constructed An. We define Bn as follows. If FC∗(α) ≤ n,
the run of the automaton Cn partitions α uniquely into a finite sum of intervals α =
α1 + α2 + . . . , αm of FC-rank ≤ n by taking the states from {n} × {0, 1, . . . , n} ∪
{0, 1, . . . , n} × {n} as splitting points. Then Bn orders α-words lexicographically by
comparing the restrictions to the intervals αi via An. If An orders αi-words as some
order Li, then Bn orders α-words as the scattered sum

∑
a1∈L1

∑
a2∈L2

· · ·
∑
am∈Lm 1

of one element orders which clearly is scattered again.
Suppose that FC(α) ≤ n+ 1. Let r be the accepting run of Cn+1 on every α-word.

Recall that from Lemma 35, we conclude that the cuts of rank n embed into Z, Thus,
the cuts

C := {c | c minimal or maximal or r(c) ∈Mn}

are a suborder of 1 + Z + 1. Given an α-word w we define c(w) to be maximal element
c ∈ C such that c < supp(w) and define d(w) to be the minimal element c ∈ C such
that supp(w) < c. We define An+1 as follows. Given finite α-words v, w, let v ≤ w if

1. c(v) < c(w) , or
2. c(v) = c(w) and d(v) < d(w), or
3. c(v) = c(w), d(v) = d(w) and Bn applied to the interval between c(v) and d(v)

reports v < w. Note that FC∗((c(v), d(v)) ≤ n because the accepting run of Cn+1

on α assumes only finitely many states of rank n on this subinterval. Thus, also Cn
accepts (c(v), d(v))-words.
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This defines an α-automatic linear order (Wα,�) on the set of finite α-words Wα.
Since � embeds into a (1 + Z + 1)2-sum of scattered linear orders (induced by Bn),
where (1 + Z + 1)2 is ordered lexicographically, (Wα,�) is scattered. ut

Lemma 37. Let α be some ordinal. Then there is an α-automatic well-order of all finite
α-words over an alphabet Σ.

Proof. Fix a linear order ≤Σ on Σ. Let w, v be α-words. We set w < v if either
max(supp(w)) < max(supp(v)) or max(supp(w)) = max(supp(v)) and there is a
β < max(supp(w)) such that w(β) <Σ v(β) and for all α > β′ > β, w(β′) = v(β′).
Apparently this order is α-automatic. Note that for α = ω this is a the length-backward-
lexicographic order (we first compare words with respect to size and words of the same
size are compared lexicographically from the last letter to the first one). In order to show
that this defines a well-order, first note that it is reflexive, transitive and antisymmetric,
i.e., a linear order. Heading for a contradiction, assume that there is some ordinal α such
that the order on α-words contains an infinite descending chain w1 > w2 > w3 > . . . .
The chain αi := max(supp(wi)) is a monotone decreasing sequence in α. Since α is an
ordinal, it stabilises at some k ∈ N. We conclude that the sequence vj := wk+j satisfies
max(supp(vj)) = αk for all j ∈ N.

We now iterate the following argument: let α′ < αk be maximal such that there
are vj , vk such that vj(α′) 6= vk(α′). Since Σ is finite, there is an infinite subsequence
vi1 > vi2 > . . . such that vik and vij agree at α′, i.e., vik(α′) = vij (α

′). Replace the
sequence vk by the sequence vik . Since this is an decreasing chain and above α′ all vik
agree, we can repeat this argument with some smaller α′′ < α′ which is maximal such
that some vik do not agree on α′′. Since α is an ordinal and since α′ > α′′ > α′′′ > . . . ,
this sequence must be finite. But this process terminates if and only if vik = vij for all
j, k ∈ N. This contradicts the assumption that the vij form a strictly decreasing infinite
chain. ut

D.2 Kleene-Brouwer Orders of Trees

Let T = (T,v) be a tree and let L = (T,�) be a linear order. Then we can define the
Kleene-Brouwer order (also called Lusin-Sierpiński order) KB(T,L) := (T,l) given
by t l t′ if either t v t′ or there are t v s, t′ v s′ such that {r ∈ T | s < r} =
{r ∈ T | s′ < r} and s ≺ s′. This generalises the order induced by postorder traversal
to infinitely branching trees where the children of each node are ordered corresponding
to the linear order �. Since α-oracle-automatic structures are closed under first-order
definitions, the following observation is immediate.

Proposition 38. If T is an tree and L a linear order such that both are α-oracle-
automatic, then KB(T,L) is α-oracle-automatic.

For the following section, it is important that (T,l) is scattered if (T,�) is a scat-
tered linear order.

Lemma 39. Let T = (T,v) be a tree and L = (T,�) a scattered linear order, then
KB(T,L) = (T,l) is scattered.
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Proof. The proof is by induction on the rank of T. If T has rank 1, it consists only
of the root whence KB(T,L) is the linear order of 1 element which is scattered. Oth-
erwise, let T0 be the set of children of the root and let t0 be the root of T. T0 in-
duces a scattered suborder (T0,�) of L. Now (abusing notation slightly) KB(T,L) =(∑

t∈(T0,�) KB(T(t),L)
)

+ t0 which is a scattered sum of scattered orders. Proposi-
tion 2.17 in [16] shows that KB(T,L) is scattered. ut

D.3 Bounds for Forests on Scattered Orders of Finite Rank

In this section, we prove the main theorem in the case that FC(α) is finite, α is an
ordinal, or in general, the set of finite α-words allows a scattered linear order. In the
next Section we then prove the other cases.

Lemma 40. Let T = be a nonempty α-oracle-automatic order tree with domain T and
L a scattered α-oracle-automatic order with domain T . If FC∗(KB(T,L)) < β, then
∞-rank(T) < β.

Proof. The proof is by contraposition and induction on β.

– If β = 0, there is nothing to show.
– Assume that∞-rank(T) = β = β′ + 1 and for each tree T′ with∞-rank(T′) =
β′ we have FC∗(KB(T′,L)) ≥ β′. By definition of ∞-rank(T) there is an infi-
nite antichain d1, d2, d3, . . . in T such that the subtree T(di) rooted at di satisfies
∞-rank(T(di)) = β′. By induction hypothesis, FC∗(KB(T(di),L)) ≥ β′. More-
over, L orders {di | i ∈ N} as order type γ ∈ {ω, ω∗, ζ} Thus, KB(T,L) contains
a suborder of the form

∑
x∈γ KB(T(dx),L)) with FC∗(KB(T(dx),L)) = β′. Due

to Lemma 21, we conclude that

FC∗(KB(T,L)) ≥ FC∗(
∑
x∈γ

KB(T(dx),L)) = β′ + 1 = β.

– Assume that ∞-rank(T) = β is a limit ordinal. By definition for each β′ < β
there is d ∈ T such that∞-rank(T(d)) ≥ β′ whence FC∗(KB(T(d),L)) ≥ β′ by
induction. Thus, FC∗(KB(T,L)) ≥ sup{β′ | β′ < β} = β.

ut

Corollary 41. Let T be a nonempty α-automatic order tree. If FC(KB(T,L)) < β,
then∞-rank(T) < β + 1.

Combining this result with our bound on the FC ranks of α-oracle-automatic we can
now prove the first part of Theorem 29.

Proof (Proof of Theorem 29 part (1)). Assume that T = (T,≤) is anα-oracle-automatic
order tree such that L is an α-oracle-automatic scattered order with domain T . Since
KB(T,L) is an α-oracle-automatic scattered linear order, FC(KB(T,L)) < ωγ+1 due
to Theorem 15. Due to Corollary 41, ∞-rank(T) < ωγ+1. By application of Lemma
28 we finally obtain rank(T) < ω1+γ+1.

Note that this result easily extends to forests because for each α-oracle-automatic
forest, we can turn it into a α-oracle-automatic tree by adding a new root. This tree has
the same∞-rank as the forest we started with. ut
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D.4 Bounds for Forests on Scattered Orders of Infinite Rank

Since we do not know whether there is an α-automatic scattered linear ordering of all
finite α-words for all linear orders α with FC(α) ≥ ω, we have to do a direct analysis
of the sum-of-box decompositions of α-automatic forests. Fortunately, we can rely on
the analogous analysis in the case of tree-automatic structures from [9]. The essence of
this analysis can be rewritten as the following result.

Theorem 42. [9] If F is a forest that is tamely-colourable sum-augmentation of box-
augmentations of classes C1, . . . , Ck such that for all structures F′ ∈

⋃k
i=1 C1 we have

∞-rank(F′) 6= ωα, then∞-rank(F) 6= ωα.

Using this decomposition result, the second part of Theorem 29 is obtained by in-
duction.

Proof (Proof of Theorem 29 part (2)). Because of the first part of this theorem and
Lemma 36, the claim for orders α with FC(α) < ω has already been proved.

We now establish the following claim. Assume that α is a scattered linear order of
rank FC(α) = γ ≥ ω. Let δ ≥ ω be an ordinal such that for all α′ with FC(α′) < γ and
all α′-oracle-automatic forests F′, ∞-rank(F′) < ωδ . Then every α-oracle-automatic
forest F satisfies∞-rank(F) < ωδ+ω .

Heading for a contradiction assume that F is an α-oracle-automatic forest with
∞-rank(F) ≥ ωδ+ω . Then there is a parameter automatonA (corresponding to the for-
mula x < y and parameters pn for n ∈ N such that ∞-rank(Fpn) = ωδ+n. Assume
that A has q many states and the order automaton of F has q< many states. Now fix
n0 > 2 exp(q2 + 2q2<). Due to Theorem 14, there are sets C0, C1 of size exp(q2 + 2q2<)
such that for each n ≤ n0, Fpn is a tamely-colourable sum-of-box augmentation of
C0, C1 and some sets of αi-oracle-automatic structures where FC(αi) < γ for each i.
By choice of n0, there is some 1 ≤ m ≤ n0 such that

∞-rank(A) 6= ωδ+m

for all structures A ∈ C0 ∪ C1. Moreover, by definition of δ every αi-oracle-automatic
forest has ∞-rank strictly below ωδ . Thus, Fpm is a tamely-colourable sum-of-box
augmentation of classes of structures such that none of these structures has ∞-rank
ωδ+m. But this contradicts directly Theorem 42 because∞-rank(Fpm) = ωδ+m.

Using Lemma 28 this claim carries over from ∞-rank to rank because for γ ≥ ω
some forest has rank strictly below ωγ if and only if it has ∞-rank strictly below ωγ

(note that ω · ωγ = ωγ).
The proof of the theorem now follows by a straightforward induction on FC(α)

using the claim proved above. ut

D.5 Optimality of the Bounds on Forests

The upper bounds on the ranks of trees stated in the first part of Theorem 29 are optimal
in the sense that we can reach all lower ranks as stated in the following theorem.

Theorem 43. 1. For all i, c ∈ N there is an ωi-automatic tree Ti,c with rank(Ti,c) =
ωi · c.
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2. For all ordinals γ ≥ ω and all c ∈ N, there is an ω1+γ-automatic tree Tγ,c with
rank(Tγ,c) = ωγ · c.

In order to prove the first part of Theorem 43, we want to construct for all i ∈ N
and c ∈ N an ωi-automatic tree of∞-rank ωi−1 · c and rank ωi · c.

We define a finite word ω-automatic tree as follows. Let T = ({ε} ∪ {(n,m) | n ≤
m} and T0 = (T,≤) where

ε ≤ t for all t ∈ T,
(n,m) ≤ (n′,m′) if m = m′ and n ≤ n′.

T0 is clearly well-founded, finite word ω-automatic, and satisfies∞-rank(T0) = 1 and
rank(T0) = ω.

Next, we show that for any i, c ∈ N and any given ωi-automatic tree T there is
also an ωi-automatic tree T′ such that ∞-rank(T′) = ∞-rank(T) · c and rank(T) =
rank(T) · c.

Lemma 44. Let c ∈ N and T an α-automatic tree. Then there is an α-automatic tree
Tc such that∞-rank(Tc) =∞-rank(T) · c and rank(T) = rank(T) · c.

Proof. Let T = (T,≤) and L ⊆ T be the set of leaves of T (L is α-automatic because
it is first-order definable if T). Set Tc =

⋃c−1
i=0 L

⊗i ⊗ T where L⊗1 = L and L⊗i+1 =
L⊗i ⊗ L. The order of Tc is given by

l1 ⊗ l2 ⊗ · · · ⊗ li ⊗ t ≤c l′1 ⊗ l′2 ⊗ · · · ⊗ l′j ⊗ t′

iff either i = j, l1 = l′1, . . . , li = l′i, and t ≤ t′ or i < j and t ≤ l′i+1.
Note that T1 = T and Tc+1 is obtained from Tc by attaching a copy of T to each

leaf of Tc. Thus, an easy induction on c proves the claim. ut

In the case α = ωi By replacing the convolution by composition of ωi-words, we
construct a finite word ωi+1-automatic representation of the forest

⊔
c∈N Tc for any

ωi-automatic tree T.

Lemma 45. For T a finite word ωi-automatic tree, the forest F :=
⊔
c∈N Tc is finite

word ωi+1-automatic.

Proof. Let⊥ be a fresh symbol not occurring in the alphabet Σ of the representation of
T. Let Wc be the set of finite ωi+1-words whose letters all occur before position ωi · c
and that have ⊥ exactly at position ωi · c. We write ⊥c for the word of Wc whose only
letter is ⊥. We identify an element of Tc with a word in Wc as follows. Assume that
tc ∈ Tc has the form tc = l1⊗· · ·⊗lk⊗twhere each li is a ωi-word denoting a leaf of T
and t is an ωi-word denoting an arbitrary element of T. Now let t′c be the word l1 + l2 +
· · ·+lk+t+⊥c−k−1 where + denotes the concatenation of α-words. Note that t′c ∈Wc.
Since the order of two elements of Tc is defined by componentwise comparisons on the
convolutions, this results in an ωi+1-automatic presentation of Tc whose domain is a
subset of Wc. It is easy to see that the union of all these representations is an ωi+1-
automatic forest. ut
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Of course, we can add a new root to F and obtain an ωi+1-automatic tree T′ with
∞-rank(T′) = sup{∞-rank(T) · c | c ∈ N} and rank(T′) = sup{rank(T) · c | c ∈ N}.

Iterated application of this lemma to the tree T1 shows that for each i ∈ N there
is an ωi-automatic tree of rank ωi+1 (and∞-rank ωi). Application of Lemma 44 then
proves the first part of Theorem 43.

We now use a variant of the previous construction in order to prove the second part
of Theorem 43, i.e., we construct α-automatic trees of high ranks for ordinals α ≥ ωω .

Definition 46. Let α be an ordinal. Let Dα be the set of finite α-words w over {�, 1}
such that for all limit ordinals β < α and all c ∈ ω the implication

w(β + c) = 1⇒ w(β) = w(β + 1) = · · · = w(β + c) = 1

holds. We define a partial order on Dα via the suffix relation: for w1, w2 ∈ Dα let

w1

→
wα w2 if and only if for β ≤ α maximal such that for all 0 ≤ γ < β w2(γ) = �

we have that ∀β ≤ δ < α w1(δ) = w2(δ), i.e., the domain ofw2 is an upwards closed
subset of the domain of w1 and both agree on the domain of w2.

Note that Tα := (Dα,
→
wα) is α-automatic.

Lemma 47. Tα := (Dα,
→
wα) is a tree.

Proof. SinceDα contains finite α-wordsw there are only finitely many positions β < γ
with w(β) = 1. Thus, there are also only finitely many suffixes of w that are undefined
up to some position in supp(w). This implies that all ascending chains are finite. More-
over, the suffix relation is a linear order when restricted to the suffixes of a fixed word
w. ut

The following lemma combined with Lemma 44 proves the second part of Theorem
43.

Lemma 48. For all ordinals α, α′ such that α = ω · α′ ≥ ω, rank(Tα) = α′.

Proof. The proof is by induction on α′. For α = ω · 1 = ω note that Dα consists of
all words 1m�ω , m ∈ N where the word �ω is suffix of all other elements. Moreover,
these others are pairwise incomparable. Thus, Tω is the infinite tree of depth 1 which
has rank 1 as desired. We now proceed by induction.

1. Assume that α′ is a successor ordinal, i.e., there is some β′ such that α = ω · α′ =
ω ·β′+ω. Note that the words directly below �α are those of the form w = �γ1m�δ
such that γ + δ = α and γ is some limit ordinal and m < ω. Fix such a word and
note that Dα ∩ {w′ | w′

→
wα w} induces a suborder isomorphic to (Dγ ,

→
wγ) which

by induction hypothesis has rank γ′ for γ′ such that γ = ω · γ′. Thus, the suborders
of maximal rank β′ are induced by the elementswm = �ω·β′1m�ω for eachm < ω.
Since these are infinitely many nodes of∞-rank β′, the rank of Tα is β′ + 1 = α′.

2. Assume that α′ is a limit ordinal and (βi)i∈ω converges to α′ and βi < α for each
i ∈ ω. Then each wmi := �βi1m�α for m, i ∈ ω is directly below �α and induces

a suborder isomorphic to (Dβi ,
→
wβi) of∞-rank βi. Thus,∞-rank(Tα) ≥ α′. But

as in the previous case we see that all proper suborders have∞-rank < α whence
∞-rank(Tα) ≤ α′. Thus, its∞-rank is exactly α′.

ut
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E Finite-Rank-Scattered-Automatic Ordinals

In this section we prove that for every countable scattered linear L order such that
FC(L) = FC∗(L) = n < ω, the L-oracle-automatic ordinals are exactly those below
ωω

n+1
. For this purpose, it suffices to show that ωω

n

is L-oracle-automatic. Since L-
oracle-automatic structures are closed under finite (lexicographically ordered) products,
it follows that for each k the ordinal (ωω

n

)k = ωω
n·k is L-oracle-automatic. Since the

L-oracle-automatic ordinals are closed under definable substructures we conclude that
all ordinals below ωω

n+1
are L-oracle-automatic.

Theorem 49. Let L be a scattered linear order with FC(L) = FC∗(L) = 1 + n < ω.
The ordinal ωω

n

is finite word L-oracle-automatic.

Proof. We inductively prove the following claim: For each n there is are finite automata
An and Bn such that for every scattered linear order L with FC(L) = FC∗(L) =
1 + n there is an L-oracle oL such that ωω

n

is L-oL-automatic where An recognises
the domain and Bn the order < in this representation. Moreover the empty L-word
represents 0).

In the base n = 0, we distinguish two cases:

1. L = ω or L = Z: Let oL : L → {�, 1} be an oracle such that supp(oL) is
isomorphic to ω. Let A0 accept all L-words w such that supp(w) ⊆ supp(oL) and
|supp(w)| = 1. The order is given by w < v iff supp(w) is to the left of supp(v).

2. L = ω∗: Let oL : ω∗ → {�, 1} be the constant 1 oracle. Again, the domain
recognised by A0 consists of all L-words w such that supp(w) ⊆ supp(oL) and
|supp(w)| = 1. The order is given by w < v iff supp(w) is to the right of supp(v).

There is an automaton B1 recognising the order independent of the shape of L. If B1

applies a right limit transition it guesses whether supp(oL) is defined arbitrarily close
to the minimal cut. This guess can be checked at the successor transitions. Depending
on its guess, it recognises the correct order according to the case distinction. Since both
orders are automatic, this combined order is also automatic.

For the induction step assume that the claim was proved for all n′ < n. Let L be
some scattered linear order with FC(L) = FC∗(L) = 1+n. Recall the automaton Cn+1

from definition 31 which determines the left and right order of each cut of L. Using
those cuts where Cn is in a state fromMn = {n}×{0, 1, . . . , n}∪{0, 1, . . . , n}×{n},
we obtain a decomposition L =

∑
i∈Z Li such that FC(Li) = n and there is an infinite

ascending (or descending) sequence

i0 < i1 < i2 < . . . such that FC(Li) = n and ∀j ≥ 1 ij − ij−1 ≥ 2. (3)

By this we mean that Cn upon reading any L-word is not in a state from Mn on any cut
strictly in Li but it is in one of the states from Mn at the last cut before and the first cut
after Li.

We now describe the case of an ascending chain, but the descending case is analo-
gous. Let oL be the oracle defined by oL(x) = (1, oLij

(x)) if x ∈ Lij and o(x) = �
if for all j ∈ N we have x /∈ Lij . The domain of our presentation of ωω

n

consists of

23



those finite L-words w such that supp(w) ⊆
⋃
j∈N Lij and for each j An−1 accepts

w restricted to Lij . This set is recognised by an L-oL-automaton An as follows. An
simulates Cn. At the initial state and whenever Cn is in a state from Mn, it guesses
whether the next part of L is one of the Lij where oL is defined. In this case, it starts a
simulation ofAn−1. This simulation is stopped when Cn is again in a state from Mn. If
it starts a simulation ofAn−1 and oL turns out to be undefined on this part, then the run
is aborted. Analogously, the run is aborted if we did not start a simulation of An−1 and
reach a position in supp(oL).

We identify each word w accepted by A with a sequence (αj)j∈ω of ordinals in
ωω

n−1
such that all but finitely many αj are 0 and αj is the ordinal represented by the

restriction of w to the Lij (with respect to the order induced by the order automa-
ton Bn−1). Of course there is an automaton B′n that orders the sequences (αj)j∈ω
backwards lexicographically, i.e., (αj)j∈ω < (βj)j∈ω if and only if there is j0 ∈ N
such that αj = βj for all j > j0 and αj0 < βj0 . This order is L-oL-automatic (just
apply order automaton Bn−1 on the part corresponding to Lij indicated by the ora-
cle and remember the last outcome different from ’=’). This gives a presentation of∑
i∈ω(ωω

n−1
)i =

∑
i∈ω(ωω

n−1·i) = ωω
n

. Note that the definition of the oracle oL

depends on L but the automata do not depend on L. We only need a a slightly different
order in the case of a descending sequence instead of the ascending sequence in (3).
In the case of a descending sequence the order automaton uses lexicographic ordering
instead of backwards lexicographic order because the domain of the presentation can
be identified with (αj)j∈ω∗ . Of course, we can define an automaton Bn that guesses
(and verifies) whether supp(oL) is cofinal and depending on this guess, simulates B′n or
the variant B′′n performing lexicographic ordering (since oL is either coinitial or cofinal,
the correctness of this guess can be checked immediately in the transitions leaving the
initial states). ut

Problem 50. Can one lift the previous theorem to orders of transfinite rank?

F The countable atomless Boolean algebra is not ordinal
automatic

If η is an ordinal, there is an apparent bijection between Cuts(η) and the ordinal η+1 =
{α | α ≤ η} which we will use to identify cuts. Let Cuts−(η) = Cuts(η) \ {(η, ∅)}.
We call w : η → {�} the empty input. If r : Cuts−(η) → S is a run of A with γ ≤ η
and γ < η is a limit ordinal, let as above limγ− r denote the set of states appearing
unboundedly often before γ.

Lemma 51. (Pumping) Let A be a non-deterministic ordinal automaton with state set
S, m ∈ N, and γ some ordinal with γ 6= 0. Suppose Slim ⊆ S+ ⊆ S and s ∈ S+ with
|Slim| ≤ m.

If there is a run

r : Cuts(ωm)→ S+
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on empty input with r(0) = s, limωm− r = Slim, and r(Cuts(ωm)) = S+, then there is
a run

r̄ : Cuts(ωmγ)→ S+

on empty input with r̄(0) = s, limωmγ− r̄ = Slim, and r̄(Cuts(ωmγ)) = S+.

Proof. The proof is by induction on m and |Slim|.

– First suppose that Slim = S+. Then r(ωm) = r(α0) for some α0 < ωm. Let
r̄(α) = r(α) and r̄(ωmβ + α) = r(α0 + α) for α < ωm and 1 ≤ β < γ. Let
r̄(ωmγ) = r(ωm).

– Now suppose that Slim ( S+. Choose n0 with r([ωm−1n0, ω
m)) ⊆ Slim.

• If there is n ≥ n0 with r([ωm−1n, ωm−1(n + 1))) = Slim, choose β0 ∈
[ωm−1n, ωm−1(n + 1) with r(β0) = r(ωm−1(n + 1)). Let r̄(α) = r(α) for
α ≤ ωm−1(n+1), let r̄(ωm−1β+α) = r(β0+α) for α < ωm−1 and ωβ < γ,
and let r̄(ωmγ) = r(ωm).

• If there is no such n, find n0 = β0 < β1 < ... with supi∈ω ωm−1βi = ωmγ.
Let r̄(α) = r(α) for α ≤ ωm−1n0. We can pump r � [ωm−1n, ωm−1(n+1)] to
a run r̄ : [ωm−1βn, ω

m−1βn+1]→ S+ for n ≥ n0 by the induction hypothesis
for smaller Slim.

ut

Lemma 52. (Shrinking) LetA be a non-deterministic ordinal automaton with state set
S, m ∈ N, and γ some ordinal with γ 6= 0. Suppose Slim ⊆ S− ⊆ S and s ∈ S− with
|S−| ≤ m. If there is a run

r : Cuts−(ωmγ)→ S−

on empty input with r(0) = s, limωmγ− r = Slim, and r(Cuts−(ωmγ)) = S−, then
there is a run

r̄ : Cuts−(ωm)→ S−

on empty input with r̄(0) = s, lim(ωm)− r̄ = Slim, and r̄(Cuts−(ωm)) = S−.

Proof. The proof is by induction on m, γ, and the size of S−. The claim is obvious for
m = 1 or γ = 1. Thus, we assume that γ ≥ 2 and m ≥ 2.

– First suppose that Slim = S− and that there is some β < γ with lim(ωmβ)− r = S−.
Then we can shrink the run r � ωmβ to a run r̄ : ωm → S− by the induction
hypothesis for β.

– Next suppose that Slim = S− and that for each β < γ, there is an s ∈ S− such that
s /∈ lim(ωmβ)− r. There are the following subcases:
• First suppose that γ = γ̄ + 1. Choose β0 ∈ [ωmγ̄, ωmγ)) with r(β0) = r(0).

Let r̄(α) = r(β0 + α) for α < ωm.
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• Suppose that γ = ω. By assumption, for each i, there is some αi with ωmi ≤
αi < ωm(i + 1) and a state si ∈ S− such that si 6= r(β) for all αi ≤ β <
ωm(i+1). Thus, we can apply the induction hypothesis for smaller S− to each
r�[αi, ωm(i + 1)) and shrink it to a run of size ωm−1. Note that the length of
r�[ωmi, αi] is also bounded by some ωm−1 · ki. Thus, composition of these
runs yields the desired run of length ωm.
• Finally, suppose that γ > ω is a limit ordinal and that γ1 < γ2 < · · · < γ are

ordinals such that lim γi = γ. By induction hypothesis for smaller γ, we can
shrink each run r�[ωmγi, ωmγi+1) to a run of length ωm such that each state
of S− appears in one of these runs. Composition of the resulting runs reduces
this case to the previous case.

– Finally, suppose that Slim ( S−. Let α0 denote the least α < ωmγ such that only
states s ∈ Slim appear in [α, ωmγ). There are two subcases:
• First suppose that α0 < ωmβ for some β < γ. Note that [α0, ω

mβ) and
[α0, ω

mγ) are of the form ωm ·δ with δ ≤ γ. Since the image of r � [α0, ω
mγ)

is contained in Slim ( S−, we can shrink r � [α0, ω
mγ) to a run r̄ � [α0, ω

mβ)
by the induction hypothesis for smaller S−. Since β < γ we conclude by ap-
plication of the induction hypothesis to this shorter run.
• Second suppose that α0 ≥ ωmβ for all β < γ. We conclude immediately that
γ is a successor, i.e., γ = γ̄ + 1 and α0 ≥ ωmγ̄. Now we distinguish the
following cases.
1. Assume that γ̄ = 1 and that r(ωm) ∈ lim(ωm)− r. Then there is a β < ωm

such that r(β) = r(ωm) and for each state s ∈ S− such that s occurs in r
strictly before ωm also occurs before β. Then the composition of r�[0, β)
with r�[ωm, ωmγ] yields the desired run.

2. Assume that γ̄ = 1 and that r(ωm) /∈ lim(ωm)− r. Thus, there is some
β < ωm such that r([β, ωm)) ⊆ S− \ {r(ωm)}. Thus, we can apply the
induction hypothesis for smaller m and S− shrinking r�[β, ωm) to a run
r̂ on domain [β, β + ωm−1) with r̂([β, β + ωm−1)) = r([β, ωm)) and
lim(β+ωm−1)− r̂ = lim(ωm)− r. Since β < ωm−1 · k for some k ∈ N,
Composition of r�[0, β) with r̂ and r�[ωm, ωmγ) yields the desired run r̄
of length ωm.

3. If γ̄ > 1, we apply the induction hypothesis (for smaller γ) to r�[0, ωmγ̄)
and shrink this run to a run r̄ of length ωm. The composition of r̄ and
r�[ωmγ̄, ωmγ) is a run of length ωm · 2 and we can apply the induction
hypothesis for smaller γ.

ut

We directly obtain the following corollary.

Corollary 53. Let γ ≥ 1 be an ordinal and let Aγ = A1 = (S,Σ, I, F,∆) be an
automaton (where we interpret Ai as ωmi-automaton). For all s0, s1 ∈ S,

s0
�ω
m

−→
A1

s1 ⇐⇒ s0
�ω
mγ

−→
Aγ

s1

where �α denotes the empty input of length α.
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A formula isΣ0 if it is quantifier-free. A formula isΠi if it is logically equivalent to
the negation of a Σi-formula. Formulas of the form ∃x0...∃xnϕ(x0, ..., xn, y0, ..., yk)
for some Πi-formula ϕ are Σi+1.

Lemma 54. Let L0, L1, . . . , Lk be linear orders and let δ1, δ2, . . . , δk, η1, η2, . . . , ηk
be ordinals all strictly greater than 0. Let A,AR1 , . . . ,ARn be automata such that
m ∈ N is a bound on the number of states of any of these. Let n0 ∈ N be some number.
Setting Kj

i := ωm+n0 · ji for j ∈ {δ, η} define the maps

fδ :
k∏
i=0

Li → δ := L0 +
k∑
i=1

(Kδ
i + Li),

(w1, . . . , wk) 7→ w1 + �ω
m+i·δ1 + w2 + · · ·+ �ω

m+i·δk + wk, and

fη :
k∏
i=0

Li → η := L0 +
k∑
i=1

(Kη
i + Li),

(w1, . . . , wk) 7→ w1 + �ω
m+i·η1 + w2 + · · ·+ �ω

m+i·ηk + wk.

LetMi be the finite word i-automatic structure induced byA,A1 . . . ,An for i ∈ {δ, η}.
For every Σi∪Πn0 -formula ϕ(x) and all w = (w0, . . . ,wk) ∈ (

∏k
i=0Wi)<ω (where

Wi denotes the set of finite Li-words),Mδ |= ϕ(fδ(w)) if and only ifMη |= ϕ(fη(w)).

Proof. The claim for n0 = 0 follows from the Pumping and Shrinking Lemmas because
we can translate any run on �ωm·γ into a run on �ωm·γ′ with same initial and final state
for all ordinals γ, γ′ ≥ 1.

For the inductive step, assume that the claim holds for all n′ < n0 ∈ N.
Due to symmetry of the claim and since every Πn0 -formula is the negation of a

Σn0 -formula it suffices to prove that Mη |= ϕ(fη(w)) if Mδ |= ϕ(fδ(w)) for a Σn0

formula ϕ.
Let ϕ be some Πn0−1-formula and v = fδ(w) for some wi ∈ (

∏k
i=0 Li)

<ω such
that N � ∃x ϕ(x,v). Choose t ∈Mδ

<ω with Mδ � ϕ(t,v).
Since t has finite support, for each 1 ≤ i ≤ k, supp(t) ∩Kδ

i induces a decomposi-
tion Kδ

i = Li0 +
∑m
j=1(K̄δ

j + Lij) such that

– K̄δ
j = ωn0−1 · κ for some ordinal κ ≥ 1,

– Lij = ωn0−1, and
– supp(t) ∩Kδ

i ⊆
⋃m
j=1 L

i
j ,

Fix ordinals K̄η
j such that Kη

i = Li0 +
∑m
j=1(K̄η

j + Lij) (these exist because Kη
i =

ωm+n0−1 · (ω · κ) for some ordinal κ ≥ 1).
Application of the inductive hypothesis to ϕ and the functions

gδ : L0 ×
k∏
i=1

(
m∏
j=1

Lij × Li)→ δ, and

gη : L0 ×
k∏
i=1

(
m∏
j=1

Lij × Li)→ η
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defined in the apparent way shows that there are words w1,w2 such that gδ(w1) =
v, gδ(w2) = t, and

Mδ |= ϕ(gδ(w1), gδ(w2)) if and only if Mη |= ϕ(gη(w1), gη(w2)).

By definition, one easily sees that gη(w1) = fη(w) = v. Thus,

Mη |= ∃x ϕ(x, fη(w)).

ut

Definition 55. For any ordinal α, let ᾱ be the ordinal of the form ᾱ = ωm+1β for some
ordinal β such that α = ᾱ+ ωmnm + ωm−1nm−1 + ...+ n0 and

1. a. Let Um(α) denote the set of ordinals γ = ᾱ + ωmlm + ωm−1lm−1 + ... + l0
such that either

– γ = α or
– lk ≤ nk +m and li ≤ m for all i < k,

where k is maximal with lk 6= nk.
b. Let Um(X) =

⋃
γ∈X∪{0} Um(γ).

c. Let Um(X, δ) = Um(X ∪ {δ}) ∩ δ.
2. a. Let cm(α) = maxi≤m ni.

b. Let cm(X) = maxγ∈X cm(γ).
3. Let dm(X) = |{γ̄ | γ ∈ X ∪ {0}}|.

Let U1
m(X) = Um(X) and U i+1

m (X) = Um(U im(X)) for i ∈ N, and similarly let
U1
m(X, δ) = Um(X, δ) and U i+1

m (X, δ) = Um(U im(X, δ), δ) for i ∈ N. A rough upper
bound for the sizes of these sets is given in the following lemma.

Lemma 56. Suppose that X is a finite set of ordinals and i ≥ 1. Then

|U im(X)| ≤ (cm(X) + im)m+1dm(X), and also

|U im(X, δ)| ≤ (cm(X ∪ {δ}) + im)m+1dm(X ∪ {δ}).

Proof. The coefficient of ωj of an element ofU im(γ) can take at most (cm(w)+im)m+1

many different values for any fixed j ≤ m. Hence |U im(α)| ≤ (cm(w) + im)m+1 for
all ordinals α and all i ≥ 1. Moreover dm(U im(X)) = dm(X) for all i ≥ 1. ut

It follows that there are at most |Σ�|(cm(X)+im)m+1dm(X) many finite words w over
alphabet Σ� with supp(w) ⊆ U im(X) for i ≥ 1, where Σ� is an alphabet with � ∈ Σ.

A relation R ⊆ X × Y is called locally finite if for every x ∈ X , there are at most
finitely many y ∈ Y with (x, y) ∈ R.

Lemma 57. (Growth lemma) Suppose η is an ordinal and R ⊆ (Σ∗)k × (Σ∗)l is a
locally finite relation of finite η-words. Suppose R is recognised by an η-automaton A
with at most m states. Then supp(w) ⊆ Um+1(supp(v), η) for all (v, w) ∈ R.
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Proof. Suppose α ∈ supp(w) \ Um+1(supp(v), η) is minimal. Let k ∈ N be least such
that there are β ∈ supp(w)∪{0, η} and δ with ωk+1δ ≤ α, β < ωk+1(δ+1). It follows
from the Pumping Lemma that k ≤ m. Choose the maximal such β for this k. If β 6= δ
then supp(w) ∩ (β, ωk+1(δ + 1)) = ∅. At most m different states can appear at the
ordinals β + ωkl for l ∈ N. Since R is locally finite, none of the states appears twice
between β and α if β 6= δ, since otherwise it is possible to shrink the run, and hence
ωk+1δ ≤ α < β + ωkm. If β = δ then ωk+1δ ≤ α < β. Let αj denote the coefficient
of ωj in the Cantor normal form of α for j ∈ N. Since there are at most m states and R
is locally finite, αj < m for all j < k and hence α ∈ Um+1(β). ut

Let dxe denote the least n ∈ ω with x ≤ n, and log the logarithm with base 2.

Lemma 58. (Growth lemma for monoids) Suppose the multiplication of the monoid
(M, ·) is recognised by an automaton with ≤ m states. Suppose s1, ..., sn ∈ M and
supp(si) ⊆ X for 1 ≤ i ≤ n where n ≥ 2. Then supp(s1 · ... · sn) ⊆ Udlognem+1 (X).

Proof. We follow the proof of [12, Lemma 3.2]. The statement follows from the Growth
Lemma for n ≥ 2. For n > 2 let k = dn2 e and l = n − k. Then dlog ke, dlog le <
dlog ne. Let t = s1 · ... · sk and u = sk+1 · ... · sn. Then supp(t) ∪ supp(u) ⊆
U
dlogne−1
m+1 (X) by the induction hypothesis for dn2 e. Thus, supp(t · u) ⊆ U

dlogne
m+1 (X)

by the Growth Lemma applied to t and u. ut

We prove that the countable atomless Boolean algebra is not δ automatic for any
ordinal δ. We first conclude by Lemma 54 that it suffices to consider ordinals of the
form δ = ωk with k ∈ N.

Corollary 59. Let η, κ, δ be ordinals such that η ≥ 1, κ < ωω , and δ = ωω · η + κ.
If the countable Boolean algebra is finite word δ-automatic then it is finite word ωk-
automatic for some k ∈ N.

Proof. Let Ā = (A,A∪,A∩,A0,A1) be δ-automata representing the countable atom-
less Boolean algebra M = (M,∪,∩,0,1). Let n ∈ N be a bound on the number of
states of any of these automata. δ can be written as a sum ωn+2 + ωω · η + κ. Let
m′ be a finite δ-word such that m′ ∈ M . Due to the Shrinking Lemma 52, there is an
m ∈M with supp(m) ⊆ ωn+2 ∪ κ, i.e., a word whose support has a ωωη gap at ωn+2.
Now let Aϕ be the automaton that corresponds in M to the Π2 formula ϕ(x) saying
x ∈ M∧ M forms a Boolean algebra without atoms.6 Due to Lemma 54 and since
m satisfies ϕ in M, in the structure M′ = (M ′,∪′,∩,o′,1′) induced by Ā seen as
(ωm+2 +ωm+2 + κ)-automata, there is a word m′ ∈M ′ satisfying ϕ. Thus, M′ forms
a countable Boolean algebra without atoms. By definition of κ, there is a k′ ∈ N such
that κ < ωk

′
Set k := max(k′ + 1,m + 3). Since there is an ωk-automaton marking

position ωm+22 +κ by a unique state, the countable atomless Boolean algebra M′ also
has an ωk-automatic presentation. ut

We finally show that the countable atomless Boolean algebra has no ωk-automatic
presentation.

6 Note that associativity, commutativity, identity, distributivity are Π1-statements, existence of
complements is Π2 and absence of atoms is a Π2-statement.
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Theorem 60. The countable atomless Boolean algebra is not δ-automatic for any or-
dinal δ.

Proof. Assume that the countable atomless Boolean algebra has an ωk-automatic pre-
sentation M = (M,∪,∩,0,1). Suppose the automata have at most m states.

We follow the proof of [12, Lemma 3.4]. We construct trees Tn with nodes aσ for all
σ ∈ 2≤n such that Tn has exactly 2n leaves and u∩v = 0 for any any two leaves u 6= v
of Tn.7 The partial functions which determine the successor nodes aσ0, aσ1 from aσ are
definable in M by first-order formulas with the quantifier ∃∞ and hence recognisable by
automata by the closure of ωk-automatic relations under first-order definable relations8

(see [2]). Suppose each of these automata has at most l ≥ m states. Then supp(aσ) ⊆
Unl+1(supp(a∅)) for all σ ∈ {0, 1}≤n. If s = s1 ∪ ...∪ sj with pairwise different leaves

s1, ..., sj ∈ Tn, then j ≤ 2n and supp(s) ⊆ U
ndlog(2n)e
l+1 (supp(a∅), ωl) by the growth

lemma for monoids. There are at most |Σ�|(cl(supp(a∅)∪{ωl})+ndlog(2n)el)l+1
many such

s. However, since the leaves of Tn are pairwise incompatible, there are 2(2n) many s.
This is a contradiction for large n. ut

Note that the growth argument in the previous proof can also be applied directly to
the δ-automatic presentation.

Lemma 61. Suppose L is of the form Z ·M for some linear order M. Then the count-
able atomless Boolean algebra is not L-automatic.

Proof. Suppose that R is a locally finite L-automatic relation on an L-automatic struc-
tureM such thatR and the domain and relations ofM are recognised by automata with
≤ m states. Then for any (x, y) ∈ R and any t ∈ supp(y), there are u ≤ v ∈ supp(x)
with finite distance such that ū ≤ t ≤ v̄ for the nth predecessor ū of u and the mth

successor v̄ of v. The same growth rate argument as for finite automata (see [12, The-
orem 3.4]) shows that every infinite L-automatic Boolean algebra is a finite product of
the Boolean algebra of finite and co-finite subsets of N with inclusion. ut

Question 62. Is the countable atomless Boolean algebra L-o-automatic for any linear
order L and any oracle o?

7 In this construction we replace Khoussainov et al.’s use of the length-lexicographic order by
the use of an ωk-automatic well-order of the finite ωk-words.

8 as usual in automatic structures ∃∞ can be replaced by a first-order statement
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