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Abstract. We introduce a hierarchy of large cardinals between weakly compact and measurable
cardinals, that is closely related to the Ramsey-like cardinals introduced by Victoria Gitman
in [Git11], and is based on certain infinite filter games, however also has a range of equivalent
characterizations in terms of elementary embeddings. The aim of this paper is to locate the
Ramsey-like cardinals studied by Gitman, and other well-known large cardinal notions, in this
hierarchy.
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1. Introduction

Ramsey cardinals are a very popular and well-studied large cardinal concept in modern set
theory. Like many, or perhaps most other large cardinal notions, they admit a characterization in
terms of elementary embeddings, which is implicit in the work of William Mitchell ([Mit79]), and
explicitly isolated by Victoria Gitman in [Git11, Theorem 1.3] – we provide the statement of this
characterization in Theorem 4.3 below. However this embedding characterization does not lend
itself very well to certain set theoretic arguments (for example, indestructibility arguments), as it
is based on elementary embeddings between very weak structures. Therefore, Gitman considered
various strengthenings of Ramsey cardinals in her [Git11], that she calls Ramsey-like cardinals,
the definitions of which are based on the existence of certain elementary embeddings between
stronger models of set theory – we will review her definitions in Section 4.

In this paper, we want to introduce a whole hierarchy of Ramsey-like cardinals, that have a
uniform definition, and, as we will show, are closely related to the Ramsey-like cardinals defined
by Gitman, but which may be seen, as we will try to argue, to give rise to more natural large
cardinal concepts than Gitman’s Ramsey-like cardinals.

We will also show that the Ramsey-like cardinals in our hierarchy are very robust in the sense
that they have a range of equivalent characterizations, in particular one that is based on certain
infinite games on regular and uncountable cardinals , where one of the players provides -models,
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and the other player has to measure the subsets of  appearing in those models in a coherent way.
These games will be introduced in Section 3. They are what actually led us to the discovery of
our hierarchy of Ramsey-like cardinals, and they may also be of independent interest.

2. The filter property and some of its variants

In this section, we will introduce some basic notation, and make some related basic observations.
Most of these will not be used much in the central sections of our paper – their use is mostly to
provide a solid background on some obvious related questions, and they will provide ideas for
many possible variations of our central defintions in Sections 3 and 5. Most of these variations
have not been studied properly so far, and we will pick up some of them again in the final open
questions section of our paper. In particular though, impatient readers may skip most of this
section for now, and only turn back to it when necessary.

Since we will consider filters over subsets of P(), where  is a cardinal, we use the following
modified definitions of filters (one could also call these partial filters, but we would like to stick to
the notion of filter also for the generalized versions below).

A weak -model is a set M of size  with  + 1 ⊆ M and such that �M, ∈� � ZFC−. A weak
-model is a -model if additionally M< ⊆M .1

Definition 2.1. (a) A filter on  is a subset F of P() such that ��i<nAi� =  whenever n ∈ !
and �Ai � i < n� is a sequence of elements of F .2

(b) A filter F on  measures a subset A of  if A ∈ F or  �A ∈ F . F measures a subset X ofP() if F measures every element of X. F is an ultrafilter on  if it measures P().
(c) A filter F on  is <-complete if ��i<� Xi� =  for every sequence �Xi � i < �� with � <  and

Xi ∈ F for all i < �.
(d) IfM is a weak -model, a filter F on  isM -complete if it measures P()∩M and �i<� Xi ∈ F

for every sequence �Xi � i < �� ∈M with � <  and Xi ∈ F for all i < �.
(e) A filter F on  is normal if for every sequence �X = �X↵ � ↵ < � of elements of F , the diagonal

intersection� �X is a stationary subset of .
(f) If M is a weak -model, then a filter F on  is M -normal if it measures P() ∩M and� �X ∈ F whenever �X = �X↵ � ↵ < � ∈M is a sequence of elements of F .

Definition 2.2. Suppose that  is a cardinal.  has the filter property if for every subset X of
P () of size ≤, there is a <-complete filter F on  which measures X.

It is well-known that an uncountable cardinal  satisfying  = < has the filter property if and
only if  is weakly compact. 3 If �X = �X↵ � ↵ < � is a sequence, we write � �X =�↵<X↵ for
its diagonal intersection. Note that every normal filter on  is easily seen to be <-complete and
to only contain stationary subsets of . If F is a normal filter on  and �X = �X↵ � ↵ < � is a
sequence of elements of F , then � �X ∈ F whenever F measures � �X. In particular, if a filter F
is normal and measures P()∩M , then F is M -normal. Moreover, every M -normal filter on  is
M -complete and contains the M -club filter. The reason for demanding that � �X be stationary
in Definition 2.1, (e) is provided by the next lemma.

Lemma 2.3. Suppose that F is a filter and

�X = �X↵ � ↵ < � is a sequence of elements of F such

that� �X is non-stationary. Then there is a subset D of P() of size , such that every filter that

extends F and measures D, contains a sequence

�Y = �Y↵ � ↵ < �, such that ��Y = �.
Proof. Suppose that �X = �X↵ � ↵ < � is a sequence of elements of F and � �X is nonstationary.
Suppose that C is a club subset of  that is disjoint from � �X. We consider the regressive
function f ∶� �X →  defined by f(↵) = max(C ∩ ↵) for ↵ ∈ � �X. Moreover, we consider the
sequence �A = �A↵ � ↵ < � of bounded subsets A↵ = f−1[{↵}] of  for ↵ < .

1Note that, unlike is often done, we do not require (weak) -models to be transitive.
2In particular, this implies that every element of a filter on  has size .
3By results of Joel Hamkins and others, the assumption  = < is indeed necessary here, and also for many

other equivalences of weak compactness.
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Let D denote the closure under finite intersections and relative complements in  of the set
consisting of the elements of F , � �X, the sets A↵ for ↵ <  and of � �A. Suppose that F̄ ⊆ D
extends F and measures D. Note that this implies that F̄ is closed under finite intersections.

Suppose first that �� �X ∈ F̄ . For every ↵ < , let Y↵ =X↵�� �X ∈ F̄ and let �Y = �Y↵ � ↵ < �.
Then��Y = �.

Now suppose that� �X ∈ F̄ . Since each A↵ is a bounded subset of , �A↵ ∈ F̄ for every ↵ < .
But then �↵<( � A↵) = {� <  � � ∈ ��<�( � f−1(�))} = {� <  � f(�) ≥ � ∨ � �∈ dom(f)} =
 �� �X �∈ F̄ . But now making use of the sequence � � A↵ � ↵ < � rather than �X, we are in
the situation of the first case above, thus obtaining an empty diagonal intersection of elements of
F̄ . ⇤
Definition 2.4. A cardinal  has the normal filter property if for every subset X of P () of size≤ , there is a normal filter F on  measuring X. It has the M -normal filter property if there
exists an M -normal filter on  for every weak -model M .

Lemma 2.5. Suppose that F is a filter on  of size  and that

�X = �X↵ � ↵ < � is an enumeration

of F . Then F is normal if and only if � �X is stationary.

Proof. Suppose that � �X is stationary. Moreover, suppose that �Y = �Y↵ � ↵ < � and g∶ →  is
a function with Y↵ = Xg(↵) for all ↵ < . Let Cg = {↵ <  � g[↵] ⊆ ↵} denote the club of closure
points of g. Then � �X ∩Cg ⊆��Y ∩Cg

and hence��Y is stationary. ⇤
It is immediate from the embedding characterization of weakly compact cardinals, that weak

compactness implies the M -normal filter property. On the other hand, if < = , every -
sized subset of P() is contained, as a subset, in some -model M . Thus if the M -normal filter
property holds for  = <, then  is weakly compact, as follows immediately fom the filter property
characterization of weakly compact cardinals. For the normal filter property, the following is an
immediate consequence of [DPZ80, Theorem 1] together with Lemma 2.5. Remember that a
cardinal  is ine↵able if whenever �A↵ � ↵ < � is a -list, that is A↵ ⊆ ↵ for every ↵ < , then
there is A ⊆  such that {↵ <  � A ∩ ↵ = A↵} is stationary.
Lemma 2.6 (Di Prisco, Zwicker). A cardinal  has the normal filter property if and only if it is

ine↵able. �
Definition 2.7. A cardinal  has the filter extension property if for every <-complete filter F
on  of size at most  and for every subset X of P() of size at most , there is a <-complete
filter F̄ with F ⊆ F̄ that measures X.

 has the M -normal filter extension property if for every weak -model M , every M -normal
filter F on  and every weak -model N ⊇M , there is an N -normal filter F̄ with F ⊆ F̄ .

 has the normal filter extension property if for every normal filter F on  of size at most 
and every X ⊆ P() of size at most , there is a normal filter F̄ ⊇ F that measures X.

Lemma 2.8. Every weakly compact cardinal  satisfies the filter extension property.

Proof. Let F be a <-complete filter on  of size at most  and let X be a subset of P() of size
at most . We construct a subtree T of <2 as follows. Suppose that �Ai � i < � is an enumeration
of F and �Bi � i < � is an enumeration of X.

We define Lev↵(T ) for ↵ <  as follows. Let Bi,j = Bi for j = 0 and Bi,j = �Bi for j = 1, where
i < . If t ∈ 2↵, let A↵ = �i<↵Ai, let B↵,t = �i<↵Bi,t(i) and let t ∈ Lev↵(T ) if �A↵ ∩B↵,t� = . Then
T is a subtree of 2<.

Since �A↵� =  and �B↵,t � t ∈ 2↵� is a partition of , Lev↵(T ) ≠ �. Since  has the tree property,
there is a cofinal branch b through T . Let F̄ = {A ⊆  � ∃↵ <  A↵ ∩ B↵,b�↵ ⊆ A}. Then F̄ is a<-complete filter that measures X and extends F . ⇤
Lemma 2.9. The normal filter extension property fails for every infinite cardinal.

Proof. The property clearly fails for !. Suppose for a contradiction that the normal filter extension
property holds for some uncountable cardinal . Since this implies that the filter property holds
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for , we know that  is weakly compact. Suppose that S = S
! and that F0 = {S}. F0 is a normal

filter. Let M be a -model with S ∈ M . Assume that F1 is a normal filter on  that measuresP() ∩M . Normality of F1 easily implies that F1 is M -normal and that the ultrapower N of M
by F1 is well-founded. By  Los’ theorem, since  is represented by the identity function in N , 
has cofinality ! in N , contradicting that  is inaccessible. ⇤

The counterexample of a normal filter that cannot be extended to a larger set in the above
is somewhat pathological, and perhaps the more interesting question is whether the M -normal
filter extension property is consistent for some (weakly compact) cardinal . We do not know the
answer to this question, but would like to close this section with two remarks regarding this topic.
The first remark is certainly a folklore observation, and shows that not every M -normal filter for
some -model M is necessarily normal.

Remark 2.10. It is consistent, relative to a weakly compact cardinal, that  is inaccessible, M is
a -model, U is an M -normal ultrafilter on P ()M , and there is a non-stationary subset X of 
that is an element of U .

Proof. Suppose that  is weakly compact in L. Recall that a subset T of  is fat stationary if for
every club C in , the set T ∩C contains closed subsets of arbitrary lengths � < . It is well-known
that there is a subset S of  in L such that both S and its complement in  are fat stationary
in L (see [HL, Section 7]), and that the forcing PT for adding a club subset of a fat stationary
subset T of  is <-distributive (see [AS83, Theorem 1]). Since  is weakly compact in L, there is
a -model M and an M -normal ultrafilter U on P ()M in L. Then either S or its complement is
an element of U . We will assume that S is an element of U . Suppose that G is P�S-generic over
L. Then S is non-stationary in L[G]. Hence the required statement holds in L[G]. ⇤

The second remark shows that the M -normal filter extension property may consistently fail at
a supercompact cardinal.

Remark 2.11. It is consistent, relative to a supercompact cardinal, that there is a supercompact
cardinal  such that the M -normal filter extension property fails for . 4

Proof. Using Richard Laver’s classical result on obtaining an indestructibly supercompact cardi-
nal, suppose that  is supercompact and its supercompactness is indestructible under <-directed
closed forcing. Suppose that S is an Add(,1)-generic subset of . Since  is supercompact,
and hence weakly compact, in V [S], there is a -model M and an M -normal M -ultrafilter U on
P ()M in V [S], such that either S or its complement is an element of U . We will assume that
S is an element of U . Over V [S], let C be generic for the standard forcing to adds a club subset
of  � S. By easy standard arguments, the two-step iteration of the above notions of forcing is<-directed closed, and therefore  is weakly compact in V [S,C].

Since S is non-stationary in V [S,C], then by the same argument as in the proof of Lemma 2.3,
there is a subset D of P () of size , such that every filter that extends U and measures D contains
a -sequence �Y with empty diagonal intersection. Moreover that proof shows that there are only
two candidates for such witnessing sequences �Y , and both can be defined, in a very absolute way,
using only S and U as parameters. Thus suppose that N is a -model with P ()M ∪D ⊆ N , such
that both candidates for �Y are elements of N as well. Then there is obviously no N -normal filter
on P ()N that extends U . ⇤

3. Filter games

Definition 3.1. Given an ordinal � ≤ + and regular uncountable cardinals  = < < ✓, consider
the following two-player game of perfect information G✓

�(). Two Players, the challenger and the
judge, take turns to play ⊆-increasing sequences �M↵ � ↵ < �� of -models, and �F↵ � ↵ ≤ �� of
filters on , such that the following hold for every ↵ < �.

● At any stage ↵ < �, the challenger plays M↵, and then the judge plays F↵.● M↵ �H(✓),● �M↵̄ � ↵̄ < ↵�, �F↵̄ � ↵̄ < ↵� ∈M↵,

4Using more recent indestructibility results for smaller large cardinals, similar arguments work for considerably
smaller notions of large cardinal.
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● F↵ is a filter on  that measures P() ∩M↵ and● F↵ ⊇ ��<↵ F� .

Let M� ∶= �↵<� M↵, and let F� ∶= �↵<� F↵. If F� is an M�-normal filter, then the judge wins.
Otherwise, the challenger wins. 5

We also define the following variation of the above games. For �,  and ✓ as above, let G✓
�()

denote the variant of G✓
�() where we additionally require the judge to play such that each

F↵ ⊆M↵, that is she is not allowed to measure more sets than those in M↵ in her ↵th move, for
every ↵ < �.
Lemma 3.2. Let � ≤ +, let  = < be an uncountable cardinal, and let ✓ >  be a regular cardinal.

(1) The challenger has a winning strategy in G✓
�() i↵ he has a winning strategy in G✓

�().
(2) The judge has a winning strategy in G✓

�() i↵ she has a winning strategy in G✓
�().

Proof. If the challenger has a winning strategy in G✓
�(), then he has one in G✓

�(), as the latter
game only gives less choice for the judge. Assume the challenger has a winning strategy S̄ in
G✓

�(). Let S be the strategy for G✓
�() where he pretends that the judge had played Fi ∩Mi

rather than Fi, at every stage i of a play of G✓
�(), and responds according to that, following the

strategy S̄. This yields a run of the game G✓
�() where the challenger follows his winning strategy,

hence the judge loses this play, i.e. F� ∩M� is not M�-normal. But then the same is the case for
F� , i.e. S is a winning strategy for the challenger in the game G✓

�().
If the judge has a winning strategy in G✓

�(), then this is also a winning strategy in G✓
�(). If

she has a winning strategy S in G✓
�(), let S̄ be the modification where rather than playing Fi,

she plays Fi ∩Mi, at each stage i < �. Since S is a winning strategy, F� is M�-normal, whenever
it is the outcome of a play of G✓

�(). But then also F� ∩M� is M�-normal. Hence S̄ is also a

winning strategy for G✓
�(). But every play of G✓

�() following S̄ is also a run of the game G✓
�(),

i.e. S̄ is a winning strategy for G✓
�(). ⇤

Lemma 3.3. Let � < +, let  = < be an uncountable cardinal, and let ✓0 and ✓1 both be regular

cardinals greater than .

(1) The challenger has a winning strategy in G✓0
� () i↵ he has a winning strategy in G✓1

� ().
(2) The judge has a winning strategy in G✓0

� () i↵ she has a winning strategy in G✓1
� ().

Proof. For (1), assume that the challenger has a winning strategy �0 in G✓0
� (). We show that

he then has a winning strategy �1 in G✓1
� (). �1 is obtained as follows. Whenever the challenger

would play M↵ in a run of the game G✓0
� (), then he plays some M∗

↵ which is a valid move in the

game G✓1
� () and such that M∗

↵ ⊇ P() ∩M↵. Every possible response of the judge in G✓1
� () is

also a possible response in G✓0
� (), where the challenger played M↵. So the challenger can continue

to pretend playing both these games simultaneously. As he is following a winning strategy in the
game G✓0

� (), F� is not M�-normal. But this shows that �1 is a winning strategy for the challenger

in the game G✓1
� ().

Let � be an ordinal, and assume that ✓0 and ✓1 are both regular cardinals greater than . For
(2), assume that the judge has a winning strategy �0 in G✓0

� (). We show that she then has a

winning strategy �1 in G✓1
� (). �1 is obtained by simply pretending that, if the challenger plays

M↵ at any stage ↵ of the game G✓1
� (), he in fact played some M∗

↵ in the game G✓0
� () with the

property that M∗
↵ ⊇M↵ ∩P(), and respond according to that. Since �0 is a winning strategy for

the judge in the game G✓0
� (), F� is �↵<� M∗

↵-normal. But then F� will also be M�-normal. This

shows that �1 is a winning strategy for the judge in G✓1
� (). ⇤

In the light of the above lemma, we make the following definition.

5The following possible alternative definition of the games G✓
�() was remarked by Joel Hamkins, and provides

a very useful perspective. In each step ↵ < �, in order to have a chance of winning, the judge has to play not only an
M↵-normal filter F↵, but in fact has to play some F↵ which is normal, as follows by Lemma 2.3. Thus by Lemma
2.5, one might assume that rather than playing filters, the judge is just playing stationary sets which correspond
to diagonal intersections of enumerations of the relevant filters.
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Definition 3.4. Suppose  = < is an uncountable cardinal, ✓ >  is a regular cardinal, and
� ≤ +.

(1)  has the �-filter property if the challenger does not have a winning strategy in G✓
�().

(2)  has the strategic �-filter property if the judge has a winning strategy in G✓
�().

The 1-filter property follows from weak compactness by its embedding characterization, and
implies the filter property, hence it is equivalent to weak compactness. Note that if �0 < �1, then
the �1-filter property implies the �0-filter property. The following observation shows that assuming
2 = +, the +-filter property is equivalent to  being a measurable cardinal.

Observation 3.5. The following are equivalent for any uncountable cardinal  = < satisfying

2 = +.
(1)  satisfies the +-filter property.

(2)  satisfies the strategic +-filter property.

(3)  is measurable.

6

Proof. For the implication from (1) to (3), suppose that  has the +-filter property, and that�a↵ � ↵ < +� is an enumeration of P(). Let ✓ >  be an arbitrary regular cardinal. We consider a
run of the game G✓

+() such that in each step ↵, the challenger plays a valid M↵ ⊇ {a� � � ≤ ↵},
however the judge wins. Then, F� is a normal ultrafilter on P().

To see that (3) implies (2), suppose that  is measurable and let F be a <-complete ultrafilter
on P(). Then, for any regular ✓ > , the judge wins any run of G✓

+() by playing F in each of
her moves.

Finally, the implication from (2) to (1) is immediate. ⇤
We will show that the ↵-filter properties for infinite cardinals ↵ with ! ≤ ↵ ≤  give rise to a

proper hierarchy of large cardinal notions, that are closely related to the following Ramsey-like
cardinals, that were introduced by Victoria Gitman in [Git11].

4. Victoria Gitman’s Ramsey-like cardinals

Definition 4.1.

● An embedding j∶M → N is -powerset preserving if it has critical point  and M and N
have the same subsets of .● [Git11, Definition 1.2] A cardinal  is weakly Ramsey if every A ⊆  is contained in a
weak -model M for which there exists a -powerset preserving elementary embedding
j∶M → N .● [Git11, Definition 1.4] A cardinal  is strongly Ramsey if every A ⊆  is contained, as
an element, in a -model M for which there exists a -powerset preserving elementary
embedding j∶M → N .● [Git11, Definition 1.5] A cardinal  is super Ramsey if every A ⊆  is contained, as
an element, in a -model M � H(+) for which there exists a -powerset preserving
elementary embedding j∶M → N .

The following lemma is an immediate consequence of [Git11, Theorem 3.7], where Gitman shows
that weakly Ramsey cardinals are limits of completely ine↵able cardinals (see [Git11, Definition
3.4]). It yields in particular that weak Ramseyness is strictly stronger than weakly compactness.

Lemma 4.2. [Git11] Weakly Ramsey cardinals are weakly compact limits of ine↵able cardinals.

The following Theorem from [Git11], which is already implicit in [Mit79], shows that strongly
Ramsey cardinals are Ramsey cardinals, which in turn are weakly Ramsey. In fact, as is shown in
[Git11, Theorems 3.9 and 3.11], strongly Ramsey cardinals are Ramsey limits of Ramsey cardinals,
and Ramsey cardinals are weakly Ramsey limits of weakly Ramsey cardinals.

6One could extend our definitions in a natural way so to give rise to the concept of  having the �-filter property
also for ordinals � > +, essentially dropping the requirement that the models played by the challenger have size .
This would however make our definitions less elegant, and was omitted for we will mostly be interested in the case
when � ≤  in what follows. However right now, these extended definitions would yield the more elegant observation
that  being measurable is equivalent to it having the (strategic) 2-filter property.
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Theorem 4.3. [Git11, Theorem 1.3] A cardinal  is Ramsey if and only if every A ⊆  is

contained, as an element, in a weak -model M for which there exists a -powerset preserving

elementary embedding j∶M → N with the additional property that whenever �An � n ∈ !� is a

sequence of subsets of  (that is not necessarily an element of M) such that for each n ∈ !,
An ∈M and  ∈ j(An), then �n∈! An ≠ �.
Lemma 4.4. [Git11, Theorem 3.14] Super Ramsey cardinals are strongly Ramsey limits of strongly

Ramsey cardinals.

A notion that is closely related to the above, that however was not introduced in [Git11], is the
strengthening of weak Ramseyness where we additionally require the witnessing structures M to
be elementary substructures of H(+), like Gitman does when strengthening strongly Ramsey to
super Ramsey cardinals. We make the following definition.

Definition 4.5. A cardinal  is super weakly Ramsey if every A ⊆  is contained in a weak -model
M �H(+) for which there exists a -powerset preserving elementary embedding j∶M → N .

Lemma 4.6. Super weakly Ramsey cardinals are weakly Ramsey limits of weakly Ramsey cardi-

nals.

Proof. Suppose that  is super weakly Ramsey, and pick a weak -model M � H(+) and a -
powerset preserving elementary embedding j∶M → N . It su�ces to show that  is weakly Ramsey
in N . But as we can assume that the models witnessing instances of weak Ramseyness of  are
all elements of H(+), M thinks that  is weakly Ramsey by elementarity, and hence N thinks
that  is weakly Ramsey for j is -powerset preserving. ⇤

As is observed in [Git11], since ine↵able cardinals are ⇧1
2-indescribable and being Ramsey is a

⇧1
2-statement, ine↵able Ramsey cardinals are limits of Ramsey cardinals. Thus in particular not

every Ramsey cardinal is ine↵able. However the following holds true.

Lemma 4.7. Super weakly Ramsey cardinals are ine↵able.

Proof. Assume that  is super weakly Ramsey. Let �A = �A↵ � ↵ < � be a -list, and let j∶M → N

be -powerset preserving with M � H(+) and �A ∈ M . Let A = j( �A)(). Then A ∈ M , since j
is -powerset preserving. Let S = {↵ <  � A ∩ ↵ = A↵} ∈ M . Let C be a club subset of  in M .
Then  ∈ j(S) ∩ j(C), and thus C ∩ S ≠ � by elementarity of j, showing that S is a stationary
subset of  in M . But since M � H(+), S is indeed stationary, thus showing that  is ine↵able,
as desired. ⇤

5. A new hierarchy of Ramsey-like cardinals

We want to introduce the following hierarchy of Ramsey-like cardinals.

Definition 5.1. Let ↵ ≤  be regular cardinals.  is ↵-Ramsey if for arbitrarily large regular car-
dinals ✓, every A ⊆  is contained, as an element, in some weak -model M �H(✓) which is closed
under <↵-sequences, and for which there exists a -powerset preserving elementary embedding
j∶M → N .

Note that, in the case when ↵ = , a weak -model closed under <-sequences is exactly a
-model. It would have been more in the spirit of [Git11], and in stronger analogy to Gitman’s
super Ramsey cardinals, to only require the above for ✓ = +. However we will argue that asking
for the existence of arbitrary large ✓ >  as above results in a more natural (and strictly stronger)
notion.

Lemma 5.2. If  is -Ramsey, then  is a super Ramsey limit of super Ramsey cardinals.

Proof. Assume that  is -Ramsey, as witnessed by some large regular cardinal ✓ and j∶M → N
with M � H(✓). Since + ∈M , it follows that the restriction of j to H(+)M witnesses that  is
super Ramsey in V . It thus su�ces to show that  is super Ramsey in N .

By elementarity, M thinks that  is super Ramsey. However, as the target structures of
embeddings witnessing super Ramseyness can be assumed to be elements of H(+), this is a
statement which is absolute between weak -models with the same subsets of  (and thus the
same H(+)) that contain + as an element, hence  is super Ramsey in N , using that j is
-powerset preserving. ⇤
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Unsurprisingly, the same proof yields the analogous result for !-Ramsey and super weakly
Ramsey cardinals. Note that together with Lemma 4.7 and the remarks preceding it, the following
lemma shows in particular that Ramsey cardinals are not provably !-Ramsey.

Lemma 5.3. If  is !-Ramsey, then  is a super weakly Ramsey limit of super weakly Ramsey

cardinals. �
Lemma 5.4. If  is !1-Ramsey, then  is a Ramsey limit of Ramsey cardinals.

Proof. Suppose that  is !1-Ramsey. Then  is Ramsey, as the witnessing models for !1-
Ramseyness are closed under countable sequences, and thus also witness the respective instances
of Ramseyness. Pick a weak -model M and j∶M → N witnessing !1-Ramseyness for A = �. Note
that Ramseyness of  is, considering only transitive weak -models, which su�ces, a statement
about H(+) and thus  is Ramsey in M . Since j is -powerset preserving,  is also Ramsey in
N , for the same reason. But this implies, by elementarity, that  is a limit of Ramsey cardinals,
both in M and in V . ⇤

In [Fen90], Feng introduces a hierarchy of Ramsey cardinals that he denotes as ⇧↵-Ramsey, for
↵ ∈ Ord. This hierarchy is topped by the notion of what he calls a completely Ramsey cardinal.
This hierarchy is not so much of interest to us here, as already !1-Ramsey cardinals are completely
Ramsey limits of completely Ramsey cardinals. This follows from elementarity together with the
proof of [Git11, Theorem 3.13], observing that rather than using a -model M , using a weak
-model M that is closed under !-sequences su�ces to run the argument. Note that by [Fen90,
Theorem 4.2], completely Ramsey cardinals are ⇧2

0-indescribable, thus in particular this implies
that !1-Ramsey cardinals are ⇧2

0-indescribable as well.
Lemma 5.7 below will show that ↵-Ramseyness is a very robust notion, for any regular cardinal

↵ ≤ . This will be given additional support by a filter game characterization of ↵-Ramseyness
for uncountable cardinals ↵ in Theorem 5.8 and Corollary 5.11 below.

Definition 5.5. Suppose that M is a weak -model. An M -normal filter U on  is weakly

amenable if for every A ∈ M of size at most  in M , the intersection U ∩A is an element of M .
An M -normal filter U on  is good if it is weakly amenable and the ultrapower of M by U is
well-founded.

We will make use of the following lemma, that is provided in [Kan09, Section 19] for transitive
weak -models, however the same proofs go through for possibly non-transitive weak -models.

Lemma 5.6. Suppose that M is a weak -model.

(1) If j∶M → N is the well-founded ultrapower map that is induced by a weakly amenable

M -normal filter on , then j is -powerset preserving.
(2) If j∶M → N is a -powerset preserving embedding, then the M -normal filter U = {A ∈P()M �  ∈ j(A)} is weakly amenable and induces a well-founded ultrapower of M .

Lemma 5.7. Let ↵ ≤  be regular cardinals. The following properties are equivalent.

(a)  is ↵-Ramsey.

(b) For arbitrarily large regular cardinals ✓, every A ⊆  is contained, as an element, in a weak

-model M � H(✓) that is closed under <↵-sequences, and for which there exists a good

M -normal filter on .
(c) Like (a) or (b), but A can be any element of H(✓).
(d) Like (a) or (b), but only for A = �.

If ↵ > !, the following property is also equivalent to the above.

(e) Like (a), (b) or (c), but only for a single regular ✓ ≥ (2)+.
Proof. The equivalence of (a) and (b), as well as the equivalences of the versions of (c), (d) and
(e) that refer to (a) to their respective counterparts that refer to (b) are immediate consequences
of Lemma 5.6 together with [Git11, Proposition 2.3]. Clearly, (c) implies (a), and (a) implies each
of (d) and (e). The proof of the implication from (e) to (a) for ↵ > ! will be postponed to Lemma
5.9 below. We will now show that (d) implies (c).
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Therefore, suppose that (d) holds, and let us suppose for a contradiction that there is some
regular ✓ >  and some A ∈ H(✓), such that no M , N and j witnessing (c) for ✓ and A exist.
Choose a regular cardinal ✓′, large enough so that this can be seen in H(✓′), i.e.

H(✓′) � ∃✓ >  regular∃A ∈H(✓)∀M ∀j ∀N
[(M �H(✓) is a weak -model ∧ j∶M → N is -powerset preserving) → A �∈M],

such that the above statement is absolute between H(✓′) and V for the least witness ✓ and any A
in H(✓), and such that (d) holds for ✓′. The absoluteness statement can easily be achieved, noting
that it su�ces to consider transitive models N of size . Making use of Property (d), there is a
weak -model M1 � H(✓′) and a -powerset preserving embedding j∶M1 → N1. By elementarity,
M1 models the above statement about H(✓′), thus in particular we can find the least ✓ and some
A ∈H(✓) witnessing the above statement in M1. Since ✓ ∈M1, M1 ∩H(✓) �H(✓), A ∈M1 ∩H(✓)
and j � (H(✓)M1)∶H(✓)M1 → H(j(✓))N1 is -powerset preserving, contradicting our assumption
about ✓ and A. ⇤

Theorem 5.8. Let ↵ ≤  be regular and uncountable cardinals. Then  is ↵-Ramsey if and only

if  has the ↵-filter property.

Proof. Assume first that  has the ↵-filter property. Pick some large regular cardinal ✓. Let A ⊆ 
and pick any strategy for the challenger in the game G✓

↵(), such that A is an element of the first
model played. Since the challenger has no winning strategy in the game G✓

↵() by our assumption,
there is a run of this game where the challenger follows the above strategy, however the judge wins.
Let �M� � � < ↵� and �F� � � < ↵� be the moves made during such a run, let F↵ and M↵ be their
unions. By the regularity of ↵, M↵ is a weak -model that is closed under <↵-sequences. Since
the judge wins, F↵ is an M↵-normal filter. Since ↵ > !, F↵ induces a well-founded ultrapower of
M↵. It remains to show that F↵ is weakly amenable for M↵. Therefore, assume that X ⊆ P() is
of size at most  in M↵. By the definition of M↵, this is the case already in M� , for some � < ↵.
But since F�+1 ∈M�+1, F↵ ∩X = F�+1 ∩X ∈M�+1 ⊆M↵, showing that F↵ is weakly amenable and
hence good, i.e.  is ↵-Ramsey.

Now assume that  is ↵-Ramsey and let ✓ = (2)+. Towards a contradiction, suppose that the

challenger has a winning strategy � in G✓
↵(). Then � ∈ H(✓). Since  is ↵-Ramsey, there is a

weak -model M � H(✓) that is closed under <↵-sequences, with � ∈ M , and a good M -normal

filter U on . We define a partial strategy ⌧ for the judge in G✓
↵() as follows. If the challenger

played M� �H(✓), with M� ∈M , in his last move, then the judge answers by playing F� = U ∩M� .
Note that F� ∈M , since U is weakly M -amenable. Since � ∈M , the above together with closure
of M under <↵-sequences implies that the run of � against ⌧ has length ↵, since all its initial
segments of length less than ↵ are elements of M . Note that F↵ is an M↵-normal filter. Thus
using her (partial) strategy ⌧ , the judge wins against �, contradicting the assumption that � is a

winning strategy for the challenger in G✓
↵(). ⇤

We can now use the above to fill in the missing part of the proof of Lemma 5.7.

Lemma 5.9. For regular and uncountable cardinals ↵ ≤ , Property (e) implies Property (a) in

the statement of Lemma 5.7.

Proof. Note that when showing that  being ↵-Ramsey implies the ↵-filter property in the proof
of Theorem 5.8, we only used the case when ✓ = (2)+, and in fact it would have worked for any
regular ✓ ≥ (2)+ in the very same way. Thus our assumption implies the ↵-filter property. But
then again by Lemma 5.8,  is ↵-Ramsey, as desired. ⇤

We think that the above results in particular show -Ramseyness to be a more natural large
cardinal notion than the closely related concept of super Ramseyness defined by Gitman - in
particular, super Ramseyness corresponds to Property (e) for ✓ = + in Lemma 5.7 below, while
what may seem to be a hierarchy for di↵erent ✓ ≥ (2)+ in Property (e) of Lemma 5.7 below,
actually collapses to the single notion of -Ramseyness.

To obtain a version of Theorem 5.8 for !-Ramsey cardinals, we make the following, somewhat
ad hoc definitions.
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Definition 5.10. Suppose  = < is an uncountable cardinal, ✓ >  is a regular cardinal, and
� ≤ +. We define the well-founded filter games wfG✓

�() just like the filter games G✓
�() in

Definition 3.1, however for the judge to win, we additionally require that the ultrapower of M� by
F� be well-founded. 7 We say that  has the well-founded (�, ✓)-filter property if the challenger
does not have a winning strategy in wfG✓

�(). We say that  has the well-founded �-filter property
i↵ it has the well-founded (�, ✓)-filter property for every regular ✓ > .

The proof of Theorem 5.8 also shows the following, where in the backward direction, well-
foundedness of the ultrapower of M! by F! now follows from the well-founded !-filter property
rather than the (now missing) closure properties of M!.

Corollary 5.11.  is !-Ramsey i↵ it has the well-founded !-filter property. �
While ↵-Ramseyness for singular cardinals ↵ is not a very useful property, as it implies ↵+-

Ramseyness (since weak -models closed under <↵-sequences are also closed under <↵+-sequences),
the ↵-filter property makes perfect sense also when ↵ is singular. We may thus define, for singular
cardinals ↵, that  is ↵-Ramsey if it has the ↵-filter property. For the cases when ↵ has cofinality
!, we may rather want to consider the well-founded ↵-filter property instead.

We now want to show that the ↵-Ramsey cardinals (including those we just defined for singular
cardinals ↵) form a strict hierarchy for cardinals ! ≤ ↵ ≤ , and moreover that -Ramsey cardinals
are strictly weaker than measurable cardinals.

Lemma 5.12. If ! ≤ ↵0 < ↵1 ≤ , both ↵0 and ↵1 are cardinals and  is ↵1-Ramsey, then it is a

limit of ↵0-Ramsey cardinals.

Proof. Pick a regular cardinal ✓ > . We may assume that ↵1 is regular, for we may replace it
with a regular ↵̄1 that lies strictly between ↵0 and ↵1 otherwise. Using that  is ↵1-Ramsey, pick
an ultrapower embedding j∶M → N where M �H(✓) is a weak -model that is closed under <↵1-
sequences, and j is -powerset preserving. We may also assume that N is transitive, since we can
replace it by its transitive collapse in case it is not. Using that j is an ultrapower embedding, it
follows by standard arguments that N is closed under <↵1-sequences as well. Moreover, j induces
a weakly amenable M -normal filter F , by Lemma 5.6, (2). By -powerset preservation of j, F
is also weakly amenable for N and N -normal. We show that  has the well-founded ↵0-filter
property in N .

Let ⌫ >  be a regular cardinal of N . Suppose for a contradiction that the challenger has a
winning strategy for wfG⌫

↵0
() in N , and let him play according to this strategy. Whenever he

plays a -model X � H(⌫), let the judge answer by playing F ∩X ∈ N . By closure of N under<↵1-sequences, this yields a run of the game wfG⌫
↵0
() that is an element of N . Moreover, the

judge wins this run: If Y denotes the union of the models played by the challenger, potential
ill-foundedness of the ultrapower of Y by F ∩ Y would be witnessed by a sequence �fi � i < !� of
functions fi∶ → Y in Y , for which Fi = {↵ <  � fi+1(↵) ∈ fi(↵)} ∈ F for every i < !. Now by
transitivity of N and since N is closed under !-sequences, �fi � i < !� ∈ N . But then since F is
N -normal, �i<! Fi ∈ F , yielding a decreasing !-sequence of ordinals in N , a contradiction. This
means that the ultrapower of Y by F ∩Y is well-founded, i.e. the judge wins the above run of the
game wfG⌫

↵0
(). However this contradicts that the challenger followed his winning strategy. ⇤

Lemma 5.13. If  is measurable, then it is a limit of regular cardinals ↵ <  which are ↵-Ramsey.

Proof. Assume that  is measurable, as witnessed by j∶V → M . Using that M is closed under
-sequences, the proof now proceeds as the proof of Lemma 5.12. ⇤

6. Filter sequences

In this section, we show that the filter properties, which are based on (the non-existence of)
winning strategies for certain games, are closely related to certain principles that are solely based
on the existence of certain sequences of models and filters.

7Note that in case � has uncountable cofinality, M� will always be closed under countable sequences and thus
this extra condition becomes vacuous.
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Definition 6.1. Let ↵ be an ordinal and let  be a cardinal. Suppose that �M = �Mi � i < ↵� is a⊆-increasing ∈-chain of -models, and let M = �i<↵Mi. An M -ultrafilter F on  is amenable for�M if F ∩Mi ∈Mi+1 for all i < ↵. If such an ↵-sequence �M and such an M -ultrafilter F exist, we
say that  has an ↵-filter sequence. If additionally the ultrapower of M by F is well-founded, we
say that  has a well-founded ↵-filter sequence. 8

A first observation is that if ↵ is a limit ordinal and F is a filter on  that is amenable for an∈-chain �M = �Mi � i < ↵� of weak -models, then letting M = �i<↵Mi, F is weakly amenable for
M and measures P() ∩M .

The following is immediate by Theorem 5.8 and Corollary 5.11.

Observation 6.2. Assume that ↵ ≤  are both cardinals, and  is ↵-Ramsey. Then  has a

well-founded ↵-filter sequence.

The next lemma shows that consistency-wise, the existence of (well-founded) ↵-filter sequences
forms a proper hierarchy for infinite cardinals ↵ ≤ , that interleaves with the hierarchy of ↵-
Ramsey cardinals. Its proof is similar to the proof of Lemma 5.12.

Lemma 6.3. Suppose that ! ≤ ↵ < � ≤  are cardinals, and that  has a �-filter sequence. Then

there are stationarily many ↵-Ramsey cardinals below .

Proof. We may assume that � is regular, for we may replace it with a regular �̄ that lies strictly
between ↵ and � otherwise. Suppose that  has a �-filter sequence, as witnessed by �M = �Mi �
i < ��, M = �i<� Mi, and by the M -ultrafilter F . Let N be the well-founded ultrapower of M by
F , using that M is closed under <�-sequences, and note that since P()M = P()N , F is weakly
amenable for N and N -normal. Note that N is also closed under <�-sequences. Then  has the
↵-filter property in N , since the judge can win any relevant (well-founded) filter game in N by
playing appropriate -sized pieces of F , just like in the proof of Lemma 5.12. By elementarity,
and since V ⊆M , the statement of the lemma follows. ⇤

Observation 6.4. The existence of a -filter sequence does not imply that  is weakly compact.

Proof. Start in a model with a -filter sequence in which  is also weakly compact. Perform some
forcing of size less than . This preserves both these properties of . Now by [Ham98, Main
Theorem], there is a <-closed forcing that destroys the weak compactness of  over this model.
Clearly this forcing preserves the existence of the -filter sequence that we started with. ⇤

However for regular cardinals ↵, we can actually characterize ↵-Ramsey cardinals by the ex-
istence of certain filter sequences. Note that this lemma is highly analogous to Lemma 5.7, and
that some more equivalent characterizations of ↵-Ramseyness could be extracted from that lemma
similar to the ones below.

Lemma 6.5. The following are equivalent, for regular cardinals ↵ ≤ .
(a)  is ↵-Ramsey.

(b) For every regular ✓ > ,  has an ↵-filter sequence, as witnessed by

�M = �Mi � i < ↵� and F ,

where each Mi �H(✓).
If ↵ > !, the following property is also equivalent to the above.

(c) For some regular ✓ > 2 and every A ⊆ ,  has an ↵-filter sequence, as witnessed by�M = �Mi � i < ↵� and F , where A ∈M0 and each Mi �H(✓).
Proof. If  is ↵-Ramsey, then both (b) and (c) are immediate by the proof of Theorem 5.8.

Now assume that (b) holds. Thus fix some regular ✓ > , and let (b) be witnessed by �M and
by F . Then M = �i<↵Mi � H(✓) is a weak -model closed under <↵-sequences, F is weakly
amenable for M and the ultrapower of M by F is well-founded. This shows that  is ↵-Ramsey
by Lemma 5.7, (d).

Assuming that (c) holds and that ↵ > !, the same argument shows that  is ↵-Ramsey, this
time making use of Lemma 5.7, (e). ⇤

8As before this additional assumption becomes vacuous if ↵ has uncountable cofinality.



12 PETER HOLY AND PHILIPP SCHLICHT

7. Absoluteness to L

Weakly Ramsey cardinals are downward absolute to L by [GW11, Theorem 3.12]. Since !1-
Ramsey cardinals are Ramsey by Lemma 5.4, they cannot exist in L. We want to show that
!-Ramsey cardinals are downwards absolute to L. This proof is a variation of the proof of
[GW11, Theorem 3.4]. We will make use of a slight adaption of what is known as the ancient

Kunen lemma.

Lemma 7.1. Let M � ZFC−, let j∶M → N be an elementary embedding with critical point , such
that  + 1 ⊆M ⊆ N . Assume that �X �M = . Then j �X ∈ N .

Proof. Note that j � X is definable from an enumeration f of X in M in order-type , together
with j(f), both of which are elements of N by our assumptions. Namely, for x ∈X,

j(x) = y ⇐⇒ ∃↵ <  x = f(↵) ∧ y = j(f)(↵).
The lemma follows as  + 1 ⊆ N implies that this definition is absolute between N and V . ⇤

We will make use of the standard lemma that if 0♯ exists and  is a Silver indiscernible, then
cof((+)L) = ! (see [BJW82] for a proof).

Theorem 7.2. If 0♯ exists, then the Silver indiscernibles are !-Ramsey in L.

Proof. Let I = {i⇠ � ⇠ ∈ Ord} be the Silver indiscernibles, enumerated in increasing order. Fix
 ∈ I, let � = (+)L, let ✓ = ((2)+)L, and let A be a subset of  in L. Define j∶ I → I by j(i⇠) = i⇠
for all i⇠ <  and j(i⇠) = i⇠+1 for all i⇠ ≥  in I. The map j extends, via the Skolem functions, to an
elementary embedding j∶L→ L with critical point . Let U be the weakly amenable L�-ultrafilter
on  generated by j. Since every ↵ < � has size  in L�, each U ∩ L↵ ∈ L� by weak amenability
of U . Using the standard lemma above, construct sequences �Mi � i ∈ !� and ��i � i ∈ !� such that
each Mi satisfies Mi � L✓ is a weak -model with Mi ∩ � = �i, such that the �i are cofinal in �,
such that A ∈M0, and such that Mi, U ∩Mi ∈Mi+1.9 For each i < !, let ji be the restriction of j
to Mi. Each ji∶Mi → j(Mi) has a domain of size  in L✓, and is hence an element of Lj(✓) ⊆ L by
Lemma 7.1.

To show that  is !-Ramsey in L, we need to construct in L, a weak -modelM∗ � L✓ containing
A as an element, and a -powerset preserving elementary embedding j∶M∗ → N∗. Define in L,
the tree T of finite sequences of the form

s = �h0∶M∗
0 → N∗0 , . . . , hn∶M∗

n → N∗n�
ordered by extension and satisfying the following properties:

(1) A ∈M∗
0 , each M∗

i � L✓ is a weak -model,
(2) hi∶M∗

i → N∗i is an elementary embedding with critical point ,
(3) N∗i ⊆ Lj(✓).

Let Wi be the M∗
i -ultrafilter on  generated by hi.

(4) For i < j ≤ n, we have M∗
i ,Wi ∈M∗

j , N
∗
i � N∗j and hj ⊇ hi.

Consider the sequences sn = �j0∶M0 → j(M0), . . . , jn∶Mn → j(Mn)�. Each sn is clearly an element
of T and �sn � n ∈ !� is a branch through T in V . Hence the tree T is ill-founded, and by
absoluteness of this property, T is ill-founded in L. Let �hi∶M∗

i → N∗i � i ∈ !� be a branch of T in
L, and let Wi denote the M∗

i -ultrafilter on  induced by hi. Let

h = �
i∈! hi, M∗ = �

i∈!M
∗
i and N∗ = �

i∈!N
∗
i .

It is clear that M∗ � L✓, h∶M∗ → N∗ is an elementary embedding with critical point  and that
M∗ is a weak -model containing A as an element. If x ⊆  in N∗, then x = [f]Wi ∈ N∗i for some
i < ! and some f ∶ →M∗

i in M∗
i . But then x = {↵ <  � {� <  � ↵ ∈ f(�)} ∈Wi} ∈M∗

i+1 ⊆M∗ by
Property (4). This shows that h is -powerset preserving and thus that  has the !-filter property
in L, as desired. ⇤

9Note that we can achieve Mi ∈ L✓ by picking first – externally – a su�ciently large ⇠i < ✓ such that L⇠i � L✓

and then picking Mi � L⇠i within M in each step i of our construction. Thus we can satisfy the condition Mi ∈Mi+1
in each step of our construction.
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To show that !-Ramsey cardinals are downwards absolute to L, we need yet another charac-
terization of !-Ramsey cardinals.

Lemma 7.3.  is !-Ramsey if and only if for arbitrarily large regular cardinals ✓ and every

subset C of ✓, every A ⊆  is contained, as an element, in some weak -model M such that�M,C� � �H(✓), C�, for which cof(M ∩+) = !, and for which there exists a -powerset preserving
elementary embedding j∶M → N .

Proof. The backward direction of the lemma is immediate. For the forward direction, assume that
 is !-Ramsey, and let ✓ and C be as in the statement of the lemma. By Corollary 5.11,  has
the well-founded !-filter property. Now adapt the proof that the well-founded !-filter property
implies !-Ramseyness, that is provided for Theorem 5.8. Namely, let the challenger simply play
structures M� which satisfy �M� , C� � �H(✓), C�. Note that the resulting structure M! witnessing
!-Ramseyness will satisfy �M!, C� � �H(✓), C� and moreover, as is immediate to observe from the
proof in Theorem 5.8, that cof(M! ∩ +) = !. ⇤

We are finally ready to show that !-Ramsey cardinals are downwards absolute to L.

Theorem 7.4. !-Ramsey cardinals are downwards absolute to L.

Proof. Let  be an !-Ramsey cardinal. We may assume that 0♯ does not exist, by Theorem 7.2,
and thus that (+)L = + by a classic observation of Kunen for weakly compact cardinals (see
e.g. [Jec03, Exercise 18.6]). Fix A ⊆  in L, and a regular cardinal ✓ ≥ (2)+. Let C ⊆ ✓ be
the club of � < ✓ for which L� � L✓. Using Lemma 7.3, we may pick a weak -model M such
that �M,C� � �H(✓), C�, containing A as an element, with a -powerset preserving elementary
embedding j∶M → N , such that cof(M ∩ +) = !.

Let � = + and let �̄ =M ∩ + = LM ∩ + and note that cof(�̄) = ! by the above. Restrict j to
j∶LM → LN . It is easy to see that -powerset preservation of the original embedding j implies that
LM
+ = LN

+ , and hence that the restricted embedding j is again -powerset preserving. Moreover
LM � LH(✓) = L✓ =H(✓)L.

Let U be the weakly amenable LM
� -ultrafilter on  generated by j. Since every ↵ < � in M

has size  in LM , each U ∩ L↵ ∈ LM
� by weak amenability of U . Using that cof(�̄) = ! and that

LM
� = L�̄, construct sequences �Mi � i ∈ !� and ��i � i ∈ !� such that each Mi � LM is a weak

-model in LM with Mi ∩ � = �i, such that the �i are cofinal in �̄, such that A ∈ M0, and such
that Mi, U ∩Mi ∈ Mi+1. Note that we can achieve Mi ∈ LM since C is unbounded in M ∩ ✓
by elementarity, by picking first – externally – a su�ciently large ⇠i ∈ M ∩ C, and then picking
Mi � LM

⇠i
within LM in each step i of our construction.

For each i < !, let ji be the restriction of j to Mi. Each ji∶Mi → j(Mi) has a domain of size 

in LM , and is hence an element of LN by Lemma 7.1. Moreover since L is �ZF−
1 -definable, LN ⊆ L,

hence ji ∈ L for every i < !.
To show that  is !-Ramsey in L, we need to construct in L, a weak -modelM∗ � L✓ containing

A as an element, and a -powerset preserving elementary embedding j∶M∗ → N∗. In order to do
so, we now continue verbatim as in the proof of Theorem 7.2. ⇤

8. The strategic filter property versus measurability

Note that we have not only introduced the �-filter properties, but also the strategic �-filter
properties in Definition 3.4. While we have already provided a variety of results about the �-filter
properties, we do not know a lot about their strategic counterparts. However we want to close our
paper with the following result, that was suggested to us by Joel Hamkins. We originally had a
similar result, however with a much more complicated proof, starting from a much stronger large
cardinal hypothesis.

Definition 8.1. A cardinal  is �-tall if there is an embedding j∶V → M with critical point 
such that j() > ✓ and M ⊆M .

Lemma 8.2 (Hamkins). Starting from a ++-tall cardinal , it is consistent that there is a cardinal

 with the strategic -filter property, however  is not measurable.
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Proof. By an unpublished result of Woodin (see [Hamkins - Tall Cardinals, Theorem 1.2]), if 
is ++-tall, then there is a forcing extension in which  is measurable and the GCH fails at 
(this improves a classic result of Silver, where the same is shown under the assumption of a ++-
supercompact cardinal). Now we may perform the standard reverse Easton iteration of length
, to force the GCH below , in each step adding a Cohen subset to the least regular cardinal
of the intermediate model which has not been considered in the iteration so far. By the ⇧2

1-
indescribability of measurable cardinals,  can not be measurable in the resulting model, since if
it were, the failure of the GCH at  would reflect below . But clearly, the measurability of  is
resurrected after adding a Cohen subset to , by standard lifting arguments.

Assume that  is not measurable, but it is so in a further Add(+,1)-generic extension (we may
assume this situation starting from a ++-tall cardinal by the above). Let U̇ be an Add(+,1)-
name for a measurable filter on . Let ✓ >  be a regular cardinal. We define a strategy for the
judge in G✓

() as follows. Provided the challenger plays some -model M↵ � H(✓), the judge
picks a condition p↵ deciding whether x̌ ∈ U̇ for every x ⊆  in M↵, and then plays F↵ such that
p↵ decides that U̇ ∩X↵ = F↵. She does this so that �p↵ � ↵ < � forms a decreasing sequence of
conditions. Let M be the union of the models played by the challenger. By the +-closure of
Add(+,1), this sequence has a lower bound p, which decides U̇ ∩ M̌ to equal some good M-
normal filter U in the ground model. For example, to check that U is weakly amenable for M,
note that if A ⊆M is of size  in M, then it is an element, and hence also a subset, of some M↵

played by the challenger, but then U ∩A = F↵ ∩A ∈M↵+1, by the definition of the game G✓
().

This shows that  has the strategic -filter property. ⇤

9. Questions

This paper opens up many possible directions for further research, that are still left to be
investigated. The following collection of questions is merely a sample of what could be asked.

A very basic question that was left open in Section 2 is the following.

Question 9.1. Can the M -normal filter extension property hold at a weakly compact cardinal ?

While for uncountable cardinals ↵, we obtained a direct correspondence between ↵-Ramseyness
and the ↵-filter property, the issue of potential ill-foundedness forced us to introduce the concept of
the well-founded !-filter property, in order to characterize !-Ramseyness in terms of filter games.
The following should have a negative answer.

Question 9.2. Does the !-filter property imply the well-founded !-filter property?

We would expect the filter games G✓
�() from Section 3 not to be determined in case � is an

uncountable cardinal (note that these are open games, so they will be determined in case � = !),
and ask the following question, for which we expect a negative answer.

Question 9.3. If � is an uncountable cardinal and the challenger does not have a winning strategy

in the game G✓
�(), does it follow that the judge has one?

Our definitions allow for many variations, some of which we have partially studied, and some
of which we haven’t yet looked at at all.

Question 9.4. What properties does one obtain by considering variants of the games G✓
�(),

where rather than M -normal filters for -models M �H(✓), we consider either

● <-complete filters on subsets of P() of size ,● M -normal filters for arbitrary -models M , weak -models M , or● normal filters on subsets of P() of size ?

We showed in Theorem 7.4 that !-Ramsey cardinals are downwards absolute to L, and a
positive answer seems highly likely for the following.

Question 9.5. If ! ≤ ↵ ≤ , are ↵-Ramsey cardinals downwards absolute to the Dodd-Jensen core

model?

What is the relationship between !-Ramsey cardinals and other cardinals that are compatible
with L. For example:



A HIERARCHY OF RAMSEY-LIKE CARDINALS 15

Question 9.6. Does 2-iterability imply !-Ramseyness, or conversely?

A direction of possible research that we have not looked into so far at all is the following.

Question 9.7. The notions of Ramsey-like cardinals are connected to measurable cardinals in

talking about filters on . Can we obtain interesting variants of other filter-based large cardi-

nals, for example supercompact cardinals, in a similar way? Do they have similar connections to

generalized filter games?

Lemma 3 shows that the strategic -filter property does not imply that  is measurable, and
we expect the following question to have a negative answer.

Question 9.8. Does  having the strategic -filter property have the consistency strength of a

measurable cardinal?
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