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Abstract

(R)

An inner model-theoretic proof that every thin 2'1]‘1 equivalence relation is

Alja(R) in a certain parameter is presented for ordinals o beginning a 3; gap in
L(R) where X;° ® is closed under number quantification. We use the (optimal)
hypothesis AD=(®),

Several results in descriptive set theory proved from determinacy have been studied
from an inner model-theoretic perspective [3, [4]. In this line of research we present a
new proof of a result of Harrington and Sami [I] on thin equivalence relations. The
proof allows us to isolate the optimal hypothesis for the following type of equivalence

relation.

Theorem 0.1. Let o > 2 begin a X1 gap in L(R) and assume AD7=(®) " Also, setting
I = E‘{“(R), assume T to be closed under number quantification, i.e., VNI C T'. Let E
be a thin T' equivalence relation and N an a-suitable mouse with a capturing term for

a universal T set. Then E is T in any real coding N as a parameter.

An equivalence relation FE is called thin if there is no perfect set of pairwise E—inequivalent
reals. The notion of a—suitable mice with capturing terms (which is due to Woodin)
is described in our section 1 and in detail in [7]. Such a—suitable mice are in a sense
analogues of M (capturing 31 42) which capture more complicated sets of reals. The
pointclass I' = 21“(R) as in the statement of Theorem is scaled under AD”=®) (cf.

181).
The remaining cases for o which we address in this paper are subsumed in
Theorem 0.2. Let I' = Z;{‘AR) where o > 2 begins a X1 gap, n = 1, and « s a

successor ordinal or cf (o) = w, or else a ends a proper weak 31 gap and n is least with
pn(Ja(R)) = R. Assume AD*®) . Then every thin T equivalence relation is I.

In section 1 we collapse a substructure of a suitable premouse and prove upwards abso-

luteness for the preimages of capturing terms. In section 2 the method of term capturing



is applied to prove Theorem building on an argument of Hjorth [4, Lemma 2.5] for
E% equivalence relations. Theorem is proved in section 3.

We wish to thank the referee for his thorough and helpful report.

1 Weak term condensation

Let us fix an ordinal o > 2 beginning a ¥; gap in L(R) (cf. [§]) with the property
that I' = Zla(R) is closed under number quantification. Let us also assume AD”= ()

throughout.

Definition 1.1. For any bounded subset A of wi, the (a—)lower-part closure Lp*(A)
of A is the the union of all A-premice N which are sound above A, project to sup(A),
and are wi-iterable in J,(R) (i.e., there is an iteration strategy ¥ € Jo(R) with respect

to countable iteration trees on N).

Under AD7=(®), any two A-premice as in definition are lined up so that Lp®(A) is
well-defined.

Definition 1.2. An A-premouse N for bounded A C w1 with a unique Woodin cardinal
8 =& is called a-suitable if

e § is minimal such that § is Woodin in Lp®(N|6), and

o N is the Lp® closure of N'|§ up to its w'™ cardinal above §, i.e. N' = Jpe, Ni

where Ny := N|§ and N1 := Lp®(Ny) for all k.

In what follows, we let § = &V always denote the Woodin cardinal of an «-suitable
premouse N .
Definition 1.3. An wy-iteration strateqgy X for an a—suitable N is fullness-preserving
if for every iteration tree T on N according to X which lives below <5E| we have that

o if the branch to the last model P does not drop, then P is a-suitable, and

e if the branch to P drops, then P is wy-iterable in J,(R).

!Notice that if ¥ and ¥’ € J,(R) witness the countable A-premice A and A’ to be wi-iterable,
respectively, then wlL[E’E NN w} by AD”= ®) s0 that A" and A can be successfully compared in

LI, Y N, N
2That 7 lives below & (or, on N|€) means that 7 may be construed as an iteration tree on N|¢.



Definition 1.4. Suppose X is an wi-iteration strateqy for a countable a-suitable A-
premouse N and Q € N is a forcing notion. A Q-name E € NQ is said to capture a
set E C R relative to 3 if

m(E) = ENP[g]
whenever : N — P is a non-dropping iteration map produced by a countable iteration

tree which is according to ¥ and g is w(Q)-generic over P. E is then also called a
(Q-)capturing term for E (relative to X2).

Let Col,, = Col(w,n) denote the forcing for collapsing 7.

Theorem 1.5. (Woodin, see [7]) Assume AD7*®) holds, where oo > 2 begins a $1 gap
in L(R) and E‘{“(R) is closed under number quantification. Suppose E C R is a El‘]“(R)
set. There is then a countable a-suitable A-premouse N and a fullness-preserving w1 -
iteration strategy X for N such that for everyn > & in N there is a Col,-name capturing

FE relative to 2.

Let us fix such an A-premouse N together with a fullness-preserving wi-iteration strat-
egy 2. It is easy to see that Theorem provides Q-capturing terms for any forcing Q
in NV, since the forcing is absorbed in Col,, for some 7. We now show that A-premice

which embed into an initial segment of N retain a weak capturing property.

Lemma 1.6. Suppose E C R is a E{“(R) set and E,$ are Cols-capturing terms for E
and its E{“(R) scale (relative to ). Let m: M — N|(6T™YN be sufficiently elementary
with E,$ € ran(r) and F = 7= (E), where n > 2. Then F9 C E for every Colr—1(5)-
generic filter g over M.

Proof. We argue that it is possible to replace E with the name for the projection of a
tree and we then use upwards absoluteness for this name. Suppose h is Cols-generic
over N and T' € N is a Cols-name for the tree

T ={(z |k (role™, re_1()NP)) 2 € E" = ENNA] & k € w} (1)

where the r; are the ranks in the scale as computed in A'[h] via the capturing term §
for the scale. The tree T is the image of a countable subtree S of the tree from the scale
on F in V via the map which collapses the set of ordinals occuring in S to an ordinal,
so that p[T"NVM = E N AN[h]. This implies E" = E N N[h] = p[T"V,

Notice that 7= T" is independent of the choice of the particular generic h, and hence
T € N. Suppose p, ¢ € Cols were conditions with p IFHY (a;f) €T and ¢ IFV (a,vf) ¢T.
We may pick generics hy, and hy over N with p € hy, and ¢ € hy such that N'[h,] = N[hg].

As E and § capture E and its scale over N, respectively, we have E» = Eha and
she = gha so (a, f) € The = Tha by . This contradicts the choice of p, q.
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Now as p[TVI = B!,

and therefore

[

Colﬂ,1<5) p[ﬂ—_l(T)] = F

This yields that F9 = p[x~"(T)Mld] C p[T] C E for every Col 1 (5)-generic g over
M. O

When M is iterated, the capturing term is still upwards absolute.

Lemma 1.7. Suppose E C R is a E{O‘(R) set and E, $ are Cols-capturing terms for E
and its Ef"(R) scale (relative to 32). Let m: M — N|(6TYN be sufficiently elementary
with E, 5 € ran(n) and F = 7~ Y(E), where n > 2. Let o : M — P be a non-dropping

iteration map via the pullback strategy. Then o(F)9 C E for every Coly(x-1(5))-generic
filter g over P.

Proof. Let 0™ : N — R denote the iteration map of the tree copied onto N. There is
an embedding 7 : P — R|o™((67")V) such that the diagram

P T Rlo™ (57
M Ll N| (5+n)/\f
commutes. Then U(F)g C E by the previous Lemma applied to R. ]

2 At the beginning of a gap

As in the previous section we shall assume that « begins a ¥; gap in L(R), E{“(R)
is closed under number quantification, and AD’«(®) holds. Let A be an a-suitable
A-premouse (for some A) as in definition and let X be a fullness-preserving wi—
iteration strategy for \.

Definition 2.1. Let T be a normal iteration tree of countable length on N, and suppose
that T lives below 6N. We then say that T is short iff for all limit ordinals A < 1h(7),
Lp*(M(T [ N) E (T | N\) is not Woodin. Otherwise, we say that T is maximal.

Lemma 2.2. The restriction of the wi-iteration strategy X to short trees on N is El‘]“ ®),



Proof. Let T be a countable short iteration tree of limit length which is on A and
according to ¥. We then have that (7)) = b if and only if there is a Q-structure
Q < MY such that Q is wy—iterable in J, (R). This immediately shows that ¥, restricted

to short trees, is in El‘]“ ®), ]

Lemma 2.3. For all n > 1 there is M <1 N and a fully elementary map m : M —
NN with v = 7=1(6) < § and V,YM = VWN.

Proof. Let us construct (H;: i < w) € N as follows. Let P = N|(0T") + 1. Set
Hy =0, and given H; set

Hip = Hullgl (VN (Hl-ﬂé)-i-l)

sup

for i <w. Then v = sup(|J,.,, Hi N J) < § since 6 is inaccessible in N. Let

T M — U H;, = Hullgl(VWN)

<w

be the inverse of the collapsing map. The construction ensures that VWM* = VWN . We
have crit(m) = v and p;(M*) = ~. We easily get M* << N by the Condensation Lemma
(see [10, Theorem 5.5.1] or the remark after the proof of [6, Theorem 8.2]). Then

1 () TN
is as desired. O

Let us fix a notation: Given a forcing P and a P-name 7, let 7; for ¢ = 0,1 denote

P x P-names such that 79 = (7;)9 for any P x P-generic filter g = go X ¢1.

(R)

Lemma 2.4. Let E be a thin 2‘1]‘“ equivalence relation. Suppose E captures E over

N for the forcing Q =P x P. Then for every P-name 7 € N for a real,
(p.p) Y ToEm
holds for a dense set of conditions p € P.

Proof. The proof is essentially that of [4, Lemma 2.2|. Suppose the set is not dense. In
this case let py be a condition such that for every r < pp there are conditions p,q < r
with

(p,q) Ky =BTy

Let (D; : i < w) enumerate the dense open subsets of Q in N. We can inductively

construct a family (ps : s € 2<%) of conditions in P so that for all s,¢ € 2" and u € 2<"



Ps < py if u C s,

o (Pu~0:Pu~1) IHY ~ToETI,

ps decides 7 [ n, and

(psspt) € DoN---N Dy, if s # t.

If we now define g, := {p € P : In < w(pzn < p)} for each x € R, then g, x g, is
Q-generic over N for all z # y and

B9y = NN gz X gy]
since E Q-captures E. We will then have

Nge x gy |~ 3900z

and thus —79* E79 for all © # y because 79* = (19)9%**9% and 79 = (71)9%*9%. Since
797 depends continuously on x, the set {79 : x € R} is a perfect set of E-inequivalent

reals, contradicting the assumption on FE. ]

By Theorem[I.5 we may assume that our A/ and ¥ satisfy the hypothesis of the following

theorem.

Theorem 2.5. Let E be a thin Zf‘l(R) equivalence relation and suppose N has capturing
terms for E and a Ef" ®) scale on E relative to X. Then E is Hl‘]“ ®) i (any real coding)

N.
Proof. This is similar to the proof of [4, Lemma 2.5]. Let
T M=N|g = NgTN

be as in (the proof of) Lemma with Cols x Cols-capturing terms E, $ for E and
a E{Q(R) scale on E in ran(w). This is possible since these capturing terms have size
6N Let v := 7~ 1(d) and and 7 the preimage under 7 of the Cols-name for the generic
real for the extender algebra at 6. Let p,7 € M be Col,-names for reals such that
H—é’f)lW 7 = p@ T, where p @ 7 enumerates the bits of p and 7. As Col, is absorbed in

Cols x Cols, it is easy to see that N has a Col-capturing term E.7 for F.

We claim that for a,b € R the fact that =aEb holds true is equivalent to the following

condition.



Condition 2.6. There are a*,b* € R, a non-dropping iteration map o : N — P
produced by an iteration tree T according to ¥ which lives on N'|vy, and a Coly(+)-generic
filter h over P with

o a* @b = o),
o P[h] E —a*a(E,)"*, and

o aEa* & bEDL*.

Condition [2.6] clearly implies =aEb by our hypotheses.

If on the other hand —aEb holds, using Woodin’s extender algebra argument (see [9,
Theorem 7.14|) we may pick o : N'— P and g such that o : N'— P is a non-dropping
iteration map produced by a tree 7 according to ¥ which lives on NV|y and g is Coly(y)-
generic over (M) = P|o(f) with a @ b = o(r)9. This works since VWM = VWN; all that
is needed is that o(M) be well-founded and there are no extenders left which violate the
axioms of the extender algebra. Let F':= 7T_1(E). By Lemma and the elementarity

of 7, if e € M is a name for a real, then for a dense set of conditions p € Col,,

M .
(p7p) ”_COZAYXCOI7 eoFer.

Using the elementarity of o, there is hence some p € g such that

(0.0) FO0) ccor, oy TP (E)o(p)1 & o (T)oo (F)o(T). (2)

a(v)

Let h be Col,(,)-generic below p over both (P|a(3))[g] and P and let a* @ b* = ()"
We then have aFa* and bEb* by and by Lemmas and As —aFEb, this means
that —=a*Eb*, so that P[h] F —a*o(E,)"b*. We have shown that condition [2.6{ holds.

Finally, it is true that X, restricted to short trees, is 2‘1]“ ®) by Lemma so that the
reformulation of —aEb given by condition shows that —F is I® vV El‘]“ ® in N As
we assume 2‘1]”‘ ®) 6 be closed under number quantification, this shows that F is Hlj‘” ®)

in V, as desired. O

3 w-cofinal pointclasses

(R)

The argument in the last section used that E‘lja be closed under number quantification.
We do not know how to drop this hypothesis, unless we replace the hypothesis AD”> (R)
by ADL(®).

We thus now turn to the case that o > 2 begins a gap and Z{Q(R) is not closed under

number quantification. In this case « is either a successor or cf(a) = w, since cf(a) > w
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and Jo(R) E Vn p(x,n) imply that there is some § < o with Jg(R) F Vn ¢(z,n). Hence
Ae 2‘1]“ ®) if and only if A is a countable union of sets in J,(R).

Lemma 3.1. Assume AD. Let T be a scaled pointclass closed under I® and continuous
preimages. Suppose ', C A =T11nN I for k € w are pointclasses such that for every

A €T there are Ay, € Ty, with A = e, Ax- Then every thin T' equivalence relation is
A.

Proof. Let E be a thin I' equivalence relation. Then E' is co-k-Suslin via some tree T,
since the class of k-Suslin sets is closed under countable intersections: Trees T} on w X K
with Ay = p[T;] can be amalgamated into a tree T" with (,¢,, Ax = p[T']. There is no
injective wi-sequence of reals under AD, so L[T] N R is countable and hence there is a
Cohen real in V over L[T]. Harrington and Shelah [2] proved that if £ = R? — p[T] is
a thin equivalence relation and there is a Cohen real over L[T], then the equivalence
classes of E can be enumerated with order type 6 < k. Let (A, : v < 0) be such an

enumeration.

Notice that T" is closed under wellordered unions by [5, Lemma 2.18], since it is closed

under I® and has the prewellordering property. This shows that

RP-E= |J (4sxA,)
BAv<d

isT. O

Theorem 3.2. Let I' = ZZ‘*(R) where o > 2 begins a X1 gap, n = 1, and « is a

successor ordinal or cf(a) = w, or else o ends a proper weak X1 gap and n is least with
pn(Ja(R)) = R. Assume AD*®) . Then every thin T equivalence relation is I.

Proof. If « begins a gap and a = S+ 1, let T, = EZB(R). If cf (o) = w, let @ = sup o,
and I'y, = J,, (R). Finally, let T'y, = J,(R) for all k if o ends a gap. The previous lemma

applies in each case. O
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