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Abstract. An ↵-automaton (for ↵ some ordinal) is an automaton similar to a Muller automaton that processes words of length
↵. A structure is called ↵-automatic if it can be presented by ↵-automata (completely analogous to the notion of automatic
structures which can be presented by the well-known finite automata). We call a structure ordinal-automatic if it is ↵-automatic
for some ordinal ↵. We continue the study of ordinal-automatic structures initiated by Schlicht and Stephan as well as by Finkel
and Todorčević. We develop a pumping lemma for ↵-automata (processing finite ↵-words, i.e., words of length ↵ that have one
fixed letter at all but finitely many positions). Using this pumping, we provide counterparts for the class of ordinal-automatic
structures to several results on automatic structures:

• Every finite word ↵-automatic structure has an injective finite word ↵-automatic presentation for all ↵ < !1 + !! . This
bound is sharp.

• We classify completely the finite word !n-automatic Boolean algebras. Moreover, we show that the countable atomless
Boolean algebra does not have an injective finite-word ordinal-automatic presentation.

• We separate the class of finite-word ordinal-automatic structures from that of tree-automatic structures by showing that free
term algebras with at least 2 generators (and one binary function) are not ordinal-automatic while the free term algebra with
countable infinitely many generators is known to be tree-automatic.

• For every ordinal ↵ < !1 + !! , we provide a sharp bound on the height of the finite word ↵-automatic well-founded order
forests.

• For every ordinal ↵ < !1 + !! , we provide a structure F↵ that is complete for the class of finite-word ↵-automatic struc-
tures with respect to first-order interpretations.

• As a byproduct, we also lift Schlicht and Stephans’s characterisation of the injectively finite-word ↵-automatic ordinals to
the noninjective setting.

Keywords: ordinal-automatic structures, pumping lemma, classification of Boolean algebras, order forests

1. Introduction
Finite automata play a crucial role in many areas of computer science. In particular, finite automata have been
used to represent certain infinite structures. The basic notion of this branch of research is the class of automatic
structures (cf. [20]). A structure is automatic if its domain as well as its relations are recognised by (synchronous
multi-tape) finite automata processing finite words. This class has the remarkable property that the first-order theory
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of any automatic structure is decidable. One goal in the theory of automatic structures is a classification of those
structures that are automatic (cf. [7, 19, 21, 23, 25]). Besides finite automata reading finite or infinite words there
are also finite automata reading finite or infinite trees. Using such automata as representation of structures leads to
the notion of tree-automatic structures [2]. The classification of tree-automatic structures is less advanced but some
results have been obtained in the last years (cf. [7, 14, 15]). Schlicht and Stephan [29] and Finkel and Todorčević
[8] have started research on a new branch of automatic structures based on automata processing ↵-words where ↵
is some ordinal. An ↵-word is a map ↵! ⌃ for ⌃ some finite alphabet. Büchi [4] already introduced an extension
of finite automata, which we call ↵-automata, that processes ↵-words. If ↵ is countable, ↵-automata enjoy basically
all the good properties of finite automata whence structures represented by ↵-automata have uniformly decidable
first-order theories. Strictly speaking, there are a priori several classes of structures that one could call ↵-automatic.
As for usual words or trees, one can distinguish between injective or noninjective representations and one can decide
whether the representing automata should be deterministic or nondeterministic. Moreover, the mentioned works of
Schlicht and Stephan and Finkel and Todorčević even disagree on the definition on the input to an ↵-automata: while
Finkel and Todorčević allow any ↵-word as input, Schlicht and Stephan only allow ↵-words that are labelled by a
fixed symbol ⇧ at all but finitely many positions (we call such words finite ↵-words). In this article, we focus on finite
word ↵-automatic structures with noninjective presentations by nondeterministic ordinal-automata. If a structure is
presentable in this setting, we call it (↵)-automatic (where (↵) refers to the fact that it is automatic over words from
⌃

(↵) for some finite alphabet ⌃). Schlicht and Stephan [29] classified the ordinals that allow injective (↵)-automatic
presentations and provided bounds on the finite-condensation ranks of scattered linear orders that are injectively
(↵)-automatic. Finkel and Todorčević [9, 11] lifted the former result in the case of ordinals of the form !n where n
is a natural number to the infinite word setting: an ordinal is (infinite word) injectively (!n

)-automatic if and only if
it is finite word injectively (!n

)-automatic if and only if it is below !!n
(where the latter equivalence is Schlicht and

Stephan’s result).
We should also mention that Finkel and Todorčević [8, 10] showed that the isomorphism problem of infinite

word !n-automatic Boolean Algebras is independent of the axiomatic system ZFC.
Moreover, there is a connection between automata and ordinals and monadic second-order logic in the work of

Büchi and more recently Neeman [26, 27].
We develop the theory of finite word ↵-automatic structures and obtain the following counter-parts to results

from the setting of automatic structures.

• Emptiness of ↵-automata is decidable in polynomial time.
• For ↵ < !1 + !! (where !1 denotes the first uncountable ordinal), the finite word ↵-automata can be deter-

minised whence the class of languages of finite word ↵-automata are closed under complementation. The bound
on ↵ is strict in the sense that both results fail if ↵ � !1 + !! .
Note that the bound is rather surprising. Büchi has already pointed out that in the setting of ↵-automata where
the input may be an infinite ↵-word, complementation and determinisation are only possible if ↵ < !1.
Together with the fact that there is an (↵)-automatic well-order of all finite ↵-words, the classical techniques
allow to show that for each ↵ < !1 + !! , the class of (↵)-automatic structures coincides with the class of
(↵)-automatic structures with injective presentations by deterministic automata.

• We lift the classical Pumping Lemma to the finite word ↵-automata setting. This allows to adapt other tech-
niques from the classical setting to prove limitations on the class of (↵)-automatic structures as follows:

1. We classify the (!n
)-automatic Boolean algebras (cf. [21] for the classical word-automatic case). A

Boolean algebra B is (!n
)-automatic if and only if it is isomorphic to the interval algebra I↵ for some

ordinal ↵ < !n+1. Moreover, we can show that atomless Boolean algebras are not injectively finite word
(↵)-automatic. This contrasts the fact that the countable atomless Boolean algebra has a tree-automatic
presentation.

2. The free (semi)-group and the free term algebras with at least two generators are not (↵)-automatic.
This result is a stronger separation result than the previous one because it even holds for noninjective
presentations. The latter is the first example of a tree-automatic structure which is not (↵)-automatic for
any ordinal ↵. Since Schlicht and Stephan [29] showed that there are ordinals that are (↵)-automatic
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but not tree-automatic for all ↵ > !! , our result completes the separation of the class of tree-automatic
structures and the class of finite-word ordinal-automatic structures.

• The pumping lemma also allows to lift a classical result of Blumensath [2] to this setting. There is an
(↵)-automatic structure that is complete under first-order interpretations for the class of (↵)-automatic struc-
tures, i.e., there is a structure F↵ such that F↵ is (↵)-automatic and every (↵)-automatic structure A is first-order
interpretable in F↵.

• Exhibiting a connection between (↵)-automatic order trees and (↵)-automatic ordinals from Kartzow et al. [16]
(first used by Kuske et al. [25] in the finite word case), we derive a bound on the (ordinal) height (also called
the rank) of well-founded (↵)-automatic order forests: for each ordinal � < !1 + !, an (!�

)-automatic order
forest has height strictly below !�+1. We construct examples which show the bound to be strict.

We would like to thank the anonymous referees for detailed comments.

1.1. Outline of the Paper
In Section 2 we briefly recall some basic facts and fix some notation. Section 3 introduces ↵-automata and
(↵)-automatic structures and discusses basic properties of these concepts. For this purpose we prove two pumping
lemmas for ↵-automata in Section 3.2. These can be seen as the most important technical contribution underlying
all of our results. For instance, the basic results that emptiness of ↵-automata is decidable (Section 3.3) and that
↵-automata can be determinised if ↵ < !1 + !! (Section 3.4) rely on these pumping arguments. Section 4 then
introduces structures that are complete under first-order interpretations for the class of (↵)-automatic structures.
After this, Section 5 contains a second series of technical results. Here we lift the notion of growth lemma from the
classical automatic structures setting to our setting. These results can be seen as a way of transforming the pumping
lemmas into statements about (↵)-automatic Boolean Algebras, (semi-)groups, term algebras, etc. Sections 6 and
7 then apply the growth lemmas first to Boolean Algebras and then to free (semi-)groups and free term algebras.
Finally, Section 8 contains our results on (↵)-automatic forests.

2. Preliminaries
In this section, we briefly recall some basic facts and fix some notation.

2.1. Ordinals
As usual, we identify an ordinal ↵ with the set of smaller ordinals {� | � < ↵}. We say ↵ has countable cofinality
if ↵ = 0 or there is a sequence (↵i)i2! of ordinals such that ↵ = sup{↵i + 1 | i 2 !}. Otherwise we say ↵ has
uncountable cofinality. We denote the first uncountable ordinal by !1. Note that it is the first ordinal with uncountable
cofinality.

For every ordinal ↵ and every n 2 N, let ↵⇠n be the ordinal of the form ↵⇠n = !n+1� for some ordinal � such
that

↵ = ↵⇠n + !nmn + !n�1mn�1 + · · · + m0

for some natural numbers m0, . . . , mn.

2.2. Logics
We assume that the reader is familiar with first-order logic and its usual extensions. FO denotes first-order logic.
FO(91) is its extension by the quantifier “there are infinitely many”. Given a signature �, the set of positive exis-
tential first-order formulas, denoted by 9⇤Pos is the set of formulas build from the relations in � using 9, ^, and _.
Similarly, 8⇤9⇤Pos denotes the set of formulas of the form 8x 18x 2 . . . 8x n' where ' 2 9⇤Pos, and 8⇤9⇤Pos6= its
extension where we also allow inequality as an additional binary relation.
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3. Ordinal-Automatic Structures
First of all, we agree on the following convention: Throughout the whole article, every alphabet ⌃ contains
a distinguished blank symbol which is denoted by ⇧

⌃

or, if the alphabet is clear from the context, just by
⇧. Moreover, for alphabets ⌃1, . . . ,⌃r, the distinguished symbol of the alphabet ⌃1 ⇥ · · ·⇥ ⌃r will always be
⇧
⌃1⇥···⇥⌃r = (⇧

⌃1 , . . . , ⇧
⌃r).

For any limit ordinal �  ↵, A an arbitrary set and a map w : ↵ + 1 ! A we introduce the following notation
for the set of images cofinal in �:

lim

�
w := {a 2 A | 8�0 < � 9�0 < �00 < � w(�00

) = a}.

Definition 3.1. An (↵)-word (over ⌃) (called a finite ↵-word over ⌃) is a map w : ↵! ⌃ whose support, i.e. the
set

supp(w) = { � 2 ↵ | w(�) 6= ⇧ } ,

is finite. The set of all (↵)-words over ⌃ is denoted by ⌃

(↵). We write ⇧↵ for the constantly ⇧ valued word w : ↵!
⌃, w(�) = ⇧ for all � < ↵, which we also call the empty input of length ↵.

Definition 3.2. If �  �  ↵ are ordinals and w : ↵! ⌃ some (↵)-word, we denote by w�[�,�) the restriction of w
to the subword between position � (included) and � (excluded).

3.1. Ordinal Automata
Büchi [4] has already introduced automata that process (↵)-words. These behave like usual finite automata at succes-
sor ordinals while at limit ordinals a limit transition that resembles the acceptance condition of a Muller-automaton
is used.

Definition 3.3. An (ordinal-)automaton is a tuple A = (S,⌃, I, F,�) where S is a finite set of states, ⌃ an alphabet,
I ✓ S the initial and F ✓ S the final states and � is a subset of (S ⇥ ⌃⇥ S) [

�

2S ⇥ S
�

called the transition relation.

Transitions in S ⇥ ⌃⇥ S are called successor transitions and transitions in 2S ⇥ S are called limit transitions.

Definition 3.4. A run of A on the (↵)-word w 2 ⌃

(↵) is a map r : ↵ + 1 ! S such that

• (r(�), w(�), r(� + 1)) 2 � for all � < ↵
• (lim� r, r(�)) 2 � for all limit ordinals �  ↵.

The run r is accepting if r(0) 2 I and r(↵) 2 F. For q, q0 2 S, we write q w�!
A

q0 if there is a run r of A on w with

r(0) = q and r(↵) = q0.

In the following, we always fix an ordinal ↵ and then concentrate on the set of (↵)-words that a given ordinal
automaton accepts. In order to stress this fact, we will call the ordinal-automaton an (↵)-automaton.

Definition 3.5. Let ↵ be some ordinal and A be an (↵)-automaton. The (↵)-language of A, denoted by L
(↵)(A),

consists of all (↵)-words w 2 ⌃

(↵) which admit an accepting run of A on w. Whenever ↵ is clear from the context,
we may omit the subscript ↵ and use just L(A) instead of L

(↵)(A).

3.2. Two Pumping Lemmas
The pumping lemma for finite automata on finite words is perhaps one of the best known theorems in theoretical
computer science. It states that a part of a long word accepted by an automaton can be repeated arbitrarily often and
the word still is in the language. An analogous argument holds for (↵)-automata. More precisely, in each !-copy
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of ↵ we can pump within this !-copy if the word contains a letter different from ⇧ at a position far away from the
minimal element of this !-copy. Moreover, we prove a pumping lemma concerning different !-copies. If ↵ � !2,
every finite (↵)-word contains large subwords which are constantly labelled by ⇧. We call such a subword a gap (of
the support of the word). Given ↵ = !� some ordinal, if an (↵)-automaton with n states accepts an (↵)-word w with
a gap of size at least !n and ↵ > !n+1 then we can pump this gap to size !� for each !n  !� < ↵ in the sense that
if w = w1w2w3 is accepted by the automaton where w2 is a constant map (with value ⇧) and w2 has size !� < ↵ then
w0

= w1w0
2w3 is also accepted for all words w0

2 that are constant maps with value ⇧ of length at least !n and shorter
than ↵. Note that |w0

2| < ↵ implies that w0 is still an (↵)-word. Note that Wojciechowski [30] also proved a lemma
that is similar to the shrinking part of our pumping lemma. He proved that if there is a run r of an (!k

)-automaton A
from state q to state p such that |lim↵(r)| < k then there is also a run r0 of A (seen as a (�)-automaton for a certain
� < !k) from state q to state p on a word of length �.

As stated in Definition 3.1, we call w : ⌘ ! {⇧} the empty input (of length ⌘) for each ordinal ⌘. We first state
two pumping lemmas: the first for (↵)-automata where ↵ is an ordinal of countable cofinality and the second for
(↵)-automata where ↵ is of uncountable cofinality. Afterwards we give an example that the first pumping lemma
does not hold for ordinals of uncountable cofinality. Finally, we prove both Pumping Lemmas.

Proposition 3.6 (First Pumping). Let ↵ � 1 be an ordinal of countable cofinality and let A = (S,⌃, I, F,�) be an
automaton with |S|  m. For all s0, s1 2 S,

s0
⇧!m

�!
A

s1 () s0
⇧!m↵

�!
A

s1.

Proposition 3.7 (Second Pumping). Let ↵ � 1 be an ordinal of uncountable cofinality and let A = (S,⌃, I, F,�)

be an automaton with |S|  m. For all s0, s1 2 S, the following are equivalent:

1. s0
⇧!m↵

�!
A

s1,

2. there is a state s0 2 S , a set S
lim

✓ S, a transition (S
lim

, s1) and runs on empty input

r1 : !m + 1 ! S with r1(0) = s0, r1(!
m
) = s0, lim

!m
r1 = S

lim

and

r2 : !m + 1 ! S with r2(0) = s0, r2(!
m
) = s0, lim

!m
r2 = im(r2) = S

lim

, and

3. there is a run r : s0
⇧!m+1

�!
A

s1 such that lim!mi r = lim!m+1 r for all 1  i < !

The following example, which is copied from Wojciechowski [30], shows that Proposition 3.6 does not hold for
ordinals with uncountable cofinality. The automaton used in this example is extended in Example 3.2 below to show
that complementation of (!1 + !!

)-automata is in general not possible.

Example 3.1. Let A = ({s1, s2, s3}, {⇧}, {s1}, {s3},�) where � consists of

• (si, ⇧, sj) for all i, j 2 {1, 2},
• ({s1}, s1), ({s1}, s2), ({s2}, s3) and ({s1, s2}, s3).

There are runs of A starting in s1 and ending in s3 on every word ⇧↵ where ↵ is a limit ordinal of countable
cofinality, but no run of A from s1 to s3 on the empty word of length !1. Fixing a sequence (↵i)i2N with ↵i < ↵ and
sup{↵i + 1 | i 2 N} = ↵, a run on ⇧↵ is given by

r(�) =

8

>

<

>

:

s3 if � = ↵,
s2 if � = ↵i for some i 2 N,
s1 otherwise.
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Now heading for a contradiction assume that r is a run of A on the empty word of length !1 which ends in state
s3. Thus, � = {� < !1 | r(�) = s2} is cofinal and hence uncountable. Let �1 be the minimal element of � and �i+1
the minimal element of � \ {�1, . . . , �i}. �! :=

S

i2! �i is a countable initial segment of �. Thus, state s2 occurs
cofinal at sup(�!) < !1 in r. But this implies that r(sup(�!)) = s3 whence there is no applicable transition from
sup(�!) to sup(�!) + 1. As desired, we have arrived at a contradiction.

The rest of this section provides proofs for both Pumping Lemmas. The proofs are lenghty because one has to
deal with several case distinctions but the underlying idea of exhibiting state repetitions in a given run is the same as
in the case of pumping for finite automata. The next two lemmas provide a proof of the First Pumping Proposition.
Note that the condition on the cofinality of � is only crucial for the first part, i.e., for pumping some run from !m to
!m�. The possibility to shrink a run from length !m� to !m is independent of the cofinality of �.

Lemma 3.8. Let m 2 N, and let � > 0 be some ordinal with countable cofinality. Let A = (S,⌃, I, F,�) be an
ordinal automaton. Suppose that S

lim

✓ S+ ✓ S and s 2 S+ with |S
lim

|  m.
If there is a run r : !m + 1 ! S of A on empty input with

r(0) = s, lim
!m

r = S
lim

, and im(r) = S+,

then there is a run ¯r : !m� + 1 ! S of A on empty input with

¯r(0) = s, lim
!m�

¯r = S
lim

, im(¯r) = S+ and ¯r(!m�) = r(!m
).

Proof. The proof is by induction on m and |S
lim

|.

• First suppose that S
lim

= S+. Then r(!m
) = r(↵0) for some ↵0 < !m. Let

¯r(�) =

8

>

<

>

:

r(�) if � < !m,
r(↵0 + �0) if � = !m� + �0 with 1  � < � and �0 < !m,
r(!m

) if � = !m�.

• Now suppose that S
lim

( S+. Choose n0 2 N with r([!m�1n0,!m
)) ✓ S

lim

.
– If there is an n 2 N such that

n � n0 and lim

(!m�1
(n+1))

r = S
lim

,

choose � 2 [!m�1n,!m�1
(n + 1)) with r(�) = r(!m�1

(n + 1)) such that r([�,!m�1
(n + 1))) = S

lim

. Let

¯r(�) =

8

>

<

>

:

r(�) if �  !m�1
(n + 1),

r(� + �0) if � = !m�1�0 + �0 with n + 1  �0 < !� and �0 < !m�1,
r(!m

) if � = !m�.

– Assume that there is no such n and that � is a limit ordinal. Let n0 = �0 < �1 < . . . be such that
supi2! !

m�1�i = !m�. We may assume that for i � 1 each �i is a successor ordinal. We can pump

r �[!m�1n,!m�1
(n+1)]

to a run

¯rn : [!m�1�n,!m�1�n+1] ! S
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for n � n0 by the induction hypothesis for m � 1. Finally, define ¯r by

¯r(�) =

8

>

<

>

:

r(�) if � < !m�1 · n0,
¯rn(�) if � 2 [!m�1�n,!m�1�n+1),
r(�) if r = !m · �.

– Assume that there is no such n and � = �̄ + 1 is a successor ordinal. Note that r([!m�1n0,!m�1
(n0 + 1))) (

S
lim

. Thus, we can apply the induction hypothesis for m � 1 to this subrun and obtain a run r0 of length
!m�1

((! · �̄) + 1). Composition of r �[0,!m�1n0) with r0 and r �[!m�1
(n0+1),!m] yields a run r on the empty

input of length

!m�1n0 + !m�1
(! · �̄ + 1) + !m

= !m · (�̄ + 1) = !m�.

⇤

Lemma 3.9. Let m 2 N, � > 0 some ordinal and A = (S,⌃, I, F,�) be an automaton. Suppose that S
lim

✓ S� ✓ S
and s 2 S� with |S�|  m. If there is a run r : !m� + 1 ! S of A on empty input with

r(0) = s, lim
!m�

r = S
lim

, and r({� | � < !m�}) = S�,

then there is a run ¯r : !m + 1 ! S of A on empty input with

¯r(0) = s, lim
!m

¯r = S
lim

,¯r({� | � < !m}) = S� and ¯r(!m
) = r(!m�).

Proof. The proof is by induction on m , |S�| and �. The claim is obvious for m = 1 or � = 1. Thus, we assume that
� � 2 and m � 2 and that the claim holds for all tuples (m0, S�0, �0) where m0 < m, or m0

= m and |S�0| < |S�|, or
m0

= m and |S�0| = |S�| and �0 < �.

1. Suppose that Slim ( S�. Let ↵0 denote the least ordinal below !m� such that only states s 2 S
lim

appear in
r([↵0,!m�)). There are two subcases:
– First suppose that ↵0 < !m� for a minimal � < �. Note that [↵0,!m�) is isomorphic to !m and

[↵0,!m�) is isomorphic to !m · � for some �  �. Since S�0 := r([↵0,!m�)) ✓ S
lim

( S�, we can
shrink r �[↵0,!m�] to a run ˆr with domain [↵0,!m�] by the induction hypothesis for m and the smaller
set S�0. Since � < � we can finally apply the induction hypothesis to the shorter run that is the compo-
sition of r �[0,↵0) and ˆr and obtain the desired run ¯r.

– Second suppose that ↵0 � !m� for all � < �. We conclude immediately that � is a successor, i.e., � =

�̄ + 1 and ↵0 � !m�̄. Now we distinguish the following cases.
– Assume that �̄ = 1 and that r(!m

) 2 lim

(!m
)

r. Then there is a � < !m such that r(�) = r(!m
) and for

each state s 2 S� such that s occurs in r strictly before !m also occurs before �. Then the composition
of r�[0,�) with r�[!m,!m�] yields the desired run.

– Assume that �̄ = 1 and that r(!m
) /2 lim

(!m
)

r. Thus, there is some � < !m such that r([�,!m
)) ✓

S� \ {r(!m
)}. Thus, we can apply the induction hypothesis for smaller m and S� shrinking r�[�,!m

)

to a run ˆr on domain [�,� + !m�1
) with ˆr([�,� + !m�1

)) = r([�,!m
)) and lim

(�+!m�1
)

ˆr =

lim

(!m
)

r. Since � < !m�1 · k for some k 2 N, Composition of r�[0,�) with ˆr and r�[!m,!m�) yields
the desired run ¯r of length !m.

– If �̄ > 1, we apply the induction hypothesis (for smaller S� or smaller �) to r�[0,!m�̄] and shrink
this run to a run ¯r of length !m + 1. The composition of ¯r and r�[!m�̄,!m�) is a run of length !m · 2
and we can apply one of the previous two cases.

2. Suppose that S
lim

= S�. We distinguish the following subcases:
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– Suppose that there is some � < � with lim

(!m�) r = S�. Then we can apply the induction hypothesis for
(m, S�,�) to the run r �[0,!m�] and obtain a run ˆr : !m + 1 ! S� such that ˆr(0) = 0, lim

(!m
)

¯r = S
lim

,
and ¯r({� | � < !m}) = S�. Since lim

(!m
)

ˆr = lim

(!m�) r, we can define the run ¯r by

¯r(�) =

(

ˆr(�) if � < !m,
r(!m�) if � = !m.

– Suppose that for each � < �, there is an s 2 S� such that s /2 lim

(!m�) r. There are the following sub-
cases:
– First suppose that � = �̄ + 1. Since S�

= S
lim

, there is a �0 2 [!m�̄,!m�)) with r(�0) = r(0). Let
¯r(�) = r(�0 + �) for �  !m.

– Suppose that � = !. By assumption, for each i, there is some ↵i with !mi  ↵i < !m
(i + 1) and a state

si 2 S� such that si 6= r(�) for all ↵i  � < !m
(i + 1). Thus, we can apply the induction hypothesis

for m � 1 and smaller S� to each r�[↵i,!m
(i + 1)) and shrink it to a run of size !m�1. Note that the

length of r�[!mi,↵i] is also bounded by some !m�1 · ki. Thus, composition of these runs yields the
desired run of length !m.

– Suppose that � � ! · 2 is a limit ordinal. Choose a sequence 0 = �0 < �1 < · · · < � such that
r([!m�i,!m�i+1)) = S� for all i 2 N. Since lim!m�i+1 r ( S�

= S
lim

, we can apply case 1. to each
r�[[!m�i,!m�i+1] and obtain a run ˆri : !m + 1 ! S with image S� such that ˆri(!m

) = ˆri+1(0). Choose j <
k 2 N such that ˆrj(!mj) = ˆrk(!mk). Let f : !m+1 ! {0, 1, . . . , k � 1} given by f (�) = i if there are
i0, k0 2 N such that !mi0  � < !m

(i0 + 1) and i = i0 < k or i0 = k + k0(k � j) + i, and g : !m+1 !
!m given by g(�) = �0 such that there is a �00 with � = !m · �00 + �0. Now define ˆr : !m! + 1 ! S

given by ˆr(�) =

(

ˆrf (�)(g(�)) if � < !m!,
r(!m�) if � = !m!.

Now we can apply the induction hypothesis to ˆr for

(m, S�,!).

⇤

Finally, we prove the Second Pumping Proposition.

Proof of Proposition 3.7.

(1 ) 2) Let r : ↵ + 1 ! S be a run on empty input and set S
lim

:= lim↵ r. Suppose that

S
lim

= {q1, q2, . . . , qn}.

Let � be minimal such that r([�,↵)) = S
lim

. By induction on pairs (i, j) (ordered lexicographically) we can
choose a sequence (↵i

j)i,j2! such that
– ↵i

j < ↵,
– ↵0

0 > �,
– r([↵i

j,↵i
j+1)) = S

lim

for all i, j 2 !,
– ↵i+1

0 = sup(↵i
j)j2! , and

– ↵i
j is of the form !m · � for some ordinal �.

Let k < j be numbers such that r(↵k
0) = r(↵j

0) = s0 2 S. By Lemma 3.9, we can shrink r �[0,↵k
0] to a run

r1 : !m + 1 ! S with
– r1(0) = s0,
– r1(!m

) = s0 and
– lim!m r1 = S

lim

,
and r �↵k

0,↵j
0] to a run r2 : !m + 1 ! S with
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– r2(0) = s0,
– r2(!m

) = s0 and
– lim!m r2 = im(r2) = S

lim

.
(2 ) 3) Composing r1 with ! many copies of r2 extended with s1 as final state yields the desired run.

(3 ) 1) Let r : s0
⇧!m+1

�!
A↵

s1 be a run such that lim!mi r = lim!m+1 r for all 1  i < !. Let k 2 ! be such that

r([!mk,!m+1
)]) = lim!m+1 r. Let k < k1 < k2 be numbers such that r(!mk1) = r(!mk2). Application of

Lemma 3.9, gives a run ¯r : !m + 1 ! S such that ¯r(0) = ¯r(!m
) and im(¯r) = lim!m r = S

lim

.
Define r0 : ↵ + 1 ! S by

r0(�) =

8

>

<

>

:

r(�) if � < !mk2

¯r(�0
) if ↵ > � � !mk2 and � = !m�00 + �0 for some �0 < !m

r(!m+1
) if � = ↵.

⇤

3.3. Emptiness Problem for Ordinal-Automata
Ordinal automata possess many properties known from the setting of finite word automata (cf. [22] for details on the
latter). In particular the usual constructions for union, intersection and projection carry over to our setting. Thanks
to our pumping lemma, we can also show that emptiness of ordinal automata is decidable. Note that our setting is
slightly different to the one considered by Wojciechowski [30] and Carton [6] because we consider only words of a
fixed length ↵. This makes a difference since for instance the results in Section 3.4 depend on ↵.

Lemma 3.10. Let ↵ be an ordinal. Emptiness of (↵)-automata is decidable in polynomial time, i.e., there is an
algorithm that, given an (↵)-automaton A decides whether L(A) = ;.

Proof. Fix an (↵)-automaton A. Let n be a strict bound on the number of states of A. Using closure under projection,
we can assume that A uses alphabet {⇧}. Recall that ↵⇠n denotes the unique multiple of !n+1 such that

↵ = ↵⇠n + !nmn + !n�1mn�1 + · · · + m0

for certain finite number m0, . . . , mn. We first reduce the emptiness problem to finitely many emptiness problems for
!i-automata where i ranges over 0, 1, . . . , n. This reduction distinguishes whether ↵⇠n has countable cofinality.

• First assume that ↵⇠n = 0. L(A) 6= ; if and only if there are states

q0
n, q1

n, . . . , qmn
n , q0

n�1, q1
n�1, . . . , qmn�1

n�1 . . . , qm0�1
0 , qm0

0

such that
1. q0

n is an initial state and qm0
0 is a final state,

2. qmi
i = q0

i�1 for all 1  i  n, and

3. for all 0  i  n and 0  j < mi, there is a run qj
i

⇧!i

�!
A

qj+1
i .

• Next assume that ↵⇠n 6= 0 has countable confinality. Pumping with Proposition 3.6 (applied to words of length
↵⇠n) shows that L(A) is nonempty if and only if there are states

s, q0
n, q1

n, . . . , qmn
n , q0

n�1, q1
n�1, . . . , qmn�1

n�1 . . . , qm0�1
0 , qm0

0

such that
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1. s is an initial state and qm0
0 is a final state,

2. qmi
i = q0

i�1 for all 1  i  n,

3. there is a run s ⇧!n+1

�!
A

q0
n, and

4. for all 0  i  n and 0  j < mi, there is a run qj
i

⇧!i

�!
A

qj+1
i .

• Finally assume that ↵⇠n 6= 0 has countable confinality. Pumping with Proposition 3.7 (applied to words of
length ↵⇠n) shows that L(A) is nonempty if and only if there are states

s, s0, q0
n, q1

n, . . . , qmn
n , q0

n�1, q1
n�1, . . . , qmn�1

n�1 . . . , qm0�1
0 , qm0

0

such that
1. s is an initial state and qm0

0 is a final state,
2. qmi

i = q0
i�1 for all 1  i  n,

3. there are runs s ⇧!n

�!
A

s0 and r : s0 ⇧!n

�!
A

s0 such that there is a transition (D, q0
n) for D = im(r) = lim!n r,

and

4. for all 0  i  n and 0  j < mi, there is a run qj
i

⇧!i

�!
A

qj+1
i .

Using this case distinction, we can decide emptiness of A, if we can decide whether there is a run r : q ⇧!i

�!
A

q0 for

given states q, q0 and an i 2 ! and if we can determine the possible image and the possible set of cofinal states of
such runs. But this is decidable due to a result of Wojciechowski [30]. Moreover, Carton [6] even showed how to
decide such problems in polynomial time. ⇤

3.4. Determinisation of Ordinal Automata
Another important result for finite automata is the fact that finite automata can be determinised whence we can
construct an automaton accepting the complement of the language of a given automaton. This result carries only
partly over in the sense that the closure under determinisation (and complementation as well) of (↵)-automata
depends on ↵. Büchi [4, 5] provided a determinisation procedure for ↵-automata for all countable ↵ (we write ↵-
automaton instead of (↵)-automaton because in this setting also words with infinite support are allowed as inputs).
For the setting where words with infinite support are allowed, this is optimal as we show by an example in Appendix
Appendix A.

Interestingly, the picture changes in our setting because we consider automata that only accept (↵)-words with
finite support. We prove below that an (↵)-automaton A can be determinised if L(A) only contains finite (↵)-words
and ↵ < !1 + !! . On the other hand there is an (!1 + !!

)-automaton A such that the complement of L(A) is not
the language of any (!1 + !!

)-automaton.

Definition 3.11. An (↵)-automaton A = (Q,⌃, I, F,�) is deterministic if I is a singleton, for each pair (q,�) 2
Q ⇥ ⌃ there is at most one p 2 Q such that (q,�, p) 2 � and for each subset P ✓ Q, there is at most one q 2 Q such
that (P, q) 2 �.

Recall that complementation for deterministic (↵)-automata is trivial: exchanging the final and the nonfinal
states of a deterministic automaton A yields an deterministic automaton B such that L(B) = ⌃

↵ \ L(A). Since
the set of finite (↵)-words is recognised by an automaton as well, we can easily derive an automaton C such that
L(C) = ⌃

(↵) \ L(A).
We first give a simple example that shows that complementation of (!1 + !!

)-automata is in general not possible
even if the automaton only accepts finite (!1 + !!

)-words.
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Example 3.2. Let

L =

n

w 2 {⇧, a}(!1+!!
)

�

�

�

supp(w) = {�},� is a limit ordinal and � 6= !1

o

.

L is accepted by the automaton

A = ({s1, s2, s3, s4}, {⇧, a}, {s1}, {s4},�)

where � consists of

• (si, ⇧, sj) for all i, j 2 {1, 2},
• ({s1}, s1)

• ({s2}, s3), ({s1, s2}, s3),
• (s3, a, s4), (s4, ⇧, s4), and
• ({s4}, s4).

This is an extension of the automaton from Example 3.1 that may read one letter a at those positions where the
orginal automaton enters state s3.

Heading for a contradiction assume that B is an automaton that accepts the complement of L(A) (with respect

to {⇧, a}(↵) or {⇧, a}↵). Let r be an accepting run of B on the word w defined by w(�) =

(

a if � = !1,
⇧ otherwise.

Using

Propositions 3.6 and 3.7, we can shrink r �[0,!1) to a run on empty input of length !! and we can pump using
Proposition 3.6 r �[!1+1,!1+!!] to a run with domain [!! ,!1 + !!]. Concatenation of these two runs yields an

accepting run of B on v defined by v(�) =

(

a if � = !! ,
⇧ otherwise.

, which contradicts the assumption that B accepts the

complement of L(A).

Note that the same example works for all ordinals ↵ � !1 + !! . In case that ↵ has uncountable cofinality, we only
have to replace the second application of Proposition 3.6 by a use of Proposition 3.7.

Now we turn to the proof of the rather suprising fact that for all ↵ < !1 + !! we can determinise (↵)-automata
whose language consists of finite (↵)-words only. This result relies on three facts.

1. The determinisation procedure of (�)-automata for countable ordinals � is independent of the choice of �.
2. We can compute all the possible pairs of inital and final states of runs on empty input of length !1 (using

decidability of emptiness), and the interval [�,!1) is isomorphic to !1 for all ordinals � < !1.
3. For ordinals ↵ < !1 + !! a deterministic automaton can detect position !1 in an (↵)-word.

Proposition 3.12. Let ↵ < !1 + !! be some ordinal and A some (↵)-automaton such that L(A) ✓ ⌃

(↵) (for some
alphabet ⌃). There is a deterministic (↵)-automaton B such that L(B) = L(A).

Before we come to the proof, we collect some results from the literature that we exhibit in our construction of
B.

Lemma 3.13 ([5]). Let A be some ordinal automaton with state set S. From A one can compute a deterministic
automaton B with state set Q and initial state i, and a function f : Q ! 2S⇥S such that for all countable ordinals �
and all (�)-words w, all q 2 Q and all s, s0 2 S the following are equivalent:

1. there is a run i w�!
B

q and (s, s0) 2 f (q), and

2. there is a run s w�!
A

s0.
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Lemma 3.14 (cf. [30]). For each ↵ < !! , there is a deterministic ordinal automaton A that marks ↵ in the sense
that there is a special state s of A such that on every input w (of length at least ↵) the run of A on w is in state s
exactly at position ↵. Similarly, for every number m 2 N there is a deterministic automaton Am with a special state
sm such that on input any (�)-word w the run of Am reaches state sm exactly at all positions of the form !m · �  �
for � � 1 some ordinal.

Proof. Am has states {s1, . . . , sm}. At successor steps Am always switches to state s1. At a limit step where states
s1, s2, . . . si�1 appear cofinally, Am switches to state max{sm, si}.

The construction of A uses similar ideas and is left to the reader. An optimal construction minimizing the number
of states can be found in [30]. ⇤

Proof of Proposition 3.12. If ↵ < !1, just apply Lemma 3.13. Now assume that !1  ↵ < !1 + !! and let A be
an (↵)-automaton. The basic idea of our determinisation procedure is to compute a determinisitic automaton B that
consists of three components B1,B2 and B3 with the following behaviour:

1. B1 is the deterministic variant of A obtained from Lemma 3.13. Given a position � < !1, the state of B1 at

� on input w reports via the function f those pairs (q, q0) such that there is a run q
w�[0,�)�!

A
q0.

2. Using the information from B1, B2 reports at all positions �  !1 the possible pairs (q, q0) such that there

is a run q
w�[0,�0 ]⇧!1

�!
A

q0 where �0
= max({0} [ (supp(w) \ �)). This component only changes its state at

positions � with � 2 supp(w). At such a position, it adds a pair (q, q0) to its state if there is a state q00 such
that (q, q00) 2 f (s) for s the state of B1 and such that there is a run q00 ⇧!1

�!
A

q0 (since emptiness is decidable,

those pairs (q00, q0) are effectively computable).
3. B3 behaves like the deterministic variant of some AI0 on the countable tail of ↵, i.e., on [!1,↵] where AI0

denotes the automaton obtained from A by replacing the initial states with some set I0 that we describe
below. Assume that ↵ = !1 + ↵0 and assume that ↵0 < !m. At each position !m · � with 1  �  !1, B3
starts the computation of the deterministic version of AI0 from Lemma 3.13 where I0 contains all those
states q such that the state of B2 at !m · � contains a pair (i, q) where i is some initial state of A. B3 then
simulates the deterministic version of AI0 up to !m · � + ↵0 and then stops its computation.

B now accepts input w if and only if B3 simulates some AI0 on [!1,↵] and reaches a state q at ↵ such that f (q)
contains a pair (i, q) such that i 2 I0 and q is a final state of A.

Using the previous lemmas it is clear that the automaton B with the described behaviour can be computed from
A. We finally prove that L(B) = L(A). First assume that w 2 L(A). Fix a run r : qi

w�!
A

qf for an initial state qi and

a final state qf of A. Let � = max{{0} [ (supp(w) \ !1)} and q1 = r(� + 1). By definition the state of B1 at � + 1
is some state s such that (qi, q1) 2 f (s). Since r �[�+1,!1] witnesses q1

⇧!1
�!
A

r(!1), the state of B2 on [� + 1,!1] is

constant and contains the pair (qi, r(!1)). We conclude that B3 simulates the deterministic variant of AI0 on [!1,↵]

for some I0 that contains r(!1). Now r �[!1,↵] witnesses r(!1)
w�[!1,↵)�!

A
qf whence B3’s state reports (via function f )

the pair (r(!1), qf ) of an initial state of AI0 and a final state. Thus, B accepts on input w.
Similarly, if B accepts on input w, we can reconstruct an accepting run r of A on w. ⇤

3.5. Ordinal Automatic Structures
Automata on words (or infinite words or (infinite) trees) have been applied fruitfully for representing structures.
This can be lifted to the setting of (↵)-words and leads to the notion of (↵)-automatic structures. In order to use
(↵)-automata to recognize relations of (↵)-words, we need to encode tuples of (↵)-words by one (↵)-word:

Definition 3.15. Let ⌃ be an alphabet and r 2 N.
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(1) We regard any tuple ¯w = (w1, . . . , wr) 2
�

⌃

(↵)
�r of (↵)-words over some alphabet ⌃ as an (↵)-word ¯w 2

(⌃

r
)

(↵) over the alphabet ⌃r by defining

¯w(�) =
�

w1(�), . . . , wr(�)
�

for each � < ↵.
(2) An r-dimensional (↵)-automaton (over ⌃) is an (↵)-automaton A (over ⌃r). The r-ary relation on ⌃

(↵) recog-
nized by A is denoted

R(A) =

n

¯w 2
�

⌃

(↵)
�r

�

�

�

¯w 2 L(A)

o

.

Remark 3.1. (1) Recall that we declared (⇧, . . . , ⇧) to be the blank symbol of ⌃r. Thus, supp(¯w) = supp(w1) [
· · · [ supp(wr) is indeed a finite set.

(2) Usually, this interpretation of ¯w as an (↵)-word is called convolution of ¯w and denoted ⌦¯w. For the sake of
convenience, we just omit the ⌦-symbol.

Definition 3.16. Let ⌧ = {R1, R2, . . . , Rm} be a finite relational signature and let relation symbol Ri be of arity ri. A
structure A = (A, RA

1 , RA
2 , . . . , RA

m ) is (↵)-automatic if there are an alphabet ⌃ and (↵)-automata A,A⇡,A1, . . . ,Am
such that

• A is an (↵)-automaton over ⌃,
• for each Ri 2 ⌧ , Ai is an ri-dimensional (↵)-automaton over ⌃ recognizing an ri-ary relation R(Ai) on L(A),
• A⇡ is a 2-dimensional (↵)-automaton over ⌃ recognizing a congruence relation R(A⇡) on the structure A0

=

(L(A), L(A1), . . . , L(Am)), and
• the quotient structure A0/R(A⇡) is isomorphic to A, i.e., A0/R(A⇡) ⇠= A.

In this situation, we call the tuple (A,A⇡,A1, . . . ,Am) an (↵)-automatic presentation of A. This presentation is
said to be injective if L(A⇡) is the identity relation on L(A). In this case, we usually omit A⇡ from the tuple of
automata forming the presentation.

As in the case of classical automatic structures, for ordinals ↵ < !1 + !! , the class of (↵)-automatic structures
behaves well with respect to first-order logic extended by 91, i.e., the FO(91)-theory of every (↵)-automatic struc-
ture is uniformly decidable. Our proof for the 91-quantifier is inspired by the analogous result for tree-automatic
structures. For the tree-automatic result one uses the fact that a set of finite trees is finite if and only if the union of
the domains of all trees from this set forms the domain of some finite tree. Analogously, we use the fact that a set of
finite sets of ordinals is finite if and only if the union of all these sets is a finite set.

Proposition 3.17. For each ↵ < !1 + !! , the class of (↵)-automatic structures is effectively closed under expan-
sion by FO(91) definable relations.

For each ordinal �, the class of (�)-automatic structures is effectively closed under expansion by 9⇤Pos definable
relations.

Proof. The proof relies on the closure of recognizable (↵)-languages under projection (for 9 ), union (for _), inter-
section (for ^) and complementation (for ¬) and is by induction on the structure of first-order formulas. It is com-
pletely analogous to the case of automatic structures whence we omit it. For the 91 quantifier, we use a reduction
to first-order logic over some expansion. This technique is known from the setting of tree-automatic structures.

Note that for every ↵ the relation

v =

n

(w, v) 2 (⌃

(↵)
)

2
�

�

�

supp(w) ✓ supp(v)
o
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is recognizable by an (↵)-automaton. Given an (↵)-automatic structure A, elements a1, . . . , an of A and an FO(91)

formula 91x'(z1, . . . zn, x), we have

A |= 91x'(a1, . . . , an, x)

if and only if

Av |=  := ¬(9z 2 ⌃

(↵)8x 9x 0
('(a1, . . . , an, x) ! (x ⇡ x0 ^ x0 v z)) ,

where Av denotes the expansion of A by the relation v and ⇡ denotes the congruence from the presentation of A.
The proof of the equivalence of the two formulas can be sketched as follows. If there are only finitely many

b1, . . . , bm 2 A such that A |= '(a1, . . . , an, bi) then we can pick one representative ci from the ⇡-class representing
bi. Now let d be a word such that supp(d) =

Sm
i=1 supp(ci). Any witness for ' is equivalent to one of the ci and

supp(ci) ✓ supp(d). Thus, A does not satisfy  .
On the other hand, if there are infinitely many pairwise inequivalent elements bi satisfying �, then the union of

their supports forms an infinite set. Thus, for any given finite (↵)-word c we find an bi that satisfies � and is not
equivalent to any word whose support is contained in the support of c because there are only finitely many words
whose support is contained in supp(c). Thus, A satisfies  . ⇤

Corollary 3.18. Let ↵ < !1 + !! be some ordinal. The FO(91)-theory of every (↵)-automatic structure is decid-
able.

For � � !1 + !! the 9⇤Pos-theory of every (�)-automatic structure is decidable.

Proof. Fix an (↵)-automatic structure A. Given an FO-sentence ' we construct (using the previous lemma) the
automaton A' corresponding to the relation defined by '. Since ' is a sentence, A' is inputless. By construction
A |= ' if and only if A' accepts on empty input. The latter is decidable by Lemma 3.10 ⇤

This result shows that the class of (↵)-automatic structures for ↵ < !1 + !! is a useful tool for proving decid-
ability of first-order logic on some structures.

In the case of an (↵)-automatic structure A where ↵ < !1 + !! , we can transform any given presentation into
an injective one. This is due to the fact that there is a (↵)-automata recognisable well-order on ⌃

(↵), which allows
to select the minimal representative of every equivalence class.

Lemma 3.19. The set ⌃(↵) admits an (↵)-automatic well-order, i.e., there is a 2-dimensional (↵)-automaton over
⌃ recognizing a well-order on ⌃

(↵).

Proof. Fix a linear order 
⌃

on ⌃. It is well-known that the following definition yields a strict well-order < of order
type |⌃|↵ on ⌃

(↵) (cf. [28, Excercise 3.4.5]): u < v if u 6= v and u(�) <
⌃

v(�) for the maximal � 2 supp(u) [
supp(v) with u(�) 6= v(�). It is easy to see that this order can be recognized by a 2-dimensional (↵)-automaton.
Basically, such an automaton first guesses the position �, then verifies u(�) <

⌃

v(�) and finally checks that it
guessed � correctly. ⇤

Thanks to the previous lemma and closure under first-order definitions, we can apply the same construction as
for automatic structures in order to translate non-injective presentations to injective ones.

Proposition 3.20. Let � < !1 + !! be an ordinal and A an (�)-automatic structure. There is an injective
(�)-automatic presentation of A.

Proof. Let (A,A⇡,A1, . . . ,An) be a (�)-automatic presentation of A. Using the automatic well-order  from the
previous lemma, we can construct an automaton A0 such that

L(A0
) = {w 2 L(A) | 8v 2 L(A) : (w, v) /2 L(A⇡) or w  v } .
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Apparently, A0 accepts exactly one member of each A⇡-class accepted by A. Intersection of Ai with an ri-
dimensional variant of A0 yields an ri-dimensional automaton A0

i such that

L(A0
i) = L(Ai) \ L(A0

)

ri .

Thus (A0,A0
1, . . . ,A0

n) forms an injectively (�)-automatic presentation of A. ⇤

4. Complete Structures under FO-Interpretations
Blumensath [2] characterised the classes of automatic structures represented by finite (infinite, respectively) words
(trees, respectively) independently from the notion of automata. These characterisations are based on first-order
interpretations.1 For instance, consider A = (N, +, |p) where x |p y iff there is a k 2 N such that x = pk and x is
a divisor of y (for some fixed prime number p). A is an automatic structure and every automatic structure B is
first-order interpretable in A (cf. [2]). In this sense A is the most complex automatic structure. We call a structure
with these properties complete for the class of automatic structures under first-order interpretations. Blumensath
identified similar structures that are complete for the class of infinite word automatic structures and finite or infinite
tree automatic structures.

Analogously, we call A complete for the class of (↵)-automatic structures if A is (↵)-automatic and any
(↵)-automatic structure can be interpreted in A via first-order interpretations.

For the rest of this section, we fix the alphabet ⌃ = {0, 1,2, ⇧}.

Definition 4.1. Let F↵ = (L,Next0,Next1,Next⇧,, el) where

• L is the set of all (�)-words over alphabet {0, 1, ⇧} for all �  ↵,
• for i 2 {0, 1, ⇧}, (w, v) 2 Nexti, if w is a (�)-word, v a (� + 1)-word and

v(�) =

(

w(�) for � < �,
i for � = �,

•  is the prefix order on words of length up to ↵, i.e., w  v for a (�)-word w and a (�)-word v if �  � and
v�� = w, and

• (x, y) 2 el if there is a �  ↵ such that x and y are both (�)-words (el stands for ’equal length’).

For words w 2 L, we write |w| for the �  ↵ such that w is a (�)-word.

The main result of this section is the following theorem.

Theorem 4.2. Let ↵ < !1 + !! be an ordinal. F↵ is complete for the class of (↵)-automatic structures.

Let us start with the easy part of the theorem:

Proposition 4.3. For all ordinals ↵, F↵ is (↵)-automatic.

Proof. For � < ↵ we can encode a (�)-word w over {0, 1}⇧ as the (↵)-word ¯w over alphabet ⌃ given by

¯w(�) =

8

>

<

>

:

w(�) for � < �,
2 for � = �,
⇧ otherwise.

1Readers who are not familiar with the notion of logical interpretations can obtain the necessary basics from [2].
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Moreover, we encode an (↵)-word w by ¯w := w. The set ¯L of (↵)-words over ⌃ encoding (�)-words for some �  ↵
is clearly (↵)-automatic. An automaton for ¯L just has to check that after the occurrence of 2 only label ⇧ appears
and that the word has finite support.

An automaton for Nexti has to check, on input (w, v), that at the � with w(�) = 2 the value of v is i, i.e., that
v(�) = i and that v(� + 1) = 2 (in case that � + 1 < ↵).

An automaton for  has to check, on input (w, v) 2 ¯L ⇥ ¯L, that the two words agree up to the occurrence of 2
in w.

An automaton for el only has to check that there is an occurrence of (2,2) or no occurrence of symbol 2 in
either of the two words (in the latter case, both words are of length ↵). ⇤

The proof that any (↵)-automatic structure is first-order definable in F↵ (for ↵ < !1 + !!) needs a more
involved argument. We basically combine Blumensath’s approach from the classical setting with a clever use of
the pumping lemma. We first briefly review Blumensath’s approach and then explain how pumping allows to adapt
it to our setting.

In the setting of usual (finite) words, given an automatic relation R over alphabet ⌃0, we can first identify the
alphabet ⌃0 with some subset of ⌃k. Similarly, we can identify the state set of an automaton A corresponding to R
with some subset of ⌃l. This allows to represent elements of R as well as runs of A as tuples of words over ⌃. Then
one constructs a first-order formula (over signature {Next0,Next1,Next⇧,, el})

'R(¯w) = 9̄ r (max(¯w,¯r) ^ R(¯w,¯r) ^ S(¯r) ^ A(¯r))

where

• ¯w is a tuple of words over ⌃ of the right size to represent elements from R and ¯r is a tuple of size l, i.e., of the
right size to represent sequences of states of the automaton A,

• max states that the elements from ¯r are long enough to code a run on the words encoded by ¯w,
• R states that the sequence of states encoded by ¯r respects the transition relation of A,
• S states that ¯r(0) encodes an initial state, and
• A states that the last state encoded by ¯r is accepting.

Using these formulas 'R, we can now give a first order formula for each automatic relation. In particular, the
formulas corresponding to the relations of an automatic structure form a first-order interpretation of this structure in
F! .

In order to lift Blumensath’s approach to ↵ < !1 + !! we face one problem. We can code a run of an (↵)-
automaton A (with state set ⌃l) as an l-tuple of infinite ↵-words over ⌃. But more than one state might appear
infinitely often whence this run cannot be encoded directly as an (↵)-word. Here, the pumping lemma comes to our
rescue: first assume that ↵ is countable. If a run parses an empty subword of length !m� where m is the number
of states of A and � > 0 some countable ordinal, there is a run from state q to state q0 on this word if and only
if there is one on the empty word of length !m. Thus, we can hardcode a table of the possible runs on (⇧)!n

for
each 1  n  m in our formulas. This allows to use an (↵)-word ¯r to encode the states of a run r on (↵)-words ¯w
at the positions from supp(w) and at finitely many positions in the gaps between the support such that the distance
between two such positions is either !n for some n < m or !m� for some ordinal � > 0.

If !1  ↵  !1 + !! , we still can apply the idea described above. We only have to take care of a possible gap
in supp(w) of uncountable cofinality. From our basic results on (↵)-automata we know that there are less possible
runs on an empty input of some length !m� where � has uncountable cofinality than in the case that � has countable
cofinality. Fortunately, if ↵ < !1 + !j for some j 2 N, then any gap whose right end is of uncountable cofinality
ends exactly at !1. Moreover, position !1 in an ↵ word is characterised by the fact that it is the maximal position p
that is of the form p = !j+1 · � for some ordinal �. As we show below, this position is definable in F↵. Thus, by a
special treatment of the gaps ending at !1 we can lift the result to all ↵ < !1 + !! .

We now provide the details of the proof. As a simplification we first show that it is sufficient to consider
(↵)-automatic structures over the previously fixed alphabet ⌃.
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Lemma 4.4. Every (↵)-automatic structure is first-order interpretable in an (↵)-automatic structure with presen-
tation over alphabet ⌃.

Proof. Let (A,A1, . . . ,Ak) be a presentation of a some structure A over alphabet ⌃0. We identify ⌃

0 with a subset of
⌃

n for big enough n. It is easy to construct automata A0,A0
1, . . . ,A0

k such that the prime version of every automaton
behaves like the original but on inputs over ⌃n. It is straightforward to give an n-dimensional first-order interpretation
of A over the structure (⌃

(↵), L(A0
), L(A0

1), . . . , L(A0
k)). ⇤

What is left to show is the following proposition

Proposition 4.5. Let ↵ < !1 + !! . Let R ✓ (⌃

k
)

(↵) be a relation recognisable by some (↵)-automaton. Then R is
first-order interpretable in F↵.

Fix an automaton A = (⌃

m,⌃k
⇧, I, F,�) that recognises R. Let � = �s [�l be the partition into the successor

transitions �s ✓ Q ⇥ ⌃

k ⇥ Q and the limit transitions �l ✓ 2Q ⇥ Q.
In order to simplify the arguments of our proof we first establish some notation for certain first-order definable

relations.

• We write a < b if and only if |a| < |b|. This is definable from el and .
• Set lim�0(p) = 9x (x < p) and for all i � 1

lim

�i
(p) = 9z (z < p) ^ 8z

✓

(z < p) ! 9y (z < y < p ^ lim

�i�1
(y))

◆

.

By an easy induction on i 2 N one shows that F↵ |= lim�i(p) if and only if |p| = !i · � for some ordinal � � 1.
• We set

lim

i
(p) = lim

�i
(p) ^ ¬ lim

�i+1
(p).

limi(p) is satisfied in F↵ if and only if i 2 N is maximal such that |p| = !i� for some ordinal � � 1. In the
following, we call such a position an i-limit.

• For �̄ = (�1, . . . ,�n) 2 {0, 1, ⇧}n and ¯x 2 (x1, . . . , xn) y we define

Sm�̄(¯x, y) =
n̂

i=1

9x 09x 00
(el(y, x0) ^ Next�i(x

0, x00) ^ x00  xi).

A↵ |= Sm�̄(¯w, p) if and only if |p| < ↵ and the symbols of ¯w at position p are �̄, i.e., wi(|p|) = �i for ¯w =

(w1, . . . , wn).
• We extend the el-predicate to arbitrary many variables, i.e., we write el(x1, . . . , xn) for el(x1, x2) ^ el(x2, x3) ^

· · · ^ el(xn�1, xn).
• for all n 2 N let max(x1, x2, . . . , xn) = 8x (x1  x ! x = x1) ^ el(x1, x2, . . . , xn). F↵ |= max(a1, . . . , an) if and

only if a1, . . . , an are all (↵)-words (as opposed to (�)-words for some � < ↵).

We now prove the hard direction of the main theorem for the cases where ↵ is countable. Afterwards we discuss
the other cases.

Lemma 4.6. Let ↵ < !1. For each (↵)-automaton A over alphabet ⌃k, there is a formula 'A(x1, . . . , xk) such that
F↵ |= 'A(w1, . . . , wk) if and only if (w1, . . . , wk) 2 L(A).

Proof. In the following we describe an encoding of a run r on an (↵)-word w (over alphabet ⌃i for some i 2 N) of
some automaton A = (Q,⌃k, I, F,�) with |Q| = m. We identify Q with a subset of ⌃l for an appropriate l. There
are an n  |supp(w)| (see Definition 3.1 for the support supp(w) of w) and (ordinal) positions

0 = p0  p1 < p2 < p3 < p4 < · · · < p2n�1 < p2n < p2n+1 = ↵



18 M. Huschenbett, A. Kartzow, P. Schlicht / Pumping for Ordinal-Automatic Structures

such that

supp(w) = [p1, p2) [ [p3, p4) [ · · · [ [p2n�1, p2n)

and w �[p2i,p2i+1) is an empty word for all 0  i  n.
Each p2i+1 decomposes as

p2i+1 = p2i + !m · �i + !m�1 · ci,m�1 + · · · + ! · ci,1 + ci,0

where ci,j 2 N and �i some ordinal. We encode a run r of A on w by an (↵)-word rf such that

r �supp(rf )= rf �supp(rf )

and supp(rf ) is given by the following rules

1. For all 1  i  n,

supp(rf ) \ [p2i�1, p2i) = [p2i�1, p2i) ( = supp(r) \ [p2i�1, p2i))

2. For all 0  i  n, supp(rf ) \ [p2i, p2i+1) consists of
– p2i,
– p2i + !m�i if there is a 0  k  m � 1 such that ci,k 6= 0 (i.e., p2i + !m�i < p2i+1),
– and all

p2i + !m · �i + !m�1 · ci,m�1 + · · · + !k+1 · ci,k+1 + !kj

for all 0  k < m and all 0  j < ci,k.

We define a formula

'(¯w) = 9̄ q(max(¯w, ¯q) ^ Rsupp(¯w, ¯q) ^ R(¯w, ¯q) ^ S(¯q) ^ A(¯q))

such that F↵ |= '(¯w) if and only if ¯w 2 R. If this formula is satisfied, every witness ¯r for the quantification 9̄ q is
some word rf corresponding to some accepting run r of A on ¯w. Let us explain S, A, Rsupp and R.

1. S states that ¯q(0) is an initial state of A: S(¯q) = 9p (8z (¬z < p) ^
W

i2I Smi(¯q, p)).
2. Rsupp expresses that supp(¯q) = supp(rf ) for an encoding rf of an arbitrary run r of A on ¯w. Note that the

following set is exactly supp(rf ) and that it is easy to translate our description into a formula that defines
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this set:

supp(w) [ {p | 9p 0 2 supp(w) p = p0 + 1}

[
⇢

p | 9p 08p 00
✓

p < p0 ^ p0 2 supp(¯w) ^ lim

�m
(p) ^ (p < p00 v p0 ! ¬ lim

�m
(p00))

◆�

[
[

0i<m

8

<

:

p

�

�

�

�

�

�

9p 08p 00

0

@

p < p0 ^ p0 2 supp(¯w) ^ lim

i
(p)

^(p < p00 v p0 ! ¬ lim

�i+1
(p00))

1

A

9

=

;

[

8

>

>

<

>

>

:

p

�

�

�

�

�

�

�

�

9p 08p 00

0

B

B

@

lim

�m
(p) ^

✓

p < p00 ! ¬ lim

�m
(p00)

◆

^
✓

p0 < p00 ! ¬ lim

�m�1
(p00

)

◆

1

C

C

A

9

>

>

=

>

>

;

[
[

0i<m

8

>

>

<

>

>

:

p

�

�

�

�

�

�

�

�

9p 08p 00

0

B

B

@

lim

i
(p) ^

✓

p < p00 ! ¬ lim

�i+1
(p00

)

◆

^
✓

p0 < p00 ! ¬ lim

�i
(p00

)

◆

1

C

C

A

9

>

>

=

>

>

;

Let us briefly sketch why this set is equal to supp(rf ) for any run r on ¯w. The first line describes the positions
in [p2i�1, p2i] for 1  i  n. The second line puts p2i + !m · �i for each 0  i < n into the set. The third line
puts elements of the form

p2i + !m · �i + !m�1 · ci,m�1 + · · · + !k+1 · ci,k+1 + !kj

for all i < n 0  k < m and all 0  j < ci,k. The last two lines do the same as the second and third but
with respect to the position p2n. The main difference is that position ↵ is not available in F↵. In order to
understand the last two lines first note that 9p 08p 00

(p0 < p00 ! ¬ lim�i(p00)) is satisfied in F↵ if and only
if ↵ 6= !i+1 · ↵0 for some ordinal ↵0. Thus, if ↵ 6= !m · ↵0 for some ↵0, the third line collects the position
p = !m · � for the maximal � such that p < ↵. Otherwise this third set is empty. Analogously, the last set
contains all i-limits p such that p + !ic � ↵ for some constant c 2 N.

3. R is a formula that expresses that the states of ¯q are compatible with the transition relation. If p, p + 1 2
supp(¯q) this requires that there is a successor transition � = (¯q(p), ¯w(p), ¯q(p + 1)):

8y

0

@Next0(x, y) !
_

(q,�,q0)2�s

Smq(¯q, x) ^ Sm�(¯w, x) ^ Smq0(¯q, y)

1

A .

Now for each 1  m0 < m note that for p < ↵ and p0
= p + !m0

we have that p0 is the direct successor of p
in supp(¯q) if and only if p0 is an m0-limit and ¯w�[p,p0) = ⇧!m0

. Let Qm ✓ Q ⇥ Q be the list of tuples (q1, q2)

such that there is a run r0 : q1
⇧!m0

�!
A

q2. We say that (¯q(p), ¯q(p0)) are compatible with � if (¯q(p), ¯q(p0)) 2 Qm.

For each m0 < m there is a formula 'm0
(¯q) which is satisfied if all positions in supp(¯q) of distance !m0

are
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compatible with �. Let

✏(p, p0, ¯q) =

0

B

@

p < p0 ^
_

� 6=⇧
Sm�(¯q, p) ^

_

� 6=⇧
Sm�(¯q, p0)

^(8p 00
(p < p00 < p) ! Sm⇧(¯q, p))

1

C

A

'm0
= 8p 8p 0

0

@

✓

lim

m0
(p0) ^ ✏(p, p0, ¯q)

◆

!
_

(q1,q2)2Qm0

Smq1(¯q, p) ^ Smq2(¯q, p0)

1

A

where ✏(p, p0, ¯q) states that ¯q is defined at p and p0 but undefined between p and p0.
Finally, we have to provide a formula 'm dealing with the k-limits in supp(¯q) for k � m. Let

'm = 8p 8p 0

0

@

✓

lim

�m
(p0) ^ ✏(p, p0, ¯q)

◆

!
_

(q1,q2)2Qm

Smq1(¯q, p) ^ Smq2(¯q, p0)

1

A

We claim that this formula expresses compatibility of a pair (¯q(p), ¯q(p0)) for p, p0 direct successors in
supp(¯q) of distance !m · � for any ordinal � � 1 of countable cofinality. For � = 1 the reasoning is as in
the case of 'm0 . For � > 1 we use Proposition 3.6: there is a run on empty input of length !m · � if and only
if there is a run with the same initial and final state and the same image on the empty input of length !m.

4. The definition of A depends on ↵ as follows
4.1. If ↵ = !m · � for some � > 0, let A(¯q) state that ¯q(max supp(¯q)) is a state q1 such that there is a

final state f such that (q1, f ) 2 Qm. In this case [max supp(¯q),↵) is isomorphic to !m · �0 for some
�0 > 0. Using the Pumping lemma again, we conclude that A(¯q) holds if and only if there is a run

q1
⇧!m�0

�!
A

f for q1 = ¯q(max(supp(¯q))) and f some final state.
4.2. If

↵ = !m · � + !m�1km�1 + · · · + !jkj

with kj 6= 0, let A(¯q) state that ¯q(max supp(¯q)) is a state q1 such that there is a final state f such that
(q1, f ) 2 Qj. Note that in this case p0 := max(supp(¯q)) satisfies

p0
= ↵ = !m · � + !m�1km�1 + · · · + !j

(kj � 1)

we conclude that A(¯q) holds if and only if there is a run q1
⇧[p0 ,↵)

�!
A

f for q1 = ¯q(p0
) and f some final

state.

⇤

Our proof can easily be adapted for every ordinal ↵ with !1  ↵ < !1 + !! as follows.
If ↵ = !1 everything can be done as before, except that we have to adapt A. In this case for any coding rf of a

run, the interval [max(supp(rf )),↵) is of the form !1. Since !1 has uncountable cofinality, not all runs on ⇧!m
can

be translated to runs on ⇧!1 . Nevertheless we can compute all the possible pairs of initial and final states of runs on
empty input of length !1 and hardcode these into A instead of the set Qm.

If !1 < ↵ < !1 + !z for some z 2 N, we can copy everything from the countable case except for one thing:
given a word rf , it might happen that !1 2 supp(rf ). In this case, there are two positions p1, p2 2 supp(rf ) such that
they satisfy "(p1, p2, ¯q) and [p1, p2) is of order type !1. For this case we have to add a conjunction to R that requires
that the states q1 = ¯q(p1) and q2 = ¯q(p2) satisfy that there is a run of the automaton from state q1 to state q2 on
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input ⇧!1 . Since all those pairs are computable and the position p2 where this happens is the maximal (z + 1)-limit
in ↵, this can easily be done.

Remark 4.1. In fact, we can also define complete structures for all ↵ � !1 + !! . Let F0
↵ be the expansion of F↵ by

a unary predicate CoCo (“countable cofinality”) such that F0
↵ |= p 2 CoCo if and only if p is a (�)-word for some

� of countable cofinality. Using this predicate, we can extend the definition of R to distinguish whether a gap of the
form !m · ↵0 in supp(rf ) has countable or uncountable cofinality and require the states to correspond to a run on
empty input of length !m or !1 respectively. Moreover, if ↵ itself has uncountable cofinality we have to adapt the
definition of A as in the case of ↵ = !1. But recall that for ↵ � !1 + !! , the class of (↵)-automatic structures is
probably not closed under first-order definable relations which turns this result less interesting.

5. Growth Lemmas for Ordinal-Automatic Structures
A relation R ✓ X ⇥ Y is called locally finite if for every x 2 X, there are at most finitely many y 2 Y with (x, y) 2 R.
In the following, we first characterise the branching degree of locally finite (↵)-automatic relations. We first define
a function Um that computes, on input the support of (the representation) of some x 2 X, an upper bound on the
support of (the representation of) any y 2 Y such that (x, y) 2 R for any locally finite (↵)-automatic relation whose
automata has less than m states.

Definition 5.1. Let

� = �⇠m + !mnm + !m�1nm�1 + · · · + n0

be an ordinal and X a finite set of ordinals. Let us define the following sets.

1. Let Um(�) denote the set of ordinals � = �⇠m + !mlm + !m�1lm�1 + · · · + l0 such that either
– � = � or
– lk  nk + m and li  m for all i < k,
where k is maximal with lk 6= nk.

2. Let Um(X) =
S

�2X[{0} Um(�).
3. Let Um(X, �) = Um(X [ {�}) \ � be those elements of Um(X [ {�}) that are strictly below �.
4. Let U1

m(X) = Um(X) and Ui+1
m (X) = Um(Ui

m(X)) for i 2 N, and similarly let U1
m(X, �) = Um(X, �) and

Ui+1
m (X, �) = Um(Ui

m(X, �), �) for i 2 N.

A rough upper bound for the sizes of these sets is provided in the next lemma. In this lemma, we use the
following abbreviations (where as before X is a finite set of ordinals and � = �⇠m + !mnm + !m�1nm�1 + · · · + n0)

1. cm(�) = maxim ni,
2. cm(X) = max�2X[{ 0 } cm(�) (we add 0 to be well-defined if X is empty), and
3. dm(X) = |{�⇠m | � 2 X [ {0}}|.

Lemma 5.2. Suppose that X is a finite set of ordinals and i, n � 1. Then

|Ui
m(X)|  (cm(X) + im)

m+1dm(X),

|Ui
m(X,↵)|  (cm(X [ {↵}) + im)

m+1dm(X [ {↵}) and

|Ui
m(X,!n

)|  (cm(X) + im)

n

Proof. The coefficient of !j of an element of Ui
m(�) can take at most (cm(w) + im) many different values for any

fixed j  m. Hence |Ui
m(�)|  (cm(w) + im)

m+1 for all i � 1. Moreover dm(Ui
m(X)) = dm(X) for all i � 1.
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Finally, note that Ui
m(X,!k

) only contains ordinals of the form

0 + !m0 + !m�10 + · · · + !k0 + !k�1lk�1 + !k�2lk�2 + · · · + l0

where the same restrictions on the lj apply as before. ⇤

It follows that there are at most |⌃|(cm(X)+im)

m+1dm(X)
(↵)-words w over alphabet ⌃ with supp(w) ✓ Ui

m(X) for
i � 1.

Lemma 5.3 (Growth lemma). Let R ✓ (⌃

(↵)
)

k ⇥ (⌃

(↵)
)

l be a locally finite relation of (↵)-words which is recog-
nizable by some (↵)-automaton A with at most m states. Then supp(w) ✓ Um+1(supp(v),↵) for all (v, w) 2 R.

Proof. Heading for a contradiction, fix an accepting run r of A on (v, w) 2 R and assume that

supp(w) \ Um+1(supp(v),↵) 6= ;.

Let � 2 supp(w) \ Um+1(supp(v),↵) be minimal. We aim at proving the following three claims.

1. There is a � 2 supp(v) [ {0,↵} such that

�  � < � + !m+1 or �  � < � + !m+1,

i.e., �⇠m = �⇠m.
2. We prepare some notation for the second claim. Let k  m be least such that there is some � 2 supp(w) [

{0,↵} such that

�  � < � + !k+1 or �  � < � + !k+1.

For this fixed k, let � be maximal with this property. By choice of k, �⇠k = �⇠k and there are natural
numbers n0, n1, . . . , nk and l0, l1, . . . , lk such that

� = �⇠k + !knk + · · · + !1n1 + n0 and

� = �⇠k + !klk + · · · + !1l1 + l0.

We claim that either nk < lk or lk < nk  lk + m.
3. n0, n1, . . . , nk�1 are all at most m.

Having proved these three claims, it follows immediately that � 2 Um+1(�) ✓ Um+1(supp(v),↵) yielding the desired
contradiction. We now prove the claims as follows.

1. Heading for a contradiciton assume that � := max(supp(v) [ {0}) \ � satisfies

� + !m+1  � and assume that (1)

[�,� + !m+1
) \ (supp(v) [ {0,↵}) = ;. (2)

Note that (2) implies � + !m+1  ↵. Let ⌘ be minimal such that [⌘,� + !m+1
) is of order type !m+1. Since

⌘ is minimal, the order type of [� + 1, ⌘) is !m+1�0 for some ordinal �0 6= 0. Recall that r is a fixed accepting
run of A on (v, w). Using the Shrinking Lemma 3.9 and then the Pumping Lemma 3.8 we can translate the
run r0 := r � [� + 1, ⌘) (on (a convolution of) empty words of length !m+1�0) into a run ri on empty words
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of length !m
(!�0 + i) for each i 2 N. Note that replacing r0 by ri in r results again in an accepting run of A

on some tuple of (↵)-words (vi, wi) because

[0, �] + [� + 1, ⌘) + [⌘,� + !m+1
) = [0, �] + [� + 1, ⌘) + !m · n + [⌘,� + !m+1

)

For the same reason, vi = v for all i 2 N. On the other hand we show that wi differs from wj for all i 6= j.
Just recall that [⌘,� + !m+1

) is of order type !m+1 whence there is some n 2 N such that

⌘ + !mn  � < ⌘ + !m
(n + 1).

Since we obtain wi by inserting an empty word of length !m · i in w at ⌘, it is straightforward to conclude
that �i := min(supp(wi) \ Um+1(supp(v),↵)) satisfies

⌘ + !m
(n + i)  �i < ⌘ + !m

(n + i + 1).

Note that we have constructed infinitely many vi such that (w, vi) 2 R contradicting the fact that R is locally
finite. Thus, we arrive at a contradiction and the first claim is proved.

2. Note that by minimality of k, nk = lk is not possible. Heading for a contradiciton assume that nk > lk + m.
This implies � 6= ↵whence we can conclude that ↵ � � + !k+1. Thus, (�,↵) is isomorphic to !k+1 · �1 + �0
for ordinals �1 � 1 and �0 � 0. In particular, for all i 2 N

[0,�⇠k) + !ki + !knk + · · · + !1n1 + n0 + (�,↵)

is of order type ↵ again (the extra !k · i is absorbed by (�,↵)). By maximality of �, w �
(�,�) is the empty

word. Moreover, there is a state s of A and numbers lk < i0 < i1  lk + m + 1  nk such that

r(�⇠k + !ki0) = r(�⇠k + !ki1).

Let r0 = r and let ri+1 be obtained from ri by inserting r �[�⇠k+!ki0,�⇠k+!ki1) at �⇠k + !ki1. For each i 2 N, ri
is an accepting run of A on a tuple (vi, wi) of (↵)-words. Since � has been chosen as the maximal element
of supp(v) [ {0} in the !k+1 copy of �, we immediately conclude that vi = v. Moreover, wi 6= wj if i < j
because either w �[�⇠k+!ki0,�⇠k+!ki1) is empty and

wi(�⇠k + !k
(nk + (i1 � i0)i + · · · + !1n1 + n0) = w(�) 2 supp(w) while

wj(�⇠k + !k
(nk + (i1 � i0)i + · · · + !1n1 + n0) = ⇧,

or w �[�⇠k+!ki0,�⇠k+!ki1) is nonempty whence |supp(wj)| > |supp(wi)|. Note that we have constructed
infinitely many vi such that (w, vi) 2 R contradicting the fact that R is locally finite. Thus, we arrive at
a contradiction and the second claim is proved.

3. Let i 2 {0, . . . , k � 1}. By minimality of k,

v �[�⇠(i+1)+!i+1ni+1,�⇠(i+1)+!i+1
(ni+1+1))

is an empty word. If ni > m, some state s occurs in

r �[�⇠(i+1)+!i+1ni+1,�⇠(i+1)+!i+1ni+1+!ini)

at two positions in different !i copies. The subrun between these positions can be iterated as before and
yields infinitely many wi such that (v, wi) 2 R.

Putting all results together, we proved that �⇠k = �⇠k, nk 6= lk, nk  lk + m, and nj  m for all 0  j < k. This
implies � 2 Um+1(�) ✓ Um+1(v,↵) contradicting the assumptions on �. Thus, supp(w) \ Um+1(v,↵) = ;. ⇤
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For some real number x, let dxe denote the least n 2 ! with x  n, and log the logarithm with base 2.

Lemma 5.4 (Growth lemma for semigroups). Suppose the multiplication of the semigroup (S, ·) is recognised by
an (↵)-automaton with at most m states. Suppose s1, . . . , sn 2 S and supp(si) ✓ X for 1  i  n where n � 2. Then
supp(s1 · · · sn) ✓ Udlog ne

m+1 (X,↵).

Proof. We follow the proof of [21, Lemma 3.2]. The statement follows from the Growth Lemma for n  2. For
n > 2 let k = d n

2e and l = n � k. Then dlog ke, dlog le < dlog ne. Let t = s1 · · · · · sk and u = sk+1 · · · · · sn. Then
supp(t) [ supp(u) ✓ Udlog ne�1

m+1 (X) by the induction hypothesis for d n
2e. Thus, supp(t · u) ✓ Udlog ne

m+1 (X,↵) by the
Growth Lemma applied to t and u. ⇤

We give a variant of the growth lemma that turns out to be very useful in the setting of noninjective presentations
of structures with functions, e.g. groups. Instead of using pumping to generate many words related to a fixed one, we
now use shrinking in order to get a small element related to a given one. This lemma can be seen as a weak variant
of Delhommé’s relative growth arguments [7] for ordinal-automatic structures.

Lemma 5.5 (Inverse Growth Lemma). Let A be an (↵)-automaton with m0 states and let w, v be finite (↵)-words
such that A accepts (w, v). Setting m := m0 + 2, there is a word v0 such that supp(v0) 2 Um(supp(w),↵) and A
accepts (w, v0).

Proof. Let r be an accepting run of A on (w, v).
Assume that

� = min (supp(v) \ Um(supp(w),↵))

exists. Using pumping and shrinking inductively, we can transform v into a word v0 such that A accepts (w, v0) and
supp(v0) ✓ Um(supp(w),↵). For this purpose, we define

� = max((supp(w) \ �) [ {0}) and
� = min((supp(w) \ [�,↵)) [ {↵}).

We have an outer induction on the size of supp(v) \ Um(supp(w) [ {↵}) and an inner (transfinite) induction on the
size of [�,�). The inductive step is a tedious case distinction on the shapes of [�,�) and [�, �). Let us fix natural
numbers bi, ci, di, 0  i  m such that

� = �⇠m + !mbm + !m�1bm�1 + · · · + b0,

� = �⇠m + !mcm + !m�1cm�1 + · · · + c0, and

� = �⇠m + !mdm + !m�1dm�1 + · · · + d0.

Since � /2 Um(�) and �  �, one of the following holds.

1. �⇠m > �⇠m,
2. �⇠m = �⇠m, cm = bm, . . . , ck+1 = bk+1, and ck + m < bk, or
3. �⇠m = �⇠m, cm = bm, . . . , ck+1 = bk+1, and ck < bk  ck + m and there is a maximal k0 < k such that bk0 >

m.

Since � /2 Um(�) and �  �, one of the following holds.

i. �⇠m < �⇠m or
ii. �⇠m = �⇠m, dm = bm, . . . , di+1 = bi+1, and bi < di and there is a maximal i0 < i such that bi0 > m.
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This leads to the following cases.

1.i. Set

�0 = max((supp(w) [ supp(v)) \ �⇠m) + 1 and
�0 = max(supp(v) \ �⇠m) + 1.

By minimality of � and maximality of �, �0⇠m = �⇠m. Hence [�0,�⇠m) is of shape !m+1⌘1 for some ordinal
⌘1 � 1. By definition of �0, [�0, �⇠m) is of shape !m+1⌘2 for some ordinal ⌘2 � 1. Choose an ordinal ⌘ such
that [�⇠m, �0) + ⌘ is isomorphic to [�0, �⇠m) and define

v0 := v �[0,�0
)

+ ⇧!
m0+1

+v �[�⇠m,�0) + ⇧⌘ +v �[�⇠m,↵) .

We claim that (w, v0) is accepted by A. Application of the Shrinking Lemma 3.9 to r �[�0,�⇠m) yields a run

r1 of A on ⇧!m0+1
with the same initial and final states as r �[�0,�⇠m). Application of Pumping (depending on

whether �⇠m has countable cofinality, Proposition 3.6 or Proposition 3.7) to r �[�0,�⇠m) yields a run r2 of A
on ⇧⌘ with the same initial and final states as r �[�0,�⇠m). Since w �[�0,�⇠m) is an empty word, the composition
of r �[0,�0

)

, r1, r �[�⇠m,�0), r2, and r �[�⇠m,↵] is an accepting run of A on (w, v0).
One concludes easily that either

|supp(v0) \ Um(supp(w) [ {↵})| < |supp(v) \ Um(supp(w) [ {↵})|

or

|supp(v0) \ Um(supp(w) [ {↵})| = |supp(v) \ Um(supp(w) [ {↵})|

and v0 satisfies the conditions of cases 2 + i or 3 + i.
1.ii. Note that w �[�⇠m+!mbm+···+!ibi,�⇠m+!mbm+···+!i

(bi+1)) is the empty word. Since bi0 > m0 we can find n1 <
n2 < bi0 such that

r(�⇠m + !mbm + · · · + !i0+1bi0+1 + !i0n1) = r(�⇠m + !mbm + · · · + !i0+1bi0+1 + !i0n2).

Thus, the composition of

r�[0,�⇠m+!mbm+···+!i0+1bi0+1+!i0n1)
and r�[�⇠m+!mbm+···+!i0+1bi0+1+!i0n2,↵]

is an accepting run on
�

w, v�[0,�⇠m+!mbm+···+!i0+1bi0+1+!i0n1)
+ v�[�⇠m+!mbm+···+!i0+1bi0+1+!i0n2,↵)

�

and we can conclude by induction hypothesis.
2.i. In this case, there are natural numbers ck < n1 < n2  bk such that

r(�⇠m + !mbm + · · · + !k+1bk+1 + !kn1) = r(�⇠m + !mbm + · · · + !k+1bk+1 + !kn2).

Thus, the composition of

r�[0,�⇠m+!mbm+···+!k+1bk+1+!kn1)
and r�[�⇠m+!mbm+···+!k+1bk+1+!kn2,↵]

is an accepting run on
�

w, v�[0,�⇠m+!mbm+···+!k+1bk+1+!kn1)
+ v�[�⇠m+!mbm+···+!k+1bk+1+!kn2,↵)

�
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and we can conclude by induction hypothesis.
2.ii. Set j = min(k, i0) and

ej :=

(

ck + 1 if j = k
0 if j < k.

Note that bj � ej + m0 and that w �[�⇠m+!mbm+···+!j+1bj+1+!jej,�⇠m+!mbm+···+!j+1
(bj+1+1)) is empty. Thus, there

are ej  n1 < n2  bj such that the composition of

r�[0,�⇠m+!mbm+···+!j+1bj+1+!jn1)
and r�[�⇠m+!mbm+···+!j+1bj+1+!jn2,↵]

is an accepting run on
�

w, v�[0,�⇠m+!mbm+···+!j+1bj+1+!jn1)
+ v�[�⇠m+!mbm+···+!j+1bj+1+!jn2,↵)

�

and we can conclude by induction hypothesis.
3. i. Note that w �[�⇠m+!mbm+···+!k0+1bk0+1,�⇠m+!mbm+···+!k0+1

(bk0+1+1)) is empty. There are n1 < n2  bk0 such that
the composition of

r�[0,�⇠m+!mbm+···+!k0+1bk0+1+!k0n1)
and r�[�⇠m+!mbm+···+!k0+1bk0+1+!k0n2,↵]

is an accepting run on
�

w, v�[0,�⇠m+!mbm+···+!k0+1bk0+1+!k0n1)
+ v�[�⇠m+!mbm+···+!k0+1bk0+1+!k0n2,↵)

�

and we can conclude by induction hypothesis.
3.ii. Set j = min(k0, i0) Note that w �[�⇠m+!mbm+···+!j+1bj+1,�⇠m+!mbm+···+!j+1

(bj+1+1)) is empty. Thus, there are n1 <
n2  bj such that the composition of

r�[0,�⇠m+!mbm+···+!j+1bj+1+!jn1)
and r�[�⇠m+!mbm+···+!j+1bj+1+!jn2,↵]

is an accepting run on
�

w, v�[0,�⇠m+!mbm+···+!j+1bj+1+!jn1)
+ v�[�⇠m+!mbm+···+!j+1bj+1+!jn2,↵)

�

and we can conclude by induction hypothesis.

⇤

6. Ordinal Automatic Boolean Algebras
In this section, we classify completely the finite word !n-automatic Boolean algebras. Moreover, we show that the
countable atomless Boolean algebra does not have an injective finite-word ordinal-automatic presentation.

6.1. Basics on Boolean Algebras
This section provides the necessary backround on Boolean algebras. For more details, we refer the reader to [12, 24].

Definition 6.1. A Boolean algebra is an algebraic structure A = (A,t,u, · , 0, 1) such that both (A,t, 0) and
(A,u, 1) are idempotent commutative monoids, t and u distribute over each other, and · is a unary operation
satisfying the following identities for all a, b 2 A:

a = a a u a = 0 a t a = 1
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a u b = a t b a t b = a u b

The operations t, u and · are called union (or disjunction), intersection (or conjunction) and complement (or
negation), respectively. Notice that · is an involution and that the above axioms imply 0 = 1 and 1 = 0.

Example 6.1. 1. Each Boolean algebra satisfying 0 = 1 contains precisely one element and is called trivial.
Clearly, there is—up to isomorphism—only one trivial Boolean algebra.

2. Let X be some arbitrary set. The power set algebra of X is the Boolean algebra P(X) = (2X ,[,\, {, ;, X).
If X is a singleton set, P(X) models classical two-valued logic, where ; corresponds to “false” and X to
“true”.

3. Let L = (L,) be some linear ordering. The interval algebra of L is the Boolean algebra IL =

(IL,[,\, {, ;, L), where IL is the set of all finite unions of half-open intervals of the form [a, b) =
{ c 2 L | a  c < b } for a 2 L [ {�1} and b 2 L [ {1}, where �1 < a < 1 for each a 2 L.

4. For Boolean algebras A and B, their direct product A⇥B, whose domain is A ⇥ B and whose operations
and constants are defined component-wise, is a Boolean algebra as well.

A useful technique to characterize Boolean algebras is to study the transfinite process of iteratively quotienting out
their indecomposable elements. Formally, let A = (A,t,u, · , 0, 1) be a Boolean algebra. A pair (b, c) 2 A ⇥ A is a
decomposition of a 2 A if b t c = a, b u c = 0 and b, c 6= 0. An atom of A is a non-zero element which admits no
decomposition.

An ideal of A is a subset I ✓ A such that 0 2 I, i t j 2 I for all i, j 2 I, and i u a 2 I for all i 2 I and a 2 A. Any
ideal I of A induces a congruence ⌘I on A which is defined by a ⌘I b if a 4 b 2 I, where a 4 b = (a u b) t (a u b)
is the symmetric difference (or exclusive disjunction) of a and b. The corresponding quotient algebra—which is again
a Boolean algebra—is denoted by A/I and its elements by [a]I for a 2 A. If I is an ideal of A and J is an ideal of
A/I, then the set

I � J = { a 2 A | [a]I 2 J }

is an ideal of A with I � J ◆ I and the quotient algebras A/I � J and (A/I)/J are isomorphic via mapping [a]I�J to
[[a]I]J .

The set

F(A) = { a1 t · · · t an | n � 0 and a1, . . . , an 2 A are atoms }

is an ideal of A, called the Frechét ideal of A. In fact, it is the smallest ideal of A containing all its atoms. For each
ordinal ↵, the iterated Frechét ideal F↵(A) is defined as follows, where � is a limit ordinal:

F0(A) = {0} , F↵+1(A) = F↵(A) � F
�

A/F↵(A)
�

, F�(A) =
[

↵<�

F↵(A) ,

Observe that F↵(A) ✓ F�(A) whenever ↵  � and that there is always an ordinal ↵ such that F↵(A) = F�(A) for
all ordinals � � ↵. The least such ↵ is called ordinal type of A and denoted by o(A). If A is countable, then o(A)
is countable as well. The Boolean algebra A is called superatomic in case that Fo(A)

(A) = A. If A is non-trivial and
superatomic, then o(A) is a successor ordinal, say o(A) = � + 1, and A/F�(A) is a finite Boolean algebra, say it has
m � 1 atoms. In this situation, the pair (�, m) is called (superatomicity) type of A and denoted type(A). An example
of a superatomic Boolean algebra of type (�, m) is the interval algebra I!�m. Due to the following proposition, this
is indeed the only countable example whenever I!�m is countable.

Proposition 6.2 ([12, Proposition 1.5.9]). Two non-trivial countable superatomic Boolean algebras A and B are
isomorphic if and only if type(A) = type(B).
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If superatomic Boolean algebras are regarded as one end of the whole spectrum of Boolean algebras, the other
end is populated by atomless Boolean algebras, i.e., those which do not contain any atoms at all. An example of a
atomless Boolean algebra is the interval algebra I

(Q,)

of the rationals. Due to the following proposition, this is the
only non-trivial countable example.

Proposition 6.3 ([12, Proposition 1.5.1]). Any two non-trivial countable atomless Boolean algebras are isomor-
phic.

An alternate approach to Boolean algebras is based on partial orders. This is used in Lemma 6.8 below. In fact,
every Boolean algebra A = (A,t,u, · , 0, 1) induces a partial order v on A which is defined by a v b if a t b = b,
or equivalently, a u b = a. This partial order is compatible with t and u, i.e., a t b v a0 t b0 and a u b v a0 u b0
whenever a v a0 and b v b0. Moreover, 0 is its least element and 1 its greatest element. An element a 2 A is an atom
of A precisely if a 6= 0 and there is no b 2 A such that 0 < b < a. Finally, the last condition on ideals, namely that
i u a 2 I for all i 2 I and a 2 A, is equivalent to the requirement that a v b and b 2 I implies a 2 I for all a, b 2 A.

6.2. Classification of the (!n
)-automatic Boolean algebras

The objective of this section is to characterize the class of (!n
)-automatic Boolean algebras, see Theorem 6.4 below.

To this end, we extend the proof technique used in [21] to characterize the class of automatic Boolean algebras.

Theorem 6.4. Let A be a Boolean algebra and n 2 N. The following are equivalent:

1. A is (!n
)-automatic.

2. A is isomorphic to the interval algebra I↵ for some ordinal ↵ < !n+1.
3. A is isomorphic to the direct product (I!k)

m for some k, m 2 N with k  n.

We show the implications (1 ) 2), (2 ) 3) and (3 ) 1) seperately. Aside from the case ↵ = 0, which leads to
the trivial Boolean algebra I0, the implication (2 ) 3) is demonstrated by the proposition below.

Proposition 6.5. For every ordinal ↵ > 0, the interval algebra I↵ is isomorphic to the direct product (I!�
)

m for
some m � 1 and an ordinal � with !�  ↵.

Proof. Using the Cantor normal form, we obtain a number m � 1 and two ordinals �, � such that ↵ = !�m + � and
� < !� . Notice that for any two linear orderings L1 and L2, the interval algebra IL1+L2 is isomorphic to the direct
product IL1 ⇥ IL2 via mapping M to (M \ L1, M \ L2). Thus,

I↵ ⇠
=

I!�m ⇥ I� ⇠
=

I� ⇥ I!�m ⇠
=

I�+!�m = I!�m ⇠
=

(I!�
)

m .

This proves the claim. ⇤

Since the class of (!n
)-automatic structures is closed under direct products, the implication (3 ) 1) of Theo-

rem 6.4 is established by the following proposition.

Proposition 6.6. Let k 2 N. The interval algebra I!k is (↵)-automatic for each ordinal ↵ � !k.

Proof. We show that I!k is (↵)-automatic over the alphabet ⌃ = {a, b, ⇧}. Every set M 2 I↵k can be uniquely
written as M = [a1, b1) [ · · · [ [ar, br) with r � 0 and 0  a1 < b1 < a2 < b2 < · · · < ar < br  !k. We encode
this set M by the (↵)-word uM 2 ⌃

(↵) defined by uM(�) = a if � 2 {a1, . . . , ar}, uM(�) = b if � 2 {b1, . . . , br},
and uM(�) = ⇧ for all other �. Using the fact that an (↵)-automaton can identify the (!k

)

th position in any (↵)-word
(cf. Lemma 3.14), it is a matter of routine to check that this encoding of I↵ induces an injectively (↵)-automatic
presentation of I↵. ⇤
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Finally, we turn to the implication (1 ) 2) of Theorem 6.4, whose proof needs some preparation. Basically,
we have to investigate the connection between decompositions and iterated Frechét ideals as well as the FO(91)-
definability of the latter.

Lemma 6.7. Let A be a Boolean algebra and ↵ an ordinal. Any a 2 A \ F↵+1(A) admits a decomposition (b, c)
such that b 62 F↵+1(A) and c 62 F↵(A).

Proof. Let I = F↵(A) and B = A/I. Then a 62 F↵+1(A) can be rephrased as [a]I 62 F(B). In particular, [a]I is
neither zero nor an atom in B. Thus, there is a decomposition

�

[b0]I , [c0]I
�

of [a]I . We cannot have both [b0]I 2
F(B) and [c0]I 2 F(B) because that would imply [a]I = [b0]I t [c0]I 2 F(B). Without loss of generality, we assume
[b0]I 62 F(B). The remainder of this proof is to show that putting b = a u b0 and c = a u b0 yields the desired
decomposition (b, c).

Obviously, a = b t c and b u c = 0. If we had b = 0, then we would obtain

b0
= (a u b0

) t (a u b0) = a u b0 v a u (b0 t c0) v a 4 (b0 t c0) .

Since [a]I = [b0]I t [c0]I , i.e. a 4 (b0 t c0) 2 I, this would imply b0 2 I and hence [b0]I = 0. However, this contra-
dicts the fact that ([b0]I , [c0]I) decomposes [a]I . Consequently, b 6= 0. For the sake of another contradiction, suppose
that c = 0. Then a u b0 u c0 = 0 and hence

c0 = (a u c0) t (a u b0 u c0) t (a u b0 u c0) = (a u c0) t (a u b0 u c0)

v
�

a u (b0 t c0)
�

t (b0 u c0) v
�

a 4 (b0 t c0)
�

t (b0 u c0) .

Since [b0]I u [c0]I = 0, i.e. b0 u c0 2 I, and a 4 (b0 t c0) 2 I, this implies c0 2 I, i.e. [c0]I = 0. Again, this is not
possible and hence c 6= 0. So far, we have shown that (b, c) decomposes a. It remains to show that b 62 F↵+1(A) and
c 62 F↵(A).

Concerning the first claim, observe that b 4 b0 = a u b0 v a 4 (b0 t c0) 2 I and hence [b]I = [b0]I 62 F(B).
The latter can be rephrased as b 62 F↵+1(A). Regarding the second claim, we have

c 4 c0 =
�

a u b0 t c0
�

t (a u c0) v a 4 (b0 t c0) 2 I ,

i.e. [c]I = [c0]I 6= 0. Since I = F↵(A), we obtain c 62 F↵(A). ⇤

Lemma 6.8. For every n 2 N, the iterated Frechét ideal Fn(A) is uniformly FO(91)-definable in any Boolean
algebra A augmented by some well-order  on A.

Proof. First, we prove the following characterization of F(A), which is obviously expressible in FO(91):

F(A) = { a 2 A | there are only finitely many b 2 A with b v a } .

First, consider a 2 F(A). There are atoms a1, . . . , an such that a = a1 t · · · t an. For each b v a and i =
1, . . . , n, we have 0 v ai u b v ai and hence either ai u b = 0 or ai u b = ai. Let Ib ✓ {1, . . . , n} be the set of those
i with ai u b = ai. Then

b = a u b = (a1 t · · · t an) u b =

G

1in

(ai u b) =
G

i2Ib

ai ,

i.e., b is determined by the set Ib. In particular, there are at most 2n many b v a.
Second, consider some a 2 A \ F(A). If there are infinitely many atoms below a, then there is nothing to show,

so let us assume that a1, . . . , an be all atoms below a. Put c = a1 t · · · t an 2 F(A). It suffices to show that there
are infinitely many b v a u c. Clearly, a v c as well as a 6= c and hence a u c 6= 0. Since all atoms below a are also
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below c and c u (a u c) = 0, there is no atom below a u c. Due to this fact, there is an infinite sequence c0, c1, c2, . . .
such that a u c = c0 = c1 = c2 = · · · = 0. This completes the characterization of F(A).

Now, we show the actual claim of the lemma by induction on n. Since F0(A) = {0}, the claim is trivial for
n = 0. Henceforth, suppose n > 0. By the induction hypothesis, the iterated Frechét ideal Fn�1(A) is definable in A.
Applying the same idea as in the proof of Proposition 3.20, namely using the well-order  to select representatives,
we can define the whole quotient algebra A/Fn�1(A) in A. Thus, we can also define the Frechét ideal F

�

A/Fn�1(A)
�

and hence the iterated Frechét ideal Fn(A) = Fn�1(A) � F
�

A/Fn�1(A)
�

in A. ⇤

Since Proposition 6.2 ensures that the interval algebra I!�m is the only countable superatomic Boolean algebra
of type (�, m) for countable �, the following proposition demonstrates the implication (1 ) 2) of Theorem 6.4.

Proposition 6.9. Let n 2 N. Every (!n
)-automatic Boolean algebra A is superatomic and its type type(A) = (�, m)

satisfies �  n.

Proof. If A is finite, the claim is trivial. Henceforth, suppose that A is infinite and therefore n � 1. By Proposi-
tion 3.20, there is an injective (!n

)-automatic presentation (A,At, . . . ) of A over some alphabet ⌃. Without loss
of generality, we further assume that L(A) = A ✓ ⌃

(!n
). We denote the automatic well-order on ⌃

(!n
) defined in

Lemma 3.19 by .
Aiming for a contradiction, suppose that the claim of the proposition is wrong. This would particularly imply

Fn+1(A) 6= A and hence 1 62 Fn+1(A). We consider the minimal relation R ✓ A ⇥ A satisfying the following condi-
tions.

1. For a 2 F(A), (a, a) 2 R.
2. For a 2 A \ F(A), we consider the greatest r 2 {1, . . . , n + 1} such that a 62 Fr(A). By Lemma 6.7, there

is a decomposition (b, c) of a such that b 62 Fr(A) and c 62 Fr�1(A). Among all these decompositions, for
the one with the least b with respect to  we have (a, b) 2 R and (a, c) 2 R.

Moverover, we inductively define for each k 2 N a finite subset Hk ✓ A as follows:

H0 = {1} , Hk+1 = R(Hk) = { b 2 A | 9a 2 Hk : (a, b) 2 R } .

Intuitively, one can visualize Hk as the kth level of a finitely branching tree with root 1 and successor relation R.
Finally, we consider for every k 2 N the set

Dk =

n

G

a2M
a
�

�

�

M ✓ Hk

o

In the remainder of this proof, we provide contradictory asymptotic lower and upper bounds on the size of Dk.

Claim. We have the following lower bound on the size of Dk:

|Dk| 2 2⌦(kn+1
) .

Proof. Two elements a, a0 2 A are called disjoint if a u a0 = 0. For disjoint a, a0 2 A and a decomposition (b, c) of
a, the elements a0, b, c are mutually disjoint as well. Using this fact in an induction on k yields that the elements of
Hk are mutually disjoint. Moreover, the definition of decompositions implies 0 62 Hk. In this situation, every element
of Dk is generated by a unique subset M ✓ Hk and hence |Dk| = 2|Hk|. Thus, it suffices to show |Hk| 2 ⌦

�

kn+1
�

.
To this end, we show by induction on k that

|Hk \ Fr(A)| �
n+1�r
X

i=0

✓

k
i

◆

(3)
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for 0  r  n + 1, where
�k

i

�

= 0 whenever k < i. Since 1 62 Fr(A), the base case k = 0 is trivial. Henceforth,
assume k > 0. Every element of Hk�1 \ Fn+1(A) induces at least one element in Hk \ Fn+1(A). In combination
with the induction hypothesis, we obtain the inequation for r = n + 1:

|Hk \ Fn+1(A)| � |Hk�1 \ Fn+1(A)| �
✓

k � 1
0

◆

=

✓

k
0

◆

.

For 0  r  n, every element of Hk�1 \ Fr+1(A) induces two elements in Hk \ Fr(A) and every element of Hk�1 \
�

Fr+1(A) \ Fr(A)
�

induces at least one element in Hk \ Fr(A). In combination with the induction hypothesis, we
obtain:

|Hk \ Fr(A)| � |Hk�1 \ Fr+1(A)|+
+|Hk�1 \ Fr+1(A)| +

�

�Hk�1 \
�

Fr+1(A) \ Fr(A)
�

�

�

= |Hk�1 \ Fr+1(A)| + |Hk�1 \ Fr(A)|

�
n�r
X

i=0

✓

k � 1
i

◆

+
n+1�r
X

i=0

✓

k � 1
i

◆

=

n+1�r
X

i=0

✓

k
i

◆

.

This completes the inductive proof of Eq. (3). The case r = 0 immediately implies |Hk| �
� k

n+1

�

2 ⌦(kn+1
)—the

claimed lower bound. ⇤

Claim. We have the following upper bound on the size of Dk:

|Dk| 2 2O(kn
) .

Proof. According to Lemma 6.8, the relation R is FO(91)-definable in A augmented by . By Proposition 3.17,
there is an !n-automaton AR recognizing R. Let m 2 N be such that both AR and At have less than m states and put
X = supp(1). By the growth lemma (Lemma 5.3), every a 2 Hk satisfies supp(a) ✓ Uk

m(X,!n
). From the definitions

of R and Hk, we conclude |Hk|  2k. Due to the growth lemma for semigroups (Lemma 5.4), every d 2 Dk satisfies
supp(d) ✓ Uk

m(Uk
m(X,!n

),!n
) = U2k

m (X,!n
) and hence

|Dk|  |⌃||U
2k
m (X,!n

)| .

By Lemma 5.2, we further obtain

|U2k
m (X,!n

)|  (cm(X) + 2km)

n 2 O (kn
) .

Combining the last two inequations yields |Dk| 2 2O(kn
)—the claimed upper bound. ⇤

Clearly, the provided lower and upper bound on the size of Dk asymptotically contradict one another. ⇤

6.3. Atomless Boolean Algebras are not Injectively (↵)-Automatic
We prove that any atomless Boolean algebra is not (↵)-automatic. For this purpose, we first show by pumping
that every (↵)-automatic A possesses some nonempty (!!

)-automatic substructure A0 such that, if A |= '(¯a), then
A0 |= '(¯a), for all ' 2 8⇤9⇤Pos and ¯a 2 A0. If the structure is injectively (↵)-automatic, then ' may even come
from 8⇤9⇤Pos 6=.

With this result it is easy to conclude that the existence of an injective presentation of some atomless Boolean
algebra implies the existence of a (!!

)-automatic presentation of the countable atomless Boolean algebra. Given
such a presentation, it could be turned into an injective one. We then use the growth lemma to show that such a
presentation cannot exist.
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Lemma 6.10. Let ↵ � !! be some ordinal and A be a nonempty (↵)-automatic structure. There is a nonempty
(!!

)-automatic substructure A0 with the following property. For all formulas '(¯x) 2 8⇤9⇤Pos and all tuples ¯a 2 A0,
if A |= '(¯a), then A0 |= '(¯a). If A is injectively (↵)-automatic, this result extends to all formulas in 8⇤9⇤Pos 6=.

Proof. Note that the second part follows from the first part because for all injectively (↵)-automatic presentations
the expansion by the relation 6= is also injectively (↵)-automatic.

Let ↵0 be the ordinal such that !! + ↵0
= ↵ and let f denote the embedding f : ⌃(!!

) ! ⌃

(↵) given by f (w) =
w⇧↵0

. Let A be represented by the (↵)-automata (A,A⇡,AR1 , . . . ,ARn).
For any (↵)-automaton B let B!!

denote the automaton which accepts any w 2 ⌃

(!!
) if and only if B accepts

f (w). Note that the construction of B!!

commutes with the automata constructions for Boolean connectives, i.e., if
B,B1, and B2 are (↵)-automata such that L(B) = L(B1) ⇤ L(B2) for ⇤ 2 {[,\}, then

L(B!!

) = L(B!!

1 ) ⇤ L(B!!

2 ).

Let A0 be the structure represented by (A!!

,A!!

⇡ ,A!!

R1
, . . . ,A!!

Rn
). Via f we can identify it with a substructure

of A. Note that A0 is nonempty: let w be some (↵)-word accepted by A. We can write w as

w = ⇧↵0�1 ⇧↵1 �2 · · · ⇧↵n�1 �n⇧↵n

with �i 2 ⌃. Note that ↵n has countable cofinality if and only if ↵ has. Thus, using the Pumping Lemmas 3.6 and
3.7, we can find for each ↵i an empty word of length �i < !m+1 · 2 where m is the number of states of A such that
A has also an accepting run on f (w0

) where

w0
= ⇧�0�1 ⇧�1 �2 · · · ⇧�n�1 �n⇧!

!

Thus, w0 represents some element of A0.
Now assume that w1, . . .wn 2 ⌃

(!!
) represent elements a1, . . . , an 2 A0 such that

A |= 8x 1 . . . 8x m9y 19 . . . y`'(a1, . . . an, x1, . . . , xm, y1, . . . , y`)

for ' a Boolean combination of the relations of A. Let A' be an (↵)-automaton corresponding to ' on A. Now we
conclude that for all v1, . . . , vm 2 ⌃

(!!
) representing elements b1, . . . , bm 2 A0 there are words u1, . . . , u` 2 ⌃

(↵)

representing elements c1, . . . , c` 2 A such that A' accepts
�

f (w1), . . . , f (wn), f (v1), . . . , f (vm), u1, . . . , u`

�

.

Applying pumping (Propositions 3.6 and 3.7) to

(u1, . . . , u`)�[max(

S
i=1n supp(wi)[

Sm
i=1 supp(vi))+1,↵) ,

we can shrink the gaps in the support of u1, . . . , u` below !k for some k 2 N. Thus results in (!!
)-words u01, . . . , u0

`
such that A' accepts

�

f (w1), . . . , f (wn), f (v1), . . . , f (vm), f (u01), . . . , f (u0`)
�

.

Recall that (A')
!!

corresponds to ' on A0. By definition, (A')
!!

accepts

(w1, . . . , wn, v1, . . . , vm, u01, . . . , u0`),

whence A0 |= '(a1, . . . , an, b1, . . . , bm, c01, . . . , c0`) for c0i 2 A0 represented by u0
i . Since this argument is independent

of the choice of b1, . . . , bm, we conclude that

A0 |= 8x 1 . . . 8x m9y 19 . . . y`'(a1, . . . an, x1, . . . , xm, y1, . . . , y`)
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⇤

Corollary 6.11. Let ↵ � !! be some ordinal. Every (↵)-automatic Boolean algebra has an (!!
)-automatic subal-

gebra. In particular, if there is an injectively (↵)-automatic atomless Boolean algebra, then the countable atomless
Boolean algebra is (!!

)-automatic.

Proof. Note that the axioms of Boolean Algebras are 8⇤9⇤Pos formulas. Moreover, an algebra is atomless if and
only if it satisfies

8x 9y 9z
�

x = 0 _ (x = y t z ^ y u z = 0 ^ y 6= 0 ^ z 6= 0)
�

⇤

Theorem 6.12. There is no non-trivial atomless Boolean algebra which is injectively (↵)-automatic for some ordi-
nal ↵. Thus, there is no non-trivial atomless Boolean algebra which is (�)-automatic for some ordinal � < !1 + !! .

Proof. Due to Corollary 6.11, it suffices to show that the non-trivial countable atomless Boolean algebra A is not
(!!

)-automatic. For this purpose, we use the same proof technique as in the proof of Proposition 6.9.
Aiming for a contradiction, assume that the non-trivial countable atomless Boolean algebra is (!!

)-automatic.
This time, we define the relation R ✓ A ⇥ A as follows: For every a 2 A \ {0}, we choose among all decompositions
(b, c) of a the one with the least b with respect to  and put (a, b) 2 R and (a, c) 2 R. Such a decomposition always
exists because A is atomless. We retain the definitions of Hk and Dk for k 2 N, but use the new relation R instead
of the old one. The intuition about the tree remains the same as before, save that we now obtain the full binary
tree. Along the lines of the old proof, one easily shows that the elements of Hk are mutually disjoint and hence
|Hk| = 2k as well as |Dk| = 22k

. In the remainder of this proof, we establish an upper bound on the size of Dk which
asymptotically contradicts this observation.

Again, there is a (!!
)-automaton recognizing R. Let m 2 N be such that AR has less than m states and put

X = supp(1). Using the two growth lemmas, we obtain

|Dk|  |⌃||U
2k
m (X,!!

)| .

By Lemma 5.2, we have

|U2k
m (X,!!

)| 
�

cm(X [ {!!}) + 2km
�m+1dm(X [ {!!}) 2 O

�

km+1� .

Combining the last two inequations yields |Dk| 2 2O(km+1
). Clearly, this asymptocially contradicts |Dk| = 22k

. ⇤

7. Groups and Term Algebras
The following result generalized the case of automatic structures (cf. [3]), since every automatic structures is equal
to an (!)-automatic structure. For the definitions and basic properties of term algebras see [1, 13].

Lemma 7.1. For all cardinalities  � 2 and all ordinals ↵, the free term algebra with one function f of arity 2 and
 many generators is not contained in any (↵)-automatic structure.

The same statement holds for the free semigroup and the free group with  many generators.

Proof. We do the proof only for the free term algebra. The other proofs are completely analogous using the product
instead of the function f .

Heading for a contradiction, assume that (A,A',AG) is a (noninjective) (↵)-automatic presentation of the free
term algebra T with  generators. In the following, we write [w]⇡ for the element of A represented by w. Let u, v be
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(↵)-words such that [u]⇡ and [v]⇡ are two generators of T. Define T0 = {[u]⇡, [v]⇡} and Ti+1 = {f (t1, t2) | t1, t2 2
Ti}. Note that |T0| = 220

and, inductively,

|Ti| = |Ti�1|2 = (22i�1
)

2
= 22i�1·2

= 22i
.

Using Lemma 5.5 we obtain a constant m such that each of the elements of Tn has a representative w such that

supp(w) ✓ Un
m(supp(u) [ supp(v),↵). (4)

Let w1, w2, . . . , w22n be representatives of the 22n
many pairwise distinct elements of Tn satisfying (4). But by Lemma

5.2, there are constants c, d and e such that 2c+(dn)e
is a bound on the number of words with support in Un

m(supp(u) [
supp(v),↵). This is clearly a contradiction for large n. ⇤

The free term algebra with countable infinitely many generators separates the class of tree-automatic structures
from the class of ordinal-automatic structures. Damian Niwinski introduced a tree-automatic presentation of this
algebra to us. Since we are not aware of a citable reference for this result, we sketch it in the next example. Readers
that are not familiar to the notion of tree-automatic structures can safely continue reading in Section 8.

Example 7.1. Let T be the set of all finite subsets of {0, 1}⇤. We define a function f : T2 ! T by

f (t1, t2) ={w 2 {0, 1}⇤0 | w = w00 with w0 2 t1}[
{w 2 {0, 1}⇤1 | w = w01 with w0 2 t2}[
{"}.

Note that (T , f ) is isomorphic to the free term algebra with countable infinitely many generators: the generators
are the elements of the set G of all finite subsets t ✓ {0, 1}⇤ such that " /2 t and f is a injective function such that
im(f ) = T \ G.

Now we construct a tree-automatic presentation of (T , f ). For t ✓ {0, 1}⇤ denote by #(t) the set of all prefixes
of the elements of t. We encode an element t 2 T as the tree

[t] : #(t) ! {a, b} where [t](x) =

(

a x 2 t,
b x 2 #(t) \ t.

The set {[t] | t 2 T} is tree-automatic. It contains all finite trees where all leaves are labelled a. In this presentation,
the function f is also trivially automatic because the representation of f (t1, t2) is obtained from the presentations [t1]
and [t2] by shifting all occurences of a in [t1] to the position at the left successor and all occurences of a in [t2] to
the position at the right successor.

8. Order Forests
Definition 8.1. An (order) forest is a partial order A = (A,) such that for each a 2 A, the set {a0 2 A | a  a0} is
a finite linear order.

We want to study the rank (also called ordinal height) of (↵)-automatic well-founded forests. For this purpose
we recall the definition of the height of a well-founded partial order. Afterwards, we introduce a variant of the height
called infinity rank or 1-rank.

Definition 8.2. Let A = (A,) be a well-founded partial order. Setting sup(;) = 0 we define the height of A by

height(a,A) = sup{height(a0,A) + 1 | a0 < a 2 A} and
height(A) = sup{height(a,A) + 1 | a 2 A}.
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Definition 8.3. Let P = (P,) be a well-founded partial order. We define the ordinal valued 1-rank of a node
p 2 P inductively by

1-rank(p,P) = sup{↵ + 1 | 91p0(p0 < p and 1-rank(p0,P) � ↵)}.

The 1-rank of P is then

1-rank(P) = sup{↵ + 1 | 91p 2 P1-rank(p,P) � ↵}.

The two notions of height have a close connection. Due to this connection, proving bounds on the height of
(↵)-automatic well-founded forests reduces to proving bounds on the infinity rank. We first state this connection
and then announce our main result.

Lemma 8.4 (Kartzow, Liu, and Lohrey [15]). For P a well-founded partial order, we have

1-rank(P)  height(P) < ! · (1-rank(P) + 1).

8.1. Upper Bounds on the Height of Order Forests
The following result generalizes the case of automatic structures (cf. [17, 25]), since every automatic structure is
equal to an (!)-automatic structure.

Theorem 8.5. Let ↵ = !1+� < !1 + !! be some ordinal. Every (↵)-automatic well-founded order forest
F = (F,) has 1-rank strictly below !�+1 and rank strictly below !1+�+1.

This theorem is our main result on (↵)-automatic well-founded order forests. We prove this theorem as fol-
lows. Since the set of (↵)-words allows an (↵)-automatic well-order, we can associate with every (↵)-automatic
well-founded order forest F an (↵)-automatic ordinal (the Kleene-Brouwer ordinal with respect to F and the
(↵)-automatic well-order). Extending a result of Kuske et al. [25], we provide a connection between this ordinal
and the infinity rank of the forest (which has already been used in [16]). Since Schlicht and Stephan [29] provided
upper bounds on the (↵)-automatic ordinals, this connection implies bounds on the infinity ranks and height of
(↵)-automatic forests.

Let T = (T ,v) be a tree and let L = (T ,�) be a linear order. Then we define the Kleene-Brouwer order (also
called Lusin-Sierpiński order) KB(T,L) := (T ,l) given by t l t0 if either t0 v t or there are s v t, s0 v t0 such that
{r 2 T | r < s} = {r 2 T | r0 < s} and s � s0. This generalises the order induced by postorder traversal to infinitely
branching trees where the children of each node are ordered corresponding to the linear order �. It is well-known
that KB(T,L) is a well-order if there are no infinite branches in T and L is a well-order. Since (↵)-automatic
structures are closed under first-order definitions, the following observation is immediate.

Proposition 8.6. Let ↵ < !1 + !! . If T is an tree and L a linear order such that both are (↵)-automatic with
domain T, then KB(T,L) is (↵)-automatic.

Lemma 8.7 (cf. [16]). Let T = (T ,) be a nonempty well-founded order tree and L a well-order with domain T.
For all ordinals �, if 1-rank(T) � �. then KB(T,L) � !� ,

Proof. The proof is by induction on �.

• If � = 0, For nonempty T we conclude that KB(T,L) is nonempty whence it is at least 1 = !� .
• Assume that 1-rank(T) = � = �0 + 1 and that KB(T0,L) � !�0

for each tree T0 with 1-rank(T0
) = �0.

Since T is well-founded, there is some node d such that 1-rank(d,T) = � and there is an infinite list
d1, d2, d3, . . . of successors of d such that the subtree T(di) rooted at di satisfies 1-rank(T(di)) = �0. By
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induction hypothesis, KB(T(di),L) � !�0
. Without loss of generality we can assume that the order type of

{di | i 2 N} with respect to L is ! (otherwise, take a subsequence). We conclude that

KB(T,L) �
X

i2!

KB(T(di),L) = !�0
· ! = !� .

• Assume that 1-rank(T) = � is a limit ordinal. By definition for each �0 < � there is d 2 T such that
1-rank(T(d)) � �0 whence KB(T(d),L) � !�0

by induction hypothesis. Thus,

KB(T,L) � sup{!�0
| �0 < �} = !� .

⇤

We prove Theorem 8.5 by a combination of this result with the following characterisation of the (↵)-automatic
ordinals.

Theorem 8.8 (Schlicht and Stephan [29]). For � = !1+�0
, and � some ordinal, (�,<) is injectively (�)-automatic

if and only if � < !!�0+1
.

In fact, the result carries over to noninjective presentations:

Corollary 8.9. For � = !1+�0
, and � some ordinal, (�,<) (�)-automatic if and only if � < !!�0+1

.

Proof. Let (A,A⇡,A<) be an (↵)-automatic presentation of (�,<). Denoting by � the well-order from Lemma
3.19 we construct the automaton A<0 corresponding to the quantifier-free positive formula x < y _ (x ⇡ y ^ x � y)
(recall that(↵)-automatic structures are closed under quantifier-free positive definable relations). (A,A<0

) clearly
represents some ordinal (⌘,<) such that � injectively embeds into ⌘. Now Schlicht and Stephan’s theorem gives an
upper bound on ⌘ which is also a bound on �. ⇤

Proof of Theorem 8.5. Assume that T = (T ,) is an (↵)-automatic order tree (where ↵ < !1 + !!). Without loss
of generality we may assume that its presentation is injective. Let L be the (↵)-automatic well-order obtained by
restriction of the well-order from Lemma 3.19 to the representatives of T . Since KB(T,L) is an (↵)-automatic
ordinal, KB(T,L) < !!�+1

due to Theorem 8.8. Due to Lemma 8.7, 1-rank(T) < !�+1. By application of Lemma
8.4 we finally obtain height(T) < !1+�+1.

Note that this result easily extends to forests because for each (↵)-automatic forest, we can turn it into an
(↵)-automatic tree by adding a new root. This tree has the same 1-rank as the forest we started with. ⇤

Remark 8.1. Theorem 8.5 also holds in the setting where ↵ is an arbitrary ordinal and F = (F,, succ) is an
injective (↵)-automatic well-founded order forest with automatic successor-relation, i.e., if (F,) is a well-founded
order forest and succ defines the relation

succ = {(f , g) 2 F | f  g ^ 8h¬(f < h < g)}.

In this setting, note that the strict order relation of KB(T,L) can be defined by t l t0 if t0 < t or there are r, s, s0
such that s v t, s0 v t0, succ(r, s), succ(r, s0), s 6= s0 and s � s0 which is definable in 9⇤Pos 6=. Thus, KB(T,L) is
(↵)-automatic and we can proceed as before.

8.2. Optimality of the Bounds on Forests
The upper bounds from Theorem 8.5 are optimal in the sense that we can reach all lower ranks as stated in the
following theorem.
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Theorem 8.10. 1. For all i, c 2 N there is an (!i
)-automatic tree Ti,c with 1-rank(Ti,c) = !i�1 · c and

height(Ti,c) = !i · c.
2. For all ordinals � � ! and all c 2 N, there is an (!�

)-automatic tree T�,c with height(T�,c) = !� · c.

In order to prove the first part of Theorem 8.10, we want to construct for all i 2 N and c 2 N an (!i
)-automatic

tree of 1-rank !i�1 · c and rank !i · c.
We define an (!)-automatic tree as follows. Let T = ({"} [ {(n, m) | n  m} and T0 = (T ,) where

"  t for all t 2 T ,
(n, m)  (n0, m0

) if m = m0 and n  n0.

T0 is clearly well-founded, (!)-automatic, and satisfies 1-rank(T0) = 1 and height(T0) = !.
Next, we show that for any i, c 2 N and any given (!i

)-automatic tree T there is also an (!i
)-automatic tree T0

such that 1-rank(T0
) = 1-rank(T) · c and height(T) = height(T) · c.

Lemma 8.11. Let c 2 N and T an (↵)-automatic tree. Then there is an (↵)-automatic tree Tc such that
1-rank(Tc) = 1-rank(T) · c and height(T) = height(T) · c.

Proof. Let T = (T ,). Set Tc =
Sc

i=1 Ti. The order of Tc is given by

(t1, t2, . . . , ti) c (t01, t02, . . . , t0j)

iff i  j, t1 = t01, . . . , ti�1 = t0i�1 and ti  t0i ,
Note that T1 = T and Tc+1 is obtained from Tc by attaching a copy of T to each node of Tc. Thus, an easy

induction on c proves the claim on the height and the 1-rank. Moreover, Tc is first-order interpretable in T extended
by one element using a c-dimensional interpretation whose formulas are all quantifier free and positive. ⇤

By replacing the convolution by composition of !i-words, we construct an (!i+1
)-automatic representation of

the forest
F

c2N Tc for any (!i
)-automatic tree T.

Lemma 8.12. For T an (!i
)-automatic tree, the forest F :=

F

c2N Tc is (!i+1
)-automatic.

Proof. Let T be the set of !i-words representing the elements of T = (T ,) (over alphabet ⌃). Without loss of
generality, we assume that ⇧!i

/2 T . Let F be the set of !i+1-words of the form

{tn + tn�1 + · · · + t1 + ⇧!
i+1

| n 2 N, ti 2 T [ {⇧!
i
} for 1 < i  n, t1 2 T}.

We equip F with an order v by setting

tn + tn�1 + · · · + t1 + ⇧!
i+1

v t0n0 + t0n0�1 + · · · + t01 + ⇧!
i+1

if and only if n = n0, there is a k  n such that t0i = ti for all i < k, tk  t0k, and ti = ⇧!i
for all k < i  n.

It is straightforward to construct an automaton for v from automata for T and .
It is easy to see that (F,v) is a presentation of the forest F: those nodes with support contained in !i · c but not

in !i · (c � 1) are exactly those elements representing Tc. ⇤
Of course, we can add a new root to F and obtain an (!i+1

)-automatic tree T0 with 1-rank(T0
) =

sup{1-rank(T) · c | c 2 N} and height(T0
) = sup{height(T) · c | c 2 N}.

Iterated application of this lemma to the tree T1 shows that for each i 2 N there is an (!i
)-automatic tree of rank

!i+1 (and 1-rank !i). Application of Lemma 8.11 then proves the first part of Theorem 8.10.
We now use a variant of the previous construction in order to prove the second part of Theorem 8.10, i.e., we

construct (↵)-automatic trees of high ranks for ordinals ↵ � !! .
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Definition 8.13. Let ↵ be an ordinal. Let D↵ be the set of finite (↵)-words w over {⇧, 1} such that for all limit
ordinals � < ↵ and all c 2 ! the implication

w(� + c) = 1 ) w(�) = w(� + 1) = · · · = w(� + c) = 1

holds. We define a partial order on D↵ via the suffix relation: for w1, w2 2 D↵ let w1
!
w↵ w2 if and only if for �  ↵

maximal such that for all 0  � < � w2(�) = ⇧ we have that 8�  � < ↵ w1(�) = w2(�), i.e., supp(w2) is an
upwards closed subset of supp(w1) and both agree on supp(w2).

Note that T↵ := (D↵,
!
w↵) is (↵)-automatic. We can even add the successor relation to T↵.

Lemma 8.14. T↵ := (D↵,
!
w↵) is a tree.

Proof. Since D↵ contains (↵)-words w there are only finitely many positions � < � with w(�) = 1. Thus, there
are also only finitely many suffixes of w that are undefined up to some position in supp(w). This implies that all
ascending chains are finite. Moreover, the suffix relation is a linear order when restricted to the suffixes of a fixed
word w. ⇤

The following lemma combined with Lemma 8.11 proves the second part of Theorem 8.10.

Lemma 8.15. For all ordinals ↵,↵0 such that ↵ = ! · ↵0 � !, height(T↵) = ↵0.

Proof. The proof is by induction on ↵0. For ↵ = ! · 1 = ! note that D↵ consists of all words 1m⇧! , m 2 N where
the word ⇧! is suffix of all other elements. Moreover, these others are pairwise incomparable. Thus, T! is the infinite
tree of depth 1 which has rank 1 as desired. We now proceed by induction.

1. Assume that ↵0 is a successor ordinal, i.e., there is some �0 such that ↵ = ! · ↵0
= ! · �0 + !. Note that the

words directly below ⇧↵ are those of the form w = ⇧�1m⇧� such that � + � = ↵ and � is some limit ordinal
and m < !. Fix such a word and note that D↵ \ {w0 | w0 !

w↵ w} induces a suborder isomorphic to (D� ,
!
w�)

which by induction hypothesis has rank �0 for �0 such that � = ! · �0. Thus, the suborders of maximal rank
�0 are induced by the elements wm = ⇧!·�0

1m⇧! for each m < !. Since these are infinitely many nodes of
1-rank �0, the rank of T↵ is �0 + 1 = ↵0.

2. Assume that ↵0 is a limit ordinal and (�i)i2! converges to ↵0 and �i < ↵ for each i 2 !. Then each wm
i :=

⇧�i 1m⇧↵ for m, i 2 ! is directly below ⇧↵ and induces a suborder isomorphic to (D�i ,
!
w�i) of 1-rank �i.

Thus, 1-rank(T↵) � ↵0. But as in the previous case we see that all proper suborders have 1-rank < ↵
whence 1-rank(T↵)  ↵0. Thus, its 1-rank is exactly ↵0.

⇤
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Appendix A. Determinisation fails at !1
Proposition Appendix A.1. Suppose that  is an uncountable regular cardinal. Then the subsets of 2 which are
accepted by -automata are not closed under complements.

Proof. Let C denote the set of characteristic function of sets in the club filter on , i.e. subsets A of  such that there
is a closed unbounded set B ✓  with B ✓ A. There is an automaton A which accepts C by guessing the elements of
a closed unbounded subset of . It remains to show that 2 \ C is not accepted by an -automaton.

Suppose that A is an automaton which accepts P() \ C. Suppose that A is a subset of  such that A and  \ A
are stationary. Suppose that S is the set of states of A. Suppose that r :  [ {} ! S is a run which accepts the
characteristic function cA : ! {0, 1} of A. Then there is a closed unbounded subset C of  such that for every
↵ 2 C, r(↵) = r(), the set of states which appear unboundedly before ↵ is the same as the set of states which
appear unboundedly before , and includes r(↵) = r().

Suppose that � < � + � are elements of A \ C. Let B denote the following subset of . Let B \ � = A \ �.
Let � + � · � + ↵ 2 B if � + ↵ 2 A for ↵ < � and � < . Then B is closed unbounded in . Let s :  [ {} ! S
denote the following run of A. Let s(↵) = r(↵) for ↵  � and s(� + � · � + ↵) = r(� + ↵) for ↵ < � and � < .
Let s() = r(). Then s accepts B, contradicting the assumption. ⇤


