
Tree representations via ordinal machines

Philipp Schlicht and Benjamin Seyfferth

schlicht@math.uni-bonn.de
seyfferth@math.uni-bonn.de

Mathematical Institute, University of Bonn
Endenicher Allee 60, 53115 Bonn, Germany

Abstract. We study sets of reals computable by ordinal Turing machines with a tape of length the
ordinals that are steered by a standard Turing program. The machines halt at some ordinal time or
diverge. We construct tree representations for ordinal semi-decidable sets of reals from ordinal compu-
tations. The aim is to generalize uniformization results to classes of ordinal semi-decidable sets defined
by bounds on the halting times of computations. We further briefly examine the jump structure and
nondeterminism.

1 Introduction

Ordinal computability studies generalized computability theory by means of classical machine models
that operate on ordinals instead of natural numbers. Starting with Joel Hamkins’ and Andy Lewis’
Infinite Time Turing Machines (ITTM) [1], recent years have seen several of those models which provided
alternate approaches and new aspects for various ideas from logic, set theory and classical areas of
generalized computability theory. With ITTMs, the machine may carry out a transfinite ordinal number
of steps while writing 0s and 1s on tapes of length ω. This is achieved by the addition of a limit rule that
governs the behavior of the machine at limit times. The 0s and 1s on the ω-long tape are interpreted
as subsets of ω (reals). It turns out that the sets of reals semi-decidable by these machines form a
subset of ∆1

2. Similar studies have been carried out for infinite time register machines (ITRMs), whose
computable reals are exactly the reals in LωCK

ω
[7].

Another direction of ordinal computability lifts classical computability to study not the subsets of ω,
but of an arbitrary ordinal α, or even the class Ord of all ordinals. In this case, both space and time
are set to that ordinal α, i.e. in the Turing context, we deal with machines that utilize a tape of length
α and either stop in less than α many steps or diverge. The computation is steered by a standard
Turing program and a finite number of ordinal parameters less than α. This approach unveils strong
connections to Gödels universe of constructible sets and the classical work on α-recursion theory [8].

In the present paper, we aim between these two approaches by analyzing the computable sets of reals
of Turing machines with Ord space and time but without allowing arbitrary ordinal parameters. We
work with ordinal Turing machines (OTMs), the machine model introduced in [6]. Let us briefly review
the basic features, for more detail and background the reader is referred to the original paper.

An OTM uses the binary alphabet on a one-sided infinite tape whose cells are indexed by ordinal
numbers. At any ordinal point in time, the machine head is located on one of these cells and the
machine is in one of finitely many machine states indexed by natural numbers. Since we utilize both
Ord space and time, there is no need to use multiple tapes in our definition; any fixed finite number
of tapes can be simulated by interleaving the tapes into one. A typical program instruction has the
form (a, s, a′, s′, d) ∈ {0, 1} × ω × {0, 1} × ω × {−1, 1} and is interpreted as the instruction “If the
symbol currently read by the machines read-write head is a and the machine is currently in state s,
then overwrite a with the symbol a′, change the machine state to s′, and move the head according to
d either to the left or to the right”. At successor times in the course of the computation, the machine
behaves like a standard Turing machine, with the following exception: If the machine head rests on a
cell indexed by a limit ordinal or 0 and a “move left”-instruction is carried out, then the head is set to
position 0. The machine accesses the transfinite by the following lim inf-rule:



At a limit time λ, the machine state is set to the lim inf of the states of previous time, i.e., the least
state that was assumed cofinally often in the previous steps. Similarly, we set the tape content for each
cell individually to the lim inf of the previous cell contents; in other words, a cell contains a 0 at time
λ if it contained a 0 cofinally often before λ, and it contains a 1 at time λ otherwise. It is natural to
set the head position to the cell indexed by the lim inf over the indices of the cells visited at previous
steps in which the machine’s state was the same as in the limit.

These ordinal machines may be used to describe sets of reals. In order to input a real or set of ordinals
into an ordinal Turing machine, we start the computation with an initial tape content coding the real
or set of ordinals; for a real the initial tape contents is a sequence of numbers 0 and 1 written in the cells
with finite index. Note that our basic definitions do not involve ordinal parameters as in [6, Definition
2.5], hence our main results are about pointclasses defined without parameters. Since elements of ωω
can be coded in ω2 via Gödel pairing, we can have elements of ωω as input. We will refer to elements of
ωω as reals. Let us denote the OTM computation by a program P on input x as P (x) and abbreviate
the statement “P (x) halts” as P (x) ↓.

Definition 1. A set of reals A ⊆ ωω is called OTM semi-decidable if there is an ordinal Turing
machine that halts if and only if the initial tape content was an element of A. A is called OTM
decidable if its characteristic function χA is an OTM computable function.

Our motivation is to use ordinal machines to refine uniformization results in descriptive set theory. Many
results in descriptive set theory have simple proofs using admissible sets [3]; we go further than [3] in
providing explicit algorithms for the constructions. In section 2, we define an algorithm for searching
for infinite branches in the Shoenfield tree, to prove that the Σ1

2 sets of reals are exactly the OTM semi-
decidable sets of reals. As a consequence, we re-establish Shoenfield’s absoluteness from the perspective
of ordinal computability. The fact that the Σ1

2 sets of reals are exactly the OTM semi-decidable sets
of reals may be alternatively obtained from Σ1

2 absoluteness and the fact that bounded truth in L is
an OTM computable relation (for the latter see [6]). In section 3, we introduce a tree representation
for Σ1

2 sets that is based on finite fragments of OTM computations. The main result of this paper is
the application of this representation and the algorithm in section 2 to prove uniformization for classes
of OTM semi-decidable sets of reals defined by upper bounds on the halting times of computations.
Section 4 introduces a notion of nondeterministic OTM computations. Applying our algorithm from
section 2 to the tree representation establishes that nondeterministically OTM decidable sets are already
deterministically so. We then show that the jump structure or our machines depends on set theoretic
assumptions. Let us refer to [4] and [5] for the set theoretic background.

2 Computing the Shoenfield tree

In this section, we define an OTM algorithm searching for branches in the Shoenfield tree. For technical
reasons, let us fix the following OTM computable functions. The Gödel pairing function is a bijection
〈·, ·〉 : Ord × Ord → Ord. Elements of Baire space can be represented as subsets of ω by coding their
graph via Gödel pairing. The function o : ω → <ωω is a computable bijection providing a computable
enumeration of the basic open sets O(i) of the Baire space ωω, where O(i) denotes the basic open set
defined by the sequence o(i).

We will make use of the standard tree representation for Π1
1 sets due to Luzin and Sierpiński. Recall

that a set B ⊆ k(ωω) is Π1
1 if there is a tree T on kω×ω such that x ∈ B if and only if Tx is well-founded

and the relation {(x, i) | o(i) ∈ Tx} is computable. Let us call T the Luzin-Sierpiński tree for B. The
tree Tx is well-founded if and only if there is an order-preserving embedding of Tx into some countable
ordinal α. To check whether x ∈ B, we can look for a suitable infinite branch in the tree S on kω × ω1

of all pairs (s, u) with s ∈ k(nω) and u ∈ nω1 for some n ∈ ω where u codes an order-preserving map
fu : Ts ∩ {o(i) | i < length(u)} → ω1. This is the Shoenfield tree projecting to B.

Let us first define an algorithm searching the Shoenfield tree for a Π1
1 sets B ⊆ ωω. Let T be the Luzin-

Sierpiński tree for B. The algorithm shall halt on input x ∈ ωω if and only if x ∈ B. Depth-first-search

2



(DFS) is employed to find an infinite branch in the subtree of S that consists of the pairs (s, u), where
s = x � n for some n ∈ ω. In other words, we will search Sx, which is a tree on ω1. Clearly, membership
in S of any given pair (s, u) is OTM decidable in every admissible set, as the property o(i) ∈ Ts is
computable. Note that ω may be used as a constant, since the constant function with value ω is OTM
computable.

Algorithm 1

set α = 0

MAIN:
set u = ();
set n = 0;
call DFS(u);
α+ +;
call MAIN;

DFS(u):
if n = ω then stop;
if (x � n, u) ∈ S then set n + + and set u = u a 0 and call DFS(u) and set n − − and set
u = u � n;
if u(n) < α set u(n) + + and call DFS(u);

The algorithm starts with the empty sequence u = () and in stage α = 0. Whenever DFS(u) is called,
all possible extensions of u by a single ordinal β < α are tried. When all β < α have been tried, DFS(u)
ends. If a feasible extension u a β ∈ Sx is found, the recursion will immediately try to extend it further
and DFS(u a β) is called. Whenever the algorithm tries an extension u a β that is not in Sx, this
extension is not followed further and u a (β + 1) is tried next. If the length n of u has reached ω, a
branch is found, i.e., u codes an order preserving embedding of Tx into the ordinal α. If no branch can
be found, the recursion eventually breaks down, α is incremented, and the algorithm starts over with
the empty sequence.

Throughout the algorithm, the variable u is stored in an extra tape whose n-th cell contains a 1 if and
only if n ≤ 〈p, q〉 and u(p) = q and 0 otherwise. Therefore, the variable also contains the desired value
at limit times.

Lemma 1. The algorithm will find the lexicographically least infinite branch through Sx, if there is
one.

Proof. It is clear that if the algorithm finds a branch, it will find the lexicographically least. So we have
to show that this branch is eventually found. Let v ∈ ωω1 be the lexicographically least branch of Sx and
let γ be the supremum of the ordinals in v. The tree Sx ∩<ωγ is countable. Observe that the algorithm
visits exactly the nodes of Sx ∩<ωγ in the stages α < γ and that every node is visited only once. Since
this subtree contains no branches, the algorithm sets α = γ after countably many steps. Note that in
stage γ, the algorithm will first visit the countably many sequences w ∈ Sx that are lexicographically
smaller than v � length(w). No node w that is lexicographically greater than v � length(w) is visited
before the algorithm examines every initial segment of v, so the algorithm eventually finds the branch
in countable time.

Now consider a Σ1
2 set A ⊆ ωω and a Π1

1 set B ⊆ ωω × ωω such that p(B) = A. We will modify the
above algorithm to semi-decide the set A. Let (T ⊆ 2ω × ω)<ω be the Luzin-Sierpiński tree for B.
The Shoenfield tree S for B is the tree of all (s, t, u) where u codes an order-preserving embedding
fu : Ts,t → Ord. Since B = p([S]) and A = p(B), we have x ∈ A if and only if the tree Sx (on ω × ω1)
has an infinite branch. In order to find such a branch for a given x, the algorithm proceeds in stages
α ∈ Ord. In each stage α, depth-first-search is employed to find an infinite branch in the subtree of Sx

which consists of the pairs (t, u) where t ∈ length(u)α.

3



Algorithm 2

set α = 0;

MAIN:
set t = ();
set u = ();
set n = 0;
call DFS(t, u);
set α+ +;
call MAIN;

DFS(t, u):
if n = ω then stop;
if u(n) = α then set u(n) = 0 and set t(u) + +;
if t(n) = ω then set n−− and set t = t � n and set u = u � n;
if (x � n, t, u) ∈ S then set n+ + and set t = t a 0 and set u = u a 0 and call DFS(t, u) and
set n−− and set t = t � n and set u = u � n;
set u(n) + + and call DFS(t, u);

Here in every call of DFS(t, u), the algorithm tries to extend t and u simultaneously by all pairs (m,β)
withm ∈ ω and β < α. Again, if (t a m,u a β) ∈ Sx, the sequence is immediately extended further, i.e.
DFS(t a m,u a β) is called. Otherwise, (t a m,u a β+ 1) is tried next. If for all β < α (t a m,u a β)
cannot be extended further, then (t a m+ 1, u a 0) is tried next, and so on.

Lemma 2. The algorithm will find the lexicographically least z such that Sx,z has a branch, and the
lexicographically least branch v through Sx,z, if such a real z exists.

Proof. Assume z and v are as required. As in Lemma 1, we can see that before stage γ (where γ is the
supremum of the range of the embedding coded by v), only countably many nodes are visited. In stage
γ, only countably many nodes are visited before the branch (z, v) is found.

It is straightforward to generalize this algorithm to semi-decide Σ1
2 subsets of k(ωω). From the algo-

rithms, we obtain short proofs of several results in classical descriptive set theory.

Corollary 1. Suppose M is a transitive model of KP with ω1 ⊆ M . Then Σ1
2 relations are absolute

between M and V .

Proof. Since OTM computations are absolute between transitive models of KP (see [6, Lemma 2.6]),
so is membership in Σ1

2 sets.

Corollary 2. Every Σ1
2 binary relation on the reals has a Σ1

2 uniformization and every Π1
1 binary

relation on the reals has a Π1
1 uniformization.

Proof. Suppose A ⊆ ωω × ωω is a Σ1
2 set. The algorithm semi-deciding (x, y) ∈ A can be modified

to search for a y given x as input. As we added the search for sequences t ∈ <ωω to Algorithm 1 to
obtain Algorithm 2, we may also add another search for s ∈ <ωω with (s, t, u) ∈ Sx. An argument
analogous to Lemmas 1 and 2 proves that the lexicographically least branch (y, z, v) through Sx is
found. This corresponds to the lexicographically least branch through Sx,y, therefore (x, y) ∈ A. For
any Π1

1 binary relation, a similar modification of Algorithm 1 yields an algorithm semi-deciding a
uniformization such that for any pair (x, y) in the uniformizing function, the algorithm halts before the
least (x, y)-admissible ωx,y1 above ω. Hence the uniformization is Π1

1 by the Spector-Gandy Theorem.

This immediately implies

Corollary 3. Every nonempty Σ1
2 set of reals has a Σ1

2 member, i.e. some x such that {x} is a Σ1
2

set, and every nonempty Π1
1 set of reals has a Π1

1 member.

4



The proof of Corollary 2 shows that any function from the reals to the reals with OTM semi-decidable
graph is OTM computable. Note that this is false when we consider OTM programs P such that P (x)
halts before ωx1 for all x with P (x) ↓. Let us consider a Π1

1 function, obtained via Π1
1 uniformization f ,

mapping a real x to a code for a wellfounded countable model containing x of the theory T , where T
is the extension KP requiring that there is an admissible ordinal. Although its graph is semi-decidable
by such a program, it is easy to see that f is not OTM computable by a program of this type.

Corollary 4. Every Σ1
2 set is the union of ω1 many Borel sets.

Proof. Given a Σ1
2 set A, let P be an OTM which terminates on input x if and only if x ∈ A. Let Aβ

denote the set of reals x such that P (x) terminates before stage β. Then A is the union of the sets Aβ .
To see that each Aβ is Borel, let aβ be a real coding the supremum γβ over the halting times of the
algorithm if restricted to at most β stages.1 Then a real x is an element of Aβ if and only if for some
(for every) real c coding a computation along aβ , this computation halts. This shows that Aβ is ∆1

1

and hence Borel by Suslin’s Theorem.

Corollary 5. Every Σ1
2 set has a Σ1

2 norm.

Proof. Let A be a Σ1
2 set and let PA be an algorithm semi-deciding A. The desired norm is given by

the map φ where PA halts at time φ(x) on input x. Let x ≤ y (x < y) if P (x) halts (strictly) before
P (y), or P (y) does not halt. Then y ∈ A and x ≤ y imply x ∈ A. Using the algorithm, it is easy to see
that the relations ≤ and < are OTM semi-decidable. Hence φ is a Σ1

2 norm on A.

Note that we cannot obtain a Σ1
2 norm whose initial segments are uniformly Borel. This would imply

the existence of an uncountable sequence of distinct Borel sets of bounded rank, however this does not
follow from ZF [2, Theorem 4.5].

In order to describe the supremum of the ordinals appearing as the halting time of some OTM program,
let δ12 denote the supremum of lengths of ∆1

2 wellorders on sets of natural numbers. Let δ12(x) denote
the supremum of the length of ∆1

2 wellorders in the parameter x on sets of natural numbers. Note that
a real x is ∆1

2 if and only if {x} is ∆1
2 or even just Σ1

2 .

Corollary 6. The supremum of halting times of OTMs with input x is δ12(x).

Proof. Suppose y codes a ∆1
2 wellorder in the parameter x of type γ. Since we may assume that

y is OTM computable, consider the algorithm searching for the next element in the wellorder. The
algorithm halts as soon as every natural number has appeared at a time at least γ. If P is a program,
let us consider the Π1

1 set in the parameter x of pairs (y, z) such that y codes a wellorder w with a
maximal element l and domain the natural numbers and z codes a halting computation along w on
input x which halts at l. This set contains a Π1

1 singleton (y, z) in the parameter x by Corollary 2.
Then y codes a ∆1

2 wellorder in the parameter x whose order type is the length of the computation.

As an example of a Σ1
2 wellorder of length δ12 , let m <halt n if Pm and Pn both halt on empty input

and Pm halts before Pn, or Pm and Pn halt simultaneously and m < n.

3 Tree representations from computations

In this section, we construct a tree representation for an OTM semi-decidable set of reals from finite
fragments of OTM computations. The tape content over an entire halting OTM computation on count-
able input by a program P can be viewed as an ω1 × ω1 matrix filled with zeroes and ones. Every
row represents the tape content at a given time. If we add a state and a head position per row, the
computation is entirely captured in the resulting diagram:

1 If the algorithm terminates in stage β, the machine halts after at most (ωω · βω) · β many steps.

5



tape →

time ↓

state head 0 1 2 3 4 5 6 7 8 9 · · · ω · · ·
0 0 0 0 0 0 0 0 0 0 0 0 0 · · · 0 · · ·
1 1 1 1 0 0 0 0 0 0 0 0 0 · · · 0 · · ·
2 0 2 1 0 0 0 0 0 0 0 0 0 · · · 0 · · ·
3 1 3 1 0 1 0 0 0 0 0 0 0 · · · 0 · · ·
4 0 4 1 0 1 0 0 0 0 0 0 0 · · · 0 · · ·
5 1 5 1 0 1 0 0 0 0 0 0 0 · · · 0 · · ·
6 0 6 1 0 1 0 1 0 0 0 0 0 · · · 0 · · ·
7 1 7 1 0 1 0 1 0 0 0 0 0 · · · 0 · · ·
8 0 8 1 0 1 0 1 0 1 0 0 0 · · · 0 · · ·
9 1 9 1 0 1 0 1 0 1 0 0 0 · · · 0 · · ·
...

...
...

...
...
...
...
...
...
...
...
...
...

...
ω 0 ω 1 0 1 0 1 0 1 0 1 0 · · · 0 · · ·

ω + 1 1 ω + 1 1 0 1 0 1 0 1 0 1 0 · · · 1 · · ·
...

...
...

...
...
...
...
...
...
...
...
...
...

...

We will approximate similar diagrams by adding single bits of information. A tape bit (α, β, c, λ) will
consist of:

1. a coordinate (α, β) in the ω1 × ω1 matrix representing time α and tape cell β
2. the cell content c ∈ {0, 1}
3. a countable limit ordinal (or zero) λ – this number will be used to control the limit behavior.

Per row we also need a machine bit [α, s, γ, λ] containing the following information:

1. some time α
2. a machine state s of P
3. a head position γ ∈ ω1

4. a countable limit ordinal (or zero) λ – this number will be used to control the limit behavior.

A finite set of tape and machine bits can be coded into a countable ordinal; fix such a coding. We will
now define the tree T on ω × ω1: A pair (s, u) ∈ nω × nω1 is in T if and only if

1. The set coded by uj contains the bits coded by ui for 0 ≤ i ≤ j < n and natural numbers ci for
i < j deciding which bits belong to ui. The remaining elements of the set coded by uj are exactly
the bits required by the following conditions.

2. Every ui contains at most one machine bit for each α and at most one machine bit and for every
pair of α and β.

3. For every tape bit bit (0, n, c, ·) of ui with i ≥ n, we have that c = sn, i.e. s serves as initial segment
of the initial tape contents of the partial computation.

4. u0 contains the machine bit [0, 0, ·, ·] and the tape bit (0, 0, 0, ·). Also it contains a machine bit
[α, s, γ, ·] plus a tape bit (α, γ, c, ·) where P does not contain an instruction for the situation (c, s)
, i.e. α is a halting time. So the beginning and the end of the partial computation are fixed.

5. As soon as we have information about a tape cell at time α, we also know the machine state and
head position: If ui contains a tape bit (α, ·, ·, ·), it also contains a machine bit [α, ·, ·, ·].

6. We always know which tape contents is read by the read-write head: If ui contains a machine bit
[α, ·, γ, ·], it contains a tape bit [α, γ, ·, ·).

7. If ui contains a tape bit (α, β, c, ·), ui+1 contains bits immediately above and below along the time
axis: Let [α, s, γ, ·] be the corresponding machine bit. If β = γ we require ui+1 to contain a tape
bit (α+ 1, γ, ·, ·) and a machine bit [α+ 1, ·, ·, ·] as required by the program P . If α is a successor,
we also similarly require the tape and machine bit of the form [α− 1, ·, ·, ·] that P implies. Except
for those tape bits, all the other tape cells should not change their content, so we add tape bits
(α+ 1, β, c, ·) if β 6= γ. Again, if α is a successor, we add such tape bits (α− 1, β, c, ·) for all β but
the one for which we already added such a bit according to P .

6



8. For tape bits of limit times we have to ensure that the tape contents are inferior limits over earlier
times: If λ is a limit ordinal, and (λ, β, c, ·) is a tape bit of ui. Suppose c = 0. Then there is a tape
bit (α, β, 0, ·) with α < λ in ui+1 and α > α′ for all bits (α′, β, ·, ·) in ui with α′ < λ. If c = 1 then
there is a tape bit (α, β, 1, λ) in ui+1 with α < λ and where α is larger than any time of a similar
bit in ui. Let α′ be minimal such that ui+1 contains a tape bit of the form (α′, β, 1, λ). Then every
tape bit for tape cell β and time ᾱ between α and λ in ui+1 must be of the form (ᾱ, β, 1, ·).

9. We also want the machine state at limit times to be a lim inf: If λ is a limit ordinal and ui contains
a machine bit [λ, s, ·, ·], ui+1 contains a machine bit [α, s, ·, λ] where α < λ and where α is larger
than any time of a similar bit in ui. Let α′ be minimal such that ui+1 contains a machine bit of
the form [α′, s, ·, λ]. Then every machine bit for time ᾱ between α and λ in ui+1 must be of the
form [ᾱ, s′, ·, ·] where s′ ≥ s.

10. We also want to make the head position at limit times a lim inf as in the definition of OTMs. If λ
is a limit ordinal, then for every machine bit [λ, s, γ, ·] of ui one of the following conditions hold:
Either there is a machine bit [α, s, γ, λ] in ui+1 with α < λ where α is larger than any time of a
similar bit in ui and for every machine bit in ui+1 of the form [α′, s, γ′, ·] where α′ is between α
and γ we have γ′ ≥ γ. Or, alternatively, ui+1 does not contain a bit of the form [α, s, γ, λ], then
we require that there is a bit [α, s, γ′, λ] in ui+1 that is not in ui where γ′ < γ and γ′ is greater or
equal to any γ′′ < γ in any bit of ui+1.

This means that every entry of the matrix given by ui is extended both up- and downwards along the
time axis in ui+1 while respecting the behavior of the program P and the limit rules involved in the
definition of OTMs.

Let us, in the following, refer to the set of α where ui contains a bit of the form (α, ·, ·, ·) as dom(ui).
Moreover, let dom(u) be the set of those α that occur in some ui, i ∈ ω,

Lemma 3. T projects to the set of reals semi-decided by P .

Proof. First let x be semi-decidable by P , i.e. P (x) ↓. We claim that the halting computation C implies
a branch of Tx. Let (λi)i∈ω be an enumeration of the limit times involved in C. Let [λi, si, γi, ·] be the
corresponding machine bits, and (λi, γi, ci, ·) the corresponding tape bits according to C, for i ∈ ω. We
can make sure that ui contains both [λi, si, γi, ·] and (λi, γi, ci, ·) and tape and machine bits [α, ·, γ, ·],
(α, γ, ·, ·) with λm < α < λn for any m < n < i. Let us close (ui)i<ω under above rules using bits
compatible with C. It is clear that for any two consecutive limits λk and λl, there is some ui which
contains bits (α, ·, γ, ·), (α, γ, ·, ·) with λk < α < λl. Since all bits are chosen form C, the gaps between
the λi can be filled and (ui)i<ω forms a branch in Tx.

Now let (ui)i∈ω be a branch of Tx. We need to prove that the computation C by P on input x halts.
Let (λi)i∈ω be an enumeration of the limits in dom(u).

Claim. The ordinals in dom(u) are exactly the ordinals λj + n for j, n ∈ ω.

Proof (Claim). By above rules it is clear that every ordinal of the form λj + n is in dom(u). Suppose
that µ+ n ∈ dom(ui) where µ 6= λj for all j ∈ ω. Then it follows from the rules that µ ∈ dom(ui+n), a
contradiction.

The set of bits in (ui)i∈ω induce a partial matrix U of the type pictured above. We call a submatrix
according to P , if the machine state, head position, and tape contents change only as dictated by P .

Claim. For λ ∈ (λi)i∈ω the submatrix of U induced by the rows λ+ n for all n ∈ ω is according to P .

Proof (Claim). Let n ∈ ω and choose i minmal such that ∃mλ+m ∈ dom(ui). The rules dictate that
ui+n−m contains unique machine bits for all rows λ + m,λ + m + 1, . . . , λ + n and also for all rows
between min{λ, λ+m− n} and λ+m. Those machine bits and also the tape contents covered by bits
present in ui are changed only according to P . Of course, new tape cells might have been introduced
by tape bits in uj , j > i. But for any such given tape cell β, its content is kept constant except for
actions of P .

It remains to show that at limit times, machine state, head positions, and tape contents are inferior
limits.

7



Claim. Let λ be in (λi)i∈ω. Let (αj)j<ν be an increasing enumeration of dom(u) ∩ λ. Then:
(i) For every tape bit (λ, β, c, ·), c is the inferior limit over the d in tape bits of the form (αj , β, d, ·) inS

i∈ω ui.
(ii) For every machine bit [λ, s, ·, ·], s is the inferior limit over the r in machine bits of the form [αj , r, ·, ·]

in
S
i∈ω ui.

(iii) For every machine bit [λ, s, γ, ·], γ is the inferior limit over the δ in machine bits of the form
[αj , s, δ, ·] in

S
i∈ω ui.

Proof (Claim).
(i) Choose ui such that (λ, β, c, ·) is in ui. Let ((αk, β, dk, ·))k∈µ be an increasing (in αk) enumeration

of the tape bits in (uj)i<j<ω where αj < λ. First consider c = 0. The rules imply that (dk)k∈µ
contains an unbounded sequence of 0s, hence c is in fact the inferior limit. Now suppose c = 1. In
ui+1 a tape bit of the form (α, β, 1, λ) is added and all dk where αk > α are ≥ 1.

(ii) Choose ui such that [λ, s, ·, ·] is in ui. Let ([αk, sk, ·, ·])k∈µ be an increasing (in αk) enumeration of
the machine bits in (uj)i<j<ω where αj < λ. In ui+1 a machine bit of the form [α, s, ·, λ] is added,
where α is greater than any time of a similar bit in ui+1. Indeed in every uj where j > i such a bit
is added, so (sk)k<µ contains s unboundedly often. Also, the rules imply that every sk ≥ s for for
all αk ≥ α.

(iii) Choose ui such that [λ, s, γ, ·] is in ui. Let ([αk, s, γk, ·])k∈µ be an increasing (in αk) enumeration
of the machine bits in (uj)i<j<ω where αj < λ (note that we only consider bits with machine state
s). Case 1. In ui+1 a machine bit of the form [α, s, γ, λ] is added, where α is greater than any time
of a similar bit in ui+1. Indeed in every uj where j > i such a bit is added, so (γk)k<µ contains γ
unboundedly often. Also, the rules imply that every γk ≥ γ for for all αk ≥ α. Case 2. No such bit
is added in any uj , i < j. Then by the rules, (γk)k∈µ is strictly increasing below γ. Note that by the
rules there is no head position in u that is between supk∈µ(γk) and γ. So even if lim infk<µ(γk) < γ,
the partial computation behaves as if γ was indeed the lim inf.

Let us order the set of tape bits and the set of machine bits lexicographically. If u = {u0 < ... < um}
and v = {v0 < ... < vn} are (codes for) finite sets of tape bits or finite sets of machine bits, let u <lex v
if u is an initial segment of v or ui <lex vi for the least i with ui 6= vi. Suppose un, vn are codes for
finite sets as in the definition of the tree T of partial computations. Then we can decode sequences
u = {u0 < ... < un} and {v0 < ... < vn} from un and vn such that ui+1 contains exactly the bits
necessary to extend ui for all i < n, and similarly for vi. Let us define a wellordering of such codes by
un <code vn if u is an initial segment of v or ui <lex vi for the least i with ui 6= vi.

Lemma 4. T has pointwise leftmost branches with respect to <code.

Proof. We claim that for every input x on which the computation halts, the tree Tx has a branch b so
that bn ≤code cn for every branch c of Tx and for every n. Let us consider the computation with input
x. Let b0 = {[0, 0, 0, .], (0, 0, 0, .), [α, s, γ, .], (α, γ, c, .)}, where α is the halting time, s is the machine
state at time α, γ is the head position at time α, and c is the content of cell γ at time α. Let bn+1

be the ≤lex-least extension of bn which describes a fragment of the computation as the definition of T .
Suppose towards a contradiction that c is a branch in Tx and n is minimal with cn <code bn. We can
decode sequences u = {b0 < ... < bn} and v = {c0 < ... < cn} from bn and cn. Then bi ≤code ci for all
i < n by minimality and hence bi ≤lex ci. Since cn <code bn, bi = ci for all i < n. This contradicts the
choice of bn.

In particular, the tree induces a Σ1
2 scale on the set semi-decided by P .

A natural question is whether there is a tree T projecting to a Σ1
2 universal set A such that Tx has a

unique infinite branch for every x ∈ A. Let us argue that the existence of such a tree is not provable
in ZF. Assuming the existence of such a tree, we can easily convert it into a tree S with the property
that there is a unique b ∈ Sx for every x ∈ A and bx 6= by for all x 6= y by coding the first coordinate
into the second. Since for each α < ω1 the projection of S restricted to ordinals below α is an injective
image of a closed set and hence Borel, there is an n such that the set B of values of bx(n) for x ∈ A is
unbounded in ω1. Let us choose the leftmost branch (xα, bα) in S with bα(n) = α for each α ∈ B. We
have defined an uncountable sequence (xα : α ∈ B) of distinct reals. However, there is no such sequence
in the symmetric forcing extension for the collapse Col(ω,< κ) below an inaccessible cardinal κ.

8



The tree representation allows us to generalize the results in section 2 to sets of reals semi-decided by
ordinal machines with upper bounds on the halting times.

Definition 2. Suppose f is a function from the reals to the ordinals. We call f superadditive if f(x) ≤
f(〈x, y〉) for all reals x and y. Let us call f admissible if it is superadditive and f(x) is x-admissible
for all reals x.

In fact, we consider only additive Turing invariant functions.

Definition 3. Suppose f is superadditive. Let us say that a set of reals A is f-semi-decidable or Γf if
there is a OTM program P semi-deciding A such that P halts before time f(x) on input x if it halts at
all.

The classes Γf for admissible f with values strictly above ω range from Π1
1 to Σ1

2 .

Lemma 5. Let f(x) = ωx1 and g(x) = δ12(x) (see section 2). Then the Π1
1 sets are exactly the f-semi-

decidable sets and the Σ1
2 sets are exactly the g-semi-decidable sets.

Proof. Suppose that A is f -semi-decidable and x is a real. Then x ∈ A if and only if in every countable
model of KP, there is a halting computation with input x. Suppose A is Π1

1 and x ∈ A if and only if Tx
is wellfounded. Then rank(Tx) < ωx1 and hence the algorithm searching for a branch in the Shoenfield
tree halts before ωx1 . The statement for Σ1

2 sets follows from Corollary 6.

Corollary 7. Suppose f is superadditive. Then every Γf set has a Γf norm.

Proof. Suppose a set in Γf is semi-decidable by a program P with halting time bounded by f . Let φ(x)
be the halting time of P on input x. The superadditivity of f implies that φ is a Γf -norm as in the
proof of Corollary 5.

Corollary 8. Suppose f is admissible. Then every Γf binary relation has a Γf uniformization.

Proof. Suppose a relation in Γf is semi-decidable by a program P with halting time bounded by f . We
apply the algorithm for searching through the Shoenfield tree to the tree of partial computations. Let us
consider the algorithm Q which on input (x, y) searches for a real z and a branch in the tree of halting
computations of P with input (x, z). The algorithm will find the lexicographically least such pair, if
there is any. In this case the computation halts before α = f(〈x, y〉), since α is admissible and hence the
tree of partial computations of P with input 〈x, y〉 has a branch in Lα[x, y]. If y = z we let Q halt and
diverge otherwise. Notice that for any real x in the domain of the relation there is a lexicographically
least pair consisting of a real g(x) and a branch through the tree of partial computations on input
(x, g(x)). Hence for any x in the domain there is a real z with Q(x, z) ↓. Since Q diverges for all inputs
(x, z) with z 6= g(x), we have found a uniformization.

4 Nondeterministic ordinal machines, oracles, and jumps

In [6, Definition 1] the programs that steer the computations of OTMs are defined with the following
condition: If the machine is currently in state s and the machine’s read-write head currently reads
symbol c, then the program contains at most one command for that situation. This way, when Koepke
defines the ordinal computation by a program P , he can refer to the unique command in a given
situation. Instead, for the present section, we shall drop the above restriction on programs and instead
define ordinal computations in a way that, in successor steps, the lexicographically least instruction (if
there is one that suits the current situation) is chosen to determine the next machine step. This allows
us to define non-deterministic ordinal computations as follows.

Definition 4. Given program P and an input (i.e. an initial tape configuration), the non-deterministic
ordinal Turing computation (NOTM computation) by P is defined like the ordinal computation by P
([6, Definition 2]), except that in successor steps any suitable command may define the machine’s next
step.

9



NOTM computations may be used to define sets of reals.

Definition 5. A set of reals A ⊆ ωω is NOTM semi-decidable if there is a program P such that

x ∈ A↔ there is a halting NOTM computation by P on input x

By a Mostowski collapse argument, we obtain for every such x ∈ A a countable halting NOTM com-
putation by P on input x. As in the classical case, given a coding of the “choices” that a NOTM
computations makes, NOTM decidability can be verified deterministically.

Lemma 6. There is a program Q such that for every program P and every real input x, there is a
real z such that the OTM computation by Q on inputs P , x, and z halts if and only if the NOTM
computation by P on input x halts.

Proof. Let us define z to code two reals z1 and z2. Let z1 code a well-order on ω of order type the
(countable) length of the NOTM computation by P on input x. Let z2 be such that in machine step
otpz1(i), the OTM computation by P on input x selects the z2(i)-th least command P contains for
that situation. Note that both otp and otp−1

z1
are OTM computable functions. Now the program Q

is essentially a universal OTM which selects the z2(i)-th command in P in the otpz1(i)-th simulation
step.

An immediate question is whether NOTMs compute more sets of reals than OTMs.

Proposition 1. Every NOTM computable set of reals is already OTM computable.

Proof. Let A ⊆ ωω and suppose that Q is the program from Proposition 6. By Proposition 6, A is
NOTM semi-decidable if and only if there is a program P so that for every input x there is a real z
such that the OTM computation by Q on inputs P , x, and z halts. Since this is a Σ1

2 statement, A is
Σ1

2 and hence OTM semi-decidable.

The approach of trying out every coding of choices one after the other could fail if for a given x every
certificate z was non-constructible. Let us search for a certificate via the tree of partial computations;
this can alternatively be done by applying Shoenfield absoluteness and searching through L, using the
OTM computable recursive truth predicate from [6].

Lemma 7. Given a program P and an element (s, t) of the full tree on ω × ω1, we can OTM decide
the question whether or not (s, t) is an element of the tree of partial computations according to P .

Proof. We first have the OTM check whether t is of the correct type. If yes, we can easily check the
finitely many conditions if t is a partial computation by P on some input that is compatible with s.

With the preceding lemma, we can use a variant of Algorithm 2 to find branches in the tree of partial
computations. Since propositions 1 and 2 hold also for our algorithm operating on the tree of partial
computations, we get:

Proposition 2. If A is NOTM semi-decidable by the program P , then, given x as an input, the algo-
rithm will find a real z ∈ ωω such that the OTM computation by Q on inputs P , x, and z if x ∈ A and
diverges otherwise.

Proof. If x is in A, there is a z in L such that QOTM(P, x, z) ↓. An argument analogous to propositions
1 und 2 shows that given a real x, the algorithm will find a branch of the form (x, c) in the tree T of
partial computations by P , if any exists. From c the desired z can be easily decoded.

Let us now consider ordinal machines with a set of reals as oracle as in [1]. In a query state in a
computation, the program asks whether the sequence on the initial segment of length ω of the tape is
an element of the set. Let us write PA(x) for the OTM computation by the program P with oracle A
on input x. Let us also fix a computable enumeration (Pn | n ∈ ω) of all programs.

Definition 6. The halting problem relative to a set of reals A or jump of A is defined as AH = {(n, x) |
PAn (x) ↓}.

10



The halting problem 0H is a Σ1
2 set, in fact we have

Proposition 3. The halting problem 0H is Σ1
2 universal. If n ≥ 1 and V = L, then the iterated jump

0Hn is Σ1
n+1 universal.

Proof. Every halting computation with countable input halts at a countable time. Hence (m,x) ∈ 0Hn

is described by a Σ1
n+1 formula stating the existence of a wellorder w on the natural numbers with

largest element l together with a sequence indexed by w, coding a computation of Pm with input x
and oracle 0H(n−1) halting at l. Let us suppose that A is defined by the formula ∃xϕ(x, y), where ϕ is
Π1
n. We consider a program searching through L for a witness for ϕ as in [6], using the oracle 0H(n−1)

to verify ϕ(x) for reals x. This program identifies A as a section of 0Hn.

In particular, the Σ1
n+1 sets are exactly the OTM semi-decidable sets in a Σ1

n oracle for n ≥ 1, if
V = L. Let us show that this remains true when κ ≥ ω1 many Cohen reals are added to L by the
forcing Add(ω, κ).

Lemma 8. Suppose that V = L[G], where G is Add(ω, κ)-generic over L, and κ ≥ ω1. Then 0Hn is
Σ1
n+1 universal for all n ≥ 1.

Proof. Suppose that x is a real in L[G]. There are an Add(ω, 1)-generic filter g0 with L[x] = L[g0] and
an Add(ω, κ)-generic filter g1 over L[g0] with L[G] = L[g0][g1]. Let us consider a formula ∃yϕ(x, y)

where ϕ is Π1
2 . Then L[G] � ∃yϕ(x, y) holds if and only if ∃σ ∈ N 
L[g0]

Add(ω,1) ϕ(y, σ) holds, where N
is the set of nice Add(ω, 1)-names for reals in L[g0]. Since nice names for reals are coded by reals, this
is a Σ1

3 statement in L[g0]. In a similar fashion, we can express any Σ1
n+1 statement about x in L[G]

by a Σ1
n+1 statement in L[g0] for all n ≥ 1, uniformly in x. Every such set is a section of 0Hn by the

argument in the previous proposition.

It is also consistent with ZFC that the iterated jumps have a lower complexity. Note that the assumption
that ωL[x]

1 < ω1 for every real x may be obtained by forcing with the Levy collapse Col(ω,< κ) below
an inaccessible cardinal κ.

Lemma 9. Suppose that ωL[x]
1 < ω1 for every real x. Then 0Hn is a ∆1

3 set for all n ≥ 1.

Proof. Let us consider the ∆1
3 set A of pairs (x, y) where y codes Lγ [x] and γ is the least x-admissible

ordinal above ωL[x]
1 . We compute the truth value of x ∈ 0Hn in Lγ [x], where γ is the least x-admissible

above ωL[x]
1 , using an algorithm which has access to n distinct tapes of length ωL[x]

1 + 1. The original
program runs on tape n. Whenever the oracle 0Hi is called on tape i, the oracle is computed on tape
i− 1 by a subroutine of length ωL[x]

1 + 1. The ∆1
3 description of A provides us with a ∆1

3 description of
the set of pairs (x, n) with x ∈ 0Hn.

The two lemmas together show that the complexity of 0Hn for n ≥ 2 is independent of the size of the
continuum.

5 Further questions

A set of reals is Σ1
2 in a countable ordinal α if there is a Σ1

2 formula ϕ(x, y) such that for all reals y
coding α and all reals x, x ∈ A if and only if ϕ(x, y) holds, i.e. the Σ1

2 definition is independent of the
coding of α. We leave open whether the sets of reals with a Σ1

2 definition in an ordinal α, evaluated in
V Col(ω,α), are exactly the OTM semi-decidable sets of reals with input α. If so, this might be used for
a proof of uniformization for these classes.

References

1. Joel D. Hamkins and Andy Lewis. Infinite time Turing machines. The Journal of Symbolic Logic,
65(2):567–604, 2000.

2. Leo Harrington. Analytic determinacy and 0]. J. Symbolic Logic, 43(4):685–693, 1978.

11



3. Greg Hjorth. Vienna notes on effective descriptive set theory and admissible sets. available at
http://www.math.uni-bonn.de/people/logic/events/young-set-theory-2010/Hjorth.pdf, 2010.

4. Thomas Jech. Set theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. The
third millennium edition, revised and expanded.

5. Alexander S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995.

6. Peter Koepke. Turing computations on ordinals. The Bulletin of Symbolic Logic, 11:377–397, 2005.
7. Peter Koepke. Ordinal computability. In Klaus Ambos-Spies, Benedikt Löwe, and Wolfgang Merkle,

editors, Mathematical Theory and Computational Practice, volume 5635 of Lecture Notes in Com-
puter Science, pages 280–289. Springer-Verlag, Berlin, Heidelberg, 2009.

8. Peter Koepke and Benjamin Seyfferth. Ordinal machines and admissible recursion theory. Annals
of Pure and Applied Logic, 160(3):310–318, 2009. Computation and Logic in the Real World: CiE
2007.

12


