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Abstract. We describe the inner models with representatives in all equiv-

alence classes of thin equivalence relations in a given projective pointclass of

even level assuming projective determinacy. These models are characterized by

their correctness and the property that they correctly compute the tree from

the appropriate scale. The main lemma shows that the tree from a scale can

be reconstructed in a generic extension of an iterate of a mouse.

We construct models with this property as generic extensions of iterates of

mice if the corresponding projective ordinal is below ω2.

On the way we consider several related problems, including the question

when forcing does not add equivalence classes to thin projective equivalence

relations. For example, we show that if every set has a sharp, then reason-

able forcing does not add equivalence classes to thin provably ∆1
3 equivelence

relations, and generalize this to all projective levels.

1. Introduction

Definable equivalence relations are a focus of modern descriptive set theory. While

the bulk of research centers around Borel equivalence relations, there has been a

large amount of work on projective equivalence relations, for example Harrington

and Sami [8], Hjorth [10, 12, 13], Hjorth and Kechris [14], Kechris [19], Louveau

and Rosendal [24], and Silver [39], and equivalence relations in the constructible

universe L(R) over the reals, e.g. Hjorth [11]. Inner model theory has proved

to be very useful for this endeavour, in particular iterable models with Woodin

cardinals (see e.g. Hjorth [12]). For the theory of iterable mice with Woodin
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cardinals see Mitchell and Steel [29] and Steel [40, 42]. Earlier approaches as in

Harrington and Sami [8] and Kechris [19] use direct proofs from determinacy. It

is well known that determinacy and the existence of the appropriate mice are

equivalent (see [23, 27, 31, 34]).

This paper is about thin projective equivalence relations, i.e. those with no per-

fect set of pairwise inequivalent reals. They have been most notably studied by

Harrington and Sami [8], motivated by the question about the number of equiv-

alence classes. A starting point in this topic is Silver’s theorem [39] that every

thin Π1
1 equivalence relation has countably many equivalence classes. Harrington

and Sami subsequently extended this through the projective hierarchy relative to

the projective ordinals. The nth projective ordinal δ˜1
n is the supremum of lengths

of ∆1
n prewellorders. The number of equivalence classes of thin Π1

n equivalence

relations is below δ˜1
n if n ≥ 1 is odd and at most the size of δ˜1

n−1 if n ≥ 2 is even

[8].

A quite different approach to this question is to look for a bound for the number of

equivalence classes of co-κ-Suslin equivalence relations, i.e. when the complement

is the projection of a tree T on ω × ω × κ. Harrington and Shelah [9] showed

this is at most κ if the complement of p[T ] is an equivalence relation in a Cohen

generic extension. We use this to bound the number of equivalence classes of

thin Π1
n equivalence relations under the assumption that the pointclasses Π1

k are

scaled for odd k and all projective sets have the Baire property. Note that scales

are closely connected to Suslin representations.

Since the number of equivalence classes of thin Π1
n equivalence relations is bounded

by a projective ordinal, we look for inner models (possibly with fewer reals than

V ) which have representatives in all equivalence classes of all thin Π1
n(x) equiva-

lence relations, where x is a real parameter in the inner model. Hjorth [10] showed

that every inner model has this property for n = 1 as a consequence of Silver’s
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theorem. The candidates for such inner models for n ≥ 2 are forcing extensions

of fine structural inner models with Woodin cardinals. We will construct such

models if the corresponding projective ordinal is below ω2.

Hjorth [10] characterized the models with this property for n = 2. Assuming all

reals have sharps, the inner models with this property for n = 2 are exactly the Σ1
3

correct inner models with the right ω1. We extend Hjorth’s theorem to the even

levels in the projective hierarchy in the main theorem. The level of correctness

is adapted and instead of asking that the model has the right ω1, we ask that

the model correctly computes the tree T2n+1 from the canonical Π1
2n+1-scale, and

assume the appropriate amount of determinacy. Thus these inner models are

characterized in a simple and beautiful way.

The proof generalizes Hjorth’s proof. In the harder direction, the main lemma

shows that the tree TM2n+1 from the canonical Π1
2n+1-scale as computed in an inner

model M with countably many reals can be reconstructed in an iterate of M#
2n.

To do this, Woodin’s genericity iteration is applied to make reals generic at local

Woodin cardinals over iterates of M#
2n, and we force over the direct limit. A

density argument will show that the tree can be defined. We also have to look

more closely at the Harrington-Shelah result [9]. If the equivalence relation is co-

κ-Suslin, then for any real there is an infinitary formula defining a neighborhood

inside its equivalence class. Combining this with Steel’s result that M#
n is coded

by a projective real, we can express the existence of a real in this neighborhood

in a projective way and use this to complete the proof.

Let’s look at the setting from a different perspective and suppose the universe is

a forcing extension of an inner model. The issue is when a forcing introduces new

equivalence classes to thin projective equivalence relations. Foreman and Magidor

[4] showed that reasonable forcing of size at most κ does not add equivalence

classes to thin κ-weakly homogeneously Suslin equivalence relations. Together
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with the Martin-Steel theorem [28] this implies that if there are infinitely many

Woodin cardinals, then reasonable forcing does not add equivalence classes to

thin projective equivalence relations. We replace the large cardinal assumption

with the existence of M#
n (X) for all X ∈ Hκ+ and show that reasonable forcing

of size at most κ does not add new equivalence classes to thin provably ∆1
n+2

equivalence relations. It is essential that in this situation M#
n (X) is absolute.

The paper is organized as follows. Section 1 introduces the facts about thin

equivalence relations, prewellorders, scales, and properties of M#
n which we will

use.

In section 2 we study liftings of thin projective equivalence relations to forcing

extensions. We show based on an idea of Foreman and Magidor [4] that for any

infinite cardinal κ, reasonable forcing of size at most κ does not introduce new

equivalence classes to thin projective equivalence relations if M#
n (X) exists for

every self-wellordered set X ∈ Hκ+ and every n. The argument is adapted to Σ1
2

c.c.c. forcings. We show that generic Σ1
n+3 absoluteness holds for these forcings

from the assumption that M#
n (x) exists for every real x, generalizing the result

for Cohen and random forcing [45], and that no new equivalence classes of thin

projective equivalence relations are introduced. We further prove a lemma about

absoluteness of prewellorders under Cohen forcing which we need later.

In section 3 we present a proof of the Harrington-Shelah theorem [9] for counting

the number of equivalence classes of thin co-κ-Suslin equivalence relations, and

use this to calculate the number of equivalence classes of projective equivalence

relations. We further show that thin Σ1
2n equivalence relations are Π1

2n in any real

coding M#
2n−1 for n ≥ 1, generalizing Hjorth’s result [12] for n = 1.

In section 4 the main theorem is proved. The main lemma shows that the tree

from the Π1
2n+1 scale can be defined in an iterate ofM#

2n. We then characterize the

inner models which have a representative in every equivalence class of every thin
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Π1
2n(x) equivalence relation defined from a real parameter x in the inner model.

We further build a transitive model with this property assuming δ˜1
2n < ω2.

The material in this paper formed part of my dissertation. I would like to thank

Ralf Schindler for many discussions and ideas related to the topic of this paper.

I am further deeply indebted to Greg Hjorth for his suggestions for proving the

main theorem.

2. The framework

This section presents standard definitions and facts which are used later. We

work in the theory ZF + DC. For background information we refer to Jech [16],

Kanamori [17], Kechris [21], and Moschovakis [30].

2.1. Prewellorders and scales. In this section we discuss basic facts about

prewellorders and scales.

2.1.1. Basic definitions and facts. R as well as ωω denotes Baire space, the set

of sequences of natural numbers with the standard topology. The elements of R

are called reals. A perfect set is a nonempty closed set of reals without isolated

points. Clearly every perfect set has the size of the continuum.

Definition 2.1. An equivalence relation E ⊆ R × R is called thin if there is no

perfect set of pairwise inequivalent reals.

The corresponding notion is also defined for prewellorders. Recall that a prewellorder

is a wellfounded linear preorder.

Definition 2.2. A prewellorder ≤ is called thin if there is no perfect set P ⊆ R

such that x < y or y < x for any x, y ∈ P with x 6= y.

We will work with the projective pointclasses. By a pointclass we mean:
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Definition 2.3. A (lightface) pointclass Γ is a set ∅ 6= Γ $ P(R) which is closed

under recursive preimages and finite intersections and unions. The dual of Γ is

defined as Γ̌ = {A ⊆ R : R− A}. If Γ is a pointclass we write ∆ := Γ ∩ Γ̌.

Of course for any pointclass Γ we have a corresponding pointclass of subsets of

Rn via a recursive bijection R→ Rn.

Definition 2.4. If Γ is a pointclass, then Γ˜ is defined as the pointclass of all

preimages of sets in Γ under continuous functions. A boldface pointclass is a

pointclass with Γ = Γ˜.
Definition 2.5. If Γ is a pointclass, then < ω − Γ denotes the pointclass of

boolean combinations of sets in Γ, i.e. sets which are formed from sets in Γ by

finite applications of union and complement.

Some of the relevant structural properties of pointclasses are given by norms and

scales.

Definition 2.6. Suppose Γ is a pointclass and A ∈ Γ. A prewellorder ≤ with

domain R is called a Γ-norm on A if x ≤ y and y ∈ A imply x ∈ A, and ≤ is

uniformly ∆ in initial segments, i.e. there is a ∆ set B ⊆ R2 with

{(x, y) ∈ R2 : x ≤ y ∧ y ∈ A} = B ∩ {(x, y) ∈ R2 : y ∈ A}.

Let ≡ be the equivalence relation induced by ≤ and let

rank(x) := otp({y : y < x}/ ≡)

for x ∈ A and

rank(x) :=∞

for x /∈ A.
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Definition 2.7. Suppose Γ is a pointclass and A ∈ Γ. A sequence (≤n: n < ω)

of Γ-norms on A with

{(x, y, n) ∈ R× R× ω : x ≤n y} ∈ Γ

is called a Γ-scale on A if there is a set B ∈ ∆ with

{(x, y, n) ∈ R× R× ω : x ≤n y ∧ y ∈ A} = B ∩ {(x, y, n) ∈ R× R× ω : y ∈ A},

and if (xk : k < ω) ∈ ωR with xk → x and rankn(xk) → αn (i.e. rankn(xk)

is eventually constant) for all n, then x ∈ A and rankn(x) ≤ αn. Here rankn

denotes the rank in ≤n. A pointclass is scaled if there is a Γ-scale on every A ∈ Γ.

With each scale one associates a tree, from which the scale can again be defined:

Definition 2.8. Suppose (≤n: n ∈ ω) is a Γ-scale on A ∈ Γ where Γ is a

pointclass. The tree from the scale is defined as

T = {(x � n, (rank0(x), ..., rankn−1(x))) : x ∈ A ∧ n < ω}.

Note that A = p[T ] in the situation of the definition. Given x ∈ p[T ], there are

ordinals αn and reals xk such that x � k = xk � k for all k ∈ ω and rankn(xk) = αn

for all n ≤ k, so x ∈ A by the semicontinuity of the scale.

The projective pointclasses Π1
2n+1 and Σ1

2n+2 and their boldface versions are scaled

by the second periodicity theorem [21, theorem 39.8] if Det(∆1
2n) holds, where

∆1
0 = ∆0

ω denotes the pointclass of arithmetical sets. Let’s fix the Π1
2n+1-complete

Π1
2n+1 set and the Σ1

2n+2-complete Σ1
2n+2 set from the proof of the second period-

icity theorem for each n < ω. We will call these sets the complete Π1
2n+1 set and

the complete Σ1
2n+2 set. Let’s also fix the canonical scales on these sets from the

proof of this theorem.
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Definition 2.9. Suppose Det(∆1
2n) holds. Then T2n+1 denotes the tree from the

canonical Π1
2n+1-scale on the complete Π1

2n+1 set.

We will work with transitive models of a fragment of ZF between which well-

foundedness is absolute.

Definition 2.10. A transitive set A is called admissible if (A,∈) � KP. We will

call A strongly admissible if (A,∈) � KP and every wellfounded relation in A can

be collapsed in A to a transitive relation (“Axiom Beta”, see [3, chapter I, section

9]).

For a background on admissible sets see Barwise [3].

Lemma 2.11. Every Σ1
2n+2(x) set is the projection of a tree which is uniformly

defined from T2n+1 and x in every strongly admissible set A with T2n+1, x ∈ A.

Proof. The tree T from the scale on the complete Σ1
2n+2 set is essentially T2n+1,

see [21, theorem 38.4]. Any Σ1
2n+2(x) set B for x ∈ R is the preimage of the

complete Σ1
2n+2 set under some function f : R→ R recursive in x. Then the tree

S := {(s, h) ∈ (ω ×Ord)<ω : ∃y = ys,h ⊃ s ∀i < lh(s)(ranki(f(y)) = h(i))}

induces a Σ1
2n+2(x)-scale on B. Now ranki(f(y)) can be calculated from f(y) and

T in any strongly admissible set A with T, f(y) ∈ A. Since the existence of ys,h

for given s, h is absolute between strongly admissible sets, S is as required. �

2.1.2. Prewellorders under determinacy. Typical examples of thin equivalence

relations are given by prewellorders. We will need the following facts to know

that prewellorders induce thin equivalence relations under determinacy.

Lemma 2.12. (Kechris [18]) Suppose Γ is a pointclass containing the Π0
1 sets

and Det(Γ) holds. Then every aΓ set has the Baire property and there is no aΓ

wellorder of the reals.



THIN EQUIVALENCE RELATIONS AND INNER MODELS 9

Proof. To prove that every aΓ set has the Baire property, let B ⊆ R2 and

A = aB = {x ∈ R : player 2 wins the game for Bx},

where Bx := {y ∈ R : (x, y) ∈ B}. Basic open subsets of R and R2 are denoted

by

Us := {x ∈ R : x � dom(s) = s}

and

Us,t := {(x, y) ∈ R2 : x � dom(s) = s ∧ y � dom(t) = t}

for s, t ∈ ω<ω.

We first claim that the Banach-Mazur game for

A ∪ (R− Us) = a[B ∪ (R2 − U∅,s)]

is determined for all s ∈ ω<ω. In this game two players alternate playing finite

sequences s0, s1, .. and player 2 wins if s0 a s1 a .. ∈ A ∪ (R − Us). This game

is equivalent to the Banach-Mazur game for B ∪ (R2 − Ut) by the game formula

[18, theorem 3.3.1], and hence determined.

Now let S be the set of s ∈ ω<ω such that player 2 has a winning strategy in the

Banach-Mazur game for A ∪ (R− Us). Then A is comeager in Us for each s ∈ S

by the characterization of comeager sets in [21, theorem 8.33], so A is comeager

in

U1 :=
⋃
s∈S

Us.

The same theorem shows that for every t ∈ ω<ω−S, the set A is meager in some

nonempty open subset Uf(t) of Ut, so A is meager in

U2 :=
⋃

t∈ω<ω−S

Uf(t).
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Since (R− U1)− U2 is nowhere dense, this implies that A4U1 is meager. Hence

A has the Baire property.

Let’s recall the proof that there is no wellorder of the reals with the Baire property.

If < were such a wellorder, we define

A := {(x, y) ∈ R2 : x < y},

B := {(x, y) ∈ R2 : x > y},

and

C := {(x, y) ∈ R2 : x = y}.

Then both A and B are not meager, since C is nowhere dense. Hence there is

some x ∈ R such that

Ax := {y ∈ R : x < y}

is not meager by the theorem of Kuratowski and Ulam. Choose z as <-minimal

with this property. Again A ∩ (Az × Az) and B ∩ (Az × Az) are not meager. So

there is some x ∈ Az with Ax not meager, contradicting the minimality of z. �

The proof of the previous lemma shows that there is no wellorder of the reals in

the σ-algebra generated by aΓ.

Lemma 2.13. (Kechris [18]) Suppose Γ is a boldface pointclass containing the

Π0
1 sets and Det(Γ) holds. Then every prewellorder in aΓ is thin.

Proof. Let ≤ be a prewellorder in aΓ and suppose P ⊆ R is a perfect set so

that x 6≤ y and y 6≤ x for any two distinct x, y ∈ P . Then ≤ wellorders P .

Now aΓ is closed under continuous preimages since Γ is a boldface pointclass,

so any continuous injective map f : R → P induces a aΓ wellorder of the reals,

contradicting the previous lemma. �

The next two lemmas will be important for our purposes.
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Lemma 2.14. Det(∆1
2n) implies that every Π1

2n+1 norm is thin.

Proof. Suppose P ⊆ R is a perfect set whose elements have pairwise different

norms 6=∞ and let f : R→ P be a continuous injective map. Then f induces a

∆1
2n+1 wellorder of the reals.

Now Det(∆1
2n) implies Det(Π1

2n) by [22, theorem 5.1] and further aΠ1
2n = Σ1

2n+1

by [21, proposition 39.6]. So there is no Σ1
2n+1 wellorder of the reals by lemma

2.12. �

Note that the conclusion of the previous lemma follows from the Baire property

or the Lebesgue measurability of all ∆1
2n+1 sets alone.

Lemma 2.15. Det(Π1
2n+1) implies that every Σ1

2n+2 norm is thin.

Proof. As the previous lemma; otherwise there is a ∆1
2n+2 wellorder of the reals,

contradicting lemma 2.12. �

It is sufficient to assume the Baire property or the Lebesgue measurability of all

∆1
2n+2 sets for the previous lemma.

Lemma 2.16. The following are equivalent:

(1) every ∆1
2 prewellorder of the reals is thin,

(2) there is no ∆1
2 wellorder of the reals, and

(3) L[x] does not contain R for any x ∈ R.

Proof. Condition 1 clearly implies condition 2. To show that 2 implies 1, suppose

≤ is a ∆1
2 prewellorder of the reals and P ⊆ R is perfect with x < y or x > y for

any two distinct x, y ∈ P . Then any continuous injective map f : R→ P induces

a ∆1
2 wellorder of the reals.

Now condition 2 implies condition 3, since if R ⊆ L[x] for some x ∈ R, then the

order of constructibility of the reals is ∆1
2(x). To show that 3 implies 2, note that

R ⊆ L[x] by [16, theorem 25.39] if there is a ∆1
2(x) wellorder of the reals. �
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The projective ordinals are given by

Definition 2.17. The nth projective ordinal δ˜1
n is the supremum of lengths of ∆1

n

prewellorders for n ≥ 1 .

We state some of their properties, since the projective ordinals play an essential

role in calculating the number of equivalence classes of thin projective equivalence

relations in section 3.2.

Lemma 2.18. The following facts hold for the projective ordinals:

(1) (Martin) ZF + PD implies δ˜1
1 = ω1 and δ˜1

n ≤ ωn for n ≤ 4,

(2) (Kechris, Moschovakis) ZF + PD implies δ˜1
n < δ˜1

n+1 for all n,

(3) (Moschovakis) ZF + AD implies that each δ˜1
n is a cardinal, and

(4) (Steel, Van Wesep [43]) ZF + ADL(R) + δ˜1
2 = ω2 is consistent relative to

ZF + AD + ACR.

Proof. The proofs for parts 1 and 2 can be found in [20, theorem 9.1]. For part 3

see [20, theorem 2.2]. Note that Jackson [15] has computed all δ˜1
n exactly under

AD. For part 4 see [43]. Note that Woodin [46, theorem 3.17] proved that δ˜1
2 = ω2

holds if P(ω1)# exists and the nonstationary ideal on ℵ1 is ℵ2-saturated. �

An important open question is how large the projective ordinal δ˜1
n for n ≥ 3 can

be under ZFC + ADL(R). In fact, it is still open if ADL(R) implies δ˜1
n ≤ ωn for all

n, see [17, question 30.34].

Note that the consistency strength of δ˜1
2 = ω2 in the presence of sharps for reals is

somewhere between a strong cardinal and a Woodin cardinal with a measurable

cardinal above by work of Steel and Welch [44] and Woodin [46, theorem 3.25].

While we focus on the situation that ZF + PD holds, one can consider the case

that 0# does not exist. Note that MA and ω1 = ωL1 already imply δ˜1
2 = ω2. This is

because ω1 = ωL1 implies that any subset of ω1 can be coded as ∆HC
1 in a real by
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c.c.c. forcing so that ω1 many dense subsets suffice to define the real. Moreover

in this situation δ˜1
3 can be quite easily forced to be arbitrarily large with a forcing

from Harrington [6].

2.2. Mice with Woodin cardinals. In this section tools for mice with Woodin

cardinals are presented. The results are due to Martin, Steel, and Woodin, or

folklore. For missing definitions and proofs see Martin and Steel [28], Mitchell

and Steel [29], Schindler and Zeman [37], Steel [42], and Zeman [47]. Several facts

about ω1 + 1-iterable premice are adapted to ω1-iterable premice. The reason is

that we only want to assume PD; all one can get from PD is the existence of

ω1-iterable premice with n Woodin cardinals for arbitrary n < ω.

2.2.1. Premice, comparison, and M#
n .

Definition 2.19. A self-wellordered (swo) set is a set which codes a wellorder of

itself. The height of a self-wellordered set X is

ht(X) := sup((Ord ∩ tc(X)) ∪ ω).

Every self-wellordered set can be coded by a set sup(A) ∪ A, where A is a set of

ordinals. Recall that the first level of the J-hierarchy built over a set X is defined

as J0(X) = tc({X}).

Definition 2.20. A potential X-premouse is a structure

M = (J
~F
β (X),∈, X, ~F � β, Fβ)

where X is swo and ~F is a fine extender sequence relative to X. An X-premouse

is a potential X-premouse all of whose proper initial segments are ω-sound; a

premouse is simply a ∅-premouse. A boldface or relativized premouse is an X-

premouse for some swo set X. M is called active if Fβ 6= ∅, otherwise it is

passive. We write ~FM for the extender sequence ofM.
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For the definition of fine extender sequences see [42, definition 2.4] and for ω-

sound [42, definition 2.17].

Definition 2.21. Suppose

M = (J
~F
α (X),∈, X, ~F � α, Fα)

and

N = (J
~F
β (X),∈, X, ~F � β, Fβ)

are X-premice where X is swo and α ≤ β (α < β). ThenM is called a (proper)

initial segment of N and we writeM E N (M C N ). For notation write

N||α := (J
~F
α (X),∈, X, ~F � α, Fα)

and

N|α := (J
~F
α (X),∈, X, ~F � α, ∅).

An ordinal δ is called a cutpoint ofM, if for no extender F on theM-sequence

do we have crit(F ) < δ ≤ lh(F ). For the definition of iteration trees see [42,

section 3.1]; for normal iteration trees see [47, section 4.2]. An iteration tree T

on an X-premouse M is said to live on M|α if all extenders in T have length

less than α.

Definition 2.22. Let k ≤ ω and θ ∈ Ord and suppose X is swo. An X-premouse

M is called (k, θ)-iterable if player 2 has a winning strategy in the iteration game

Gk(M, θ) described in [42, section 3.1]. M is called normally (k, θ)-iterable if

it is (k, θ)-iterable with respect to normal iteration trees. It is (normally) (k, θ)-

iterable above δ if it is (normally) (k, θ)-iterable with respect to (normal) iteration

trees all of whose extenders have critical points above δ. It is (normally) θ-iterable

if it is (normally) (ω, θ)-iterable.

We need the next two lemmas from [42, theorem 3.11] and [42, corollary 3.12].
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Lemma 2.23. (Comparison lemma) Let M and N be countable X-premice,

where X is swo. Let δ be a cutpoint of both M and N and suppose M and

N are normally ω1 + 1-iterable above δ and ω-sound above δ with M|δ = N|δ.

Then there are countable iteration trees S on M and T on N with last models

MS
α andMT

β so that

(1) [0, α]S does not drop in model or degree andMS
α EMT

β , or

(2) [0, β]T does not drop in model or degree andMT
β EMS

α.

Lemma 2.24. LetM and N be countable X-premice where X is swo. Let δ be

a cutpoint of bothM and N and supposeM and N are normally ω1 + 1-iterable

above δ and ω-sound above δ with ρω(M), ρω(N ) ≤ δ and M|δ = N|δ. Then

M E N or N EM.

Proof. Neither M nor N are moved in the coiteration, since they are ω-sound

above δ and ρω(M), ρω(N ) ≤ δ . �

Let’s recall the definition of Woodin cardinals:

Definition 2.25. Suppose A ⊆ Vδ. An ordinal κ < δ is A-reflecting in δ if for

all α < δ there is an extender F in Vδ with crit(F ) = κ, jF (κ) > α, and

jF (A) ∩ Vα = A ∩ Vα,

where jF : V → ult(V, F ) is the ultrapower embedding.

Definition 2.26. A cardinal δ is a Woodin cardinal if for every A ⊆ Vδ there is

some κ < δ which is A-reflecting in δ.

Now M#
n can be defined:

Definition 2.27. Let X be swo and n ≤ ω. An X-premouseM is n-small above

δ if there is no extender F on theM-sequence so that inM|crit(F ) there are n

Woodin cardinals above δ.
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Definition 2.28. Let M be an active ω1-iterable X-premouse, where X is swo,

such that M is ω-sound above ht(X) and ρ1(M) ≤ ht(X). Let F be the top

extender of M and n ≤ ω. M is called M#
n (X) if M|crit(F ) is n-small and in

M there are n Woodin cardinals below crit(F ). Moreover M#
n := M#

n (∅).

Note that usually M#
n is defined as an ω1 + 1-iterable premouse with the same

first-order properties; thusM#
n is unique by the comparison lemma. TheM#

n (X)

defined here is also unique in the relevant case thatM#
n (x) exists for every x ∈ R.

Suppose we have two canditates for M#
n (X) where X is swo. Let’s consider the

preimages of the candidates in the transitive collapse of a countable substructure

of some large Vλ. Since these are ω1-iterable, they can be compared in M#
n (x)

for some x ∈ R by the argument in lemma 2.38 below.

The standard definition ofM#
n (X) just states that it is countably iterable, i.e. all

countable substructures are ω1 + 1-iterable, instead of being ω1 + 1-iterable itself.

Everything would work if in the definition of Mn(X) we only ask that countable

substructures are ω1-iterable.

Note that modulo Gödel numbers for first-order formulas, any x-premouse M

with x ∈ R and ρk+1(M) = ω comes with a code z ∈ R from the canonical Σ
(k)
1 -

definable surjection from ω ontoM, see [47, section 1.6] for the definition of Σ
(k)
1

formulas. Hence there is no need to distinguish between M#
n (M) and M#

n (z).

Definition 2.29. Let M be an active ω1-iterable X-premouse, where X is swo,

such that M is ω-sound above ht(X) and ρ1(M) ≤ ht(X). Let F be the top

extender ofM and suppose the topmost extender G below F is total. M is called

M †
n(X) if M|crit(G) is n-small and in M there are n Woodin cardinals below

crit(G). Moreover M †
n := M †

n(∅).

Again M †
n(X) is unique in the relevant situation that M#

n (x) exists for every

x ∈ R. Since we would like to prove the main theorem from PD, we will use
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Theorem 2.30. (Harrington, Martin, Steel, Woodin, Neeman) The following are

equivalent for n < ω:

(1) Det(Π1
n+1)

(2) there is an M#
n (x) for every x ∈ R

(3) there is a unique M#
n (x) for every x ∈ R.

Proof. See [34, theorem 5.3]. Harrington [7] proved the implication from 1 to 3

for n = 0. For arbitrary n see Koellner and Woodin [23]. Martin [25] proved that

2 implies 1 for n = 0, Neeman [31] has a proof for arbitrary n. The original proof

for odd n is due to Woodin. Note that lemma 2.38 below can be used to show

that 2 implies 3. �

2.2.2. Genericity iteration. We will use a theorem of Woodin to iterate an ω1 +1-

iterable premouse with a Woodin cardinal so that a given real is generic over the

iterate for Woodin’s extender algebra.

The extender algebra is built from a set of infinitary formulas. Let’s state the

necessary definitions. We let δ be an inaccessible cardinal and L a language which

contains at least ∈ and constants c for a real and ṅ for each n < ω. Let N be the

set of atomic formulas ṅ ∈ c for n < ω. Now let Lδ,0,N be the closure of N under

negations and infinitary disjunctions and conjunctions of length less than δ. Note

that one can equivalently work with the infinitary logic built over a language with

propositional formulas pn for n < ω.

The infinitary proof calculus for this logic has the infinitary rule

∀α < β ` ϕα ⇒ `
∧
α<β

ϕα
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in addition to the rules of first-order logic; for details see Barwise [3, chapter III,

definition 5.1]. Let χ be the Lδ,0,N -sentence

∧
n<ω

(∀x ∈ ṅ
∨
m<n

x = ṁ) ∧ (
∧
m<n

ṁ ∈ ṅ) ∧ c ⊆ ω,

which we add as an axiom. Hence in every model, c is interpreted as a subset of ω

and each ṅ is interpreted as n. Moreover, the infinitary disjunction of a sequence

~ϕ = (ϕα : α < β) of Lδ,0,N -formulas is denoted by
∨
α<β ϕα or

∨
~ϕ.

The following is Steel’s version [42, section 7.2] of Woodin’s extender algebra for

fine structural mice.

Definition 2.31. LetM be an X-premouse with Woodin cardinal δ, where X is

swo. Let S be the set of all Lδ,0,N -formulas

∨
~ϕ↔

∨
jE(~ϕ) � λ

inM, where

(1) ~ϕ = (ϕα : α < κ) ∈M is a sequence of Lδ,0,N -formulas with κ < δ,

(2) F is an extender on theM-sequence with crit(F ) = κ ≤ λ < δ,

(3) ν(F ) is a cardinal inM, and

(4) jF (~ϕ) � λ ∈ JMν(F ).

Here ν(F ) is the natural length of F , see [42, definition 2.2]. Working inM, the

extender algebra Wδ over δ is defined as the Lindenbaum algebra over Lδ,0,N for

provability from S; let

[ϕ] := {ψ ∈ Lδ,0,N : S ` ϕ↔ ψ}

for ϕ ∈ Lδ,0,N and define

Wδ := {[ϕ] : ϕ ∈ Lδ,0,N}
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with partial ordering

[ϕ] ≤ [ψ] :⇔ S ` ϕ→ ψ.

The extender algebra Wδ has size δ and the δ-c.c. in M by [42, theorem 7.14].

We will heavily use the next theorem of Woodin following Steel [42]:

Lemma 2.32. (Genericity iteration) Let M be a countable X-premouse, where

X is swo. Suppose M is normally ω1 + 1-iterable above γ < δ and δ is Woodin

in M. Then for each x ∈ R, there is a countable iteration tree T on M with

iteration map π and last modelMT
α such that [0, α]T does not drop in model and

x is WMTα
π(δ)-generic overMT

α .

Proof. See [42, theorem 7.14]. The idea is to iterate away the least extender

which induces an axiom false for x. A reflection argument as in the proof of the

comparison lemma shows that after countably many steps x is a model of π(S),

where π is the iteration map. It follows that x is WMTα
π(δ)-generic. �

2.2.3. The Q-structure iteration strategy. In this section we describe a partial

iteration strategy based on so-called Q-structures. In the relevant cases this is

the unique iteration strategy.

Definition 2.33. Suppose T is an iteration tree of limit length θ with models

(Mα : α < θ) and extenders (Fα : α < θ). Define

δ(T ) := sup
α<θ

lh(Fα)

and

M(T ) :=
⋃
α<θ

Mα|lh(Fα),

where lh(Fα) denotes the length of Fα. The model M(T ) is called the common

part model of T .

Q-structures for iteration trees are defined as follows.
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Definition 2.34. Let T be an iteration tree of limit length on an X-premouse

M, where X is swo. A Q-structure for T is an X-premouse Q with

(1) M(T ) E Q such that δ(T ) is a cutpoint of Q,

(2) Q is ω1-iterable above δ(T ), and

(3) the Woodin property of δ(T ) is destroyed definably over Q, i.e. there is a

k < ω such that

(a) Q is k + 1-sound and

(b) either ρk+1(Q) < δ(T ), or k is minimal such that there is a map f :

δ(T ) → δ(T ) which is Σ
(k)
1 -definable over Q so that for no extender

F on the Q-sequence do we have iF (f)(crit(F )) ≥ ν(F ).

If in the previous definition Q = (J
~F
β (X),∈, X, ~F � β, Fβ) is a proper initial

segment of a premouse, then condition 3 simplifies to the statement that β is

minimal with J
~F
β+1(X) � ”δ(T ) is not Woodin”. Based on Q-structures, one

builds a partial iteration strategy:

Definition 2.35. Let T be a normal iteration tree on an X-premouseM, where

X is swo. Let Σ(T ) be the unique cofinal branch b ⊆ T such that Mb is well-

founded and carries a Q-structure Q EMT
b , if such a branch exists. Let Σ(T )

be undefined if there is no such branch, or if there is one but it is not unique.

This partial iteration strategy for normal iteration trees is called the Q-structure

iteration strategy.

We have

Lemma 2.36. If Σ is a θ-iteration strategy for normal iteration trees on an X-

premouse N , where X is swo, then Σ is a θ-iteration strategy for normal iteration

trees on every initial segmentM E N .
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Let’s consider the situation that M and N are X-premice which are θ-iterable

via Σ, where X is swo. SupposeM|δ = N|δ and δ is a cutpoint of bothM and

N . Then every iteration tree T according to Σ onM living onM|δ gives rise to

an iteration tree on N . In this case we say that T acts on N .

In the relevant situation the Q-structure iteration strategy Σ is the unique ω1-

iteration strategy for normal iteration trees:

Lemma 2.37. Suppose M#
n (x) exists for every x ∈ R. Then Σ is the unique

ω1-iteration strategy for normal iteration trees on M#
n (x).

We prove a more general fact:

Lemma 2.38. Suppose M#
n (x) exists for every x ∈ R. Let N be a countable

X-premouse with n Woodin cardinals above δ and an extender above, where X is

swo. Suppose N is normally ω1-iterable above δ. Let M ∈ N be a Y -premouse

which is countable in N and normally ω1-iterable above δ via an iteration strategy

Σ′, where Y is swo. Further suppose M and N are (n + 1)-small above δ and

ω-sound above δ with ρω(M) ≤ δ and ρω(N ) ≤ δ. Then M is normally ω1 + 1-

iterable above δ via Σ in N . Moreover, Σ is the unique ω1-iteration strategy for

normal iteration trees onM in V .

Proof. The proof is organized as an induction on n. We will show that

Σ′(T ) = ΣN (T ) = Σ(T )

for all normal iteration trees T ∈ N onM above δ of limit length ≤ ωN1 .

Suppose this has been proved for all k < n and let T ∈ N be a normal iteration

tree onM above δ of limit length ≤ ωN1 according to Σ′. Let b := Σ′(T ). Then

MT
b carries a Q-structure Q E MT

b , since T is a normal iteration tree and

ρ(M) ≤ δ < δ(T ). We can inductively assume that T is according to Σ′, Σ, and
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ΣN . It has to be shown that Q ∈ N . It can be assumed that M(T ) C Q, so

δ(T ) is Woodin in Q.

For n = 0 there are no extenders above δ(T ) on the Q-sequence, since Q is 1-

small; in this case Q ∈ N since ht(Q) < ht(N ). Now suppose n > 0. Let κ be

the critical point of an extender on the N -sequence such that in N there are n

Woodin cardinals between δ and κ. We do an L[ ~E]-construction over M(T ) in

N|κ. L[ ~E,M(T )]N|κ inherits Woodin cardinals and iterability from N , see [29,

chapter 11].

We first prove Q ∈ N in the special caseM = M#
n (x). Otherwise it is not clear

how to find a premouse P as in case 3 of the next claim.

Claim 2.39. IfM = M#
n (x) for some x ∈ R, then Q ∈ N .

Proof. We distinguish three cases.

Case 1. δ(T ) is not Woodin in L[ ~E,M(T )]N|κ.

Let α < κ be minimal such that δ(T ) is not Woodin in Jα+1[ ~E,M(T )]N|κ. Let

P := Jα[ ~E,M(T )]N . Then P and Q are n-small above δ(T ) and ω-sound above

δ(T ) with P|δ(T ) = Q|δ(T ) and ρω(P), ρω(Q) ≤ δ(T ). So P and Q can be

coiterated in M#
n−1(x) by the induction hypothesis, where x ∈ R codes P and Q.

Now P cannot be a proper initial segment of Q because Q is a Q-structure. Thus

Q E P and hence Q ∈ N .

Case 2. δ(T ) is Woodin in L[ ~E,M(T )]N|κ and there is some P in the L[ ~E]-

construction with ρω(P) ≤ δ(T ).

Again P and Q can be compared in M#
n (x), where x ∈ R codes P and Q.

Case 3. δ(T ) is Woodin in L[ ~E,M(T )]N|κ and the last projectum never falls

below δ(T ) in the L[ ~E]-construction.
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Let P be the first model in the L[ ~E]-construction with n − 1 Woodin cardinals

above δ(T ) and two extenders above. Then ρ1(P) = δ(T ). P and Q can be

coiterated in M#
n (x) by the induction hypothesis, where x ∈ R codes P and Q.

But Q cannot win the coiteration, since P has more large cardinals. So Q C P .

In fact, this case does not occur by the proof of the following claims. �

Claim 2.40. If N = M#
n (x) for some x ∈ R, then Q ∈ N .

Proof. It suffices to show that case 3 cannot occur. Let P be the premouse

obtained by adding the extender with critical point κ on top of L[ ~E,M(T )]N|κ.

Now P and Q can be compared, since N and hence P is ω1 +1-iterable inM#
n (x)

by the previous claim, where x ∈ R codes N . But neither can iterate to an initial

segment of the other. �

We finally conclude:

Claim 2.41. Q ∈ N .

Proof. Again it is sufficient that case 3 does not occur. This holds because N is

ω1 + 1-iterable in M#
n (x) by the previous claim, where x ∈ R codes N . �

It remains to be shown that b = Σ′(T ) ∈ N . Let g be Col(ω, ht(T ))-generic over

N . Note that one can rearrange N [g] as a boldface premouse, see [36, lemma

1.4] and [41, section 3]. We can form a tree in N [g] searching for cofinal branches

b ⊆ T with Q EMT
b . The nodes consist of initial segments of b and partial finite

∈-isomorphisms between Q and the corresponding model. Since wellfoundedness

is absolute between N [g] and V , N [g] knows that there is a branch in this tree.

But there is at most one cofinal branch in T with the required property by the

argument in the proof of [42, corollary 6.14]. Hence b ∈ N by homogeneity of

Col(ω, ht(T )). Thus Σ(T ) = ΣN (T ) = b.
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To see that Σ is unique, consider a countable normal iteration tree T above δ on

M of limit length according to an ω1-iteration strategy Σ′. Let x ∈ R code T .

Then Σ′(T ) = ΣM#
n (x)(T ) = Σ(T ). �

2.2.4. Tools for ω1-iterable premice. In this section we adapt the tools for ω1 + 1-

iterable premice from the previous sections to ω1-iterable premice.

Lemma 2.42. (Comparison lemma) Assume M#
n (x) exists for every x ∈ R. Let

M and N be countable X-premice, where X is swo. Let δ be a cutpoint ofM and

N such that both are ω1-iterable above δ and M|δ = N|δ. Further suppose M

and N are (n + 1)-small above δ and ω-sound above δ with ρω(M), ρω(N ) ≤ δ.

Then there are countable iteration trees S on M and T on N with last models

MS
α andMT

β so that

(1) [0, α]S does not drop in model or degree andMS
α EMT

β , or

(2) [0, β]T does not drop in model or degree andMT
β EMS

α.

Proof. M and N are ω1 + 1-iterable in M#
n (x) by lemma 2.38 where x ∈ R codes

M and N . So we can coiterate them in M#
n (x) by lemma 2.23. �

A consequence is

Lemma 2.43. SupposeM#
n (x) exists for every x ∈ R. LetM and N be countable

X-premice, where X is swo. Suppose δ is a cutpoint ofM and N such that both

are ω1-iterable above δ and M|δ = N|δ. Further suppose that both M and N

are (n + 1)-small above δ and ω-sound above δ with ρω(M), ρω(N ) ≤ δ. Then

M E N or N EM.

We get a version of the genericity iteration for ω1-iterable premice:

Lemma 2.44. (Genericity iteration) Assume M#
n (x) exists for every x ∈ R. Let

M be a countable X-premouse, where X is swo, such that δ is Woodin inM and
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M is ω1-iterable above some γ < δ. Further supposeM is (n+ 1)-small above γ

and ω-sound above γ with ρω(M) ≤ γ. Then for each x ∈ R, there is a countable

iteration tree T onM with iteration map π and last modelMT
α such that [0, α]T

does not drop in model and x is WMTα
π(δ)-generic overMT

α .

Proof. Apply lemma 2.32 inside M#
n (z) where z ∈ R codesM and x. �

While forcing is usually applied to models of ZF, we would like to use the forcing

theorem for small forcing over relativized premice in the next lemma. LetM be a

relativized premouse and κ the critical point of an extender on theM-sequence.

Note that the forcing relation for any partial order P ∈ M|κ is defined in M|κ

and the forcing theorem holds forM|κ, since this is a model of ZF. We are only

interested in formulas whose quantifiers range over a bounded subset of M|κ,

especially projective formulas. The forcing theorem holds for such formulas since

the relevant names are inM|κ.

A key property of M#
n is that it determines which Σ1

n+2 statements about reals

in M#
n are true in V :

Lemma 2.45. Let n ≤ k < ω and assume M#
k (x) exists for every x ∈ R. Let

M be a countable (k+1)-small X-premouse with ρω(M) ≤ γ which is ω1-iterable

above γ, where X is swo. Suppose that inM there are n Woodin cardinals above

γ and an extender above. Let δ be the least Woodin cardinal above γ in M if

n ≥ 1.

(1) If n is even thenM≺Σ1
n+2

V , and

(2) if n is odd then

V � ϕ(x)⇔M � ”∃p ∈Wδ(p Wδ
ϕ(x̌))”

for all Σ1
n+2 formulas ϕ and all x ∈ R ∩M.
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Proof. The proof is organized as an induction on n. For n = 0 we iterate M

by an extender on the M-sequence to a model of height ≥ ω1. The conclusion

follows from Shoenfield absoluteness, since this model has the same reals asM.

Case 1. n is odd.

Suppose ϕ is a Π1
n+1 formula, x ∈ R, and y ∈ R∩M so that ϕ(x, y) holds. Do a

genericity iteration onM for x and let π :M→N be the iteration map so that

x is Wπ(δ)-generic over N . We get N [x] � ϕ(x) from the induction hypothesis.

Hence

N � ”∃p ∈Wπ(δ) (p NWπ(δ)
∃xϕ(x, y̌))”

and the claim follows from elementarity of π.

For the other direction suppose there is a condition p ∈WM
δ which forces ∃xϕ(x, y̌)

over M. Let x be Wδ � p-generic over M in V . Then ϕ(x, y) holds by the in-

duction hypothesis.

Case 2. n ≥ 2 is even.

Suppose ϕ is a Π1
n+1 formula and y ∈ R ∩ M so that ∃xϕ(x, y) holds. The

assumptions imply Π1
n+1 uniformization via lemma 2.30. Let ψ be a Π1

n+1 formula

and x ∈ R so that ϕ(x, y) holds and x is unique with ψ(x, y). We have to show

that x ∈M.

Let π :M→N be an iteration map so that x is Wπ(δ)-generic over N . Let η be

the least Woodin cardinal above δ inM. We have

∃p ∈Wπ(η)(p 
N [x]
Wπ(η)

ψ(x̌, y̌))

by the induction hypothesis. So there is a condition q ∈Wπ(δ) which forces

∃p ∈Wπ(η)(p 
N [τ ]
Wπ(η)

ψ(τ, y̌))
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such that x is Wπ(δ) � q-generic over N , where τ is a name for the Wπ(δ)-generic

real. Let z be WN
π(δ) � q-generic over N [x] in V . Then ψ(z, y) holds and hence

z = x. This implies that Wπ(δ) � q is atomic and x ∈ N . Then x ∈ M since the

iteration does not add reals.

For the other direction suppose ϕ is a Π1
n+1 formula and y a real inM with

M � ”∃p ∈Wδ(p Wδ
∃xϕ(x, y̌))”.

Then ϕ(x, y) holds by the induction hypothesis for any real x which witnesses this

in a Wδ � p-generic extension ofM.

�

The previous lemma is also true if M is uncountable. To show this one simply

applies the lemma to a countable elementary substructure ofM. Note that the

lemma also works for the forcing Col(ω, δ). In fact this version of the lemma

uses a weaker notion of iterability called n-iterability, see [31, definition 1.1] for

a definition of n-iterability and [32, theorem 7.16] for the result.

If in the situation of the previous lemma there is an extra extender on top inM,

thenM≺Σ1
n+2

V holds for odd n as well:

Lemma 2.46. Suppose n ≤ k and M#
k (x) exists for every x ∈ R. Suppose M

is a countable ω-sound (k + 1)-small X-premouse which is ω1-iterable above δ

with ρω(M) ≤ δ, where X is swo. Suppose there are n Woodin cardinals above

δ inM and at least two total extenders above. Then M#
n (x) is unique for every

x ∈ R ∩M and is calculated correctly byM.

Proof. Do an L[ ~E]-construction over x inM. Then the M#
n (x) of bothM and

V occurs in the construction when one forms the core of an x-premouse with an

extender above n Woodin cardinals for the first time. �
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Lemma 2.47. Suppose n ≤ k and M#
k (x) exists for every x ∈ R. SupposeM is

a countable ω-sound (k + 1)-small X-premouse which is ω1-iterable above δ with

ρω(M) ≤ δ, where X is swo. Suppose there are n Woodin cardinals above δ in

M and at least two total extenders above. ThenM≺Σ1
n+2

V .

Proof. For n even this is true by lemma 2.45. Suppose n is odd and ϕ is a Σ1
n+2

formula. Let x ∈ R and let δ be the least Woodin cardinal in M#
n (x). We know

thatM computes M#
n (x) correctly by the previous lemma. So ϕ(x) holds if and

only if

∃p ∈WM#
n (x)

δ (p M
#
n (x)

Wδ
ϕ(x))

holds if and only ifM � ϕ(x) by lemma 2.45. �

The next two lemmas show that statements about M#
2n(x) and M †

2n(x) are pro-

jective.

Lemma 2.48. Suppose M#
n (x) exists for every x ∈ R. LetM and N countable

(n + 1)-small X-premice with the same first order properties which are ω-sound

above δ with ρω(M) ≤ δ and ρω(N ) ≤ δ, where X is swo. Suppose M is ω1-

iterable above δ and N is Πn+1-iterable. ThenM = N .

Proof. The proof is organized as an induction. We sketch the proof for odd n

following the proof of [40, lemma 2.2]. This proof has to be slightly modified

since we don’t have large cardinals in V . The case for even n can be similarly

derived from the proof of [40, lemma 2.2]. The difference between the odd and

even cases lies in the weak iteration game from [40].

Let P := M#
n (x) where x ∈ R codesM and N . Let further g be a Col(ω, ωP1 )-

generic filter over N and define R := P [g]. ThenM is ω1 + 1-iterable in P and

in R by lemma 2.38. Note that Πn+1-iterability is Π1
n+2 in the codes. Since there

are n Woodin cardinals in P and in R, it follows from lemma 2.47 that N is

Πn+1-iterable in N and in P .
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We define coiterations ofM and N in both P and R. For iteration trees onM

of limit length choose the unique branch with a Q-structure. For iteration trees

T on N of limit length choose a cofinal branch with a wellfounded Πn-iterable

model. The winning position for player 2 in the weak iteration game I(N , δ, n+1)

produces such a branch. A coiteration argument shows that the branch is unique.

Note that the coiteration is possible by the induction hypothesis.

One can show that the same branches are chosen in the coiterations in P and

R since the forcing Col(ω, ωP1 ) is small. So the coiteration in P is an initial

segment of the coiteration in R. Hence there is at least one cofinal branch in the

coiteration in P . This is an element of P by homogeneity of Col(ω, ωP1 ). Now

the argument from the proof of the comparison lemma shows that the coiteration

terminates after countably many steps. It follows thatM = N . �

Lemma 2.49. Suppose M#
n (x) exists for every x ∈ R. Then M#

n (x) and M †
n(x)

are coded by Π1
n+2(x) singletons for each x ∈ R.

Proof. Let f : ω →M#
n (x) be the canonical Σ1-definable surjection over M#

n (x).

Let

(k,m) ∈ z :⇔ f(k) ∈ f(m)

for k,m < ω, so that (ω, z) is isomorphic to (M#
n (x),∈). Hence z ⊆ ω × ω is the

unique set which codes M#
n (x) and which computes itself via the canonical Σ1-

definable surjection computed in its transitive collapse. Now the set of (x, y) ∈ R2

so that x codesM#
n (y) is a Π1

n+2(x, y) set by the previous lemma, since for sets of

reals ΠHC
n+1 is equivalent to Π1

n+2. Thus z is a Π1
n+2(x) singleton. The same works

for M †
n. �
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3. Lifting thin equivalence relations to forcing extensions

In the situation where E is a provably ∆1
n+1 equivalence relation and the forcing

P preserves Σ1
n truth, we ask whether forcing with P introduces any new equiv-

alence classes of E. In the first section we show generic Σ1
n+3 absoluteness for

reasonable forcing P of size κ and that P does not add equivalence classes to

thin provably ∆1
n+3 equivalence relations, assuming that M#

n (X) exists for every

self-wellordered set X ∈ Hκ+ , based on an idea of Foreman and Magidor [4, sec-

tion 3]. In the second section we derive analogous results for Σ1
2 c.c.c. forcing

from projective determinacy. We further show that generic Σ1
n+1 Cohen absolute-

ness implies that Cohen forcing does not add equivalence classes to < ω − Π1
n

prewellorders. We work in ZF + DC.

3.1. Reasonable forcing. We work with a weaker version of the notion of proper

forcing called reasonable forcing, introduced by Foreman and Magidor [4].

Definition 3.1. Let P be a partial order and p ∈ P.

(1) Suppose N is a set with p ∈ N . Then p is called (N,P)-generic if for

every maximal antichain A ⊆ P with A ∈ N the set A ∩ N is predense

below p.

(2) P is called reasonable if for all q ∈ P and for some (for all) regular λ ≥

(22P
)+ there exist a countable elementary substructure N ≺ Hλ with q,P ∈

N and an (N,P)-generic condition r ≤ q.

Here Hλ can equivalently be replaced by Vλ. Let Pκ(λ) := {X ⊆ λ : X < κ} for

κ, λ ∈ Ord. By standard proper forcing arguments we have

Lemma 3.2. (Foreman and Magidor [4]) A forcing P is reasonable if and only

if PVω1
(α) is stationary in PV P

ω1
(α) for every ordinal α.
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3.1.1. Absoluteness of M#
n . We will use

Lemma 3.3. Suppose M#
n (X) exists for all swo X ∈ Hκ, where κ is an uncount-

able cardinal. Then M#
n (X) is κ-iterable for each swo X ∈ Hκ.

Proof. We can assume that Hκ is closed under the relevant Q-structures by

the induction hypothesis. A reflection argument then shows that M#
n (X) is κ-

iterable. �

The results in this section are based on the absoluteness of M#
n (X):

Lemma 3.4. (Folklore) Let P be a forcing of size κ, where κ is an infinite car-

dinal. Suppose M#
n (X) exists for every swo X ∈ Hκ+. Then for every P-generic

filter G over V

(1) M#
n (X) is normally κ+-iterable in V [G] via Σ for every swo X ∈ Hκ+,

(2) V [G] � ”M#
n (X) exists for every swo X ∈ Hκ+ and is normally κ+-

iterable”, and

(3) suppose

(a) H ≺ Vη is a countable substructure with P ∈ H where η is a large

limit ordinal,

(b) H̄ is the transitive collapse of H with uncollapsing map π : H̄ → H

and π(P̄) = P, π(κ̄) = κ, and

(c) g is a P̄-generic filter over H̄ in V ,

then M#
n (X) exists in H̄[g] for each swo X ∈ H

H̄[g]

κ̄+ and is normally

κ+-iterable via Σ in both H̄[g] and V .

Proof. The proof works by induction on n. We get uniqueness of M#
n (X) for

X ∈ Hκ+ by the argument in lemma 2.38.

1. In the case n = 0 the claim holds since all iterations are linear. Let n ≥ 1

and suppose X ∈ Hκ+ is swo. Let M := M#
n (X). We have to show that M is

normally κ+-iterable in V [G] via Σ.
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Suppose not. Then in V [G] there is a normal iteration tree T onM of length< κ+

which witnesses thatM is not normally κ+-iterable via Σ. I.e. T is according to

Σ andMΣ(T ) is ill-founded or Σ(T ) is undefined. Let Ṫ be a P-name and p ∈ P

a condition with

p  ”Ṫ witnesses that M̌ is not κ+-iterable via Σ”.

Now let H ≺ Vη be a countable substructure with p,P,M, Ṫ ∈ H for some large

limit ordinal η. Let H̄ be the transitive collapse of H with uncollapsing map

π : H̄ → H and π(p̄) = p, π(P̄) = P, π(T̄ ) = Ṫ , π(M̄) = M. Then M̄ is

κ+-iterable in V since π � M̄ : M̄ →M is an elementary embedding.

Let g be a P̄-generic filter over H̄ in V with p ∈ g. Then

H̄[g] � ”T̄ g witnesses thatM is not κ+-iterable via Σ”.

Let α < lh(T̄ g). M#
n−1(M(T̄ g � α)) exists in in H̄[g] and is κ+-iterable via Σ in

both H̄[g] and V by the induction hypothesis 3.

Let Q(T̄ g � α) denote the Q-structure for T̄ g � α in H̄[g]. We can compare

Q(T̄ g � α) and M#
n−1(M(T̄ g � α)) in H̄[g] by lemma 2.38. Hence

Q(T̄ g � α) EM#
n−1(M(T̄ g � α)).

So T̄ g is according to Σ in both H̄[g] and V .

Let b := ΣV (T̄ g). We have to show that b ∈ H̄[g]. Let g′ be Col(ω, lh(T̄ g))-

generic over H̄[g] where lh(T̄ g) is the length of T̄ g. Now Q(T̄ g) ∈ H̄[g] since

Q(T̄ g) EM#
n−1(M(T̄ g)).

One can build a tree in H̄[g][g′] searching for a cofinal branch b′ ⊆ T̄ g with

Q(T̄ g) EMT̄ g
b′ . Since b is such a branch in V , there is a cofinal branch b′ ⊆ T̄
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in H̄[g][g′] with Q(T̄ g) EMT̄
b′ by absoluteness of wellfoundedness. But there can

be only one such branch by the argument in [42, corollary 6.14]. So b = b′ and

b′ ∈ H̄[g] by homogeneity of Col(ω, T̄ g). Hence

ΣV (T̄ g) = b = ΣH̄[g](T̄ g),

contradicting the assumption on T̄ g.

2. Suppose X ∈ HV [G]

κ+ is swo. Let’s code X by a subset of κ and choose a nice

P-name for this set. So there is a P-name τ ∈ Hκ+ with τG = X. We can assume

that (P, τ) is swo; otherwise we work with a swo set in Hκ+ coding P and τ .

Now G′ := G∩M#
n (P, τ) is P-generic over M#

n (P, τ), since G is P-generic over V .

Moreover

x = τG
′ ∈M#

n (P, τ)[G′].

Then M#
n (P, τ) is normally κ+-iterable via Σ in V [G] by 1. Since P is small

compared to the critical points of the extenders on the M#
n (P, τ) sequence,

M#
n (P, τ)[G′] is normally κ+-iterable via Σ in V [G] as well. Let F be the top

extender of M#
n (P, τ)[G′] and κ := crit(F ). Do an L[ ~E] construction over X in

M#
n (P, τ)[G′]|κ. It follows from the argument of the commutativity lemma [5,

lemma 3.2] that the premouse obtained by extending the L[ ~E] model with the

restriction of F is normally κ+-iterable via Σ. Hence this is M#
n (X) in V [G].

3. Suppose X ∈ HH̄[g]

κ̄+ is swo. Let τ̄ ∈ Hκ̄+ be a P̄-name for X and let τ := π(τ̄).

Let’s assume that (P, τ) is swo. Then M#
n (P̄, τ̄)H̄ and M#

n (P, τ) exist and are

normally κ+-iterable via Σ in H̄ and V respectively and

π(M#
n (P̄, τ̄)H̄) = M#

n (P, τ).

Then M#
n (P̄, τ̄)H̄ is normally κ+-iterable via Σ in H̄[g] by 1.
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Let g′ := g ∩ M#
n (P̄, τ̄)H̄ . Then g′ is a P̄-generic filter over M#

n (P̄, τ̄)H̄ and

x = τ̄ g
′ ∈ M#

n (P̄, τ̄)H̄ [g′]. Now M#
n (P̄, τ̄)H̄ [g′] is normally κ+-iterable via Σ in

H̄[g], since P̄ is small compared to the critical points of the extenders on the

M#
n (P̄, τ̄)H̄ sequence. Moreover M#

n (P̄, τ̄)H̄ is normally κ+-iterable via Σ in V ,

since

π �M#
n (P̄, τ̄)H̄ : M#

n (P̄, τ̄)H̄ →M#
n (P, τ)

is elementary. Hence M#
n (P̄, τ̄)H̄ [g′] is normally κ+-iterable via Σ in V as well.

As in part 2 we can build a model in M#
n (P̄, τ̄) via an L[ ~E]-construction over X

which is the M#
n (X) of both H̄[g] and V . �

Note that the lemma works for M †
n with the same proof.

3.1.2. Absoluteness of equivalence classes. We will need a direct consequence of

lemma 2.45:

Lemma 3.5. Suppose M is a transitive model of ZF which computes M#
n (x)

correctly for every x ∈ R ∩M . Then M ≺Σ1
n+2

V .

Proof. Note that in this situation M#
n (x) is unique by lemma 2.38. M#

n (x) com-

putes the truth value of Σ1
n+2 statements by lemma 2.45. �

Definition 3.6. Σ1
n-absoluteness holds for a partial order P if V ≺Σ1

n
V [G] for

any P-generic filter G over V .

Lemma 3.7. (Martin, Solovay, Schindler) Suppose M#
n (X) exists for every swo

X ∈ Hκ+, where κ is an infinite cardinal. Then Σ1
n+3-absoluteness holds for every

forcing of size κ.

Proof. We follow the proof of [35, theorem 1]. Suppose ∃xϕ(x, y) holds in some

P-generic extension of V , where ϕ is a Π1
n+2 formula and y ∈ R. Let τ be a nice

P-name for a real and p ∈ P a condition with p P ϕ(τ, y̌). We can assume that

(P, τ) is swo. Then M#
n (P, τ) exists since P, τ ∈ Hκ+ .
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Consider the tree T in V searching for a 5-tuple (M, π, P̄, g, x) such that

(1) M is a countable premouse with y ∈M,

(2) π :M→M#
n (P, τ) is elementary with π(P̄) = P,

(3) g is P̄-generic overM, and

(4) x is a real in M[g] such that M[g] � ϕ(x, y) if n is even, and M[g]
Col(ω,δ)

ϕ(x̌, y̌) if n is odd, where δ is the least Woodin cardinal inM[g].

A branch in this tree defines a complete theory so that every existential statement

in the theory is witnessed by a constant, giving rise to a modelM[g], as well as a

set of finite partial ∈-isomorphisms whose union is an elementary map π :M→

M#
n (P, τ), witnessing thatM is wellfounded.

Now let G be P � p-generic over V . Then g := G ∩M#
n (P, τ) is P-generic over

M#
n (P, τ) and we have x := τ g ∈ M#

n (P, τ)[g]. Since M#
n (P, τ)[g] is κ+-iterable

in V [G] by lemma 3.4, the collapse of a countable elementary substructure of

M#
n (P, τ)[g] witnesses that T has a branch in V [G] by lemma 2.45. Then T is

also ill-founded in V and hence V � ∃xϕ(x, y). �

For any set E with a fixed definition we always write E for the corresponding set

in any forcing extension. If further P is a forcing and τ is a P-name, then in any

P × P-generic extension τ defines two objects via the two P-generic filters. We

write τ and τ ′ for P× P-names for these objects.

The idea for the next lemma and the next theorem comes from [4, theorem 3.4].

Lemma 3.8. Let E be a thin Π1
n+3 equivalence relation. Suppose P is a forcing of

size κ and M#
n (X) exists for every swo X ∈ Hκ+, where κ is an infinite cardinal.

Let τ be a P-name for a real. Then the set

D := {p ∈ P : (p, p) P×P τEτ
′}

is dense.
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Proof. Let a ∈ R so that E is Π1
n+3(a). Suppose D is not dense. Then there is a

condition p ∈ P so that for every q ≤ p there are r, s ≤ q with

(r, s) P×P ¬τEτ ′.

Let λ be a large limit ordinal and H ≺ Vλ a countable elementary substructure

with a,P, p, τ, τ ′ ∈ H. Let H̄ be the transitive collapse with uncollapsing map

π : H̄ → H and π(P̄) = P, π(p̄) = p, π(τ̄) = τ , and π(τ̄ ′) = τ ′.

Let (Dn : n ∈ ω) enumerate the open dense subsets in H̄ of P̄× P̄. We construct

a family of conditions (ps : s ∈ 2<ω) in P̄ such that

(1) p∅ = p̄,

(2) ps ≤ pt if t ⊆ s,

(3) (psa0, psa1) P̄×P̄ ¬τ̄Eτ̄ ′,

(4) ps decides τ̄ � lh(s), and

(5) (ps, pt) ∈ D0 ∩D1 ∩ ... ∩Di if s, t ∈ i2 and s 6= t

for all s, t ∈ 2<ω. When ps is defined we choose as candidates for psa0 and psa1

conditions r, s ≤ ps with (r, s) P×P ¬τEτ ′. Then one enumerates the pairs of

these conditions for all s of fixed length and extends the conditions to satisfy

properties 4 and 5.

Now let

gx := {q ∈ P̄ : ∃n ∈ ω px|n ≤ q}

for each x ∈ 2<ω. Then gx and gy are mutually P̄-generic over H̄ for x, y ∈ 2<ω

with x 6= y, so

H̄[gx, gy] � ¬τ̄ gxEτ̄ gy

by property 3. Since H̄[gx, gy] computesM#
n (z) correctly for each z ∈ R∩H̄[gx, gy]

by 3 of lemma 3.4 we have H̄[gx, gy] ≺Σ1
n+2

V by the previous lemma. Since E is
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Π1
n+3(a) this implies

V � ¬τ̄ gxEτ̄ gy

for x 6= y. Since τ̄ gx depends continuously on x, we get a perfect set of pairwise

inequivalent reals in V . This would contradict that E is thin. �

A set is called provably ∆1
n(a) for a ∈ R if there are Σ1

n and Π1
n formulas ϕ and ψ

such that both ϕ(., a) and ψ(., a) define the set, and ZFC proves ∀x, y(ϕ(x, y)↔

ψ(x, y)). For our purposes it will be sufficient to know that ∀x(ϕ(x, a)↔ ψ(x, a))

holds in all generic extensions of sufficiently elementary substructures of V con-

taining a.

Theorem 3.9. Let P be a reasonable forcing of size κ, where κ is an infinite

cardinal. Suppose M#
n (X) exists for every X ∈ Hκ+. Then P does not add

equivalence classes to thin provably ∆1
n+3 equivalence relations.

Proof. Suppose E is a thin provably ∆1
n+3(a) equivalence relation where a ∈ R.

We use E to denote the set given by the same Σ1
n+3(a) and Π1

n+3(a) formulas in

any P-generic extension. This is an equivalence relation by lemma 3.7.

Suppose τ is a P-name for a real and p ∈ P is a condition such that for every

x ∈ R we have p P ¬x̌Eτ . Let q ≤ p be a condition with

(q, q) P×P τEτ
′

by the previous lemma. Since P is reasonable there is a large regular λ and a

countable substructure H ≺ Vη with a,P, q, τ, τ ′ ∈ H such that there is an (H,P)-

generic condition r ≤ q. Let H̄ be the transitive collapse of H with uncollapsing

map π : H̄ → H and π(P̄) = P, π(q̄) = q, π(τ̄) = τ , and π(τ̄ ′) = τ ′.

Let g0 be P̄ � q̄-generic over H̄ in V . Further let G be P-generic over V with

r ∈ G and define g1 := π−1′′G. Then q̄ ∈ g1. As in the proof of lemma 3.7 g1 is

P̄-generic over H̄.
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Now let h be P̄ � q̄-generic over both H̄[g0] and H̄[g1] in V . Let x0 := τ̄ g0 ,

x1 := τ̄ g1 , and y := τ̄h. Then x1 = τG. Since (q̄, q̄) H̄P̄×P̄ τ̄Eτ̄
′ we have

H̄[g0, h] � x0Ey

and

H̄[g1, h] � x1Ey.

As in the proof of lemma 3.7 H̄[gi, h] computes M#
n (x) correctly for every x ∈

R ∩ H̄[gi, h]. Hence H̄[gi, h] ≺Σ1
n+2

V by lemma 3.5.

Since E is provably ∆1
n+3(a), this shows that x0, x1, and y are equivalent with

respect to E. But x0 ∈ V and on the other hand we assumed that x1 is in a new

equivalence class in V [G], which is contradictory. �

3.2. Projective c.c.c. forcing. In this section we present versions of the results

in the previous section for Σ1
2 c.c.c. forcing.

3.2.1. Absoluteness of equivalence classes. We use the notion of projective forcing

from [1].

Definition 3.10. Let a ∈ R. A partially ordered set P ⊆ R is called a Σ1
n(a)

forcing if the partial order ≤ and the incompatibility relation ⊥ are Σ1
n(a) subsets

of R2.

For example Cohen forcing, random forcing, and Amoeba forcing are Σ1
1 c.c.c.

forcings.

Lemma 3.11. Let P be a Σ1
2(a) c.c.c. forcing where a ∈ R. Suppose M#

n (x)

exists for every x ∈ R. Then for every P-generic filter G over V

(1) M#
n (x) is normally ω1-iterable in V [G] via Σ for every x ∈ R ,

(2) V [G] � ”M#
n (x) exists for every x ∈ R”, and
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(3) suppose

(a) H ≺ Vη is a countable substructure with a ∈ H where η is a large

limit ordinal,

(b) H̄ is the transitive collapse of H with uncollapsing map π : H̄ → H,

and

(c) g is a PH̄-generic filter over H̄ in V ,

thenM#
n (x) exists in H̄[g] for each x ∈ RH̄[g] and is normally ω1-iterable

via Σ in both H̄[g] and V .

Proof. The proof works by induction on n as in lemma 3.4. We get uniqueness

of M#
n (x) for x ∈ R by lemma 2.38.

1. This works just as in the proof of lemma 3.4.

2. Let x ∈ RV [G] and let τ be a nice P-name with τG = x. Since P ⊆ R is c.c.c. τ

can be coded by a real, so M#
n (τ, a) exists. We can avoid working with M#

n (P, τ)

since M#
n (τ, a) has its own version of the forcing P and this is absolute between

M#
n (τ, a) and V . We get

∀y, y′ ∈ P(y ⊥ y′ ⇔ ¬∃z ∈ P(z ≤ y, y′))

in M#
n (τ, a) by Π1

3 downwards absoluteness, where P,≤,⊥ are given by their

Σ1
2(a) definition. Now for y ∈ R the statement

”y codes a countable subset of P”

is Σ1
2(a). Since

”y codes a countable predense subset of P”

holds if and only if y codes a subset {yn : n < ω} of y and ∀z ∈ P ∃n(yn 6⊥ z),

this is a combination of a Σ1
2(a) and a Π1

2(a) statement. So it is absolute between
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M#
n (τ, a) and V . Hence

G′ := G ∩M#
n (τ, a)

is P-generic over M#
n (τ, a). Moreover

x = τG
′ ∈M#

n (τ, a)[G′].

Now M#
n (τ, a) is normally ω1-iterable via Σ in V [G] by 1. Since P is small com-

pared to the critical points of the extenders on theM#
n (τ, a) sequence,M#

n (τ, a)[G′]

is ω1-iterable via Σ in V [G] as well. We can construct M#
n (x) in M#

n (τ, a)[G′] via

an L[ ~E]-construction as in lemma 3.4.

3. Let x ∈ RH̄[g]. Let τ̄ be a nice PH̄[g]-name with τ̄ g = x and τ := π(τ̄). Then

M#
n (τ̄ , a)H̄ and M#

n (τ, a) exist and are normally ω1-iterable via Σ in H̄ and V

respectively and

π(M#
n (τ̄ , a)H̄) = M#

n (τ, a).

So M#
n (τ̄ , a)H̄ is normally ω1-iterable via Σ in H̄[g] by 1.

Let g′ := g ∩M#
n (τ̄ , a)H̄ . Since the statement

”y codes a countable predense subset of P”

is absolute between M#
n (τ̄ , a) and V , we can conclude that g′ is P̄-generic over

M#
n (τ̄ , a)H̄ . Moreover x = τ̄ g

′ ∈ M#
n (τ̄ , a)H̄ [g′]. Now M#

n (τ̄ , a)H̄ [g′] is normally

ω1-iterable via Σ in H̄[g], since P̄ is small compared to the critical points of

the extenders on the M#
n (τ̄ , a)H̄ sequence. Moreover M#

n (τ̄ , a)H̄ is normally ω1-

iterable via Σ in V since

π �M#
n (τ̄ , a)H̄ : M#

n (τ̄ , a)H̄ →M#
n (τ, a)
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is elementary. Hence M#
n (τ̄ , a)H̄ [g′] is normally ω1-iterable via Σ in V as well.

Finally we can construct the M#
n (x) of H̄[g] and V in M#

n (τ̄ , a)H̄ [g′] as in lemma

3.4. �

Note that the existence of M#
n (x) for every x ∈ R is equivalent to Det(Π1

n+1) by

theorem 2.30. The previous lemma can be applied to generalize

Lemma 3.12. (Woodin [45]) Det(Π1
n) implies Σ1

n+2 Cohen (random) absolute-

ness. In fact for odd n it is sufficient to assume

(1) Π1
n is scaled and

(2) all ∆1
n+1 sets have the Baire property (are Lebesgue measurable).

Proof. See [45, lemma 2]. �

Lemma 3.13. Let P be a Σ1
2 c.c.c. forcing and suppose M#

n (x) exists for every

x ∈ R. Then Σ1
n+3-absoluteness holds for P.

Proof. We follow the proof of lemma 3.7. Let P be a Σ1
2(a) forcing. Suppose

∃xϕ(x, y) holds in some P-generic extension of V , where ϕ is a Π1
n+2 formula and

y ∈ R. Let τ be a nice name and p ∈ P a condition with p P ϕ(τ, y̌). Let further

M := M#
n (a, y, τ).

Consider the tree T in V searching for g and x such that

(1) g is PM-generic overM and

(2) x is a real in M[g] such that M[g] � ϕ(x, y) if n is even, and M[g]
Col(ω,δ)

ϕ(x̌, y̌) if n is odd, where δ is the least Woodin cardinal inM.

Now let G be P � p-generic over V . Then g := G ∩M is PM-generic over M

since P is Σ1
2(a). Since M[g] is normally ω1-iterable in V [G] by lemma 3.11, T

has a branch in V [G]. Then T has a branch in V and hence V � ∃xϕ(x, y). �

Note that one cannot prove this from n Woodin cardinals:
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Lemma 3.14. Σ1
n+3 Cohen absoluteness does not hold in M#

n for even n < ω.

Proof. The set of reals R ∩M#
n is Σ1

n+1 for even n by [40, theorem 3.4]. So the

statement that there is a Cohen real over M#
n is Σ1

n+3. Since M#
n and the Cohen

generic extension M#
n [g] are Σ1

n+2-correct in V by lemma 2.45, this statement

holds true in M#
n [g] but not in M#

n . �

We get analogues of lemma 3.8 and theorem 3.9:

Lemma 3.15. Let E be a thin Π1
n+3 equivalence relation. Suppose P is a Σ1

2

c.c.c. forcing and M#
n (x) exists for every x ∈ R. Let τ be a P-name for a real.

Then the set

D := {p ∈ P : (p, p) P×P τEτ
′}

is dense.

Theorem 3.16. Let P be a Σ1
2 c.c.c. forcing and suppose M#

n (x) exists for every

x ∈ R. Then P does not add equivalence classes to thin provably ∆1
n+3 equivalence

relations.

3.2.2. Prewellorders and generic absoluteness. Let NP denote the set of nice

names τ = {(p, ň) : p ∈ An} for reals, where each An is an antichain in a

forcing P. In case P ⊆ R has the c.c.c. every nice name can be coded by a real.

Lemma 3.17. (Bagaria, Bosch [1]) Suppose P is a c.c.c. Σ1
n(x) forcing and ϕ is

a Σ1
k (Π1

k) formula where n ≥ 1 and k ≥ 2. Then

R := {(p, τ) : τ ∈ NP ∧ p P ϕ(τ)}

is a Σ1
n+k−1(x) (Π1

n+k−1(x)) set.

Proof. The set NP of nice P-names for reals is a Π1
n subset of R by [1, fact 2.6].

We sketch the proof of the lemma from [1] for Σ1
k formulas. For k = 2 and a Π1

1
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formula ψ one can express

p P ψ(σ, τ)

by the ∆1
2 statement that for every (for some) countable transitive model M

containing p, σ, τ of a fixed finite fragment of ZFC such that the inclusion PM → P

is a complete embedding, we have that p MPM ψ(σ, τ). Now by the forcing theorem

p P ∃yψ(σ, y) ⇔ ∃τ ∈ NP (p P ψ(σ, τ)),

so R is Σ1
n+1(x). The rest is a straightforward induction on k. The proof for Π1

k

formulas is analogous. �

We use the previous lemma to show

Lemma 3.18. Σ1
n+1 Cohen absoluteness implies that Cohen forcing does not add

any equivalence classes to < ω −Π1
n prewellorders.

Proof. Suppose ≤ is a < ω − Π1
n prewellorder. Let P denote Cohen forcing

and suppose G is P-generic over V . We denote the relation given by the same

definition in V [G] by ≤ as well. This is a prewellorder in V [G] since the statement

that ≤ is a prewellorder is Π1
n+1. Moreover

1 P ” ≤ is a prewellorder”

is Π1
n+1 by lemma 3.17. Hence this holds in V [G] by Σ1

n+1-absoluteness, so we get

1 P∗P ” ≤ is a prewellorder”.

Since the two-step iteration P ∗ P of Cohen forcing is equal to the product, the

same is forced by P× P.

Suppose p ∈ P and τ ∈ NP such that p P τ 6≤ x̌ ∨ x̌ 6≤ τ for all x ∈ R.
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Case 1. There is a real x ∈ R and a condition q ≤ p with q P τ ≤ x̌. In this

case choose x ∈ R which is ≤-minimal with this property. Then

∀y < x(p P τ 6≤ y̌),

which is a Π1
n+1 statement by lemma 3.17, since the map y 7→ y̌ is Borel.

Let G and H be mutually P � p-generic filters over V . Then ∀y < x(p P τ 6≤ y̌)

holds in V [G] by Σ1
n+1-absoluteness. In particular we have

p V [G]
P τ 6≤ τG.

So V [G×H] � τH 6≤ τG and by the same argument V [G×H] � τG 6≤ τH . This

is contradictory, since ≤ is linear in V [G×H].

Case 2. There is a condition q ≤ p such that for every x ∈ R we have q P x̌ < τ .

Then

∀x ∈ R(q P x̌ < τ).

Let G and H be mutually P � q-generic over V . Again we get ∀x ∈ R(q P x̌ < τ)

in V [G]. In particular

q V [G]
P τG < τ

so that V [G×H] � τG < τH . By the same argument V [G×H] � τH < τG, which

is impossible.

�

We conclude that

Corollary 3.19. Cohen forcing does not add equivalence classes to < ω − Π1
n

prewellorders if and only if Σ1
n+1 Cohen absoluteness holds, for n ≥ 1.
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Proof. One direction is the previous lemma. For the other direction suppose we

have proved Σ1
k Cohen absoluteness for some k ≤ n. Let G be Cohen generic over

V . Suppose V [G] � ∃xϕ(x,~a) where ϕ ∈ Π1
k and ~a ∈ R<ω.

We define a prewellorder ≤ by letting x ≤ y if and only if ϕ(x,~a) ∨ ¬ϕ(y,~a).

Then one of the equivalence classes of the prewellorder is

{x ∈ R : ϕ(x,~a)}.

Since Cohen forcing does not add any equivalence classes, there is a real x ∈ R∩V

with V � ϕ(x,~a). �

4. The number of equivalence classes

We give a proof of the Harrington-Shelah theorem [9] for counting the number of

equivalence classes of thin co-κ-Suslin equivalence relations in the first section.

This is applied to compute the number of equivalence classes of thin Π1
n and

Σ1
2n+1 equivalence relations, assuming the existence of Π1

2k+1-scales and the Baire

property of projective sets. It is finally shown that thin Σ1
2n equivalence relations

are Π1
2n in any real coding M#

2n−1 for n ≥ 1. The base theory is ZF + DC.

4.1. Co-κ-Suslin equivalence relations. We present a proof of the Harrington-

Shelah theorem. Most of this section is due to Harrington and Shelah.

4.1.1. A few lemmas.

Definition 4.1. Suppose κ ∈ Ord. A set A ⊆ Rn is called κ-Suslin if A = p[T ]

for some tree T on ωn × κ. It is co-κ-Suslin if Rn − A is κ-Suslin.

Note that if AD holds in L(R), then the sets of reals which are κ-Suslin in L(R)

for some ordinal κ are exactly the (Σ2
1)L(R) sets of reals, as shown by Martin and

Steel [26].
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In this section, E denotes an equivalence relation which is co-κ-Suslin via T . Note

that R2−p[T ] is not necessarily an equivalence relation in generic extensions. For

example, if R is wellorderable and

T := {(s, (x, .., x)) ∈ (ω × R)<ω : s ⊆ x ∧ x ∈ R2 − E},

then p[T ] = R2 − E is the same set in every generic extension, so whenever P

adds reals R2 − p[T ] is not an equivalence relation in V P.

For the application to projective equivalence relations we note the following con-

sequence of the second periodicity theorem [17, see 30.12]:

Lemma 4.2. Assume ZF+DC and Det(∆1
2n). Then every Π1

2n+2 set is co-δ˜1
2n+1-

Suslin via the tree from a Σ1
2n+2-scale.

The existence of a perfect set of pairwise inequivalent reals for E = R2 − p[T ]

is not absolute between V and generic extensions. We work with a stronger and

absolute version, which is called strongly thick in [9].

Definition 4.3. Suppose T is a tree and E = R2−p[T ] is an equivalence relation

and S ⊆ T . We say S witnesses that E is not thin if there is a perfect set P ⊆ R

such that (x, y) ∈ p[S] for all x, y ∈ P with x 6= y.

For a tree T and a node r ∈ T one says that r splits in T if there are s, t ∈ T

with r ⊆ s, t and s⊥t.

Lemma 4.4. The existence of a countable set S ⊆ T which witnesses that E =

R2 − p[T ] is not thin is absolute between transitive models of ZF.

Proof. We define a partial order (X,<) such that a countable set S with this

property exists if and only if (X,<) is ill-founded. Let X be the set of all triples

(r, s, F ) such that
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(1) r is a finite tree on ω,

(2) s ⊆ T is finite,

(3) F is a finite set of finite functions,

(4) for any two u, v ∈ r with u 6= v there is a function f ∈ F with (u, v, f) ∈ s,

and let (r, s, F ) < (p, q,G) if

(1) p ⊆ r,

(2) q ⊆ s,

(3) every node in p splits in r, and

(4) for any u, v ∈ p with u 6= v and any g ∈ G with (w, x, g) ∈ q there are

y, z ∈ r and a function f ∈ F with u ⊆ y, v ⊆ z, g ⊆ f , and (y, z, f) ∈ s.

If a countable set S ⊆ T and a perfect set P ⊆ R witness that E is not thin, one

can define (rn, sn, Fn) ∈ X such that (rn, sn, Fn) < (rk, sk, Fk) for all k < n < ω

and for any two distinct u, v ∈ rn of the same length there are reals x, y ∈ P and

a function f : ω → Ord with

(1) u ⊆ x,

(2) v ⊆ y,

(3) (u, v, f � lh(u)) ∈ sn, and

(4) (x, y, f) ∈ [S].

If on the other hand (X,<) is illfounded, let ((rn, sn, Fn) : n < ω) be a strictly

decreasing sequence in (X,<). We can set S := {f � k : ∃n < ω (f ∈ Fn∧k < ω)}

and P := [U ] where U :=
⋃
n∈ω rn.

This works without choice since X can be wellordered. �

We will work with the infinitary logic L∞,ω over a language L [3, chapter III,

definition 1.5]. L∞,ω-formulas are distinguished from finitary formulas by the

fact that disjunctions and conjunctions of arbitrary ordinal length are possible.

Let L be a language which contains at least ∈ and the following constants: c, d
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for reals, ḟ for a function f : ω → κ, and ṡ for each s ∈ tc({T}). Let N be the set

of atomic formulas ṅ ∈ c with n ∈ ω. We build L∞,0,N by starting with N and

closing under negations and wellordered infinitary disjunctions and conjunctions.

We will also write ϕd for the formula obtained from a formula ϕ ∈ L∞,0,N by

replacing c with d. Note that instead of L∞,0,N one can equivalently work with

the infinitary logic L∞,0 built over a language with a set of propositional formulas

{pn : n < ω}, as is done in [9] and [13].

Whether a statement ϕ ∈ L∞,0,N is true depends only on the truth value of each

individual atomic statement ṅ ∈ c.

Definition 4.5. Suppose ϕ ∈ L∞,0,N and x ∈ R. Define the truth value of ṅ ∈ c

as true if and only if n ∈ x. This induces a truth value for ϕ by induction on the

formula complexity. If this value is true we say that ϕ(x) holds and x is a model

of ϕ.

We refer to the infinitary proof calculus from [3] which has the rule

∀α < β ` ϕα ⇒ `
∧
α<β

ϕα

in addition to the rules of first-order logic [3, chapter III, definition 5.1]. In the

following let χ be the L∞,ω-formula

c ⊆ ω ∧ d ⊆ ω ∧
∧

t∈tc({T})

(∀x ∈ ṫ
∨
s∈t

x = ṡ) ∧ (
∧
s∈t

ṡ ∈ ṫ).

Then c, d are interpreted as reals and ṡ takes the value s for each s ∈ tc({T}) in

any transitive model of χ. Note that for any admissible set A with T ∈ A we have

χ ∈ A by ∆0-replacement, since we can assume that s and ṡ are ∆0-definable

from each other for each s ∈ tc({T}). We write `χ for the provability relation

when χ is used as an axiom.
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A theory in L∞,ω is consistent if it is not contradictory in terms of infinitary

proofs. Note that for hereditarily countable theories, this definition coincides

with several other definitions of consistency:

Lemma 4.6. The following are equivalent for any hereditarily countable theory

Σ ⊆ L∞,0,N :

(1) Σ is consistent

(2) Σ is consistent in any admissible set A with Σ ∈ A

(3) Σ has a model

(4) there is a model of Σ in some generic extension

(5) player 1 wins the closed game GΣ from [13, section 2.2].

Proof. We sketch the relevant part that Σ has a model if it is consistent. Suppose

Σ is consistent. We can assume that negations occur only at the atomic level in

formulas in Σ, since every L∞,0,N -formula is equivalent to a formula of this form.

Suppose two players play a game GΣ with the rules:

(1) if player 1 plays
∨
α<β χα, then player 2 has to play χα for some α < β,

and

(2) both players can only play formulas which are consistent with Σ and the

previously played moves,

where player 2 wins if the game does not stop after finitely many moves. Then

player 2 has a winning strategy in GΣ, since Σ is consistent. By letting player 1

play each disjunction in tc(Σ) consistent with Σ and the previous moves at some

point in the game, the play determines a real x so that n ∈ x if and only if the

formula ṅ ∈ c was played during this run of the game. One shows by induction

on the formula complexity that x models Σ.

The equivalence of 1 and 2 follows from the Barwise completeness theorem [3,

part III, theorem 5.5]. �
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Lemma 4.7. A Cohen real adds a perfect set of mutually generic Cohen reals

Proof. Let Q be the forcing which consists of finite trees on ω, where s ≤ t if

and only if t ⊆ s and every node of t splits in s. Then Q is equivalent to Cohen

forcing P since it is countable and has no atoms. Also any two branches of the

tree added by Q are mutually P-generic, since for every dense open set D ⊆ P×P

the set

D′ := {t ∈ P : ∀r, s ∈ t(r 6= s⇒ ∃r′, s′ ∈ t(r ⊆ r′ ∧ s ⊆ s′ ∧ (r′, s′) ∈ D))}

is dense in Q. �

4.1.2. The theorem of Harrington and Shelah. In this section we give a proof of

Theorem 4.8. (Harrington-Shelah [9]) Assume ZF. Suppose κ is an infinite

cardinal and T is a tree on ω × ω × κ. Let A be an admissible set with T ∈ A.

Suppose E = R2 − p[T ] is a thin equivalence relation such that

(1) L[T ]
Cohen ”R2 − p[T ] is transitive” or

(2) there is a Cohen real over L[T ] in V .

Then for every x ∈ R there is a formula ϕ ∈ L∞,0,N ∩ A with

(1) ϕ(x) and

(2) `A
χ (ϕ ∧ ϕd)→ (c, d) /∈ p[Ṫ ].

Proof. If there is a Cohen real x over L[T ] in V , then R2− p[T ] is an equivalence

relation in L[T, x] by absoluteness of p[T ], since E = R2 − p[T ] is an equivalence

relation in V . So we assume the first condition holds. Note that this condition is

also true if R2 − p[T ] is transitive in a Cohen generic extension of V .

We work in L[T ]. If the theory

Σ := {¬ϕ : ϕ ∈ L∞,0,N ∩ A :`χ (ϕ ∧ ϕd)→ (c, d) /∈ p[Ṫ ]}
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is inconsistent, then no real can satisfy every statement in Σ. Here `χ can be

equivalently replaced by `A
χ by the Barwise completeness theorem [3, chapter III,

theorem 5.5]. Then for every x ∈ R there is a formula ϕ satisfying the conditions

and we are done.

Assume Σ is consistent and let A ≺ A be a countable substructure with Σ, T ∈ A

and Ā its transitive collapse with uncollapsing map π : Ā → A, π(T̄ ) = T ,

π(χ̄) = χ, π(κ̄) = κ, and π(p) = Σ. Further suppose Ṫ , ṅ ∈ A, π(Ṫ ) = Ṫ ,

π(ḟ) = ḟ , and π(ṅ) = ṅ for all n ∈ ω. Also assume that s and ṡ are ∆0-definable

from each other for each s ∈ tc({T}) to ensure that Ṫ is interpreted as T̄ in every

model of χ̄. We will refer to provability and consistency as provability from χ̄

and consistency with χ̄ and denote `χ̄ simply by `.

Claim 4.9. Suppose p ⊆ q ⊆ L∞,0,N ∩ Ā, q is consistent, q is Σ˜1 over Ā. Then

q ∪ qd ∪ {(c, d) ∈ p[Ṫ ]} is consistent.

Proof. Assume the theory is inconsistent, so it does not have a model. Now

Barwise compactness [3, chapter III, theorem 5.6] implies that there is a theory

s ∈ Ā with ` q → s such that s∪sd∪{(c, d) ∈ p[Ṫ ]} does not have a model. Hence

this theory is inconsistent by lemma 4.6. We can replace s by a the conjunction

ϕ ∈ L∞,0,N ∩ Ā of all formulas in s and get ` (ϕ ∧ ϕd) → (c, d) /∈ p[Ṫ ]. Then

¬ϕ ∈ p ⊆ q by definition of Σ. But this cannot happen, since ` q → ϕ and q is

consistent. �

Using the claim, one would like to build a perfect tree of consistent theories

starting with p such that every branch defines a complete theory. Then every

branch defines a unique real. At the same time one would have to ensure that

(x, y) ∈ p[T ] for reals x, y from distinct branches and this would contradict that

E is thin.
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However, this cannot work directly, since the assumption on Cohen forcing is

necessary by remark 4.14. Instead one can construct a countable set S ⊆ T and

a perfect set in a Cohen generic extension witnessing that R2 − p[T ] is not thin

and then apply lemma 4.4.

Claim 4.10. Every consistent L∞,0,N -theory q with p ⊆ q which is Σ˜1 over Ā is

incomplete.

Proof. Suppose q is complete and consistent. Then the theory q ∪ qd ∪ {(c, d) ∈

p[Ṫ ]} is consistent by claim 4.6. So

q ∪ qd ∪ {(c, d, ḟ) ∈ [Ṫ ]}

is consistent as well. This theory has a model (x, y, f) ∈ L[T ] since one can also

apply lemma 4.6 if N is replaced by the set N ′ which additionally contains each

formula ḟ(ṅ) = α̇ for α < κ̄ and n < ω. Then x = y since x and y are both

models of q and q is complete. Hence (x, x, f) ∈ [T̄ ]. Note that p[T̄ ] ⊆ p[T ] since

π′′T̄ is obtained from T by omitting all ordinals not in A. But this would imply

(x, x) ∈ p[T ] and hence (x, x) /∈ E. �

Let (ψn : n < ω) enumerate the formulas in L∞,0,N ∩ Ā. We can assume that

negations only occur on the atomic level in all formulas.

We build a tree C in L[T ] whose nodes are consistent L∞,0,N -theories q ⊇ p which

are Σ˜1 over Ā, ordered by inclusion. The root of the tree is p. We can construct

the tree level by level and ensure that C is isomorphic to 2<ω and

(1) ψn ∈ q or ¬ψn /∈ q for all q on level n and

(2) if ψn ≡
∨
α<β χα, ψn ∈ q, and q is on level 〈n, k〉 for some k < ω, then for

every r ⊇ q on level 〈n, k〉+ 1 there is some α < β with χα ∈ r.

Then every branch in C defines a consistent theory and a real which is a model

of the theory. Note that there are no end nodes in C by claim 4.10. We will force
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with (C,≤), where ≤ denotes reverse inclusion. If G is C-generic, then
⋃
G is

a complete theory and defines a real x. The generic filter can also be recovered

from the real x as

G = {q ∈ C : ∀ϕ ∈ q ϕ(x)}.

Let N ′ be the set of atomic statements about c, d, and ḟ . Let P be a tree of

consistent L∞,0,N ′-theories containing p∪pd∪{c, d, ḟ) ∈ [Ṫ ]} which are Σ˜1 over Ā.

We build P in the same way as C such that additionally the value of (c|n, d|n, ḟ |n)

is decided on the nth level and P is isomorphic to 2<ω. Then every branch in P

defines a consistent theory containing p∪pd∪{(c, d, ḟ) ∈ [Ṫ ]} and a triple (x, y, f)

which is a model if this theory. We will force with (P,≤) where ≤ denotes reverse

inclusion.

Claim 4.11. Suppose G is P-generic and (x, y, f) is a model of the corresponding

theory. Then both x and y are C-generic.

Proof. Suppose D ⊆ C is open dense. It suffices to find r ∈ D such that x models

r. For q ∈ P let

q(c) := {ϕ ∈ L∞,0,N ∩ Ā : q ` ϕ}

be the set of statements about c which are provable from q.

We claim that

D′ := {q ∈ P : q(c) ∈ D}

is dense in P. So suppose q ∈ P. There is a condition r ∈ D with q(c) ⊆ r since

D is dense. If q′ := q ∪ r was inconsistent, then by Barwise compactness and

lemma 4.6 there would be a set s ⊆ r with s ∈ Ā such that q ` ¬
∧
s. Hence

¬
∧
s ∈ q(c). But

∧
s is consistent with q(c) since s ⊆ r. So q′ is consistent.

Since r ⊆ q′(c) we have q′(c) ∈ D and hence q′ ∈ D′.

Choose a condition q ∈ G ∩ D′ and let r := q(c) ∈ D. Then x models r, since

q ∈ G and (x, y, f) models
⋃
G. �
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Claim 4.12. If (x, y) is C× C-generic over L[T ], then (x, y) ∈ p[T ].

Proof. Suppose there are conditions q, q′ ∈ C with (q, q′) C×C (ẋ0, ẋ1) /∈ p[Ť ],

where ẋ0 and ẋ1 are names for the left and right generic reals. Then

s := q ∪ qd ∪ {(c, d) ∈ p[Ṫ ]}

is consistent by claim 4.9. Let s′ ∈ P be a condition with s′ ⊇ s. Suppose G

is Cohen-generic over L[T ]. There is a C � q′ × P � s-generic filter over L[T ] in

L[T,G] by lemma 4.7. Let x be the C-generic real and y and z the reals from the

P-generic filter as in claim 4.11. Then both y and z are C � q-generic over L[T ].

Since p[T ] is absolute, we have

L[T,G] � (x, z) /∈ p[T ]

and

L[T,G] � (y, z) /∈ p[T ]

since this is forced by (q, q′) and

L[T,G] � (x, y) ∈ p[T̄ ].

But this cannot happen, since p[T̄ ] ⊆ p[T ] and R2 − p[T ] is transitive in any

Cohen generic extension of L[T ]. �

Hence Cohen forcing adds a perfect set of pairwise inequivalent reals by lemma

4.7 and claim 4.12.

Let τ be a C-name for a sequence of ordinals with C×C (ẋ0, ẋ1, τ) ∈ [Ť ] by

the forcing theorem, where ẋ0 and ẋ1 are names for the left and right generic

reals. Since C is proper, there is in fact a countable set S ⊆ T such that C×C

(ẋ0, ẋ1, τ) ∈ [Š]. But then there would also be a countable subset of T witnessing
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that R2− p[T ] is not thin in L[T ] by the absoluteness proved in lemma 4.4. This

would imply that E is not thin in V . �

It is not clear whether the previous proof can be generalized to Sacks forcing, or

other forcings whose conditions are trees on ω, instead of Cohen forcing.

Note that if ϕ satisfies the conditions in the previous theorem, then the set

{y ∈ R : ϕ(y)} is contained in the equivalence class of x. The aim of the theorem

was to show

Corollary 4.13. (Harrington-Shelah [9]) Assume ZF. Suppose T is a tree on

ω × ω × κ and E = R2 − p[T ] is a thin equivalence relation such that

(1) L[T ]
Cohen ”R2 − p[T ] is transitive” or

(2) there is a Cohen real over L[T ] in V .

Then the equivalence classes of E can be wellordered with order type ≤ κ.

Proof. Let A be the least admissible set with T ∈ A. Then A = Lα[T ] for some

ordinal α. Then A = κ since A = Lα[T ] = hA(κ ∪ {T}) by minimality of A. Let

Φ be the set of L∞,0,N -formulas ϕ ∈ A satisfying the conditions in theorem 4.8

and let (ϕβ : β < γ) enumerate Φ for some γ ≤ κ. Then every equivalence class

is the union of sets of the form {x ∈ R : ϕβ(x)} with β < γ. Hence

f([x]E) := min{β < γ : ∃y ∈ [x]E ϕβ(xy)}

is a rank function for the equivalence classes. �

Remark 4.14. (Shelah [38]) The assumption that R2 − p[T ] is transitive in a

Cohen generic extension cannot be eliminated from the previous corollary.

Proof. Shelah [38] defines a finite support iteration of c.c.c. forcings of length ω1

assuming 2ℵ0 = ℵ2, so that in the generic extension there is a thin co-ℵ1-Suslin

equivalence relation with 2ℵ0 equivalence classes. �
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Note that if κ is a successor cardinal and T a tree on ω × ω × κ, then L[T ] is

not a counterexample to the conclusion of corollary 4.13, since L[T ] has at most

κ many reals by a standard argument.

The Harrington-Shelah theorem has an interesting consequence together with a

result of Neeman and Zapletal:

Theorem 4.15. (Neeman and Zapletal [33]) Suppose κ is an infinite cardinal

and there are a class inner model M and a countable ordinal λ with

(1) M = L(V M
λ ),

(2) M |= ”λ is the supremum of ω Woodin cardinals”, and

(3) M is uniquely κ+ + 1-iterable.

If P is a proper forcing of size ≤ κ and G is a P-generic filter over V , then there

is an elementary embedding j : L(R)V → L(R)V [G] which fixes the ordinals.

Corollary 4.16. Suppose there is an inner model as in the previous theorem.

Then proper forcing of size ≤ κ does not add equivalence classes to thin (Π2
1)L(R)

equivalence relations.

Proof. The assumption implies ADL(R) by [42, lemma 7.15] and Woodin’s theorem

[31, theorem 3.1]: ADL(R∗) holds if λ is a limit of Woodin cardinals and R∗ is the

set of reals of a symmetric collapse below λ. Now suppose E is a thin (Π2
1)L(R)

equivalence relation, so E is co-(δ˜2
1)L(R)-Suslin for via the tree T from a (Σ2

1)L(R)

scale on the complement of E. Let G be generic over V for a proper forcing of

size ≤ κ. Then there is an elementary embedding

j : L(R)→ L(R)V [G]

which fixes the ordinals by the previous theorem, in particular R2 − p[T ] is an

equivalence relation in every Cohen generic extension of V . Hence there is a
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wellorder of the equivalence classes of E in L(R) by corollary 4.13. Since j fixes

the ordinals, there are no new equivalence classes in V [G]. �

4.2. Projective equivalence relations. In this section we use the theorem of

Harrington and Shelah to determine the number of equivalence classes of thin

projective equivalence relations relative to the projective ordinals, assuming PD.

4.2.1. Π1
n and Σ1

2n+1 equivalence relations. Silver [39] proved

Lemma 4.17. Assume ZF. Then every thin Π1
1 equivalence relation has count-

ably many equivalence classes.

Harrington’s simpler proof of this result can be found in Jech [16, theorem 32.1].

The lemma follows from corollary 4.13, since Σ1
1 sets are ℵ0-Suslin and the state-

ment that a Π1
1 formula defines an equivalence relation is Π1

2 and hence absolute.

Burgess proved

Lemma 4.18. Assume ZF. Then every thin Σ1
1 equivalence relation has at most

ℵ1 many equivalence classes.

For a proof see Jech [16, theorem 32.9]. This result is a consequence of corollary

4.13, since Σ1
2 sets are ℵ1-Suslin and the Shoenfield tree projects to the complete

Σ1
2 set in any Cohen generic extension. For the same reason one has

Lemma 4.19. Assume ZF and

(1) there is a Cohen real over L[x] or

(2) there is an inner model which satisfies generic Σ1
3 Cohen absoluteness.

Then any thin Π1
2(x) equivalence relation has at most ℵ1 many equivalence classes.

The conclusion from condition 1 is shown in in Harrington and Shelah [9]. Note

that 2 implies 1 by Bartoszynski and Judah [2, theorems 9.2.12 and 9.2.1]. The

previous facts generalize through the projective hierarchy:
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Theorem 4.20. Assume ZF and

(1) Π1
2n+1 is scaled and

(2) all ∆1
2n+2 sets have the Baire property.

Then the equivalence classes of any thin Π1
2n+2 equivalence relation can be well-

ordered with order type ≤ δ˜1
2n+1. Moreover, there is a thin Σ1

2n+1 equivalence

relation whose equivalence classes can be wellordered with order type δ˜1
2n+1.

Proof. Let E be a thin Π1
2n+2 equivalence relation and fix some Σ1

2n+2-scale (≤k:

k < ω) of length δ˜1
2n+1 on R2−E. In fact [30, 4C.14] and [21, theorem 38.4] imply

that there is a scale of this length. We further have Σ1
2n+3 Cohen absoluteness by

lemma 3.12. Then in every Cohen generic extension

(1) E is an equivalence relation and

(2) (≤k: k < ω) is a scale on R2 − E,

since both are Π1
2n+3 statements. Here E and (≤k: k < ω) are understood as

the corresponding sets in the generic extension with the same definition as in

the ground model. Now Cohen forcing does not change the tree T from the scale

since no new equivalence classes are added to the relevant prewellorders by lemma

3.18. Hence R2 − p[T ] is an equivalence relation in any Cohen generic extension.

Thus the equivalence classes of E can be wellordered with order type ≤ δ˜1
2n+1 by

corollary 4.13.

Let ≤ be a Π1
2n+1 norm on the complete Π1

2n+1 set A ⊆ R, so ≤ has length δ˜1
2n+1.

The norm induces a Σ1
2n+1 equivalence relation E defined by (x, y) ∈ E if and

only if (x ≤ y∧y ≤ x)∨x, y /∈ A. Moreover, E is thin by the argument in lemma

2.14. �

The previous theorem implies that there is no difference in the possible number of

equivalence classes of thin Σ1
2n+1 equivalence relations and of thin Π1

2n+2 equiv-

alence relations. On the other hand, we will see in theorem 5.26 that there are
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inner models which have representatives in every equivalence class of every thin

Σ1
2n+1 equivalence relation defined from a parameter in the inner model, but do

not fulfill the same condition for thin Π1
2n+2 equivalence relations. For the odd

levels we have

Theorem 4.21. Assume ZF and

(1) Π1
2n+1 is scaled and

(2) all ∆1
2n+2 sets have the Baire property.

Then the equivalence classes of any thin Π1
2n+1 equivalence relation can be well-

ordered with order type < δ˜1
2n+1. Moreover, for every α < δ˜1

2n+1 there is a thin

∆1
2n+1 equivalence relation whose equivalence classes can be wellordered with order

type at least α.

Proof. Let E be a thin Π1
2n+1 equivalence relation. Let further A ⊆ R3 be a

Π1
2n set with R2 − E = p[A] and fix a Π1

2n+1-scale (≤k: k < ω) on A. Then

the prewellorders are actually ∆1
2n+1, since A is Π1

2n. Since cf(δ˜1
2n+1) > ω, this

implies that the length α of the scale is less than δ˜1
2n+1. Now Σ1

2n+3 Cohen

absoluteness holds by lemma 3.12. So the Π1
2n+2 statements

(1) E is an equivalence relation,

(2) R2 − E = p[A], and

(3) (≤n: n < ω) is a scale on A,

hold in every Cohen generic extension. Cohen forcing does not change the tree

T from the scale, since no new equivalence classes are added to the relevant

prewellorders by lemma 3.18. Hence R2 − p[T ] is an equivalence relation in any

Cohen generic extension. Thus the equivalence classes of E can be wellordered

with order type at most α by corollary 4.13.

Clearly for every α < δ˜1
2n+1 there is a ∆1

2n+1 prewellorder with order type at least

α, by the definition of δ˜1
2n+1. �
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The extra assumptions in the previous theorems cannot be eliminated:

Lemma 4.22. Let n < ω and assume there are 2n Woodin cardinals and a

measurable above if n > 0. Then under ZFC +Det(Π1
2n) there is no upper bound

for the number of equivalence classes of thin Σ1
2n+2 equivalence relations.

Proof. M2n denotes the inner class model defined by iterating the top extender of

M#
2n out of the universe. In particular M0 = L. Then M2n � Det(Π1

2n) by lemma

2.30.

Let κ be an uncountable cardinal in M2n and G a generic filter over M2n for the

finite support product of (κ+)M2n many Cohen forcings. Working inM2n[G], fix a

set A ⊆ R of size κ. We claim that there is a c.c.c. forcing P in M2n[G] such that

A is Π1
2n+2 in any P-generic extension of M2n[G]. For n = 0 this is Harrington’s

forcing from [6, §1]. The forcing has to be adapted if n > 0; in this case we have

to find a sequence (dα,n : α < ω1, n < ω) of distinct reals in M2n[G] which is

∆HC
2n+1 over M2n[G].

As for the case n = 0 we work with the sequence of all reals of M2n in the order

of constructibility. The canonical wellorder is shown to be ∆HC
2n+1 over M2n in

[40, theorem 4.5] by comparing reals in Π2n-iterable, 2n-small, ω-sound premice.

The point is that M E M#
2n for such premice M by [40, lemma 3.3]. Since

Π2n-iterability is Π1
2n+1 in the codes, it is absolute between M2n and M2n[G]. It

follows that the sequence of reals of M2n in the order of constructibility is ∆HC
2n+1

over M2n[G]. �

The number of equivalence classes of thin Π1
n and Σ1

2n+1 equivalence relations can

be calculated under PD by the two theorems above. The next example defines a

∆1
3 equivalence relation with exactly Card(δ˜1

2) many equivalence classes from a

prewellorder. Hence it is consistent that there is a ∆1
3 equivalence relation with

ℵ2 many equivalence classes by lemma 2.18.



THIN EQUIVALENCE RELATIONS AND INNER MODELS 61

Example 4.23. Assume x# exists for every x ∈ R. Let (ιxα : α ∈ Ord) enumerate

the x-indiscernibles and define ux2 := ιxω1+1 for x ∈ R. The prewellorder given by

x ≤ y :⇔ ux2 ≤ uy2

is ∆1
3 and its length is δ˜1

2.

Proof. Note that the class of x-indiscernibles and the theory of L[x] are definable

from x# since

x# = {pϕ(v0, ..., vn)q : L[x] � ϕ(x, ωV1 , ..., ω
V
n )}.

Thus ux2 ≤ uy2 holds if and only if

L[x#, y#] � ιxωV1 +1 ≤ ιy
ωV1 +1

.

But this can be calculated from (x#, y#)# since ωV1 is an (x#, y#)-indiscernible.

Now sharps for reals are defined by a Π1
2 formula. Hence ux2 ≤ uy2 is ∆1

3 in x, y.

The length of the prewellorder is δ˜1
2 since δ˜1

2 = u2 = sup{ux2 : x ∈ R} in the

presence of sharps for reals. �

A similar example for ∆1
5 is not known. It could be possible to realize this by

comparing the heights of the transitive direct limit of iterates of M#
2 (x) and

M#
2 (y) via iteration trees living below the respective least Woodin cardinal.

4.2.2. Σ1
2n equivalence relations. Hjorth [12, lemma 2.5] showed that every thin

Σ1
2(x) equivalence relation is Π1

2 in any real coding M#
1 , assuming M#

1 (x) exists

and is ω1 + 1-iterable. This also works assuming M#
1 (x) exists for every x ∈ R

via lemma 2.38. In this section this result and its proof are extended to the even

levels of the projective hierarchy. The main ingredient is the next lemma, based

on [12, lemma 2.2].
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If P is a forcing and τ is a P-name for a real, then in any P×P-generic extension

there are two corresponding reals from the P-generic filters. We will denote the

P × P-names derived from τ for these reals by τ and τ ′ throughout the rest of

this paper.

Lemma 4.24. Let n be even and k ≥ n, Suppose M#
k (x) exists for every x ∈ R.

Let E ⊆ R2 be a thin Π1
n+3(x) equivalence relation where x ∈ R. Let M be a

countable (k + 1)-small X-premouse which is ω1-iterable above δ and ω-sound

above δ with ρω(M) ≤ δ, where X is swo. Suppose there are n Woodin cardinals

above δ and an extender above them inM. Let further P be a forcing of size ≤ δ

in M. Then for every P-name τ ∈ M for a real the set D of conditions p ∈ P

with

(p, p) MP×P τEτ
′

is dense in P.

Proof. Suppose D is not dense. In this case let p∅ ∈ P be a condition such that

for every q ≤ p∅ there are conditions r, u ≤ q with

(r, u) MP×P ¬τEτ ′.

Let (Di : i < ω) enumerate the dense open subsets of P × P in M. One can

inductively define a family (ps : s ∈ 2<ω) of conditions in P such that for all

s, t ∈ 2<ω

(1) ps ≤ pt if t ⊆ s,

(2) (psa0, psa1) MP×P ¬τEτ ′,

(3) ps decides τ � lh(s), and

(4) (ps, pt) ∈ D0 ∩ .. ∩Di if s, t ∈ i2 and s 6= t.

Moreover let

gy := {p ∈ P : ∃n < ω(py�n ≤ p}



THIN EQUIVALENCE RELATIONS AND INNER MODELS 63

for each y ∈ R. Then gy× gz is P×P-generic overM for any y, z ∈ R with y 6= z

by condition 4. Then

M[gy, gz] � ¬τ gyEτ gz

by condition 2. We haveM[gy, gz] ≺Σ1
n+2

V by lemma 2.45. Hence ¬τ gyEτ gz as

R2−E is Σ1
n+3(x). On the other hand the set P := {τ gy : y ∈ R} is perfect since

τ gy depends continuously on y by condition 2. This is a contradiction, since E is

thin. �

We will need

Lemma 4.25. Let n ≤ k with k ≥ 1 and suppose M#
k (x) exists for every x ∈ R.

Let N be a countable active ω-sound ω1-iterable (k + 1)-small X-premouse with

ρω(N ) ≤ β, where X is swo. Let κ be the critical point of the top extender of

N and M := N|κ. Let δ > β be the least Woodin cardinal in N . Let m < ω be

sufficiently large. Then there is a club C ⊆ δ which is uniformly definable inM,

so that for every γ ∈ C we have for

Yγ := hMΣm(VMγ )

and Xγ its transitive collapse that

(1) Xγ � ”γ is the least Woodin cardinal” and

(2) Xβ C Xγ CM for all β ∈ C ∩ γ.

Proof. We define a sequence (γα : α < δ) by induction and then set

C := {γα : α < δ}.

Note that Σ
(m−1)
1 coincides with Σm overM sinceM is ω-sound and is a model

of ZF. To define γ0 let Y 0 := hM
Σ

(m−1)
1

(∅) via the canonical Skolem functions. Let

Y i+1 := hM
Σ

(m−1)
1

(VMsup(Y i∩δ)+1)
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for i < ω and define

γ0 := sup(
⋃
i<ω

Y i ∩ δ).

We have γ0 < δ since δ is inaccessible inM and further

Yγ0 =
⋃
i<ω

Y i = hM
Σ

(m−1)
1

(VMγ0
).

To define γα+1 in the successor step start with Y 0 := hM
Σ

(m−1)
1

(VMsup(Yγα∩δ)+1). Let

Y i+1 := hM
Σ

(m−1)
1

(VMsup(Y i∩δ)+1)

for i < ω and let

γα+1 := sup(
⋃
i<ω

Y i ∩ δ).

Again we have

Yγα+1 = hM
Σ

(m−1)
1

(VMγα+1
).

For limits µ < δ define γµ := supα<µ γα, so that Yγµ = hM
Σ

(m−1)
1

(VMγµ ) as well. Since

δ in inaccessible inM, we have γα < δ for each α < δ.

Let Xγα be the transitive collapse of Yγα for α < δ and let σα : Xγα → Yγα be the

uncollapsing map. Then γα is the least Woodin cardinal in Xγα , since πα(γα) = δ.

The construction ensures that J ~Fγα = VMγα for each α < δ where ~F = ~FM.

Moreover Xγα is m-sound above γα, since Yγα is the Σ
(m−1)
1 -hull of γα in M. It

is clear that crit(σα) = γα and ρm(Xγα) = γα. Hence the condensation lemma

can be applied, see [47, theorem 5.5.1] and [29, theorem 8.2]. We have FMγα = ∅

since γα is a cardinal. So the case that Xγα is an ultrapower of an initial segment

of M by Fγα can be ruled out. Hence Xγα E M. One can now conclude that

Xγα C Xγβ CM for all α < β < δ. �



THIN EQUIVALENCE RELATIONS AND INNER MODELS 65

The previous lemma will also be used in the proof of the main lemma in section

4.1. For the next theorem we actually only need a single element of the club in

the lemma. Hjorth [12, lemma 2.5] proved the next theorem for n = 1:

Theorem 4.26. Let n ≥ 1 and suppose M#
2n−1(x) exists for every x ∈ R. Then

every thin Σ1
2n(r) equivalence relation is Π1

2n in any real coding M#
2n−1(r), for

r ∈ R.

Proof. Let E be a thin Σ1
2n(r) equivalence relation. DefineM := M#

2n−1(r) and

let δ be the least Woodin cardinal inM. Let η and τ be Wδ-names inM such

that MWδ
ẋ = η ⊕ τ , where ẋ is a name for the Wδ-generic real. Then the set D

of conditions p ∈WM
δ with

(p, p) MWδ×Wδ
ηEη′ ∧ τEτ ′

is dense in WM
δ by lemma 4.24. Let κ be the critical point of the top extender

of M. Let’s choose some γ ∈ C where C ⊆ δ is the club from the previous

lemma. Let Xγ be the corresponding initial segment of M with uncollapsing

map σ : Xγ → Yγ and σ(D̄) = D.

We claim that any two reals x and y are E-inequivalent if and only if there are

(1) reals a and b and

(2) an iteration tree onM living onM|γ according to Σ with iteration map

π :M→N

such that

(1) a⊕ b is Wπ(γ)-generic over N ,

(2) N [a, b] � ¬aEb, and

(3) aEx and bEy.
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Condition 2 is equivalent to ¬aEb since N [a, b] ≺Σ1
2n
V by lemma 2.47. So these

conditions imply that ¬xEy.

On the other hand, suppose ¬xEy. Let T be a countable iteration tree on

M#
2n−1(x) living below γ with iteration map π : M → N such that x ⊕ y is

Wπ(γ)-generic over π(X) by lemma 2.44. Since D̄ is dense in WXγ
γ , there is a

condition p ∈ π(D̄) such that x⊕ y is Wπ(γ) � p-generic over π(X). Now let a⊕ b

be Wπ(γ) � p-generic over both π(X)[x, y] and over N . We have

π(X)[a, x] � aEx

π(X)[b, y] � bEy,

since this is forced by (p, p). Then lemma 2.45 shows that aEx and bEy hold,

since there are 2n − 2 Woodin cardinals in π(X)[a, x] and in π(X)[b, y]. Thus

¬aEb and hence a, b, π satisfy the conditions.

It remains to show that the existence of a, b, π satisfying these conditions is a

Σ1
2n statement in any real codingM. It suffices to check that the statement “T

is an iteration tree living on M|γ according to Σ” is Σ1
2n in M. Since Xγ is

(2n − 1)-small, the Q-structures for Xγ are (2n − 2)-small and hence Π1
2n−1 by

lemma 2.48, so the statement is Σ1
2n inM. �

Note that Harrington and Sami [8, theorem 5] proved that every thin Σ1
2n equiv-

alence relation is ∆1
2n and every thin Π1

2n+1 equivalence relation is ∆1
2n+1 from

PD, without identifying the parameters.

5. Inner models for thin equivalence relations

We consider transitive modelsM with the property that there are representatives

in M for all equivalence classes of all thin Π1
2n(z) equivalence relations defined

from a real parameter z in M . We prove the main lemma in the first section and



THIN EQUIVALENCE RELATIONS AND INNER MODELS 67

use this to characterize the inner models with this property in the main theorem

in the next section. The base theory is ZF + DC. In the last section, we will

construct a transitive model satisfying the properties in the main theorem 5.15

with a similar method assuming the corresponding projective ordinal is below ω2

in the base theory ZFC.

A first observation is that the set of reals of such a model has at least the size of

δ˜1
2n−1 if Π1

2n−1 determinacy holds by theorem 4.20 and computes δ˜1
2n−1 correctly.

Hjorth [10, theorem 3.1] characterized the inner models with this property for

thin Π1
2 equivalence relations:

Theorem 5.1. (Hjorth [10]) Assume x# exists for every x ∈ R. The following

are equivalent for an inner model M :

(1) M has a representative in every equivalence class of every thin Π1
2(x)

equivalence relation for any x ∈ R ∩M ,

(2) (a) M ≺Σ1
3
V and

(b) ωM1 = ωV1 .

The suggestion how to extend this theorem to Π1
2n is due to Greg Hjorth. We

ask that the tree from the canonical Π1
2n+1 scale is computed correctly instead of

ω1. However, the argument is more involved than the proof of theorem 5.1. The

main lemma 5.14 shows that T2n+1 can be computed in an iterate of M#
2n. To

prove this, we find a sequence of local Woodin cardinals below the least Woodin

of M#
2n using lemma 4.25 and build an iteration tree to make reals generic at the

local Woodins. A density argument will show that T2n+1 can be defined in the

last model of the iteration tree. To apply the main lemma 5.14 in the proof of the

main theorem, we assign an infinitary formula to a given real by the Harrington-

Shelah theorem and express the existence of a real satisfying this formula in a

projective way.
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5.1. The main lemma. In this section we prove

Main Lemma 5.2. Let n ≥ 1 and assume M#
2n(x) exists for every x ∈ R.

Suppose M is a transitive model of a sufficiently large finite fragment of ZF.

Suppose R∩M is countable andM calculatesM#
2n(x) correctly for each x ∈ R∩M .

Let r ∈ R ∩ M and let δ be the least Woodin cardinal in M#
2n(r). There is a

countable iteration tree on M#
2n(r) with iteration map π : M#

2n(r) → N so that

TM2n+1 is definable in N uniformly in the parameter r ∈ R.

We will build an iteration tree on M#
2n(r) with last model N and reconstruct

TM2n+1 in a Col(ω,< ω
M

1 )-generic extension of N . Let M , r, δ, and n be as in the

main lemma for the rest of this section.

Claim 5.3. M ≺Σ1
2n+1

V .

Proof. Since every x ∈ R ∩ M is generic over some iterate of M#
2n(r) for the

extender algebra at the least Woodin cardinal by lemma 2.44, one can construct

L[ ~E, x] in this generic extension up to the critical point of the top extender. We

then construct the M#
2n−1(x) of both M and V by attaching the top extender of

the iterate of M#
2n(r) on top of this model. Now the claim follows from lemma

3.5. �

Let C ⊆ δ be the club from lemma 4.25 applied to M#
2n(r). Now the set

S := {γ ∈ C : M#
2n(r) � γ is inaccessible}

is stationary in δ, since δ is Mahlo in M#
2n(r). Let S̄ be the set of limit points of

S and

λr := min(S ∩ S̄).
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Let (γk : k < ω) be a sequence in M of ordinals in S with supremum λr. We

define Xk := Xγk for k < ω. Note that each Xk is ω1-iterable via the Q-structure

iteration strategy Σ.

Now let (xk : k < ω) enumerate R ∩M and set N0 := M#
2n(r). We construct

premice Nk for k ≥ 1 and countable iteration trees Tk on Nk in M for k < ω such

that

(1) the composition T0 a .. a Tk is an iteration tree according to Σ with map

πk+1 = π0,k+1 = πk,k+1 ◦ .. ◦ π0,1 : N0 → Nk+1,

(2) xk is Wπk+1(γk+1)-generic over πk+1(Xk+1), and

(3) Tk lives on Nk|πk(γk+1) and all extenders in Tk have critical points above

πk(γk).

Suppose Nk and Ti have been defined for i < k. Note that πk(Xk+1) C Nk

and πk(Xk+1)|πk(γk+1) = Nk|πk(γk+1). There is a countable iteration tree Tk on

Nk according to Σ with map πk,k+1 so that xk is Wπk,k+1(πk(γk+1))-generic over

πk,k+1(Xk+1) by the genericity iteration. Here Tk lives on Nk|πk(γk+1) and all

extenders have critical points above πk(γk). We define Nk+1 as the last model of

Tk.

One can easily check that the composition T0 a .. a Tk is an iteration tree on

M#
2n(r), since it follows from condition 3 and the rules of the iteration game that

Nk is the only model in T0 a .. a Tk−1 to which an extender in Tk can be applied.

Since the composition T of (Tk : k < ω) is according to Σ, the direct limit N

along the unique cofinal branch is wellfounded. Let πk,ω : Nk → N denote the

direct limit maps.

Note that it follows from condition 3 that πk(γk) = π0,ω(γk) and

πk,ω � V
Nk
πk(γk)+ω = id.
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This implies that WNk
πk(γk) = Wπk(Xk)

πk(γk) = Wπ0,ω(Xk)
π0,ω(γk) and the forcing has the same

subsets in πk(Xk) and π0,ω(Xk). Hence xk is Wπ0,ω(Xk+1)

π0,ω(γk+1) -generic over π0,ω(Xk+1).

Claim 5.4. supk<ω πk(γk) = ωM1 .

Proof. Since initial segments of T are countable in M , we have πk(γk) < ωM1 for

every k < ω. Thus supk<ω πk(γk) ≤ ωM1 .

To show that supk<ω πk(γk) ≥ ωM1 , suppose α < ωM1 is given. Let xk code α

where k < ω. Then xk is Wπk+1(γk+1)-generic over πk+1(Xk+1). Now πk+1(γk+2)

is inaccessible in πk+1(Xk+2) and hence in πk+1(Xk+1) ⊆ πk+1(Xk+2). Thus it is

still inaccessible in πk+1(Xk+1)[xk]. This implies

α < ω
πk+1(Xk+1)[xk]
1 < πk+1(γk+2) ≤ πk+2(γk+2).

�

If P is a forcing and τ is a P-name for a real, then in any P×P-generic extension

τ defines two reals via the P-generic filters. Let τ and τ ′ be P×P-names for these

reals. Let ≤i denote the Π1
2n+1 prewellorders from the canonical Π1

2n+1 scale on

the complete Π1
2n+1 set A for i < ω. We write ≡i for the induced thin Σ1

2n+1

equivalence relations, i.e. x ≡i y if and only if (x ≤i y ∧ y ≤i x) ∨ x, y /∈ A.

Claim 5.5. Let τ be a name for the Wπk(γk)-generic real. Then the set Dj,k of

conditions p ∈Wπk(Xk)
πk(γk) with

(1) p decides τ � j and

(2) (p, p) πk(Xk)
Wπk(γk)×Wπk(γk)

τ ≡i τ ′ for every i ≤ j

is dense for all j, k < ω.

Proof. Let j, k < ω and let σ be a name for the Wδ-generic real. Then the set of

conditions p ∈WM#
2n(r)

δ with

(p, p) 
M#

2n(r)
Wδ×Wδ

σ ≡i σ′
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is dense for every i < j by lemma 4.24. Since these sets are dense open and the

set of conditions which decide σ � j is dense open, we have that their intersection

is dense open. The claim follows by elementarity. �

We use the notation

[α, β) := {γ < κ : α ≤ γ < β}

and

Col(ω, [α, β)) := {f : ω × [α, β) : ∀n < ω∀γ ∈ [α, β) f(n, γ) < γ}

ordered by reverse inclusion. Then

Col(ω,< β) ∼= Col(ω,< α)× Col(ω, [α, β))

for all ordinals α < β.

Claim 5.6. There is a Col(ω,< ωM1 )-generic filter g over N in V with

RN [g] ⊆M.

Proof. Let g0 be a Col(ω,< γ0)-generic filter over N in M . Then π2(γ2) is

inaccessible in N [g0] and hence P(π1(γ1))N [g0] is countable in M . Now let g1 be

a Col(ω,< π1(γ1))-generic filter over N in M with

g1 ∩ Col(ω,< γ0) = g0.

Similarly we choose Col(ω,< πk(γk))-generic filters gk over N with

gk+1 ∩ Col(ω,< πk(γk))

for each k < ω. Finally let g :=
⋃
k<ω gk.

To see that g is Col(ω,< ωM1 )-generic over N , note that the forcing Col(ω,< ωM1 )

has the ωM1 -c.c. in N since ωM1 is regular in N . So for any maximal antichain
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A ⊆ Col(ω,< ωM1 ) there is some k < ω with A ⊆ Col(ω,< πk(γk)). Hence

gk ∩ A 6= ∅.

By considering only the nice names for reals we get RN [g] =
⋃
k<ω R∩N [gk]. �

We fix a Col(ω,< ωM1 )-generic filter g over N as in the previous claim and let

R∗ := RN [g].

Claim 5.7. For all x ∈ R ∩ M and j < ω there is a real y ∈ R∗ such that

x � j = y � j and M |= x ≡i y for every i ≤ j.

Proof. Let x ∈ R ∩M and find k < ω with x = xk. Let

P := Wπk+1(Xk+1)

πk+1(γk+1) .

Then x is P-generic over πk+1(Xk+1). Let Dj,k+1 be the dense set from claim

5.5 and choose a condition p ∈ Dj,k+1 in the generic filter for x. Since the set

P(πk+1(γk+1))πk+1(Xk+1) is countable in N [g], there is a P � p-generic real y over

πk+1(Xk+1) in N [g]. We directly get x � j = y � j by choice of p.

We claim that x ≡i y for every i ≤ j. To see this, choose another real z ∈ R∩M

which is P � p-generic over both πk+1(Xk+1)[x] and πk+1(Xk+1)[y]. Since

(p, p) πk+1(Xk+1)
P×P τ ≡i τ ′,

we have

πk+1(Xk+1)[x, z] |= x ≡i z

and

πk+1(Xk+1)[y, z] |= y ≡i z

for each i ≤ j. Now πk+1(Xk+1)[x, z] and πk+1(Xk+1)[y, z] are 2n-small boldface

premice with 2n − 1 Woodin cardinals above πk+1(γk+1) which are ω1-iterable



THIN EQUIVALENCE RELATIONS AND INNER MODELS 73

above πk+1(γk+1) in M and project to πk+1(γk+1) or below. Hence both are Σ1
2n-

correct in M by lemma 2.45. We can conclude that

M � x ≡i z ≡i y

by Σ1
2n+1 upwards absoluteness. �

Claim 5.8. TM2n+1 is definable from r in N [g].

Proof. We have M ≺Σ1
2n+1

V by claim 5.3. Now N [g] is a countable ω-sound 2n-

small boldface premouse with 2n−1 Woodin cardinals above ωM1 and ρω(N [g]) ≤

ωM1 which is ω1-iterable above ωM1 in V . Moreover N [g] computes Σ1
2n+1 truth

in V by lemma 2.45. So for any x, y ∈ R ∩ N [g] and k < ω we can calculate in

N [g] whether V � x ≤k y holds. Using the previous claim, we can define TM2n+1

in N [g] in the parameter π0,ω(λr), which was defined from r. �

By homogeneity of Col(ω,< ωM1 ) we get that TM2n+1 is definable from r in N and

hence an element of N .

Remark 5.9. N [g] 6≺Σ1
2n+3

V .

Proof. M#
2n(r) is a Π1

2n+2(r) singleton by 2.49. Supposing N [g] ≺Σ1
2n+3

V we

would have M#
2n(r) ∈ N [g]. But this implies M#

2n(r) ∈ N by homogeneity of

Col(ω,< ωM1 ) and hence M#
2n(r) ∈M#

2n(r), a contradiction. �

Remark 5.10. If M#
2n(X) exists for every X ∈ H(2ℵ0 )+, then the iterability of

M#
2n is not affected by forcing with Col(ω,R) by lemma 3.4. In this case one

can construct the iteration tree in the proof of the main lemma for M = V in

V Col(ω,R). The construction produces a forcing extension N [g] of an iterate of

M#
2n in V Col(ω,R).

We get a simpler version of the main lemma for n = 0 based on
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Lemma 5.11. let M be a transitive model of ZF. Then TM1 = T V1 if and only if

ωM1 = ωV1 .

Proof. Since ht(T1) = ω1 we know that TM1 = T V1 implies ωM1 = ωV1 . On the other

hand the Shoenfield tree is absolute relative to ω1. Moreover, the tree T1 from

the canonical Π1
1 scale is absolute relative to the Shoenfield tree by the proof of

[21, theorem 36.12]. �

Lemma 5.12. Let M be a transitive model of ZF. Suppose r ∈ R ∩ M and

r# exists in M . Let κ be the critical point of the top extender of M#
0 (r) and

π : M#
0 (r) → N the map from iterating the top extender in ωM1 many steps.

Then

π(κ) = ωM1

and

T
N [g]
1 = TM1

for every Col(ω,< ωM1 )-generic filter g over N .

Proof. Since ωN [g]
1 = ωM1 we have TN [g]

1 = TM1 by the previous lemma. �

One can derive a different version of the main lemma for M †
2n(r) with essentially

the same proof, based on the following version of lemma 4.24:

Lemma 5.13. Suppose m ≤ k and M#
k (x) exists for every x ∈ R. Let E ⊆

R2 be a thin Π1
m+3(x) equivalence relation with x ∈ R. Let M be a countable

(k + 1)-small X-premouse which is ω1-iterable above δ and ω-sound above δ with

ρω(M) ≤ δ, where X is swo. Suppose there are m Woodin cardinals above δ and

at least two extenders above them in M. Let P be a forcing of size ≤ δ in M.

Then for every P-name τ inM for a real the set D of conditions p ∈ P with

(p, p) MP×P τEτ
′
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is dense in P.

Proof. The proof is the same as for lemma 4.24. We need the extra extender

on top to make sure that M[gy, gz] ≺Σm+2 V by lemma 2.47, where gy × gz is

P× P-generic overM. �

Lemma 5.14. Let n ≥ 1 and assume M#
2n(x) exists for every x ∈ R. Suppose M

is a transitive model of ZF such that R∩M is countable and M calculates M#
2n(x)

correctly for each x ∈ R ∩M . Moreover suppose r ∈ R ∩M and M †
2n(r) exists

in M and is calculated correctly. Let δ be the least Woodin cardinal in M †
2n(r).

There are

(1) a countable iteration tree on M †
2n(r) with iteration map π : M †

2n(r) → N

and

(2) an ordinal λr < δ definable in M †
2n(r) uniformly in the parameter r ∈ R

such that

π(λr) = ωM1

and

T
N [g]
2n+1 = TM2n+1,

where g is any Col(ω,< ωM1 )-generic filter over N .

5.2. The main theorem. In this section we show

Main Theorem 5.15. Suppose n ≥ 1 and M#
2n−2(x) exists for every x ∈ R.

Let (≤k: k < ω) denote the canonical scale on the complete Π1
2n−1 set and let ≡k

denote the induced thin Σ1
2n−1 equivalence relations. The following are equivalent

for any transitive model M of ZF:

(1) every equivalence class of every thin Π1
2n(r) equivalence relation has a

representative in M for all r ∈ R ∩M
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(2) (a) M ≺Σ1
2n+1

V and

(b) TM2n−1 = T V2n−1

(3) (a) M ≺Σ1
2n+1

V and

(b) for some k < ω every equivalence class of ≡k has a representative in

M .

Note that theorem 5.1 is the special case of the equivalence of conditions 1 and 2

for n = 0 since TM1 = T V1 if and only if ωM1 = ωV1 by lemma 5.11.

The first part of the proof of the main theorem is purely descriptive. Note that

the assumptions of the main theorem imply Det(Π1
2n−1) by theorem 2.30.

Claim 5.16. Under the assumptions of the main theorem, condition 1 implies

conditions 2 and 3.

Proof. 2 (a). It suffices to show that A∩M 6= ∅ for every nonempty Π1
2n(r) set A

with r ∈ R∩M . Let ≤ be the Π1
2n(r) prewellorder from a Σ1

2n(r) norm on R−A.

We have [x]≤ = A for every x ∈ A, where

[x]≤ := {y ∈ R : x ≤ y ∧ y ≤ x}.

Then A∩M 6= ∅, since the induced Π1
2n(r) equivalence relation is thin by lemma

2.15.

2 (b). Condition 1 implies

rankMk (x) = rankVk (x)

for all x ∈ R ∩ M and k < ω since each norm in the Π1
2n−1-scale induces a

thin Σ1
2n−1 equivalence relation. Hence TM2n−1 ⊆ T2n−1. We have to show that

T2n−1 ⊆ TM2n−1.
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Suppose (s, f) ∈ T2n−1 and m = lh(s) = lh(f). Let A be the canonical complete

Π1
2n−1 set. Choose x0 ∈ A with

(s, f) = (x0 � m, (rank0(x0), .., rankm−1(x0)).

We inductively define reals xk ∈ A ∩M for 1 ≤ k ≤ m with

(s � k, f � k) = (xk � k, (rank0(xk), .., rankk−1(xk)))

so xm witnesses that (s, f) ∈ TM
Π1

2n−1
. Let ≤k denote the kth Σ1

2n−1 prewellorder

from the canonical Π1
2n−1-scale on A and ≡k the induced equivalence relation.

Moreover let

Ut := {x ∈ R : x � lh(t) = t}

for t ∈ ω<ω.

Case 1. k = 1. Define xE1y if and only if

x, y /∈ Us�1 ∨ (x, y ∈ Us�1 ∧ x ≡0 y).

Then E1 is a Σ1
2n−1 equivalence relation which is thin by lemma 2.13, since it is

induced by a Σ1
2n−1 prewellorder. There is a real x1 ∈ R ∩M with x1(0) = s(0)

and x1 ≡0 x0 by condition 1 applied to E1.

Case 2. 2 ≤ k ≤ m . Suppose xi ∈ R∩M is defined for 1 ≤ i < k. Then the set

U := {x ∈ R : ∀i < k − 1(x ≡i xk−1)}

is ∆1
2n−1(xk−1) since xk−1 ∈ A. Now define xEky if and only if

x, y /∈ Us�k ∩ U ∨ (x, y ∈ Us�k ∩ U ∧ x ≡k−1 y).

Then Ek is a Σ1
2n−1(xk−1) equivalence relation. It is thin since it is induced by a

Σ1
2n−1(xk−1) prewellorder. Moreover we have x0 ∈ Us�k ∩U . Hence there is a real
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xk ∈ R ∩M with xk � k = s � k and xk ≡i x0 for all 1 ≤ i < k by condition 1 for

Ek.

3 (b). Since ≡k is a thin Σ1
2n−1 equivalence relation for each k < ω. �

Remark 5.17. In condition 1 one can equivalently replace thin Π1
2n equivalence

relations by Π1
2n prewellorders, thin Π1

2n linear preorders, or Σ1
2n norms.

For the other implications will use

Lemma 5.18. Suppose T is the tree from a scale on a set containing x ∈ R and

A is strongly admissible with x, T ∈ A. Then rankk(x) is definable from x and T

in A for every k < ω.

Proof. Recall the definition 5.18 strongly admissible. Let α < δ˜1
2n−1 be least with

A |= ∃f ∈ ω(δ˜1
2n−1) ((x, f) ∈ [T ] ∧ f(k) = α).

We show that rankk(x) = α.

For rankk(x) ≤ α suppose f ∈ ω(δ˜1
2n−1) and (x, f) ∈ [T ]. Let (xi : i < ω) be a

sequence of reals with

(xi|i, (rank0(xi), ..., ranki−1(xi))) = (x|i, (f(0), ..., f(i− 1))) ∈ [T ]

for every i < ω. Hence xi → x and the sequence (rankk(xi) : i < ω) is eventually

constant with value f(k) for each k < ω. The semicontinuity of the scale implies

rankk(x) ≤ f(k).

For α ≤ rankk(x) we have to find a function f ∈ ω(δ˜1
2n−1) in A with (x, f) ∈ [T ]

and f(k) = α. Such functions are exactly the branches of the tree

S := {s ∈ <ω(δ˜1
2n−1) : (x|lh(s), s) ∈ T ∧ s(k) = α}.
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In V the sequence (rankk(x) : k < ω) is the pointwise minimal branch of S by

the semicontinuity of the scale. Now the wellfoundedness is expressible by a ∆1

predicate. Hence S has a branch f in A as well by ∆1 absoluteness. �

The previous lemma shows that condition 2 in the main theorem implies condition

3. We shall now prove condition 1 from condition 3. Let r ∈ R ∩M and let E

be a thin Π1
2n(r) equivalence relation. We fix a real x ∈ R. The goal is to find a

real x̄ ∈ R ∩M with xEx̄.

The idea of the proof is as follows. Let A be the least strongly admissible set

containing T2n−1 as an element and choose a formula ϕ ∈ L∞,0,N ∩ A with ϕ(x)

as in theorem 4.8. One can find a real t ∈ R∩M so that ϕ can be defined from t

and T2n−1. One can now use the main lemma to reconstruct T2n−1 in an iterate of

M#
2n−2(t⊕ u) for arbitrary reals u ∈ R. This allows you to express the existence

of a real x̄ with ϕ(x̄) by a Σ1
2n+1(x, r) statement. Since M is sufficiently correct,

there is such a real in M . Finally the choice of ϕ implies that xEx̄.

Let T be a tree defined from T2n−1 and r as in lemma 2.11 with E = R2 − p[T ].

In order to apply the theorem of Harrington and Shelah we need to know that

Claim 5.19. R2−p[T ] is an equivalence relation in any Cohen generic extension

of V .

Proof. Let G be Cohen generic over V . We get Σ1
2n+1 Cohen forcing absoluteness

from Det(Π1
2n−1) by lemma 3.12. Then T V2n−1 = T

V [G]
2n−1 since Cohen forcing does

not add equivalence classes to the relevant prewellorders by lemma 3.18. So

R2−p[T ] is defined by the same Π1
2n formula in V [G]. Hence this is an equivalence

relation in V [G] by Σ1
2n+1 Cohen absoluteness. �

Suppose x ∈ R and A is the least admissible set with T2n−1 ∈ A. Let ϕ ∈

L∞,0,N ∩ A be a formula with

(1) ϕ(x) and
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(2) ϕ(y)⇒ xEy for every y ∈ R

by theorem 4.8.

Claim 5.20. There is a real t ∈ R ∩M and a formula ψ which defines ϕ from

T2n−1 and t in every strongly admissible set A with T2n−1, t ∈ A.

Proof. Let A be a minimal strongly admissible set containing T2n−1 and t as

elements. Then A is the Σ2 Skolem hull of δ˜1
2n−1∪{T2n−1} in itself by minimality

of A, since the defining axioms for strongly admissible sets (KP with Axiom Beta)

are Π2. Now there is a Σ2 Skolem function for A which is uniformly Σ3 over A by

[37, theorem 1.15] and the following paragraph. So ϕ is Σ3-definable in A from

T2n−1 and some ~α = (α0, .., αj) ∈ (δ˜1
2n−1)<ω. Since the length of each Π1

2n−1 norm

in the scale is δ˜1
2n−1, we can choose reals ti ∈ R ∩ M with rankk(ti) = αi for

i ≤ j by condition 3 (b). Then the join t := t0 ⊕ .. ⊕ tj works by the previous

lemma. �

Let t ∈ R ∩M and ψ be as in the previous claim. Let ϕs,S denote the formula

defined by ψ from a real s and a tree S. Let Tu be the term from the main lemma

5.14 which defines T2n−1 from u ∈ R in an iterate ofM#
2n−2(u). Note that Tu does

not depend on the model M in the main lemma.

Claim 5.21. For every real u ∈ R we have that ϕ(u) holds if and only ifM#
2n−2(t⊕

u) � ϕt,Tu(u).

Proof. Let N ≺ Vη be countable and contain all relevant parameters, where η

is a large limit ordinal. Let N̄ be its transitive collapse with uncollapsing map

π : N̄ → N and π(ϕ̄) = ϕ. There is an iteration M#
2n−2(t⊕ u)→ N with

TNu = T N̄2n−1
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by the main lemma 5.14 applied to N̄ . Since claim 5.20 is true in N̄ we have

ϕNt,Tu = ϕN
t,T N̄2n−1

= ϕ̄.

Hence

ϕ(u)⇔ ϕ̄(u)⇔ N � ϕt,Tu(u)⇔M#
2n−2(t⊕ u) � ϕt,Tu(u).

The last equivalence holds by elementarity of the iteration map. �

Now the previous claim expresses the existence of a real x̄ with ϕ(x̄) by a Σ1
2n+1

formula, since M#
2n−2(t ⊕ u) is a Π1

2n(t ⊕ u) singleton uniformly in t and u by

lemma 2.49. Since M ≺Σ1
2n+1

V , there is a real x̄ ∈ R ∩M with ϕ(x̄).

Note that Harrington’s proof [16, theorem 32.1] of Silver’s theorem shows

Lemma 5.22. (Harrington) For every equivalence class [x] of every thin Π1
1

equivalence relation, there is a ∆1
1 set X 6= ∅ with X ⊆ [x].

The technique from the proof of the main theorem can be used to show a similar

fact. Let rankk denote the kth rank in the canonical Π1
2n−1-scale for k < ω.

Lemma 5.23. Let n ≥ 1 and suppose Det(Π1
2n−1) holds. Let A ⊆ R be closed

under finite join ⊕. Suppose that for every α < δ˜1
2n−1 there are r ∈ A and

k < ω with rankk(r) = α. Then for every thin Π1
2n equivalence relation E and

every real x, there exist a real r ∈ A and a nonempty ∆1
2n+1(r) set X such that

x ∈ X ⊆ [x]E.

Proof. Given a formula ϕ with ϕ(x) as in the proof of the main theorem, we can

choose a real t ∈ A satisfying claim 5.20. It follows from claim 5.21 that the set

{u ∈ R : ϕ(u)} is ∆1
2n+1(t). �

We conclude this section with two remarks about the proof of the main theorem.
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Remark 5.24. It is unclear whether condition 2 (b) in the main theorem can be

replaced by δ˜1
2n−1 = (δ˜1

2n−1)M .

Note that if there is model satisfying the assumptions of the main theorem for

which forcing with Col(ω, ω1) does not change δ˜1
3 and at the same time V ≺Σ1

5

V Col(ω,ω1) holds, then the condition TM3 = T V3 cannot be replaced by (δ˜1
3)M = δ˜1

3

in the main theorem for n = 2. However, it is not clear how one could obtain

such a model.

Remark 5.25. Claim 5.21 can be used to prove from PD that every thin projective

equivalence relation is induced by a projective prewellorder.

Note that this fact is proved from in [8, theorem 5] from a determinacy assumption

which is locally weaker than in this case. Suppose E is a thin equivalence relation

and T is a tree as in the main theorem. Let x and y be reals. A prewellorder

which induces E can be defined by comparing infinitary formulas ϕ with ϕ(x)

and ψ with ψ(y) as above in the constructibility order of the least admissible set

containing T .

5.3. An inner model. In this section we construct an inner model which ful-

fills similar conditions as in the main theorem 5.15, assuming the corresponding

projective ordinal is below ω2.

Theorem 5.26. Suppose n ≥ 2 is even and Π1
n+1 determinacy holds. Suppose

δ˜1
n+1 < ω2. There is a forcing extension N [g] in V of an iterate N of M#

n of size

ω1 such that N [g] has representatives in all equivalence classes of all thin Σ1
n+1(z)

equivalence relations with z ∈ R∩N [g]. Moreover, M ≺Σ1
n+2

V and M 6≺Σ1
n+3

V .

To prove the theorem, we build a stack of ω1 many iteration trees on an iterate

of M#
n with direct limit model N such that every real is generic over an initial

segment of N . We then form a Col(ω,< ωV1 )-generic extension of N in V . The
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difference to the proof of the main lemma 5.14 is that the initial segments of the

generic filter have to be defined in the course of the construction to ensure the

required property for N [g].

As the first model in the stack of iteration trees we construct an iterate of M#
n

which contains a sequence of local Woodin cardinals of order type ω1. Let δ be

the least Woodin cardinal in M#
n and let C̄ be the set of limit points < δ of the

club C ⊆ δ from lemma 4.25. Note that the set of critical points of extenders on

the M#
n -sequence below δ is stationary in δ, since δ is Woodin in M#

n . Choose

such a critical point γ ∈ C̄. We define N0 as the iterate of M#
n obtained by

iterating the extender with critical point γ on the M#
n -sequence with least index

ω1 many times.

Then N0 is ω1-iterable with respect to iteration trees living on N0|ω1, since the

relevant iteration maps commute by the argument in the commutativity lemma

[5, lemma 3.2]. Moreover the image D of C ∩ γ is a club in ω1. We enumerate D

by (γα : α < ω1) and let (Xγα : α < ω1) be the corresponding initial segments of

N0 from lemma 4.25 such that γα is Woodin in Xγα for all α < ω1.

As a bookkeeping device we fix a bijective map f : ω1 → ω1 × ω1 with η ≤ α if

f(α) = (ζ, η). Let’s inductively construct

(1) a premouse Nα,

(2) a countable iteration tree Tα on Nα,

(3) a filter gα, and

(4) a set Rα = {xη,α : η < ω1} ⊆ R

for each α < ω1, such that for all β < ω1

(1) the composition of (Tα : α < β) is an iteration tree on N0 according to Σ

with map πβ = π0,β : N0 → Nβ,

(2) gβ is Col(ω,< πβ(γβ))-generic over Nβ,
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(3) gα = gβ ∩ Col(ω,< πα(γα)) for α < β,

(4) xf(β) is Wπβ+1(γβ+1)-generic over πβ+1(Xγβ+1
),

(5) Tβ lives on Nβ|πβ(γβ+1) and all extenders in Tβ have critical points above

πβ(γβ), and

(6) there is a representative in Rβ for every equivalence class of every thin

Σ1
n+1(z) equivalence relation with z ∈ R ∩Nβ[gβ].

In each successor step β + 1 < ω1 there is a set Rβ ⊆ R which fulfills condi-

tion 6, since every thin Σ1
n+1 (even provably ∆1

n+2) equivalence relation has at

most Card(δ˜1
n+1) ≤ ω1 many equivalence classes by theorem 4.20. Let (xα,β :

α < ω1) enumerate Rβ. There is a countable iteration tree Tβ on Nβ living on

Nβ|πβ(γβ+1) with iteration map πβ,β+1 so that xf(β) is Wπβ+1(γβ+1)-generic over

πβ,β+1(πβ(Xγβ+1
)) by lemma 2.44. Let Nβ+1 be the last model of Tβ. We further

choose a Col(ω,< πβ+1(γβ+1))-generic filter gβ+1 over Nβ+1[gβ] in V .

In each limit step β ≤ ω1 let Nβ be the direct limit of the unique cofinal branch

in the composition of (Tα : α < β). We define gβ :=
⋃
α<β gα. Then gβ is

Col(ω,< πβ(γβ))-generic over Nβ. The reason is that πβ(γβ) is inaccessible in

Nβ, so Col(ω, πβ(γβ)) has the πβ(γβ)-c.c. in Nβ. Finally let N := Nω1 , g := gω1 ,

and

R∗ := R ∩N [g].

Claim 5.27. Let r ∈ R∗ and suppose E is a thin Σ1
n+1(r) equivalence relation.

Then for every x ∈ R there is some y ∈ R∗ with xEy.

Proof. Let α < ω1 be an ordinal with r ∈ R ∩N [gα]. We have

R ∩N [gα] = R ∩Nα+1[gα],

since the set of nice Col(ω,< πα(γα))-names for reals in N is contained in Nα+1.

We can assume that x ∈ Rα. Now let β, η < ω1 be ordinals with x = xη,α and
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f(β) = (η, α). Note that this implies β ≥ α. Then x is P-generic over πβ+1(Xβ+1)

for

P := Wπβ+1(Xβ+1)

πβ+1(γβ+1) .

Let τ be a name for the P-generic real. Then there is a condition p in the generic

filter for x with

(p, p) 
πβ+1(Xβ+1)

P×P τEτ ′

by lemma 4.24.

Let y ∈ R∗ be P � p-generic over πβ+1(Xγβ+1
). Let further z ∈ R be P � p-generic

over both πβ+1(Xβ+1)[x] and πβ+1(Xβ+1)[y]. Then

πβ+1(Xβ+1)[x, z] � xEz

and

πβ+1(Xβ+1)[y, z] � yEz

hold, since this is forced by (p, p). Now πβ+1(Xβ+1)[x, z] and πβ+1(Xβ+1)[y, z]

are both Σ1
n-correct in V by lemma 2.47. Hence x, y, and z are E-equivalent in

V . �

Claim 5.28. N [g] ≺Σ1
n+2

V .

Proof. Let’s assume k ≤ n+1 andN [g] ≺Σ1
k
V . Suppose ∃xϕ(x, a) holds, where ϕ

is a Π1
k formula and a ∈ R∩N [g]. Let E denote the thin Σ1

n+1 equivalence relation

induced by a Π1
n+1 norm on {x : ϕ(x, a)}. Then there is a real x ∈ R∩N [g] with

N [g] � ϕ(x, a) by the previous claim. �

Claim 5.29. N [g] 6≺Σ1
n+3

V .

Proof. Suppose N [g] ≺Σ1
n+3

V . Since M#
n is a Π1

n+2 singleton by lemma 2.49, this

implies M#
n ∈ N [g]. Thus M#

n ∈ N by homogeneity. But N is an iterate of M#
n ,

so this is impossible. �
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N [g] can be cut off at the critical point of its top extender to get a model of

ZFC with the properties of theorem 5.26. With the same proof, but with an

application of lemma 5.13 instead of lemma 4.24, we have

Theorem 5.30. Let n ≥ 1 and suppose Π1
n+1 determinacy holds. Suppose M †

n

exists and δ˜1
n+1 < ω2. There is a forcing extension N [g] in V of an iterate N

of M †
n of size ω1 such that N [g] has representatives in all equivalence classes of

all thin provably ∆1
n+2(z) equivalence relations with z ∈ R ∩ N [g]. Moreover,

M ≺Σ1
n+2

V and M 6≺Σ1
n+3

V .

Note that every model constructed in this way has exactly ℵ1 many reals, hence

the method cannot work without a condition on the projective ordinals.
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